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Abstract
This study focuses on three issues we face in survey sampling: non-response, meas-
urement errors, and social desirability bias. We propose a generalized mean esti-
mator in the presence of measurement errors and non-response using optional RRT 
methodology under simple random sampling. We present a comparison of the pro-
posed estimator with some commonly used estimators.

Keywords Non-response · Measurement errors · Optional RRT models · Mean 
square error

1 Introduction

Nowadays, many researchers use email or phone surveys which is an easier, cheaper, 
and faster way to obtain information. However, it causes a high non-response rate. 
This reduces the accuracy of parameter estimates. Among all the sampling meth-
ods, face-to-face interview is one that reduces non-response rate the most, but the 
cost is considerably higher than other methods. Hansen and Hurwitz [11] were the 
first to suggest a procedure of taking a subsample of non-respondents after the first 
email or phone attempt and then obtaining information from this group by personal 
interview.
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The problem of non-response has been discussed in many papers. Many research-
ers suggested different types of estimators for population parameters based on 
Hansen and Hurwitz  [11] double sampling plan. Another method to increase the 
accuracy of population estimates is by using auxiliary information. Studies of 
mean estimation using information on auxiliary variables include Khare and Sriv-
astava  [14], Rao  [22], Khare and Sinha  [15–17], Kumar and Singh  [19], Yaqub 
et al. [28], Bhushan and Pandey [3, 4], and Unal and Kadilar [26].

Hansen and Hurwitz  [11] method could obtain more information from face-to-
face interview in the second phase, but it may also cause non-response bias if the 
variable of interest is sensitive in nature. The respondents are unlikely to provide 
true response in face-to-face interview for such questions. To reduce the social 
desirability bias (SDB) caused by sensitive questions, one could use randomized 
response technique (RRT) models when we target the group of non-respondents. 
Subjects may refuse to respond on the first call but may provide scrambled response 
on the second call with personal interview. Diana et  al.  [6] proposed an unbiased 
population mean estimator under this two-phase sampling. Their estimator reduces 
non-response but increases the estimator variance due to the use of RRT model in 
the non-respondent group. Later, Ahmed et  al.  [1] proposed generalized ratio and 
regression estimators utilizing known coefficient of variation of the study variable in 
case of second sample by using RRT approach. This estimator improved efficiency 
when the auxiliary variable and study variable are highly correlated. Makhdum 
et al. [21] also proposed a generalized class of estimators for a sensitive study vari-
able in the presence of non-response using RRT model.

Measurement error is another important issue in sample surveys. Most of the time 
we assume measurement errors to be very small and neglect them. But if measure-
ment errors are not small enough, then we get unreliable estimates. Some existing 
studies which have discussed measurement errors in estimating population param-
eters include Kumar et al. [18], Kumar et al. [20], Khalil et al. [12], and Singh et al. 
[24]. Singh and Sharma [23], Singh and Vishwakarma [25], and Audu et al. [2] con-
sidered the problem of estimating the finite population mean in the presence of non-
response and measurement errors simultaneously. Also, Khalil et  al.  [13] studied 
mean estimation under measurement errors using optional RRT models.

Based on the previous studies, one may consider estimating population mean of a 
sensitive variable in the simultaneous presence of both measurement error and non-
response. This problem has not drawn much attention in the existing literature. RRT 
models used in the previous studies [1, 6, 21] are non-optional RRT models where 
all the respondents are required to provide a scrambled response. However, a survey 
question may be sensitive for one person but not for another. Gupta et al. [7] pointed 
out that if we give respondents the option to choose whether they want to answer 
the sensitive question directly or provide a scrambled response, the model would be 
more efficient while there is no extra loss of privacy [10].

We will briefly discuss the Hansen and Hurwitz [11] (HH) two-phase sampling 
procedure in Sect. 2.1 and the optional RRT (ORRT) model in Sect. 2.2. Some exist-
ing mean estimators are presented in Sect.  3.1, and a generalized mean estimator 
is introduced in Sect. 3.2. Section 4 provides the results of a simulation study, and 
Sect. 5 provides some concluding remarks.
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2  Modified Hansen and Hurwitz [11] Procedure (HH)

2.1  Hansen and Hurwitz [11]: Two‑Phase Sampling

Let U = {U1,U2,… ,UN} be a finite population of size N and a random sample 
without replacement of size n is taken. We assume that only n1 units provide 
response on the first call and remaining n2 = n − n1 units do not respond. Then, a 
subsample of size ns =

n2

f
 ( f > 1 ) is taken from the n2 non-responding units. Hansen 

and Hurwitz  [11] used mail survey at the first attempt and then used face-to-face 
interview at the second call.

