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Abstract
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There has been a recent interest to study similar problems for stochastic processes 
driven �-stable noises and fractional Levy processes.

Prakasa Rao [11] investigated minimum L1-norm estimation for fractional Orn-
stein–Uhlenbeck type process driven by a fractional Brownian motion. Diop and 
Yode [3] studied minimum distance parameter estimation for Ornstein–Uhlenbeck 
processes driven by a Levy process. Parametric estimation for Ornstein–Uhlen-
beck process driven by fractional Levy process is discussed in [14].

In modeling processes with possible long-range dependence, it is possible that 
no special functional form is available for modeling the trend a priori and it is 
necessary to estimate the trend function based on the observed process over an 
interval. This problem of estimation is known as nonparametric function estima-
tion in classical statistical inference (cf. [10]).

Nonparametric estimation of the trend for stochastic differential equations 
driven by fractional Brownian motion is investigated in [8]. Following techniques 
in [8], Zhang [15] studied a similar problem when the driving force is a small �
-stable noise.

Our aim in this paper is to study nonparametric estimation of the trend func-
tion when the process is governed by a stochastic differential equation driven by 
a fractional Levy process following the ideas of density function estimation and 
regression function estimation in classical statistical inference. Several meth-
ods are present for nonparametric function estimation as described in [10]. The 
method of kernels is widely used for the estimation of a density function or a 
regression function and it is known that the properties of such an estimator do not 
depend on the choice of the kernel in general but on the choice of the bandwidth. 
Properties of the estimators of a density function and a regression function, using 
the method of kernels, are described in [10]. Our aim is to propose a kernel-type 
estimator for the trend function and study its properties. We will show that the 
kernel-type estimator is uniformly consistent over a class of trend functions and 
obtain the asymptotic distribution of the estimator in the presence of small noise. 
We will also obtain the optimum rate of convergence of the kernel-type estima-
tors for the trend function. Results derived in this paper will be useful when there 
is no information on the functional form of the trend coefficient and the trend has 
to be estimated from the observed path of the underlying process.

2 � Fractional Levy Process

We will now describe some properties of a fractional Levy process and properties 
of processes driven by a fractional Levy process. A fractional Levy process is a 
generalization of the integral representation of fractional Brownian motion.

Definition  (Marquardt [7]) Let {L(t), t ∈ R} be a zero mean two-sided Levy process 
with E([L(1)]2) < ∞ and without a Brownian component. For d ∈ (0,

1

2
), a stochas-

tic process
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is called a fractional Levy process (fLp) where L(t) = L1(t), t ≥ 0 and 
L(t) = −L2(−t−), t < 0 and {L1(t), t ≥ 0} and {L2(t), t ≥ 0} are two independent cop-
ies of a one-sided Levy process.

The following two results are due to [7].

Theorem  2.1  Let the function g ∈ H where H is the completion of  L1(R) ∩ L2(R) 
with respect to the norm  ||g||2

H
= E([L(1)]2) ∫

R
(Id
g
)2(u)du. Then

where the equality holds in the L2 -sense and Id
g
 denotes the Riemann–Liouville frac-

tional integral defined by

Suppose that Y = ∫
R
(Id
g
)(u)dL(u). Following the results in [7, 13], it follows that 

the distribution of Y is infinitely divisible with characteristic function

where �(.) is the Levy measure corresponding to the process L. Furthermore, 
E(Y) = 0 and E(Y2) = E[L(1)2] ∫

R
|(Id

G
)(s)|2 ds.

Theorem 2.1 gives a representation of the integral with respect to a fractional 
Levy process (fLp) as an integral with respect to a transformed function with 
respect to a Levy process. The next result gives a formula for the product moment 
of two integrals with respect to fractional Levy process.

Theorem 2.2  Let |f |, |g| ∈ H. Then 

and 

Bender et al. [1] presented a maximal inequality for a fractional Levy process.

