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Abstract

Fisher (The design of experiments, Oliver & Boyd, London, 1935) described the
exact permutation and randomization tests for comparative experiments without
assuming normality or any particular probability distribution. While having this as
an attractive feature, the computational challenge was a disadvantage at that time but
not now with modern computers. This paper introduces a permutation/randomiza-
tion data algorithm to generate the permutation/randomization distributions under
the null hypotheses for calculating the P-values. The properties of permutation/ran-
domization data matrices developed by algorithms following the proposed mathe-
matical processes are derived. Two illustrative examples demonstrate the usefulness
of the proposed computational methods.

Keywords Block design - Completely randomized design - Hypothesis testing -
Paired data - Permutation - Randomization - Randomized control trial - Two-sample
data

1 Introduction

The randomization test for paired comparison of two population distributions shares
a rich history starting from Fisher [15] with the permutation test for comparison
of two populations by using the data obtained from two independent samples (see
Yates [34]). The work of Pitman [26-28]; Welch [33]; Wald & Wolfowitz [32];
Hoeffding [17]; Kempthorne [18]; Box & Anderson [4] Tukey [30, 31]; Kempthorne
& Doerfler [19]; Rao [29]; Lehmann [20]; Basu [1]; Boik [3]; Edgington & Ong-
hena, P. [11]; Ludbrook and Dudley [21]; Calinsky and Kageyama [6, 7]; Ernst [13];
Good [16]; Manly [22]; Mielke and Berry [23]; David [8]; Pesarin and Salmaso
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[25]; Ferron and Levin [14]; Dugard [9]; Efron and Hastie [12]; Berry, Johnston,
and Mielke [2]; Onghena [24]; and many others enriched the understanding of the
randomization/permutation tests. The application areas include Bio-statistics and
Bio-informatics, Computer Science and Engineering, Economics, Education, Psy-
chology, and Sociology.

Section 2 provides the background information on the permutation matrices and
the exchangeable condition on a vector of random variables.

The main idea behind the algorithm for the paired comparison randomization test
in Sect. 3 is to start with the vector Y, of n paired differences. Then, the task is to
develop a randomization matrix R" with n rows and 2 columns to obtain the rand-
omization distribution of Y, satisfying the exchangeable condition that the probabil-
ity distribution of the columns of R(”)OYd to be the same under the null hypothesis,
where the Schur product © is defined in Definition 3. The algorithm identifies the
randomization matrix R™ to calculate the P value. Section 4 illustrates the algo-
rithm for the boys’ shoes experiment data.

The main idea behind the algorithm for two independent sample permutation
tests in Sect. 5 is to consider first the n! permutations of an n X 1 random vector
Y obtained from P,Y by using the n! permutation matrices P,. Then, the task is to
identify a specific subset s, s < n!, of permutation matrices to satisfy the exchange-
able condition that the probability distribution of ¥ to be the same as the probability
distribution of P,Y for all s permutation matrices P, under the null hypothesis. The
algorithm identifies the s such permutation matrices to calculate the P value. Sec-
tion 6 illustrates the algorithm for the tomato fertilizer experiment data.

Section 7 makes the concluding remarks. Appendix presents Tables 3, 4, 5, 6.

2 Permutations of Observations

An m X n matrix A with a; as its element in the row i and column j,i = 1,...,m and
j=1,...,n,is denoted by A = la;]. The elements a; are members in the set of real
numbers R. The set of all m X n matrices with real elements is denoted by M, ., (R),
or by M,,(R) if m = n. For simplicity, we write M,(R) =M, and M, ., (R) =M.
The identity matrix I, whose elements in the row i and column i fori =1, ... ,nare 1
and the remaining elements are 0, belongs to M,,. The columns of I, form the stand-
ard basis vectors for the n-dimensional Euclidean space R".

Definition 1 A square matrix A is a permutation matrix if exactly one entry in each
row and in each column is 1; all other entries are 0.