Let �y =
∑N

i=1
yi

N
 and �2

y
=

∑N

i=1
(yi−�y)

2

N−1
 , respectively, be the population mean and var-

iance of the study variable y. Let �y(1)
=

∑N1
i=1

yi

N1

 and �2
y(1)

=

∑N1
i=1

(yi−�y1
)2

N1−1
 , respectively, 

be the mean and variance of respondent group of size N1 , and �y(2)
=

∑N2
i=1

yi

N2

 and 

�2
y(2)

=

∑N2
i=1

(yi−�y2
)2

N2−1
 , respectively, be the mean and variance of non-respondent group 

of size N2 . Then, the population mean is given by

where W1 =
N1

N
 and W2 =

N2

N
 . Not knowing N1 poses a challenge of its own.

Let ȳ1 =
∑n1

i=1
yi

n1
 be the sample mean for the response group, and ȳ2 =

∑ns
i=1

yi

ns
 be the 

sample mean for non-response group. One may note here that ȳ1 and ȳ2 are unbiased 
estimators for �y(1)

 and �y(2)
 , respectively.

Hansen and Hurwitz [11] suggested an unbiased population mean estimator given 
by

where w1 =
n1

n
 and w2 =

n2

n
.

The variance of ȳ is given by

2.2  Optional RRT (ORRT) Models

Let Y be a sensitive study variable, and yi (i = 1, 2… n) be a simple random sam-
ple without replacement from yi ( i = 1, 2…N ). Let �y =

1

N

∑N

i=1
yi , ȳ =

1

n

∑n

i=1
yi , 

�2
y
=

1

N−1

∑N

i=1
(yi − �y)

2 , and s2
y
=

1

n−1

∑n

i=1
(yi − ȳ)2 . Let T and S be the two scram-

bling variables with respective means �T and �S , and known variances �2
T
 and �2

S
 . 

Let T, S, X and Y be mutually independent. The respondent is asked to report a 
scrambled response for the study variable (Y) if he/she considers the question sensi-
tive, and a correct response otherwise.

(1)�y = W1�y(1)
+W2�y(2)

.

(2)ȳ = w1ȳ1 + w2ȳ2,

(3)Var(ȳ) =
(

N − n

Nn

)

𝜎2
y
+

W2(f − 1)

n
𝜎2
y(2)
.
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One could use a simple additive RRT model where the scrambled response is 
given by Y + S (as in Gupta et al. [8]), or one may use a more general RRT model 
where the scrambled response is given by TY + S (as in Diana and Perri  [5]). 
Note that the simple additive model is a special case of the second model if we let 
Var(T) = 0 and E(T) = 1 . Khaili et al. [13] showed that the simple additive model is 
more efficient but the general model has greater privacy. However, the general RRT 
model is better when we use a combined measure of efficiency and privacy � =

Var(Z)

Δ
 

proposed by Gupta et al. [10], where Z is the scrambled response and Δ = E(Z − Y)2 
is the privacy level for the same model, as given by Yan et al. [27]. One may note 
that the model with smaller � value is preferred because it means either a larger pri-
vacy level, or smaller value of Var(�̂�) , or both. It may be observed that

Hence, while working with the general RRT model, the scrambling variable T will 
put a burden on the model efficiency but will improve the privacy level. Overall, the 
general model is better in terms of the unified measure of efficiency and privacy.

Therefore, we will use the general scrambling model in this study. The optional 
version of model Z = TY + S is given by

where W is the probability that a respondent finds the question sensitive. The mean 
and variance, respectively, for Z are given by

and

Obviously optional RRT model is more efficient than the non-optional RRT model 
since variance of Z increases as W increases. When W = 1 , the RRT model becomes 
a non-optional model.

2.3  Modified Version of Hansen and Hurwitz [11]: Two‑Phase Sampling

In order to encourage the respondents to answer a sensitive survey question truth-
fully, we give the respondents the opportunity to scramble the response using ORRT 
in the second phase of HH procedure when there is a face-to-face interview. In 
this case, we are modifying the HH procedure assuming that in the first phase, the 
respondent group gives direct answer, and then in the second phase, ORRT model is 
used to get response from a subgroup of non-respondents.