(2.1)Ld
t
=

1

Γ(d + 1) ∫
∞

−∞

[(t − s)d
+
− (−s)d

+
]L(ds), t ∈ R

(2.2)∫R

g(s)dLd
s
= ∫R

(Id
g
)(u)dL(u)

(2.3)(Id
g
)(x) =

1

Γ(d) ∫
∞

x

g(t)(t − x)d−1dt.

(2.4)E[eiuY ] = exp

[

∫R ∫R

(eiu (Id
g
)(s) x − 1 − iu (Id

g
)(s)) �(dx)ds

]

(2.5)E

(

∫R

f (s)dLd
s

)
= 0

(2.6)

E

[

∫R

f (s)dLd
s ∫R

g(s)dLd
s

]
=

Γ(1 − 2d)E([L(1)]2)

Γ(d)Γ(1 − d) ∫R ∫R

f (t)g(s)|t − s|2d−1dsdt.
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Theorem 2.3  Let {Ld
t
, t ∈ R} be a fractional Levy process. Then, for every p ≥ 2 and 

𝛿 > 0 such that d + 𝛿 <
1

2
, there exists a constant  Cp,�,d independent of the Levy pro-

cess L such that for every T ≥ 1,

Remarks  It is known that a fractional Levy process (fLp) is not a semimartingale 
in general for a broad class of Levy processes and hence it is not possible to extend 
the notion of the Ito stochastic integral for stochastic integrals with respect to a frac-
tional Levy process. However, it is possible to extend the notion of a Wiener integral 
with respect to a fLp when the integrand is a non-random function using the ideas 
from fractional calculus. The covariance structure of fLp is almost the same as that 
of a fractional Brownian motion. In fact,

Furthermore, the increments of a fLp are stationary and exhibit long memory. Its 
sample paths are Holder continuous of order 𝛽 < d and the fLp is not self-similar. 
For details, see [7]. For additional properties of fractional Levy processes, see [2, 4, 
5].

3 � Preliminaries

Let us consider the stochastic differential equation

where the function S(.) is unknown and the constant d is known with 0 < d <
1

2
. We 

assume that T ≥ 1 hereafter. We would like to estimate the function S(.) based on the 
observation {Xt, 0 ≤ t ≤ T}. Suppose {xt, 0 ≤ t ≤ T} is the solution of the differen-
tial equation

We assume that the trend coefficient S(x) is bounded and satisfies the following con-
ditions which ensure the existence and uniqueness of the solution of Eq. (3.1): (A1) ∶ 
There exists a constant K > 0 such that |S(x) − S(y)| ≤ K|x − y|, x, y ∈ R.

It is clear that the condition (A1) implies that there exists a constant M > 0 such that

Since the function xt satisfies the ordinary differential Eq. (3.2), it follows that

(2.7)E( sup
0≤t≤T

|Ld
t
|p) ≤ Cp,�,dE(|L(1)|p)T

p(d+
1

2
+�).

(2.8)Cov(Ld
t
, Ld

s
) =

E[L(1)2]

2Γ(2d + 2)sin(�(d +
1

2
))
[|t|2d+1 − |t − s|2d+1 + |s|2d+1].

(3.1)dXt = S(Xt) dt + � dLd
t
,X0 = x0, 0 ≤ t ≤ T

(3.2)
dxt

dt
= S(xt), x0, 0 ≤ t ≤ T .

|S(x)| ≤ M(1 + |x|), x ∈ R.
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for some constant K1 > 0.

Lemma 3.1  Let the function S(.) satisfy the condition (A1). Let Xt and xt be the solu-
tions of Eqs. (3.1) and (3.2), respectively. Let 𝛿 > 0 such that  d + 𝛿 <

1

2
 and T ≥ 1. 