We denote a permutation matrix by P,. Multiplying a matrix on the left by a per-
mutation matrix permutes rows, and multiplying a matrix on the right by a permuta-
tion matrix permutes columns. The columns of an n X n permutation matrix are a
permutation of the columns of I,. The transpose of a permutation matrix is a permu-
tation matrix. A permutation matrix P, satisfies
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PP, =1,

This implies that PI is the inverse of P,. There are n! permutation matrices in M,,.
The n! permutations of an n X 1 observation vector y = (y,,...,y,)" are obtained
from P,y by using the n! permutation matrices P,. For P, =1,, P,y =y, but the
remaining (n! — 1) choices of P, produce changes in y. To be more specific, we

denote a permutation matrix by P, (i, i,, ..., i,) having 1 in column 1 and row i, col-
umn 2 and row iy, ..., and column n and row ,. By this notation, P,(1,2,...,n) =1,
and P,(n,n —1,...,2, 1) denoted by Pfl’) is equal to
00 ---01
00 --10
P,(n,n—1,....2,)=+ - = - - |=P". (1)
01 ---00
10 --00

From (1), we have P"y = (v, ¥,_1, -, ¥2.¥1) "

Definition 2 A vector of random variables Y = (Y}, ..., Yn)T is said to be exchange-
able if the probability distribution of Y is the same as the probability distribution of
P.Y for all n! permutation matrices P,

3 An Algorithm for Performing Permutation Randomization Test
for Paired Data

In comparing the effects of two treatments A and B by using a randomized com-
plete block design (RCBD) design in n blocks of two experimental units in each
block, the observations are (ij, yBj), j=1,...,n, which are n pairs of realizations of
(Y, Yp) for two random variables Y, and Y. The comparison is based on the differ-
ence between two observations y,; and yg; in the block j, denoted by y,; = y4; — yg;»
Jj=1,...,n. If the probability distribution of the random variable Y, =Y, — Y,
is symmetric about 0, then there is no difference between the effects of two treat-
ments A and B. The column vector of paired differences y; = (v, ..., Y,,)" is used
for testing the null hypothesis H, : The probability distribution of Y, is symmet-
ric about zero, against an alternative hypothesis from the possibilities of left or
right or both sided alternatives. Under the null hypothesis, there are no differences
between treatment effects of A and B and consequently, the probability distribution
of Y, — Yz =Y, is the same as the probability distribution of Y — Y, = —Y,. We
now present an algorithm to introduce the randomization matrix R™ in M ,,, such
that the 2" column vectors of R(”)Oyd are independent identically distributed sam-
ples from the probability distribution of ¥, under the null hypothesis H,.

Letryin M, be the vector with n elements as 1 and r; in M, , be the (n X 1) vec-

nx1 nx1
tor having —1 at the position i and 1 at the remaining (n — 1) positions, i = 1, ..., n.
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Definition 3 Let A = la;] and B = [b;] € M,,,,. The Hadamard product or the
Schur product or the entry-wise product of Aand Bis AOB = [a;b;] €My,

We define the matrices R in M,,..: as
R(O) — rO,R(i) — (R(i_l),R(i_])Qri),i =1,...,n, (2)

where the matrix R(H)Or,- is the Hadamard product or the Schur product or the
entry-wise product of R“™" and r;. The matrix R“ has n rows and 2! columns, and
satisfies

ROROT =2 i=0,1,....n. 3)
The randomization matrix R™ has n rows and 2" columns and from (2)
R™ = (R"™ R"Dor,). )

The above algorithmic process generates sequentially

= ro,rl,rz,rlerz,...,r1®---®rn_1),
R™ =

~
—
=
|
=
|
—_~

o, 1,1, 1 OF,, ..., r Q- OF,_,F, ..., 10O an)~
It can be seen that
(n=1) (n=1) p(r)

R"™"or,=-R""P), )
where the permutation matrix P;’) is defined in (1). From a column vector
Vi =Ou1s->Ym) €M,,,, we generate 2" vectors in M, ; as the columns of the
matrix R @y,. The first column of R™ @y, is in fact y,. Denote

1 . o
~rT (R™oy,) = (y;”,yf), a3 ) ©®)
It can be seen that
1 1 obs
S =2t ya) =50 @)

The P value formula of Fisher’s randomization test for testing the null hypothesis
against the left-sided alternative hypothesis is given by

