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Abstract
The Conway–Maxwell Poisson (CMP) distribution is a popular model for analyzing 
data that exhibit under or over dispersion. In this article, we construct bivariate CMP 
distributions with given marginal CMP distributions and range of correlation coef‑
ficient over (− 1, 1) based on the Sarmanov family of bivariate distributions. One 
of the constructions is based on a general method for weighted distributions. The 
dependence property is examined. Parameter estimation, tests of independence and 
adequacy of model and a Monte Carlo power study are discussed. A real data set is 
used to exemplify its usefulness with comparison to other bivariate models.
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1 Introduction

The construction of a bivariate distribution with specified marginals and corre‑
lation has been a challenging problem since the early twentieth century. There 
is much interest in this problem because of its wide ranging applications. For 
instance, Ong [22] considered computer sampling of some bivariate discrete dis‑
tributions with given marginals and correlation. Recently, Lin et al. [21] gave a 
good survey on this topic and this complements previous surveys. A comprehen‑
sive overview is found in the monograph by Balakrishnan and Lai [2].

A simple method to formulate a bivariate distribution with fixed marginals and 
varying correlation is the well‑known Farlie–Gumbel–Morgenstern (FGM) fam‑
ily of distributions defined by

where F(x) and G(y) are the cumulative distribution functions, F̄ = 1 − F and 
Ḡ = 1 − G and ��[−1, 1] is  the parameter that controls the correlation. Schucany 
et al. [25] had shown that the FGM family (1.1) has correlation coefficient restricted 
to the interval (−1∕3, 1∕3) . Various researchers ([14–16, 20]; see also, Balakrishnan 
and Lai [2]) have advocated methods to overcome this drawback of the FGM family.

Sarmanov [23] introduced a family of distributions with better flexibility, and 
this family includes the FGM family as a particular case. The Sarmanov family is 
defined by

where f (x) and g(y) are the probability density functions (pdf) of F(x) and G(y) , 
respectively. �1(x) and �2(y) are measurable functions [21] (also known as mixing 
functions) satisfying the conditions

If �1(x) = 1 − 2F and �2(y) = 1 − 2G , then (1.2) reduces to (1.1). Lee [19] and 
Shubina and Lee [28] have made a detailed study of the Sarmanov family. In the 
literature, the family (1.2) is referred to as the Sarmanov‑Lee family. There is vast 
improvement in the range of correlation [21]. For example, the maximum cor‑
relation for the bivariate distribution with uniform marginals is 3/4 as opposed 
to 1/3 for the FGM distribution (1.1). Different bivariate distributions with given 
marginals are constructed by choosing different mixing functions �1(x) and �2(y) . 
Lee [19] has given some examples of the choice of �1(x) and �2(y) . In this paper, 
we give a general method of constructing bivariate generalizations of weighted 
discrete distributions by considering a particular simple choice of �1(x) and �2(y).

The objective of this paper is to propose bivariate extensions of a univariate 
CMP distribution where marginals are CMP. Recently Sellers et al. [24] consid‑
ered a bivariate CMP (BCMP) distribution where marginal distributions are not 
CMP.

(1.1)H(x, y) = F(x)G(y)
{
1 + 𝛽F̄Ḡ

}

(1.2)h(x, y) = f (x)g(y)
{
1 + ��1(x)�2(y)

}
, x, y�R.

E
[
�1(X)

]
= 0, E

[
�2(Y)

]
= 0 and 1 + �1(x)�2(y) ≥ 0.
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We construct BCMP distributions with CMP marginals and range of correlation over 
[−1, 1] by using two instances of (1.2). The first is a general method for weighted distri‑
butions. The second bivariate distribution is constructed by using �1(x) and �2(y) based 
on the probability generating function. The proposed BCMP distributions includes as a 
special case a bivariate Poisson distribution which has correlation in [−1, 1] . Holgate’s 
[12] bivariate Poisson distribution constructed by random element in common attains 
positive correlation only.

The CMP distribution generalizes the Poisson distribution by  allowing for over‑
dispersion (𝜈 < 1) or under‑dispersion (𝜈 > 1). Its probability mass function (pmf) is 
given by

where

is the normalizing constant. The mean and variance of the CMP distribution have 
the following approximations [27] 

The CMP distribution may be regarded as a weighted Poisson distribution with pmf

where W(�, �) is the normalizing constant.
The CMP distribution is also appealing from a theoretical point of view because 

it belongs to the class of two parameters power series distribution [27]. As a conse‑
quence, sufficient statistics and other elegant properties may be derived. Some of these 
have recently been investigated by Gupta et al. [10]. Kadane et al. [17] investigated the 
number of solutions which give rise to the same sufficient statistics.