(4)𝛿additive RRT = 1 +
𝜎2
y

𝜎2
s

> 1 +
𝜎2
y

𝜎2
s
+ 𝜎2

T
(𝜇2

y
+ 𝜎2

y
)
= 𝛿general RRT.

(5)Z =

{

Y with probability 1 −W

TY + S with probabilityW,

(6)E(Z) = E(Y)(1 −W) + E(TY + S)W = E(Y)

(7)Var(Z) = E(Z2) − E2(Z) = �2
y
+ �2

S
W + �2

T
(�2

y
+ �2

y
)W.
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From Sect. 2.2, we can write the general RRT model as Z = (YT + S)J + Y(1 − J) , 
where J ∼ Bernoulli(W). Therefore, E(J) = W , Var(J) = W(1 −W) and 
E(J2) = Var(J) + E2(J) = W.

The expectation under randomization mechanism is given by

Also

Let ŷi be a transformation of the randomized response on the ith unit whose expecta-
tion under the randomization mechanism is the true response yi . It is given by

with

(from (8)), and

(from (9)).
With ORRT model, a modified version of the HH estimator is given by

where ̂̄y2 =
∑ns

i=1
(
ŷi

ns
).

Let Ei and Vi be the expectation and variance in the ith phase ( i = 1, 2 ) under the 
two-phase sampling. It is easy to verify that

(8)

ER(Z) = ER(TYJ + SJ + Y − YJ)

= YER(TJ) + ER(SJ) + Y − YER(J)

= Y�TW + �SW + Y − YW

= (�TW + 1 −W)Y + �SW.

(9)

VR(Z) = VR(TYJ + SJ + Y − YJ)

= VR(TYJ) + VR(SJ) + VR(YJ) + 2Cov(TYJ, SJ) − 2Cov(TYJ, YJ)

− 2Cov(SJ, YJ)

= Y2[(�2
T
+ �2

T
)W − �2

T
W2] + [(�2

s
+ �2

S
)W − �2

S
W2] + Y2[W(1 −W)

+ 2Y�T�SW(1 −W) − 2Y2[�TW(1 −W)] − 2Y[�SW(1 −W)]

= (Y2�2
T
+ �2

s
)W.

(10)ŷi =
zi − 𝜇SW

𝜇TW + 1 −W

(11)ER(ŷi) = yi

(12)

VR(ŷi) =
VR(zi)

(𝜇TW + 1 −W)2

=
[y2

i
𝜎2
T
+ 𝜎2

s
]W

(𝜇TW + 1 −W)2
= 𝜏i

(13)̂̄y = w1ȳ1 + w2
̂̄y2,
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since ER( ̂̄y2) =
1

ns

∑ns
i=1

ER(ŷi) = ȳ2.
The variance of ̂̄y can be written as

Note E(y2
i
) = �2

y
+ �2

y
 , and

if we assume n
N
≈

n2

N2

.
Since ȳ is the original HH mean estimator, the variance of ̂̄y is given by

where � =
(N−n)

Nn
 and � =

(f−1)W2

n
.

3  Mean Estimators Under Measurement Errors and Non‑response

3.1  Existing Mean Estimators

Using the standard terminology, as used in Sect.  2.1, let �x =
∑N

i=1
xi

N
 and 

�2
x
=

∑N

i=1
(xi−�x)

2

N−1
 , respectively, be the known population mean and variance of the 

auxiliary variable X. Let �x(1)
=

∑N1
i=1

xi

N1

 and �2
x(1)

=

∑N1
i=1

(xi−�x1
)2

N1−1
 , respectively, be the 

population mean and variance of the respondent group of size N1 , �x(2)
=

∑N2
i=1

xi

N2

 

(14)

E( ̂̄y) = E1E2[w1ȳ1 + w2
̂̄y2]

= E1[w1ȳ1 + w2ER( ̂̄y2)]

= E1[w1ȳ1 + w2ȳ2)]

= W1𝜇y(1)
+W2𝜇y(2)

= 𝜇y

(15)

Var( ̂̄y) = E1[V2( ̂̄y)] + V1[E2( ̂̄y)]

= E1[V2(w1ȳ1 + w2
̂̄y2)] + V1[E2(w1ȳ1 + w2

̂̄y2)]

= E1[0 + V2(w2
̂̄y2)] + V1[w1ȳ1 + w2ȳ2]

= E1[V2(w2
̂̄y2)] + V1(ȳ)

= E1[
w2
2

ns

∑N2

i=1

(y2
i
𝜎2
T
+𝜎2

s
)W

(𝜇TW+1−W)2

N2

] + V(ȳ)

= Var(ȳ) +
W2f

n

∑N2

i=1
𝜏i

N2

.