<The number of 3, u = 1,...,2" ) <y
n

®)
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4 The Boys’ Shoes Experiment

The boys’ shoes experiment was presented and analyzed on pages 99-—102,
107—-115, in the book by Box, Hunter and Hunter [5], and the design used was
named as randomized paired comparison design which is a special randomized
complete block design (RCBD). The same experiment was discussed lucidly and
analyzed on pages 30—55 in the book by Easterling [10]. The purpose of this
experiment was to compare two treatments which were two shoe materials A and
B. Material A was standard, and material B was a cheaper alternative. Naturally, it
was expected that B would more likely result in an increased amount of wear. Ten
boys participated in the experiment. Each boy had two different shoe materials on
their two feet. Two shoe materials were randomly assigned to the right and left
shoe soles of each boy. The boys were blocks, and their two feet or equivalently
right shoes and left shoes were experimental units. The experimental units were
naturally homogeneous for each boy. Each treatment was replicated once within
each block but ten times in the design. Boys wore their shoes for a specified
period of time after which the percent of wear was measured. Denote the observa-
tion for Treatment i in Block j by y;, i=A,By=1,2,...,10 and y,; — v = yy-
Two-way layout in Table 1 presents a “balanced data” because of the presence
of equal number of observation (one) for every combination of block and treat-
ment. The data are given in Table 1. The positive value of y, in Table 1 indi-
cates that the material A wore more than the material B, and the negative value of
ydj,j =1,...,10 indicates that the material A wore less than B. In Table 1, there
are two positive values of y, and eight negative values of y,;. The data supported
80% in favor of material A over material B having the lesser amount of wear. The
five negative values of y, resulted when the boys wore material A on their left
foot and the three negative values of y, resulted when the boys wore material A
on their right foot. The two positive values of y,; resulted when the boys wore
material A on their left foot.

Table 1 Data for the boys’ shoe

. Boy Material A Material B Difference (A — B)
experiment, L = left sole, R =
right sole % wear % wear % wear
J Yaj YBj Yaj = YBj = Vaj
1 13.2 (L) 14.0 (R) -0.8
2 8.2 (L) 8.8 (R) -0.6
3 10.9 (R) 11.2 (L) -03
4 14.3 (L) 142 (R) 0.1
5 10.7 (R) 11.8 (L) -1.1
6 6.6 (L) 6.4 (R) 0.2
7 9.5 (L) 9.8 (R) -03
8 10.8 (L) 11.3 (R) -05
8.8 (R) 9.3 (L) -0.5
10 13.3 (L) 13.6 (R) -03
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The material A could be either on the left shoe or the right shoe. When it is on
the right shoe, the material B would be on the left shoe and vice versa. The total
number of possible random assignments of shoe materials A and B for 10 boys is
210 = 1024. Each of possible 1024 random assignments is a design. Assuming the
null hypothesis, H : The probability distribution of Y, is symmetric about 0, to be
true, the possible y,; values for the j™ boy are +yg and =y, j=1,..., 10. The rand-
omization matrix R"'” of y, has 10 rows and 2'° = 1024 columns. We have from (6)
and Table 3 (Appendix)

1 T (10) 0 -2 -(1023) _(1024)
10 O(R oyd) (yd ’yd ’---’yd ’yd )
= (=0.41,-0.25, ...,0.25,0.41).

The observed y,; values in Table 1 have the mean y —-041 = "(1) in (7). The
1024 column means are displayed in Table 3 where 14 mean values are highlighted:

—0.41(4 times), —0.43,—0.45,—-0.47,0.47,0.45,0.43, 0.41(4 times).

The 7 out of 1024 mean values smaller than — 0.41 are

—0.41(4 times), — 0.43, — 0.45, — 0.47.

The P value for testing the null hypothesis against the alternative hypothesis is
obtained by using (8).

(The number of 3, u = 1, 1024) W
1024 = 1024

= 0.006835938 ~ 0.006836.

The data provide sufficient evidence at 1% level of significance against the null
hypothesis and in favor of the alternative hypothesis. Table 4 (Appendix) displays
the R-code and output to obtain the above numerical value, and our result matches
up exactly to the result by using the R-code.