Then, with probability one,

and, for T ≥ 1, and p ≥ 2, there exists a constant Cp,�,d independent of the Levy pro-
cess such that 

Proof of (a) :  Let ut = |Xt − xt| . Then, by (A1) , we have

Applying the Gronwall’s lemma, it follows that

	�  ◻

Proof of (b) :  Let p ≥ 2 and suppose that T ≥ 1. Applying Theorem 2.3, it follows 
that

	�  ◻

|S(xt) − S(xs)| ≤ K|xt − xs| = K|�
s

t

S(xt)dt| ≤ K1|t − s|, t, s ∈ R

(3.3)(a)|Xt − xt| < eKt𝜖 sup
0≤s≤t

|Ld
s
|

(3.4)(b) sup
0≤t≤T

E|Xt − xt|p ≤ Cp,�,dE[(L(1))
p]epKT�pTp(d+

1

2
+�)

(3.5)
ut ≤�

t

0

||S(Xv) − S(xv)
||dv + � |Ld

t
|

≤K �
t

0

uvdv + � |Ld
t
|.

(3.6)ut ≤ � sup
0≤s≤t

|Ld
s
|eKt.

(3.7)sup
0≤t≤T

E|Xt − xt|p ≤epKT�pE[( sup
0≤s≤T

|Ld
s
|)p]

(3.8)≤Cp,�,dE[(L(1))
p]epKT�pTp(d+

1

2
+�).
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4 � Main Results

Let Θ0(K) denote the class of all functions S(x) satisfying the condition (A1) with 
the same bound L. Let Θk(K) denote the class of all functions S(x) which are uni-
formly bounded by the same constant C and which are k-times differentiable with 
respect to t satisfying the condition

for some constant K > 0. Here, g(k)(x) denotes the k-th derivative of g(.) at x for 
k ≥ 0. If k = 0, we interpret g(0) as g.

Let G(u) be a bounded function with finite support [A, B] with A < 0 < B satis-
fying the conditions

(A2)G(u) = 0 for u < A and u > B, and ∫ B

A
G(u)du = 1.

It is obvious that the following conditions are satisfied by the function G(.) :  

	 (i)	 ∫ ∞

−∞
|G(u)|2du < ∞;

	 (ii)	 ∫ ∞

−∞
|uk+1G(u)|2du < ∞.

We define a kernel-type estimator of the trend St = S(xt) as

where the normalizing function �� → 0 as � → 0. Let ES(.) denote the expectation 
when the function S(.) is the trend function.

Theorem 4.1  Suppose that the trend function S(x) ∈ Θ0(K) and the conditions (A1) 
and (A2) hold. Further suppose that the function �� → 0 and  �2�2d−1

�
→ 0 as � → 0. 

Then, for any 0 < a ≤ b < T , T ≥ 1, the estimator  Ŝt is uniformly consistent, that is,

In addition to the conditions (A1) − (A2), assume that
(A3)∫ ∞

−∞
ujG(u)du = 0 for j = 1, 2,… , k.

Theorem  4.2  Suppose that the function S(x) ∈ Θk+1(K) and the conditions 
(A1) − (A3) hold. Further suppose that �� = �

2

2k−2d+3 . Then,

Theorem 4.3  Suppose that the function S(x) ∈ Θk+1(K) for some  k > 1 and the con-

ditions (A1) − (A3) hold. Further suppose that �� = �
1

k+2−(d+
1
2
). Then, as � → 0, the 

asymptotic distribution of

|S(k)(x) − S(k)(y)| ≤ K|x − y|, x, y ∈ R

(4.1)Ŝt =
1

��
∫

T

0

G

(
� − t

��

)
dX�

(4.2)lim
�→0

sup
S(x)∈Θ0(K)

sup
a≤t≤b

ES(|Ŝt − S(xt)|2) = 0.

(4.3)lim sup
𝜖→0

sup
S(x)∈Θk+1(K)

sup
a≤t≤b

ES(|�St − S(xt)|2)𝜖
−

4(k+1)

2k−2d+3 < ∞.
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has mean zero and variance

and the asymptotic distribution is that of the family of random variables

as � → 0.