(16)E

(

w2
2

ns

)

= E

(

n2
2

n2

f

n2

)

= E

(

n2f

n2

)

=
f

n2
E(n2) =

f

n2
(nW2) =

W2f

n
,

(17)Var( ̂̄y) = 𝜃𝜎2
y
+ 𝜆𝜎2

y(2)
+

W2f

n

[

[(𝜎2
y(2)

+ 𝜇2
y(2)
)𝜎2

T
+ 𝜎2

S
]W

(𝜇TW + 1 −W)2

]

,
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and �2
x(2)

=

∑N2
i=1

(xi−�x2
)2

N2−1
 , respectively, be the population mean and variance of the 

non-respondent group of size N2 . Let �xy =
�xy

�x�y
 be the correlation coefficient 

between X and Y. Similarly let �xy(1) =
�xy(1)

�x�y
 and �xy(2) =

�xy(2)

�x�y
 , respectively, be the 

correlation coefficients between X and Y for the respondents group and the non-
respondents group. Let the measurement error (ME) for the auxiliary variable 
(X) in the population be given by Vi = xi − Xi . Let the respective ME associated 
with the study variable (Y) in the population and the scrambled variable (Z) in 
the face-to-face interview phase be given by Ui = yi − Yi and Pi = zi − Zi . These 
measurement errors are assumed to be random and uncorrelated with mean zero 
and variances �2

v
 , �2

u
 , and �2

p
 , respectively.

Assume population mean �x of auxiliary variable is known, and non-response 
happened on both X and Y. ORRT version of some of the existing mean estima-
tors are listed below.

1. An ordinary mean estimator for sensitive variable in a finite population 
under modified HH is given by

The MSE of �̂�yw in the presence of measurement errors is given by

where � =
N−n

Nn
 , � =

N2(f−1)

Nn
 , and G =

W2f

n
[
[(�2

y(2)
+�2

y(2)
)�2

T
+�2

s
]W

(�TW+1−W)2
].

2. A ratio estimator corresponding to the one in Gupta et al. [9] under modi-
fied HH is given by

where ̂̄y∗ is the ordinary mean estimator under modified HH and x̄∗ = w1x̄1 + w2x̄2 
is the ordinary mean estimator under original HH procedure. The MSE of �̂�rw in the 
presence of measurement errors is given by

where R = �y∕�x and �zx(2) =
�yx(2)

√

1+
[�2s +�

2
T
(�2y(2)

+�2y(2)
)]W

�2y(2)

.

The MSE of �̂�yw and �̂�rw , without measurement errors, may be obtained by 
putting �2

v
= �2

u
= �2

p
= 0 in the above equations.

(18)�̂�yw = ̂̄y∗ = w1ȳ1 + w2ȳ2
∗, where ȳ2

∗ =
1

ns

ns
∑

i=1

zi.

(19)MSE(�̂�yw) = 𝜃(𝜎2
y
+ 𝜎2

u
) + 𝜆(𝜎2

y(2)
+ 𝜎2

p
) + G,

(20)�̂�rw =
̂̄y∗

x̄∗
𝜇x = R̂∗

W
𝜇x,

(21)

MSE∗(�̂�rw) = 𝜃(𝜎2
y
+ R2𝜎2

x
− 2R𝜌yx𝜎y𝜎x) + 𝜆(𝜎2

y(2)
+ R2𝜎2

x(2)
− 2R𝜌zx(2)𝜎z𝜎x(2))

+ 𝜃(𝜎2
u
+ R2𝜎2

v
) + 𝜆(𝜎2

p
+ R2𝜎2

v
) + G,
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3.2  Proposed Mean Estimator

With this background, we use the generalized mean estimator considered in 
Khalil et al. [12, 13] but with non-response. This mean estimator includes a wide 
variety of mean estimators as special cases. The non-response version of this esti-
mator is given by

where d̄ = 𝜙(𝛼x̄∗ + 𝛽) + (1 − 𝜙)(𝛼𝜇x + 𝛽) , D̄ = 𝛼𝜇x + 𝛽 , k and v are suitable con-
stants, and � is assumed to be an unknown constant whose value is to be determined 
from optimality considerations. Also � and � are assumed to be some known param-
eters of the auxiliary variable X. Various estimators may be obtained by using differ-
ent values of � and � . With v = 1 , we get various regression-in-ratio estimators, and 
with v = −1 , we get various regression-in-product estimators.