5 An Algorithm for Performing Permutation Test based
on Two-Sample Data

In comparing the effects of two treatments A and B by using a completely rand-
omized design (CRD) design or a randomized control trial (RCT), the observations
are yy;, j=1,...,nyand yg;, j=1,...,ny, n =n; + n,. If the probability distribu-
tion of observations on A is the same as the probability distribution of observations
on B, then there is no difference between the effects of two treatments A and B. We
now present an algorithm to introduce the permutation data matrix D, in M,

< n ) n!
S = = —-—
n nl(n—n))!

such that the s column vectors of it are independent identically distributed samples
from the identical probability distribution of observations on A and B, under the null
hypothesis H,,.

We denote

@ Springer



Journal of Statistical Theory and Practice (2020) 14:65 Page70f13 65

Ya=0aps-- »)’Anl)T’
yg=0pi>-- ’anz)Tv
Y= Oats oo Yan> Vo1s -+ > Vom) | ©

- (1)

From the n! permutation matrices in M,, we select the s permutation matrices
P, ..., PY, such that PV = I . We define the matrix P(’) in M, ., as a sub-matrix
of P(’) having one element 1 and the other (n — 1) elements 0 in every row and the
specific columns corresponding to u observations in y, and v observations in yg,
u=0,...,nyand v=0,...,n, satisfying the condition u +v = n;. We define simi-
larly the matrix P(Z’) in M, ,, as a sub-matrix of P having one element 1 and the
other (n — 1) elements O in every row and the specific columns corresponding to
(n; —u) observations in y, and (n, —v) observations in ygz, u#=0,...,n, and
v=0,...,n, satisfying the conditions u +v =n; and (n; —u) + (n, —v) = n,. We
define the vectors ry, in M,, ., and r, in M, ., having the elements 1. We write

(10)

It can be checked that
ny  ny
22 = )=s
u=0 v=0 m (11)
ut+v=n,
We define
49 = 1 TP(i) 1 TP(t)
= Talh nroz 2 Y (12)
1

The P value formula of Fisher’s permutation test based on two-sample data for test-
ing the null hypothesis against the left-sided alternative hypothesis is given by

(The numberof d®,i = 1,...,s) < d**

N

(13)

Ll

where d°? = 4O,
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Table 2 Data on plants 1,...,5,

o Plant Fertilizer Yield (Ibs.)

for the tomato fertilizer )
experiment 7 AorB Yaj O Vij

1 A 29.9

2 A 11.4

3 B 26.6

4 B 23.7

5 A 253

6 The Tomato Fertilizer Experiment

The tomato fertilizer experiment was presented and analyzed by Box, Hunter, and
Hunter [5] and Easterling [10] in Chapter 3. The design used for this experiment was
completely randomized design (CRD). The purpose was to compare the effects of two
treatments, fertilizers A and B, on the yield from 11 tomato plants in terms of the total
weight of tomatoes per plant. For our illustration of the permutation test algorithm, we

consider the data for the first 5 plants in Table 2. The vectors y, = (29.9, 11.4,25.3)7

and y, =(26.6,237)7. The n, =3,n,=2,n=>5, s= : =10. In Table 5
1

(Appendix), we observe that d® < doPS ;i = 1.3.6,7,9. Therefore, the Pvalue is equal
to 0.5. This is exactly the same number obtained by the R code in Table 6.

7 Concluding Remarks

The paper presents the method of finding the randomization matrix R for the paired
comparison under a randomized complete block design. It also gives the method of
selection of s permutation matrices P(i), i=1,...,s,5 <nl from the set of all n! per-
mutation matrices for performing two independent samples permutation test under a
completely randomized design or a randomized control trial. The paper demonstrates
the properties of such matrices. Two illustrative examples are used to explain the pro-
posed methods that are compared with the outcomes of the corresponding R output.