5 � Proofs of Theorems

Proof of Theorem 4.1  From the inequality

it follows that

By the Lipschitz condition on the function S(.),  the inequality (3.3) in Lemma 3.1 
and the condition (A2) , and applying the Holder inequality, it follows that

�
−(k+1)

k+2−(d+
1
2
) (Ŝt − S(xt) −

S
(k+1)
t

(k + 1)! ∫
∞

−∞

G(u)uk+1 du)

�2 = ∫
∞

−∞ ∫
∞

−∞

G(u)G(v)|u − v|2d−1 dudv

�
−(d+

1

2
)

� ∫
∞

−∞

G

(
� − t

��

)
dLd

�

(a + b + c)2 ≤ 3(a2 + b2 + c2), a, b, c ∈ R,

(5.1)

ES[|Ŝt − S(xt)|2] = ES

[|||||
1

��
�

T

0

G

(
� − t

��

)(
S(X�) − S(x�)

)
d�

+
1

��
�

T

0

G

(
� − t

��

)
S(x�)d� − S(xt) +

�

��
�

T

0

G

(
� − t

��

)
dLd

�

|||||

2
]

≤ 3ES

[|||||
1

��
�

T

0

G

(
� − t

��

)
(S(X�) − S(x�))d�

|||||

2
]

+ 3ES

[|||||
1

��
�

T

0

G

(
� − t

��

)
S(x�)d� − S(xt)

|||||

2
]

+ 3
�2

�2
�

ES

[|||||�
T

0

G

(
� − t

��

)
dLd

�

|||||

2
]

= I1 + I2 + I3 (say).
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which tends to zero as � → 0. For the term I2 , by the Lipschitz condition on the func-
tion S(.),  the condition (A2) and the Holder inequality, it follows that

The last term tends to zero as � → 0. We will now get an upper bound on the term I3. 
Note that

for some positive constant C1. Theorem  4.1 is now proved by using Eqs.  (5.1) to 
(5.4). 	�  ◻

Proof of Theorem 4.2  By the Taylor’s formula, for any x ∈ R,

(5.2)

I1 = 3ES

|||||
1

��
�

T

0

G

(
� − t

��

)
(S(X�) − S(x�))d�

|||||

2

= 3ES

||||�
∞

−∞

G(u)
(
S(Xt+��u

) − S(xt+��u
)
)
du
||||

2

≤3(B − A)�
∞

−∞

|G(u)|2K2E
|||Xt+��u

− xt+��u
|||
2

du (by using the condition (A1))

≤3(B − A)�
∞

−∞

|G(u)|2 K2 sup
0≤t+��u≤T

E
|||Xt+��u

− xt+��u
|||
2

du

≤3(B − A)K2C2,�,dE[(L(1))
2]e2LT�2T2(d+

1

2
+�) �

∞

−∞

|G(u)|2du (by using (eq3.4) )

(5.3)

I2 = 3ES

|||||
1

��
�

T

0

G

(
� − t

��

)
S(x�)d� − S(xt)

|||||

2

= 3
||||�

∞

−∞

G(u)
(
S(xt+��u

) − S(xt)
)
du

||||

2

≤ 3(B − A)�
∞

−∞

|G(u)(S(xt+��u
) − S(xt))|2du

≤ 3(B − A)K2
1
�2
� �

∞

−∞

|uG(u)|2du (by (A2)) .

(5.4)

I3 = 3
�2

�2
�

ES

|||||�
T

0

G

(
� − t

��

)
dLd

�

|||||

2

= 3
�2

�2
�

Γ(1 − 2d)E[L(1)2]

Γ(d)Γ(1 − d) �
T

0 �
T

0

G

(
� − t

��

)
G

(
� − s

��

)
|t − s|2d−1dsdt

≤ C1

�2

�2
�

�2d+1
� �R �R

G(u)G(v)|u − v|2d−1dudv

S(y) = S(x) +

k∑

j=1

S(j)(x)
(y − x)j

j!
+ [S(k)(z) − S(k)(x)]