To obtain the MSE of this estimator, we define ̂̄y∗ = 𝜇y(1 + e∗
0
) and 

x̄∗ = 𝜇x(1 + e∗
1
) such that E(e∗

0
) = E(e∗

1
) = 0 ; 

E(e2
0
) =

1

�2
y

[�(�2
y
+ �2

u
) + �(�2

y(2)
+ �2

p
) +

W2f

n
[
[(�2

y(2)
+�2

y(2)
)�2

T
+�2

s
]W

(�TW+1−W)2
]  ; 

E(e2∗
1
) =

1

�2
x

[�(�2
x
+ �2

v
) + �(�x2

(2)
+ �2

v
)] ; E(e∗

0
e∗
1
) = ��xy

�y

�y

�x

�x

+ ��zx(2)
�z

�z

�x(2)

�x

 , where 
�zx(2) =

�yx(2)
√

1+
[�2s +�

2
T
(�2y(2)

+�2y(2)
)]W

�2y(2)

].

The bias of the proposed estimator, up to the second order of approximation, in 
the presence of measurement errors, is given by

where H =
��v

��x+�
 . The bias of �̂�pw , without measurement error, may be obtained by 

setting �2
v
= 0 in above equation.

Using Taylor’s approximation up to the first order, we have

Taking square and expectation in (24), we have

and

(22)�̂�pw = ( ̂̄y∗ + k(𝜇x − x̄∗))

(

D̄

d̄

)v

(23)
Bias∗(�̂�pw) ≈ 𝜃

[(

kH +
v + 1

v
𝜇yH

2
)

(𝜎2
x
+ 𝜎2

v
) − H𝜌yx𝜎y𝜎x

]

+ 𝜆

[(

kH +
v + 1

v
𝜇yH

2
)

(𝜎2
x(2)

+ 𝜎2
v
) − H𝜌zx(2)𝜎z𝜎x(2)

]

,

(24)�̂�pw − 𝜇y ≈ e∗
0
𝜇y − k𝜇xe

∗
1
− H𝜇x𝜇ye

∗
1
.

(25)

(�̂�pw − 𝜇y)
2 = e∗2

0
𝜇2
y
+ k2𝜇2

x
e∗2
1
+ (H𝜇x𝜇ye

∗
1
)2 − 2e∗

0
e∗
1
k𝜇x𝜇y − 2e∗

0
e∗
1
H𝜇x𝜇

2
y

+ 2e∗2
1
H𝜇2

x
𝜇y,
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where Rpw =
��y

��x+�
.

Minimization of the above expression (26) with respect to � yields its opti-
mum value as:

Substitution of �opt in MSE(�̂�pw ) yields the minimum value as:

where P =
��yx�x�y+��zx(2)

�z�x(2)

�(�2
x
+�2

v
)+�(�2

x(2)
+�2

v
)
.

The expression for the minimized MSE of the proposed estimator without ME 
may be obtained by putting �2

u
= �2

v
= �2

p
= 0 in the above expression, which 

gives

Comparing the MSE expressions of �̂�yw in (19), �̂�rw in (21), and �̂�pw in (28) with 
measurement errors, it can be verified easily that

• MSE∗
min

(�̂�pw) < MSE∗(�̂�yw) if 

• MSE∗
min

(�̂�pw) < MSE∗(�̂�rw) if 

 and
• MSE∗(�̂�rw) < MSE∗(�̂�yw) if 

(26)

MSE∗(�̂�pw) = E(�̂�pw − 𝜇y)
2

= 𝜃[𝜎2
y
+ (k + 𝜙vRpw)

2𝜎2
x
− 2(k + 𝜙vRpw)𝜌yx𝜎x𝜎y]

+ 𝜆[𝜎2
y(2)