Appendix

See Tables 3, 4, 5, and 6.
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Table3 The 3, u=1,...,1024

041  -025 -029 —0.13 —035 —0.19 —023 —007 —043 027 031 0.5
-037 —021 -025 —0.09 —0.19 —003 —007 009 -013 003 -001 0.5
-021 -005 -009 007 —0.5 001 003 013 045 -029 -033 -0.17
-039 -023 —-027 —0.11 -047 —031 035 —0.19 —041 -025 —029 —0.3
-023 -007 -0.11 005 =—017 —001 -005 011 -025 -009 —0.13 0.03
-019 =003 -007 009 -035 —019 -023 —007 —-029 —0.13 —0.17 —0.01
-037 =021 -025 -0.09 -031 —0.15 —0.19 —003 —0.13 003 -001 015
-007 009 005 021 -015 001 -003 013 -009 007 003 0.19
-039 —023 —-027 —0.11 —033 —017 —021 —005 —041 -025 —029 —0.13
-035 -019 -023 —007 -017 —001 —005 0.1 -011 005 001 0.7
-019 -003 -007 009 —0I3 003 -001 015 -031 -015 —0.19 —0.03
-025 -009 -0.13 003 -033 —017 -021 —005 -027 —0.11 —0.15 001
-009 007 003 019 -003 013 009 025 —0.I1 005 001 0.7
-005 011 007 023 -035 —019 -023 —007 —-029 —013 —0.17 —0.0I
-037 —021 -025 —009 -031 —0.I5 -019 —003 -013 003 -001 0.5
-007 009 005 021 —015 001 —003 013 -009 007 003 019
-025 —009 -0.13 003 —019 —003 —007 009 -027 -011 -0.15 001
-021 -005 —-009 007 -003 013 009 025 003 019 0I5 031
-005 011 007 023 001 017 013 029 -029 -013 —0.17 —00I
-023 -007 -0.11 005 -031 —015 —0.19 —003 -025 -009 —0.13 0.03
-007 009 005 021 -001 015 011 027 —009 007 003 019
-003 013 009 025 -031 —015 —0.19 —003 -025 —009 —0.13 0.03
-033 -0.17 -021 -005 -027 -0.11 -0.15 001 -009 007 003 0.19
-003 013 009 025 —011 005 001 017 -005 011 007 023
-035 -019 -023 —007 -029 —0.13 -017 —001 -037 -021 -025 -0.09
-031 -015 -0.19 —003 —0.13 003 —001 0I5 —007 009 005 021
-015 001 -003 013 -009 007 003 019 -025 -009 —0.13 0.03
019 -003 -007 009 -027 -0.I1 -0.5 001 -021 —0.05 —0.09 0.07
-003 013 009 025 003 019 0I5 031 -005 011 007 023
001 017 013 029 -029 -013 —0.17 -001 -023 —007 -011 0.05
-031 —015 -0.19 —003 —025 —009 —013 003 -007 009 005 021
-001 015 011 027 —009 007 003 019 -003 013 009 025
-021 -005 -009 007 —0.5 001 -003 013 -023 007 —0.11 0.05
-0.17 -001 —-005 011 001 017 013 029 007 023 019 035
-001 015 011 027 005 021 017 033 -025 —009 -0.3 0.03
=019 —003 -007 009 -027 —0I1 —015 001 =021 =005 -0.09 0.07
-003 013 009 025 003 019 015 031 -005 011 007 023
001 017 013 029 -0.15 001 -003 013 -009 007 003 0.19
-0.17 -001 -005 0.1 —0.I1 005 001 017 007 023 019 035
013 029 025 041 005 021 017 033 011 027 023 039
-0.19 —003 -007 009 —013 003 -001 0I5 =021 —005 —0.09 0.07
-015 001 —003 013 003 019 015 031 009 025 021 037
001 017 013 029 007 023 019 035 -035 —0.19 -023 -007
-029 -0.13 -0.17 -001 -037 -021 -025 —-009 -031 —0.15 —-0.19 —0.03
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Table 3 (continued)