The paper is organized as follows. Section 2 defines the proposed BCMP distribu‑
tions and Sect. 3 discusses some dependence properties. The statistical analyses con‑
cerning parameter estimation, tests of hypotheses of independence and adequacy are 
presented in Sect. 4. Section 4 also contains simulation studies to study the power of 
Rao score and likelihood ratio tests. Section 5 illustrates an application to a real data 
set. Some concluding remarks are given in Sect. 6.

(1.3)P(X = x) =
�x

(x!)�
1

Z(�, �)
, x = 0, 1, 2,…

(1.4)Z(𝜆, 𝜈) =

∞∑
j=0

𝜆j

(j!)𝜈
, 𝜆 > 0, 𝜈 ≥ 0

(1.5)E[X] ≈ �1∕� −
� − 1

2�
, var(X) ≈

1

�
�1∕�

(1.6)P(X = x) =
e−��x

x!

(x!)1−�

W(�, �)
, x = 0, 1, 2,…
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2  BCMP Distribution and Properties

2.1  Bivariate Discrete Distributions Based on Sarmanov–Lee Family

In this section, we present two bivariate distributions by choosing different mixing 
functions �1(x) and �2(y).

2.1.1  Bivariate Weighted Discrete Distributions

We propose a general method for constructing Sarmanov‑type bivariate distributions 
for weighted distributions. Consider a discrete distribution with pmf p(x) and mean � . 
The weighted distribution for p(x) has pmf

where w(x) is the weight and W is the normalizing constant. We make use of the 
simpler p(x) to construct the mixing functions. Let � be a positive real number,

and

The expectation E
[
p�(X)

]
 is taken with respect to the weighted pmf P(X = x) . A 

bivariate distribution with joint pmf based on (1.2) is given by

2.1.2  Bivariate Discrete Distributions Based on Probability Generating Functions

Let �1(x) = �x − G(�) and �2(y) = �y − G(�) , where 0 < 𝜃 < 1 and G(�) is the prob‑
ability generating function of the  marginal distribution. A bivariate distribution is 
defined as follows with joint pmf

Note that the functions �i(t), i = 1, 2 are bounded and 
∑

�i(t)P(t) = 0, t = 0, 12,…

.
Let �i =

∑
t�i(t)P(t) . From Theorem 2 [19], the correlation coefficient � of (2.1) 

and (2.2) is given by

P(X = x) = p(x)
w(x)

W
, x = 0, 1, 2,…

�1(x) = p�(x) − E
[
p�(X)

]

�2(y) = p�(y) − E
[
p�(Y)

]
.

(2.1)

P(X = x, Y = y)

= P(X = x)P(Y = y)
{
1 + �

(
p�(x) − E

[
p�(X)

])(
p�(y) − E

[
p�(Y)

])}
, ��[−1, 1]

(2.2)P(X = x, Y = y) = P(X = x)P(Y = y){1 + �(�x − G(�))(�y − G(�))}

(2.3)� =
��1�2

�1�2
.
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where �2
1
, �2

2
 are the variances.

For model (2.1) the function �i is given by

where � = E
[
Xp(X)

]
 , � is the mean for P(x) and � = E

[
p(X)

]
 . Thus,

2.2  BCMP Distributions

Based on (2.1) and (2.2) we have the following BCMP distributions.
The bivariate distribution with joint pmf based on (2.1) is given by

where the CMP marginals P(X = x) and P(Y = y) are given by (1.3) with parameters (
�1, �1

)
 and 

(
�2, �2

)
 , respectively. We consider computation of E

[
p�(Y)

]
 by writing 

it in terms of a CMP pmf. For simplicity, we suppress the subscripts and write the 
parameters as (�, �).

Since Z(�, �) =
∞∑
j=0

�j

(j!)�
 , we express

That is,

where P(R = x) =
1

Z(�2,�+1)

∞∑
x=0

�x(�+1)

(x!)�+�
 is a CMP pmf with parameters 

(
�2, � + 1

)
 . Note 

that E
[
p�(X)

]
 is an infinite sum of product of Poisson and CMP probabilities and it is 

easy to see that E
[
p�(X)

]
≤ 1 . Hence, �1(x) and �2(y) are bounded.