+ (k + 𝜙vRpw)
2𝜎2

x(2)
− 2(k + 𝜙vRpw)𝜌zx(2)𝜎x𝜎z]

+ 𝜃[𝜎2
u
+ (k + 𝜙vRpw)

2𝜎2
v
] + 𝜆[𝜎2

p
+ (k + 𝜙vRpw)

2𝜎2
v
] + G

(27)�opt ≅
�(�xy�x�y − k(�2

x
+ �2

v
)) + �(�zx(2)�z�x(2) − k(�2

x(2)
+ �2

v
))

vRpw[�(�
2
x
+ �2

v
) + �(�2

x(2)
+ �2

v
)]

.

(28)

MSE∗
min

(�̂�pw) ≅ 𝜃(𝜎2
y
+ P2𝜎2

x
− 2P𝜌yx𝜎x𝜎y) + 𝜆(𝜎2

y(2)
+ P2𝜎2

x(2)
− 2P𝜌zx(2)𝜎z𝜎x(2) )

+ 𝜃(𝜎2
u
+ P2𝜎2

v
) + 𝜆(𝜎2

p
+ P2𝜎2

v
) + G,

(29)
MSEmin(�̂�pw) ≅ 𝜃(𝜎2

y
+ P2𝜎2

x
− 2P𝜌yx𝜎x𝜎y) + 𝜆(𝜎2

y(2)
+ P2𝜎2

x(2)
− 2P𝜌zx(2)𝜎z𝜎x(2) ) + G.

(30)−
(𝜃𝜌yx𝜎x𝜎y + 𝜆𝜌zx(2)𝜎z𝜎x(2) )

2

𝜃(𝜎2
x
+ 𝜎2

v
) + 𝜆(𝜎2

x(2)
+ 𝜎2

v
)
< 0,

(31)1

2
−

𝜇y

2𝜇x

𝜃(𝜎2
x
+ 𝜎2

v
) + 𝜆(𝜎2

x(2)
+ 𝜎2

v
)

𝜃𝜌yx𝜎x𝜎y + 𝜆𝜌zx(2)𝜎z𝜎x(2)

< 1
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The conditions (30) and (31) always hold true. From (32), the ratio estimator is gen-
erally more efficient than the ordinary mean estimator if the measurement error on 
auxiliary variable X ( �2

v
 ) is small, and X and Y are strongly correlated.

4  Simulations

We will now compare the performance of the generalized mean estimator under 
simple random sampling with the other two estimators by a simulation study in this 
section. In the generalized mean estimator, we choose v and k to be 1, and � to be 
its optimum value. In the simulation, � is calculated by plugging the corresponding 
sample values in (27). As for � and � , we could use various parameters associated 
with the auxiliary variable such as the coefficient of variation ( Cx ) or kurtosis, but 
these choices do not impact the results in any meaningful way. As we can see in 
(28), minimized MSE is independent of � and � . Also, we ran extensive simulations 
and noticed that empirical MSEs also are almost the same for all choices of � and 
� . Therefore, we will only show the results where � = 1 and � = 0 . The scrambling 
variable S is taken to be a normal variate with mean equal to zero and variance, 
�2
s
= 0.5 ∗ �2

x
 . T is also taken to be a normal variate but with mean equal to one and 

different variances. The measurement errors on X have a normal distribution with 
mean zero in both phases; the measurement errors of Y in the first phase and Z in the 
second phase have a normal distribution with mean zero. We use different variances 
(0, 5, 10) for measurement errors.

We consider a finite population of size 5000 generated from a bivariate normal 
distribution with means and covariance of (Y, X) as given below.

The parameters of the set of 5000 data points we generated using R are very close to 
the parameter values in (A) but not exactly same. For the simulation study, we use 
parameter values in (B) and not those in (A).