(y − x)k

k!
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for some z such that |z − x| ≤ |y − x|. Using this expansion, Eq. (3.2) and the condi-
tion (A3) in the expression for I2 defined in the proof of Theorem 4.1, it follows that

for some zu such that |xt − zu| ≤ |xt+��u
− xt| ≤ C|��u|. Hence

for some positive constant C2 . Combining Eqs. (5.2)– (5.5), we get that there exists a 
positive constant C3 such that

Choosing �� = �
2

2k−2d+3 , we get that

This completes the proof of Theorem 4.2. 	�  ◻

Proof of Theorem 4.3  Let � =
2k−2

2k−2d+1
. Observe that 0 < 𝛼 < 1. From (3.1), we obtain 

that

I2 = 3

[

∫
∞

−∞

G(u)
(
S(xt+��u

) − S(xt)
)
du

]2

= 3

[
k∑

j=1

S(j)(xt)

(

∫
∞

−∞

G(u)ujdu

)
�j
�
(j!)−1

+

(

∫
∞

−∞

G(u)uk(S(k)(zu) − S(k)(xt)

)
du�k

�
(k!)−1

]2

(5.5)

I2 ≤ 3K2
1

[

�
∞

−∞

��u|G(u)uk|�k
�
(k!)−1du

]2

≤ 3K2
1
(B − A)(k!)−2�2(k+1)

� �
∞

−∞

G2(u)u2(k+1) du

≤ C2�
2(k+1)
�

sup
a≤t≤b

ES|Ŝt − S(xt)|2 ≤ C3(�
2 + �2(k+1)

�
+ �2�2d−1

�
).

lim sup
𝜖→0

sup
S(x)∈Θk+1(L)

sup
a≤t≤b

ES|�St − S(xt)|2𝜖
−

4(k+1)

2k−2d+3 < ∞.
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	�  ◻

By the Lipschitz condition on the function S(.) and part (a) of Lemma 3.1, it fol-
lows that

Applying the Markov inequality and Theorem 2.3, for any 𝜂 > 0,

and the last term tends to zero as � → 0. By the Taylor’s formula, for any t ∈ [0, T],

where 0 < 𝛾 < 1 and t0 ∈ (0, T). Applying the Condition (A3) and the Taylor’s 
expansion, it follows that

(5.6)

�−�(Ŝt − S(xt))

= �−�
[
1

��
∫

T

0

G

(
� − t

��

)(
S(X�) − S(x�)

)
d�

+
1

��
∫

T

0

G

(
� − t

��

)
S(x�)d� − S(xt) +

�

��
∫

T

0

G

(
� − t

��

)
dLd

�

]

= �−�
[

∫
∞

−∞

G(u)(S(Xt+��u
) − S(xt+��u

)) du

+ ∫
∞

−∞

G(u)(S(xt+��u
) − S(xt)) du

+
�

��
∫

T

0

G

(
� − t

��

)
dLd

�

]
.

= J1 + J2 + J3 (say) .

(5.7)

J1 ≤ �−�|�
∞

−∞

G(u)(S(Xt+��u
) − S(xt+��u

))du|

≤ �−� L�
∞

−∞

|G(u)|(Xt+��u
− xt+��u

)|du

≤ KeKT�1−� �
∞

−∞

|G(u)| sup
0≤t+��u≤T

|Ld
t+��u

|du.

(5.8)

P(|J1| > 𝜂) ≤ 𝜖1−𝛼𝜂−1KeKT �
∞

−∞

|G(u)|E( sup
0≤t+𝜑𝜖u≤T

Ld
t+𝜑𝜖u

|)du

≤ 𝜖1−𝛼𝜂−1KeKT �
∞

−∞

|G(u)||E[( sup
0≤t+𝜑𝜖u≤T

(Ld
t+𝜑𝜖u

)2]|1∕2du

≤ 𝜖1−𝛼𝜂−1KeKTC
1∕2

2,𝛿,d
[E(|L(1)|2)]1∕2T (d+

1

2
+𝛿) �

∞

−∞

|G(u)|du.