Let �1(x) = �x − g
(
�;�1, �1

)
 and �2(y) = �y − g

(
�;�2, �2

)
 , where 0 < 𝜃 < 1 and 

g(�;�, �) is the probability generating function of the CMP distribution given by

The BCMP distribution corresponding to (2.2) has joint pmf defined as follows:

�i =
∑

x�i(x)P(x) =
∑(

xp(x)P(x) − xP(x)E
[
p(X)

])
= �i − �i�i, i = 1, 2

� =
�
(
�1 − �1�1

)(
�2 − �2�2

)
�1�2

(2.4)
P(X = x, Y = y) = P(X = x)P(Y = y)

{
1 + �

[
p�(x) − E

[
p�(X)

]][
p�(y) − E

[
p�(Y)

]]}

E
[
p�(X)

]
=

∞∑
x=0

e−��
�x�

(x!)�
P(x) =

e−��Z
(
�2, � + 1

)
Z(�, �)

∞∑
x=0

�x(�+1)

(x!)�+�Z
(
�2, � + 1

)

E
[
p�(X)

]
=

e−��Z
(
�2, � + 1

)
Z(�, �)

P(R = x)

g(�;�, �) =
Z(��, �)

Z(�, �)
.

(2.5)P(X = x, Y = y) = P(X = x)P(Y = y)
{
1 + ��1(x)�2(y)

}
,
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where the CMP marginals P(X = x) and P(Y = y) are given by (1.3) with parameters (
�1, �1

)
 and 

(
�2, �2

)
 , respectively.

If �1 = �2 = 1 , then (2.5) is the joint pmf of the bivariate Poisson distribution 
given in Section 6.3 of Lee [19] with � = e−1.

2.3  Correlation Coefficient

Let � and �2 denote the mean and variance of the CMP distribution. For BCMP dis‑
tributions (2.4) and (2.5), the variances �2

1
, �2

2
 may be approximated by (1.5).

For BCMP distribution (2.4),

Thus (2.4) has a very simple expression for the correlation coefficient.

For (2.5),

where gi(�) = g
(
�;�i, �i

)
, i = 1, 2 . The correlation coefficient is given by

For the computation of Z(�, �) given by (1.4) and related quantities such as deriv‑
atives see Section 4 of Gupta et al. [10].

3  Dependence Properties of the BCMP Distribution

The most common measures for determining the relationship between two varia‑
bles are the Pearson correlation coefficient, Kendall’s tau and Spearman’s rho. As a 
generalization of Pearson’s correlation coefficient, Bjerve and Doksum [3], Doksum 
et al. [7] and Blyth [4–6] introduced and discussed correlation curve. The correla‑
tion curve is a local measure of the strength of association between the two variables 
X and Y. The correlation curve �(x) , a function of x, describes the amount of vari‑
ance explained by a regression curve varies locally. However, �(x) does not treat X 
and Y on equal footing, but needs Y to be a response and X, a predictor variable. The 
correlation curve is a regression concept.

�i =
∑

x�i(x)P(x) =
∑(

x
e−�i�x

i

x!
− xP(x)

)
= �i − �i, i = 1, 2

� =
�
(
�1 − �1

)(
�2 − �2

)
�1�2

�i = �
�gi(�)

��
− �igi(�), i = 1, 2

� =
�

(
�
�g1(�)

��
− �1g1(�)

)(
�
�g2(�)

��
− �2g2(�)

)

�1�2
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A local dependence function, a function of x and y, should measure the strength and 
direction of association locally treating both variables symmetrically. For a bivariate 
distribution, it is defined as follows:

An r × c contingency table with cell probabilities pi,j specify the joint distribution 
for two discrete random variables X and Y as

The two marginal distributions for X and Y are

respectively. Yule and Kendall [30] and Goodman [9] suggested the following set of 
local cross product ratios

Equation (3.2) defines the local dependence function. Also, let �i,j = ln�i,j . Both �i,j 
and �i,j measure the association of the 2 × 2 tables found by adjacent rows and adjacent 
columns. It is known that the set 

{
�i,j

}
 or equivalently 

{
�i,j

}
 together with marginal 

probability distributions uniquely determine the bivariate distribution. For more expla‑
nation, see Wang [29] and Holland and Wang [13].

We now present a very important property of the local dependence function. It is in 
terms of the totally positive of order 2,  TP2 (reverse regular of order 2,  RR2), property 
defined below.

Definition A discrete bivariate distribution P(X = i;Y = j) is said to be  TP2(RR2) if 
for a1 < b1, a2 < b2

where p
(
ai, bj

)
= P(X = i;Y = j) . It can be easily verified that the  TP2(RR2) prop‑

erty is equivalent to �i,j ≥ (≤)1 ; where �i,j is the local dependence function. This is 
also equivalent to �i,j ≥ (≤)0.