We consider samples of size n = 500 using SRSWOR and assume a response rate of 
40% in the first phase. This means in the first phase, only 200 ( n1 ) subjects provide a 
response to the survey question and 300 ( n2 ) of them do not. In the second phase, we 

(32)
𝜇y

2𝜇x

𝜃(𝜎2
x
+ 𝜎2

v
) + 𝜆(𝜎2

x(2)
+ 𝜎2

v
)

𝜃𝜌yx𝜎x𝜎y + 𝜆𝜌zx(2)𝜎z𝜎x(2)

< 1

���������� � =

[

10

6

]

, Σ =

[

16 9.051

9.051 8

]

, �yx = 0.8

(A)�x = 6, �2
x
= 8, �y = 10, �2

y
= 16, �yx = 0.8

(B)
�x = 6.0228, �2

x
= 8.1830, �y = 9.9864, �2

y
= 16.1215, �yx = 0.8024
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take another sample ( ns =
n2

f
 ) from the non-respondent group by using f = 2 , 3, 4, 

respectively.
Coding for the simulations was done in R, and the results are averaged over 5000 

iterations. The empirical MSE of the estimator �̂�y is computed by

where �̂�w = �̂�yw , �̂�rw , and �̂�pw . Here, � is the population mean of the sensitive study 
variable. The percent relative efficiency (PRE) of the estimator ( �̂�w ) with respect to 
the ordinary mean estimator ( �̂�yw ) is defined as

We will also use the unified measure � of the efficiency and the privacy as defined in 
Gupta et al. [10]. It is given by

In (35), MSE is used in place of Var(.) to account for biased estimators.
The simulation results are provided in the three tables below. In Table 1, we fix 

the response rate, Var(T), Var(S), and W but study the impact of vary the size of the 
measurement errors and the sampling fraction (f) in phase 2. In Table 2, we examine 
the impact of Var(T) and W.

These simulation results are discussed in Sect. 5.

5  Discussion

From the two tables, the empirical results are in good agreement with the corre-
sponding theoretical results.

As the measurement errors increase, the MSE of each mean estimator increases. 
Also, the efficiency of each estimator gets worse as the value of f increases. For 
example in Table  1, the MSE of the generalized mean estimator increased from 
0.1397 to 0.1804 as the variance of measurement errors increased from 1 to 10 when 
f = 2 , and increased from 0.1601 to 0.3113 as the value of f increased from 2 to 
4 when the variance of measurement error is 5. This is reasonable because larger 
measurement errors have larger negative impact on mean estimation and larger f 
value means we obtain smaller sample from the second call.

The results also showed that the MSEs of all mean estimators increase as W 
increases under non-response, both when measurement errors are present and 
when they are not present. For example, in Table 2, the MSE of the generalized 
mean estimator increased from 0.0966 to 0.1680 as the sensitivity level increased 
from 0.5 to 1 when variance of T is equal to 0.5. Therefore, optional RRT model 

(33)MSE∗(�̂�w) =
1

5000

5000
∑

i=1

(�̂�w − 𝜇)2,

(34)PRE =
MSE∗(�̂�yw)

MSE∗(�̂�w)
∗ 100.

(35)𝛿 =
MSE∗(�̂�w)

ΔDP

.
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leads to better results than the non-optional model. Note that the model tends 
to become non-optional as W increases. Furthermore, the simple additive RRT 
model ( �2

T
= 0 ) is more efficient in terms of PRE. But the general RRT model is 

better, if we examine the performance of various estimators with respect to the 
unified measure ( � ) of efficiency and privacy. For instance, in Table 2, when the 
sensitivity level W is equal to 0.5, the MSE of the generalized mean estimator 
increases from 0.0284 to 0.1641 as the variance of T increases from 0 to 1, but 
the � value decreases from 0.0069 to 0.0014.

It is clear from the theoretical conditions (30), (31), (32), and the simula-
tion results that the generalized mean estimator is always more efficient than the 
ordinary RRT mean estimator and the ratio estimator, while the ratio estimator 
is less efficient than the ordinary mean estimator if the measurement errors on 
X are large. For example in Table  1, the MSE of the generalized mean estima-
tor (0.1804) is less than the MSE of the ordinary mean estimator (0.1948) when 
the variance of measurement errors is 10 and the value of f is 2. However, the 
MSE of the ratio estimator (0.2518) is larger than the mean estimators because 
the measurement errors are large. This is because the ordinary mean estimator is 
not impacted by the measurement error in X. This was not so for the generalized 
estimator because the use of the regression term was able to overcome the meas-
urement error burden due to X.

Table 1  Theoretical (bold) and empirical MSEs/PREs of the ORRT estimators with 
�2
v
= �2

u
= �2

p
= 1, 5, 10 when response rate = 40% , W = 0.8 , �2

T
= 0.5 and �2

s
= 0.5 ∗ �2

x
.