St = St0 +

k+1∑

j=1

S
(j)
t0

(t − t0)
j

j!
+ [S

(k+1)

t0+�(t−t0)
− S

(k+1)
t0

]
(t − t0)

k+1

(k + 1)!
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Observing that St ∈ Θk+1(K), we obtain that

Combining the equations given above, it follows that

From the choice of �� and �, it follows that

and, by Theorem 2.2,

Applying the Slutsky’s theorem and the equations derived above, it can be checked 
that the random variable

(5.9)

J2 = �−�

[
k+1∑

j=1

S
(j)
t

(

∫
∞

−∞

G(u)uj du

)
�j
�
(j!)−1

+
�k+1
�

(k + 1)! ∫
∞

−∞

G(u)uk+1(S
(k+1)
t+���u

− S
(k+1)
t ) du

]

= �−�
S
(k+1)
t

(k + 1)! ∫
∞

−∞

G(u)uk+1 du

+ �k+1
�

�−�
1

(k + 1)! ∫
∞

−∞

G(u)uk+1(S
(k+1)
t+���u

− S
(k+1)
t ) du.

(5.10)

1

(k + 1)! �
∞

−∞

G(u)uk+1(S
(k+1)
t+���u

− S
(k+1)
t )du

≤ 1

(k + 1)! �
∞

−∞

|G(u)uk+1(S(k+1)t+���u
− S

(k+1)
t )|du

≤ L��

(k + 1)! �
∞

−∞

|G(u)uk+2|du.

(5.11)
�

−(k+1)

k+2−(d+
1
2
) (Ŝt − S(xt) −

S
(k+1)
t

(k + 1)! ∫
∞

−∞

G(u)uk+1 du)

= Op(�
1−�) + Op(�

−��k+2
�

) + �1−��−1
� ∫

T

0

G

(
� − t

��

)
dLd

t
.

�1−��−1
�

= �
−(d+

1

2
)

�

(5.12)

Var

[
�
−(d+

1

2
)

� ∫
T

0

G

(
� − t

��

)
dLd

�

]

= �−(2d+1)
� ∫

T

0 ∫
T

0

G

(
� − s

��

)
G

(
� − t

��

)
|t − s|2d−1dsdt

= ∫R ∫R

G(u)G(v)|u − v|2d−1dudv.
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has a limiting distribution as � → 0 as that of the family of random variables

as � → 0. This completes the proof of Theorem 4.3.

Remarks  We now make some remarks on the limiting distribution following the 
suggestions of a reviewer. Define the rescaled fractional Levy process

Then, it can be shown that the integral

is almost surely equal to

which in turn has the same distribution as that of the integral

by the stationarity of the increments. This integral in turn is equal to

for the rescaled Levy process

The process on the rightside converges to a two-sided Brownian motion W(.) 
with variance E[L(1)2] at � = 1 by [6], Chapter VII. Approximating the function 
Id
G

 by step functions, it can be shown that the random variable

converges to a Gaussian random variable with mean zero and variance

�
−(k+1)

k+2−(d+
1
2
) (Ŝt − S(xt) −

S
(k+1)
t

(k + 1)! ∫
∞

−∞

G(u)uk+1 du)

�
−(d+

1

2
)

� ∫
∞

−∞

G

(
� − t

��

)
dLd

�

Ld,�,t
�

= �
−(d+

1

2
)

� (Ld
���+t

− Ld
t
).

�
−(d+

1

2
)

� ∫
∞

−∞

G

(
� − t

��

)
dLd

�

∫
∞

−∞

G(�)dLd,�,t
�

∫
∞

−∞

G(�)dLd,�,0
�

∫
∞

−∞

(Id
G
)(�)dL�

�

L�
�
≡ L0,�,0

�
= �

−
1

2

� L���
, � ∈ R.

�
−(d+

1

2
)

� ∫
∞

−∞

G

(
� − t

��

)
dLd

�
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as � → 0.
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