We now obtain the local dependence function for the Sarmanov family of discrete 
distributions.

3.1  Local Dependence Function for Sarmanov Family of Discrete Distributions

For this family

(3.1)pi,j = P(X = i;Y = j);1 ≤ i ≤ r;1 ≤ j ≤ c

P(X = i) =

c∑
j=1

pi,j = pi+ and P(Y = j) =

r∑
i=1

pi,j = p+j

(3.2)�i,j =
pi,jpi+1,j+1

pi.j+1pi+1,j
, 1 ≤ i ≤ r, 1 ≤ j ≤ c

(3.3)
||||
p(a1, b1) p(a1, b2)

p(a2, b1) p(a2, b2)

|||| ≥ (≤)0

(3.4)�ij =

[
1 + ��1(x)�2(y)

][
1 + ��1(x + 1)�2(y + 1)

]
[
1 + ��1(x)�2(y + 1)

][
1 + ��1(x + 1)�2(y)

]
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So �i,j ≥ (≤)1 is equivalent to

Thus, Sarmanov family is  TP2 if

(a) �1(x) and �2(y) are both increasing or both decreasing and
(b) 𝜔 > 0.

Similarly, the Sarmanov family is  RR2 if

(a) �1(x) and �2y are both increasing or both decreasing and
(b) 𝜔 < 0.

Let us now obtain such conditions for the BCMP distribution.
We have

This gives

Hence, �1(x) is decreasing. Similarly, �2(y) is decreasing.
Hence, BCMP is  TP2 if and only if 𝜔 > 0.
Note that the  TP2 condition is the same as the condition for positive dependence 

notion that Lehmann [18] called positive likelihood ratio dependence. This notion 
leads naturally to the order described below.

3.2  Positively Likelihood Ratio Dependent Ordering

Let (X1,X2) and (Y1,Y2) be two bivariate random vectors having the same marginals. 
Then, we say that (X1, X2) is smaller than (Y1, Y2) in the positively likelihood ratio 
dependent (PLRD) order denoted by

if

where F and G have (continuous or discrete) densities f and g; see [26].
It can be easily seen that

is equivalent to

(3.5)�
[
�2(y + 1) − �2(y)

][
�1(x + 1) − �1(x)

]
≥ (≤)0

𝜙1(x) = 𝜃x − g1(𝜃), 0 < 𝜃 < 1.

(3.6)
𝜙1(x + 1) − 𝜙1(x) =

[
𝜃x+1 − g1(𝜃)

][
𝜃x − g1(𝜃)

]

= 𝜃x(𝜃 − 1) < 0, 0 < 𝜃 < 1

(
X1,X2

)
≤PLRD

(
Y1, Y2

)

f
(
x1, y1

)
f
(
x2, y2

)
g
(
x1, y2

)
g
(
x2, y1

)
≤ f

(
x1, y2

)
f
(
x2, y1

)
g
(
x1, y1

)
g
(
x2, y2

)
, x1 ≤ x2, y1 ≤ y2

(
X1,X2

)
≤PLRD

(
Y1, Y2

)
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where �(X1,X2) and �(Y1,Y2) are the local dependence functions for (X1, X2) and (Y1,Y2), 
respectively.

We shall now compare two Sarmanov families with parameters w1 and w2:
After tedious algebra, it can be verified that

Now assume

(a) �1(x) and �2(y) are both increasing or both decreasing and
(b) 
Then, �(X1,X2) ≤ �(Y1,Y2) if 𝜔1 < 𝜔2.

The alternative conditions are

(c) �1(x) and �2(y) are both increasing or both decreasing and
(d) 

Then, �(X1,X2) ≤ �(Y1,Y2) if 𝜔1 > 𝜔2.
We now investigate PLRD ordering for BCMP distribution. In this case,

This does not imply that �1�2�1(x)�2(x)�1(x + 1)�2(y + 1) ≥ 1 . Hence, we can‑
not compare the two vectors of Sarmanov family according to the PLRD ordering.

Remark. The PLRD ordering is difficult to check in most cases. By contrast find‑
ing families of distributions that are not ordered by this relation is relatively easy. 
For more explanation and comments, see [8].

4  Statistical Analysis

In this section, we examine statistical inference for the BCMP distribution given by 
(2.2).