Est. f Var(ME) MSE PRE

1 5 10 1 5 10

�̂�HH
yw

2 0.1680 0.1799 0.1948 100.0000 100.0000 100.0000
0.1679 0.1799 0.1951 100.0000 100.0000 100.0000

3 0.2470 0.2637 0.2847 100.0000 100.0000 100.0000
0.2397 0.2653 0.2854 100.0000 100.0000 100.0000

4 0.3261 0.3476 0.3745 100.0000 100.0000 100.0000
0.3173 0.3484 0.3756 100.0000 100.0000 100.0000

�̂�HH
rw

2 0.1514 0.1960 0.2518 110.9643 91.7857 77.3630
0.1498 0.1894 0.2407 112.0828 94.9842 81.0553

3 0.2236 0.2859 0.3638 110.4651 92.2350 78.2573
0.2223 0.2882 0.3611 107.8273 92.0541 79.0363

4 0.2957 0.3758 0.4758 110.2807 92.4960 78.7095
0.2854 0.3761 0.4705 111.1773 92.6349 79.8300

�̂�HH
pw

2 0.1397 0.1601 0.1804 120.2577 112.3673 107.9823
0.1392 0.1585 0.1790 120.6178 113.5016 108.9944

3 0.2071 0.2357 0.2642 119.2661 111.8795 107.7593
0.1972 0.2353 0.2626 121.5517 112.7497 108.6824

4 0.2745 0.3113 0.3480 118.7978 111.6608 107.6149
0.2653 0.3114 0.3486 119.6005 111.8818 107.7453
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Table 2  Theoretical (bold) and empirical MSEs/PREs of the ORRT estimators when response 
rate = 40% , �2

v
= �2

u
= �2

p
= 1 , f = 2 and �2

s
= 0.5 ∗ �2

x

Estimator W Var(T) MSE PRE �

Without ME With ME Without ME With ME

�̂�HH
yw

0.5 0 0.0537 0.0567 100.0000 100.0000 0.0139
0.0545 0.0584 100.0000 100.0000 0.0143

0.5 0.1219 0.1249 100.0000 100.0000 0.0020
0.1172 0.1196 100.0000 100.0000 0.0020

1 0.1895 0.1924 100.0000 100.0000 0.0016
0.1820 0.1843 100.0000 100.0000 0.0016

0.8 0 0.0566 0.0596 100.0000 100.0000 0.0146
0.0559 0.0598 100.0000 100.0000 0.0146

0.5 0.1650 0.1680 100.0000 100.0000 0.0027
0.1651 0.1679 100.0000 100.0000 0.0027

1 0.2716 0.2746 100.0000 100.0000 0.0023
0.2746 0.2771 100.0000 100.0000 0.0023

1 0 0.0586 0.0616 100.0000 100.0000 0.0151
0.0587 0.0625 100.0000 100.0000 0.0153

0.5 0.1933 0.1963 100.0000 100.0000 0.0032
0.1847 0.1916 100.0000 100.0000 0.0031

1 0.3255 0.3285 100.0000 100.0000 0.0028
0.3225 0.3226 100.0000 100.0000 0.0027

�̂�HH
rw

0.5 0 0.0290 0.0403 185.1724 140.6948 0.0099
0.0301 0.0420 181.0631 139.0476 0.0103

0.5 0.0972 0.1084 125.4115 115.2214 0.0018
0.0940 0.1028 124.6809 116.3424 0.0017

1 0.1648 0.1759 114.9879 109.3803 0.0015
0.1597 0.1679 113.9637 109.7677 0.0014

0.8 0 0.0319 0.0432 177.4295 137.9630 0.0106
0.0330 0.0454 169.3939 131.7181 0.0111

0.5 0.1403 0.1514 117.6051 110.9643 0.0025
0.1425 0.1498 115.8596 112.0828 0.0024

1 0.2469 0.2581 110.0041 106.3929 0.0022
0.2531 0.2588 108.4947 107.0711 0.0022

1 0 0.0339 0.0451 172.8614 136.5854 0.0110
0.0345 0.0451 170.1449 138.5809 0.0110

0.5 0.1686 0.1798 114.6501 109.1769 0.0029
0.1640 0.1741 112.6220 110.0517 0.0028

1 0.3008 0.3119 108.2114 105.3222 0.0026
0.2940 0.3058 109.6939 105.4938 0.0026
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