4.1  Parameter Estimation

The method of moments estimation for estimating the parameters is conducted as 
follows:

�(X1,X2) ≤ �(Y1,Y2)

�(X1,X2) − �(Y1,Y2)

=
(
�1 − �2

)[
�1(x + 1) − �1(x)

][
�1(y + 1) − �1(y)

]
×
[
1 − �1�2�1(x)�2(x)�1(x + 1)�2(y + 1)

]

�1�2�1(x)�2(x)�1(x + 1)�2(y + 1) ≤ 1

�1�2�1(x)�2(x)�1(x + 1)�2(y + 1) ≥ 1

�1�1(x)�2(y) ≥ −1 and �2�1(x + 1)�2(y + 1) ≥ −1.



 Journal of Statistical Theory and Practice (2021) 15:10

1 3

10 Page 10 of 19

The marginal parameters (�, �) are estimated by equating the first and second 
marginal sample moments by using the approximations in (1.5). The estimate for � 
is obtained from (2.3) by equating with the sample correlation coefficient.

For maximum likelihood estimation (MLE), simulated annealing (SA) algorithm 
is used to determine the estimates corresponding to the global optimum. It is a popu‑
lar algorithm for searching global extremum in non‑smooth functions with a large 
number of local extrema. Henderson et al. [11] have discussed the convergence of 
SA and presented practical guidelines for the implementation of SA algorithm, espe‑
cially its control parameters, to ensure good performance.

The log‑likelihood function of the model is given by

where Z1 = Z(�1, �1),Z2 = Z(�2, �2) . For the following sections, we consider 
� = e−1.

4.2  Test of Hypotheses

In this subsection, the tests for the two hypotheses of interest, that is, test of inde‑
pendence and test of adequacy of the proposed BCMP distribution are discussed. 
To compare the null model (restricted model) against the alternative model (unre‑
stricted model), the score and the likelihood ratio (LR) tests are chosen and their test 
statistics are summarized as follows.

Let H0 : � = �∗ versus H1 : � ≠ �∗ . The score test statistic is T = S
�

V−1S where

is the score function and

is the information matrix.
The test statistic based on the LR test is defined as LR = −2 logL

(
�̂�∗
)
∕L(�̂�) 

where �̂�∗ and �̂� are the restricted and unrestricted maximum likelihood estimates.

4.2.1  Test of Independence

The random variables X and Y are independent if � = 0 . The hypotheses to be tested 
are H0 ∶ � = 0 against H1 ∶ � ≠ 0.

The score functions evaluated under the null hypothesis are needed and they can 
be easily obtained from the log‑likelihood equation in (4.1).

(4.1)

lnL =

n∑
i=1

[
xi ln �1 + yi ln �2 + ln

{
1 + ��1

(
xi
)
�2

(
yi
)}

− �1
(
ln xi!

)
− �2

(
ln yi!

)
− lnZ1 − lnZ2

]

S
�

=
𝜕

𝜕𝜃
ln L(𝜃)

||||𝜃=�̂�∗

V = E

[
−
𝜕2 ln L(𝜃)

𝜕𝜃

]|||||
𝜃=�̂�∗
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The elements of the information matrix corresponding to � = 0 are

Both the score and LR tests have an approximate Chi‑square distribution with 
1 degree of freedom.

� lnL

��

||||�=0 =
n∑
i=1

�1

(
xi
)
�2

(
yi
)

� lnL

��1

||||�=0
=

n∑
i=1

xi

�1
−

1

Z1

(
�Z1

��1

)
,

� ln L

��2

||||�=0
=

n∑
i=1

yi

�2
−

1

Z2

(
�Z2

��2

)

� lnL

��1

||||�=0
=

n∑
i=1

− ln
(
xi!

)
−

1

Z1

(
�Z1

��1

)
,

� ln L

��2

||||�=0
=

n∑
i=1

− ln
(
yi!

)
−

1

Z2

(
�Z2

��2

)

�2 ln L

��2

||||�=0 =
n∑
i=1

−
(
�1

(
xi
)
�2

(
yi
))2

�2 ln L

����1

||||�=0
=

n∑
i=1

�2

(
yi
)(��1

(
xi
)

��1

)

�2 ln L

����2
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4.2.2  Test of BCMP

To test the bivariate Poisson distribution against a BCMP distribution, that is, if the 
bivariate Poisson is adequate, the proposed hypotheses are

From Eqs. (2.5) and (4.1), the score functions are found to be

H0 ∶ �1 = �2 = 1 versus H0 is not true.

� ln L

��

||||�1=�2=1
=

n∑
i=1

a1a2

f

� ln L

��1

||||�1=�2=1
=

n∑
i=1

−1 +
xi

�1
+

�a1e
−�1+�1�(1 − �)

f

� ln L

��2

||||�1=�2=1
=

n∑
i=1

−1 +
yi

�2
+

�a2e
−�2+�2�(1 − �)

f

� ln L

��1

||||�1=�2=1
=

n∑
i=1

− ln
(
xi!

)
− e−�1

(
�Z1

��1

)
+

�a1

f

[
e−2�1+�1�

�Z1

��1
− e−�1

�Z∗
1

��1

]

� ln L

��2

||||�1=�2=1
=

n∑
i=1

− ln
(
yi!

)
− e−�2

�Z2

��2
+

�a2

f

[
e−2�2+�2�

�Z2

��2
− e−�2

�Z∗
2

��2

]

Table 1  Simulated power of  
Score and LR tests for 
test of independence 
( �1 = 0.9, �1 = 2, �2 = 0.7, �2 = 3)

n = 100 n = 500 n = 1000

β α T LR T LR T LR

− 1 0.05 0.174 0.114 0.678 0.678 0.926 0.955
0.10 0.264 0.226 0.768 0.765 0.969 0.975

− 0.8 0.05 0.134 0.089 0.511 0.510 0.786 0.787
0.10 0.209 0.184 0.618 0.618 0.860 0.859

− 0.5 0.05 0.088 0.052 0.224 0.206 0.415 0.415
0.10 0.146 0.123 0.340 0.322 0.539 0.540

0 0.05 0.053 0.035 0.051 0.052 0.056 0.057
0.10 0.110 0.102 0.109 0.109 0.112 0.112

0.5 0.05 0.100 0.068 0.276 0.278 0.455 0.455
0.10 0.169 0.160 0.384 0.383 0.569 0.57

0.8 0.05 0.163 0.115 0.548 0.547 0.826 0.826
0.10 0.260 0.231 0.668 0.669 0.897 0.898

1.0 0.05 0.229 0.144 0.737 0.737 0.952 0.955
0.10 0.337 0.298 0.835 0.835 0.974 0.975



1 3

Journal of Statistical Theory and Practice (2021) 15:10 Page 13 of 19 10

where a1 =
(
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Both the score and LR tests have an approximate Chi‑square distribution with 2 
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4.3  Monte Carlo Simulation Study

The performance of the proposed score and LR tests is compared in order to check 
the efficiencies of the tests. A simulation study of 1000 replications has been car‑
ried out by considering small (n = 100), medium (n = 500) and large (n = 1000) 
sample sizes for the bivariate discrete distributions based on probability generating 
functions. The nominal significant level, � is taken as 5% and 10%. For the test of 
independence, different values of � , ranging from − 1 to 1 are considered with a 
few combinations of �1 and �2 . Tables 1 and 2 display, respectively, the simulated 
power of the tests under the test of independence and the test of adequacy of BCMP 
distribution.

From Table 1, the score test performs better in maintaining the nominal signif‑
icance level of 5% ( � = 0) if compared to the LR test for small sample sizes, but 
vice versa for nominal level of 10%. A weak detection is achieved when � is 0.5 
away from zero and when the sample size is small. The power of detection is greatly 
improved when the sample size increases. When � is 0.8 or 1.0 away from zero, the 
score test outperforms the LR test when the sample size is small, but the values are 
very close to each other when the sample size increases.

The powers of the proposed tests increase when � diverges further from the value 
0 and when the sample size increases. Besides that the powers of both of the tests 
are very close to each other when the sample size increases to 500 and 1000 regard‑
less of the value of � and the nominal levels.

As shown in Table 2, the score test outperforms the LR test in maintaining the 
nominal levels of 5% and 10% regardless of the sample size. The LR test overesti‑
mates the nominal significance level for small sample sizes. In addition, when the 
parameters �1 and �2 are smaller than 1.0, the score and LR tests are comparable to 

Table 2  Simulated power 
of Score and LR tests for 
test of adequacy of BCMP 
( �1 = 0.9, �1 = 2, �2 = 0.7, �2 = 3)

n = 100 n = 500 n = 1000

v1 v2 α T LR T α T LR

1.0 1.0 0.05 0.056 0.129 0.047 0.060 0.049 0.047
0.10 0.109 0.172 0.100 0.106 0.093 0.088

0.5 0.5 0.05 0.760 0.744 1.000 1.000 1.000 1.000
0.10 0.829 0.814 1.000 1.000 1.000 1.000

2.0 2.0 0.05 0.660 0.739 1.000 1.000 1.000 1.000
0.10 0.778 0.837 1.000 1.000 1.000 1.000

1.0 2.0 0.05 0.279 0.404 0.968 0.976 1.000 1.000
0.10 0.431 0.526 0.982 0.986 1.000 1.000

1.0 0.5 0.05 0.404 0.374 0.963 0.958 0.999 0.999
0.10 0.516 0.481 0.982 0.976 0.999 1.000

2.0 1.0 0.05 0.378 0.484 0.990 0.992 1.000 1.000
0.10 0.539 0.622 0.996 0.997 1.000 1.000

0.5 1.0 0.05 0.594 0.577 0.997 0.996 1.000 1.000
0.10 0.701 0.687 0.998 0.998 1.000 1.000
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each other. However, if both of the parameters are higher than 1.0, LR test is able 
to achieve a higher detection compared to the score test. If �1 is fixed as 1.0, the 
LR test outperforms the score test when �2 is larger than 1.0 but vice versa when �2 
is smaller than 1.0. The same result applies when �2 is fixed as 1.0 and �1 is set as 
larger or smaller than 1.0.

Overall, both score and LR tests are powerful when the sample size is equal or 
larger than 500 as almost 96% detection can be achieved.

5  Example of Application to Real Data

As an illustration of application we consider the data set of the number of accidents 
sustained by 122 experienced shunters over 2 successive periods of time [1] which 
was also used by Sellers et al. [24].

In this section, all the summation series involved are computed by recursion with 
double‑precision accuracy and truncation approach is applied to the normalizing 
constant, Z(�, �) . It is set as Z(�, �) ≤ 1 × 10200 . To compute the correlation coeffi‑
cient � =

��1�2

�1�2
 , the calculation of mean �1 , �2 and variances �2

1
, �2

2
 from marginals 

P(X = x) and P(Y = y) are required. They are computed by using the following 
equations as the accuracy of approximation Eqs. (1.5) hold when 𝜆 > 10𝜈 . The equa‑
tions fail when the value of the parameter � is close to zero. For example, when 
� = 0.01 , we have to make sure that 𝜆 > 10𝜈 = 1.0233.

For the data set on the number of accidents sustained by 122 experienced shunt‑
ers over 2 successive periods of time. [1], the sample moments are:

This data set has also been fitted by the bivariate negative binomial (BNB) distri‑
bution as a comparison. See Table 3.

To confirm that the MLE’s for the data in Table 3 really give a maximum, some 
likelihood function values are computed for points around the ML estimates. Based 
on the likelihood function values, the ML estimates do correspond to the maximum 
(Table 4).

It is observed that in the summary statistics presented in Table 5, the fits by both 
proposed BCMP are significantly better than the BNB based upon the �2 values and 
the log‑likelihood values. For this data set, Sellers et al. [24] gave a log‑likelihood 
value of − 341.704 for their BCMP distribution which is about the same as BNB. 
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Table 3  Observed and expected 
number of accidents sustained 
by 122 experienced shunters 
over 2 successive periods of 
time

BCMPI is BCMP distribution based on weighted distribution; BCMPII 
is BCMP distribution based on probability generating function
ML estimates:

BNB: p̂1 = 0.20, p̂2 = 0.15, p̂3 = 0.01, v̂ = 3.88

BCMPI ∶ �̂�1 = 0.92, �̂�1 = 0.57, �̂�2 = 0.73, �̂�2 = 0.53, �̂� = 0.58, 𝛽 = 1.00

BCMPII ∶ �̂�1 = 0.94, �̂�1 = 0.59, �̂�2 = 0.75, �̂�2 = 0.56, 𝛽 = 1.00

0 1 2 3 4 5 6 Total

0 21 18 8 2 1 0 0 50
BNB 21.90 16.67 7.98 3.07 1.04 0.32 0.09 51.07
BCMPI 18.08 16.60 10.02 4.82 1.99 0.73 0.24 52.47
BCMPII 21.09 15.44 8.63 4.05 1.65 0.59 0.19 51.65
1 13 14 10 1 4 1 0 43
BNB 12.52 13.18 8.06 3.77 1.50 0.53 0.18 39.74
BCMPI 12.98 11.95 7.38 3.62 1.51 0.56 0.18 38.18
BCMPII 11.56 12.43 8.12 4.05 1.69 0.61 0.20 38.66
2 4 5 4 2 1 0 1 17
BNB 4.50 6.06 4.54 2.52 1.16 0.47 0.17 19.42
BCMPI 6.36 5.90 3.82 1.95 0.83 0.31 0.10 19.28
BCMPII 5.08 6.48 4.43 2.25 0.94 0.34 0.11 19.63
3 2 1 3 2 0 1 0 9
BNB 1.30 2.13 1.90 1.23 0.65 0.30 0.12 7.63
BCMPI 2.54 2.37 1.59 0.83 0.36 0.14 0.05 7.87
BCMPII 1.94 2.65 1.84 0.94 0.39 0.14 0.05 7.95
4 0 0 1 1 0 0 0 2
BNB 0.33 0.64 0.66 0.49 0.29 0.15 0.07 2.63
BCMPI 0.88 0.82 0.56 0.30 0.13 0.05 0.02 2.76
BCMPII 0.65 0.91 0.64 0.33 0.14 0.05 0.02 2.74
5 0 0 0 0 0 0 0 0
BNB 0.08 0.17 0.20 0.17 0.11 0.06 0.03 0.82
BCMPI 0.27 0.26 0.18 0.09 0.04 0.02 0.01 0.86
BCMPII 0.20 0.28 0.20 0.10 0.04 0.02 0.01 0.83
6 0 0 0 0 0 0 0 0
BNB 0.02 0.04 0.06 0.05 0.04 0.02 0.01 0.24
BCMPI 0.08 0.07 0.05 0.03 0.01 0.00 0.00 0.24
BCMPII 0.05 0.08 0.05 0.03 0.01 0.00 0.00 0.23
7 0 1 0 0 0 0 0 1
BNB 0.00 0.01 0.01 0.01 0.01 0.01 0.38 0.43
BCMPI 0.02 0.02 0.01 0.01 0.00 0.00 0.27 0.34
BCMPII 0.01 0.02 0.01 0.01 0.00 0.00 0.25 0.31
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Thus, based on the log‑likelihood values, the proposed BCMP distributions fit better 
than the BCMP distribution of Sellers et al. [24].

6  Concluding Remarks

BCMP distributions with marginal distributions which are CMP distributions and 
range of correlation coefficient over (− 1, 1) have been proposed. This is based 
on the Sarmanov family of bivariate distributions which is a simple and elegant 
approach in constructing bivariate distributions. A method is proposed for construct‑
ing bivariate generalizations of weighted distributions. The univariate CMP distri‑
bution is a very popular distribution for applications since it has the flexibility to 
analyze data that exhibit under or over dispersion. The BCMP distribution proposed 
by Sellers et al. [24] does not have the marginal distributions which are CMP dis‑
tributions. It is shown in this article that the proposed BCMP distributions fit much 
better than the BCMP of Sellers et al. [24]. Thus, the proposed BCMP distributions 
will be of great utility to the data analysts.
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Table 4  Likelihood function values for points around the ML estimates

Parameters (BCMPI)
(
(
�̂�1, �̂�1, �̂�2, �̂�2, �̂�, 𝛽

)
)

Likelihood values Parameters (BCMPII)(
�̂�1, �̂�1, �̂�2, �̂�2, 𝛽

) Likelihood values

(0.92, 0.57, 0.73, 0.53, 0.58, 1.00) 
(ML estimates)

− 345.5534 (0.94, 0.59, 0.75, 0.56, 1.00) 
(ML estimates)

− 343.5029

(0.90, 0.50, 0.70, 0.50, 0.50, 0.90) − 345.8766 (0.90, 0.50, 0.70, 0.50, 1.00) − 343.8142
(0.90, 0.50, 0.70, 0.50, 0.50, 0.80) − 345.9731 (0.90, 0.50, 0.70, 0.50, 0.80) − 344.0005
(0.85, 0.45, 0.60, 0.40, 0.45, 0.85) − 347.0905 (0.80, 0.40, 0.60, 0.40, 0.80) − 345.6643
(1.00, 1.45, 1.20, 1.40, 0.79, 0.85) − 375.7474 (1.00, 0.60, 0.80, 0.60, 1.00) − 343.8895
(1.00, 1.45, 1.20, 1.40, 0.79, 1.00) − 375.6931 (1.20, 0.80, 0.90, 1.00, 1.00) − 346.8308
(1.00, 1.45, 1.20, 1.40, 0.79, 1.00) − 382.6309 (2.20, 0.80, 2.90, 1.00, 1.00) − 495.3810

Table 5  Summary statistics Model �2 Log‑likelihood value P value

BNB 121.70 − 341.61 0.000
BCMPI 86.99 − 345.55 0.001
BCMPII 80.49 − 343.50 0.004
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Appendix

Derivatives of the BCMP normalizing constant, Z(��, �) are shown as follows
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