-0.13 0.03 -0.01 0.15 -0.07 0.09 0.05 0.21 -0.15 0.01 -0.03 0.13
-0.09 0.07 0.03 0.19 -039 -023 -027 -0.11 -033 -0.17 -021 -0.05
-041 -025 -029 -0.13 -035 -0.19 -023 -0.07 -0.17 —-0.01 -0.05 0.11
—-0.11 0.05 0.01 0.17 -0.19 -0.03 -0.07 0.09 -0.13 0.03 -0.01 0.15
-029 -013 -0.17 -001 -023 -0.07 -0.11 0.05 -031 -0.15 -0.19 —-0.03
-0.25 -0.09 -0.13 0.03 -0.07 0.09 0.05 0.21 -0.01 0.15 0.11 0.27
—-0.09 0.07 0.03 0.19 -0.03 0.13 0.09 0.25 -033 -0.17 -021 -0.05
-027 -0.11 -0.15 0.01 -035 -0.19 -023 -0.07 -029 -0.13 -0.17 —-0.01
—-0.11 0.05 0.01 0.17 —-0.05 0.11 0.07 0.23 —-0.13 0.03 -0.01 0.15
—-0.07 0.09 0.05 0.21 -025 -009 -0.13 0.03 -0.19 -0.03 -0.07 0.09
-0.27 -0.11 -0.15 0.01 -021 -0.05 -0.09 0.07 -0.03 0.13 0.09 0.25
0.03 0.19 0.15 0.31 -0.05 0.11 0.07 0.23 0.01 0.17 0.13 0.29
-029 -013 -0.17 -001 -023 -0.07 -0.11 0.05 -031 -0.15 -0.19 -0.03
-025 -0.09 -0.13 0.03 -0.07 0.09 0.05 0.21 -0.01 0.15 0.11 0.27
-0.09 0.07 0.03 0.19 —-0.03 0.13 0.09 0.25 -0.19 -0.03 -0.07 0.09
-0.13 0.03 -0.01 0.15 -0.21 -005 -0.09 0.07 -0.15 0.01 -0.03 0.13
0.03 0.19 0.15 0.31 0.09 0.25 0.21 0.37 0.01 0.17 0.13 0.29
0.07 0.23 0.19 0.35 -0.23 -0.07 -0.11 0.05 -0.17 -0.01 -0.05 0.11
-025 -0.09 -0.13 0.03 -0.19 -0.03 -0.07 0.09 -0.01 0.15 0.11 0.27
-0.25 -0.09 -0.13 0.03 -0.19 -0.03 -0.07 0.09 -027 -0.11 -0.15 0.01
-021 -0.05 -0.09 0.07 -0.03 0.13 0.09 0.25 0.03 0.19 0.15 0.31
—-0.05 0.11 0.07 0.23 0.01 0.17 0.13 0.29 -029 -0.13 -0.17 -0.01
-023 -0.07 -0.11 0.05 -031 -0.15 -019 -0.03 -025 -0.09 -0.13 0.03
-0.07 0.09 0.05 0.21 —-0.01 0.15 0.11 0.27 -0.09 0.07 0.03 0.19
-0.03 0.13 0.09 0.25 -0.19 -0.03 -0.07 0.09 -0.13 0.03 -0.01 0.15
-021 -0.05 -0.09 0.07 —-0.15 0.01 -0.03 0.13 0.03 0.19 0.15 0.31
0.09 0.25 0.21 0.37 0.01 0.17 0.13 0.29 0.07 0.23 0.19 0.35
-0.23 -0.07 -0.11 0.05 -0.17 -0.01 -0.05 0.11 -0.25 -0.09 -0.13 0.03
-0.19 -0.03 -0.07 0.09 -0.01 0.15 0.11 0.27 0.05 0.21 0.17 0.33
-0.03 0.13 0.09 0.25 0.03 0.19 0.15 0.31 —-0.15 0.01 -0.03 0.13
-0.09 0.07 0.03 0.19 -0.17 =001 —-0.05 0.11 —-0.11 0.05 0.01 0.17
0.07 0.23 0.19 0.35 0.13 0.29 0.25 0.41 0.05 0.21 0.17 0.33
0.11 0.27 0.23 0.39 -0.19 -0.03 -0.07 0.09 -0.13 0.03 -0.01 0.15
-021 -005 -0.09 0.07 -0.15 0.01 —-0.03 0.13 0.03 0.19 0.15 0.31
0.09 0.25 0.21 0.37 0.01 0.17 0.13 0.29 0.07 0.23 0.19 0.35
-0.09 0.07 0.03 0.19 —-0.03 0.13 0.09 0.25 —-0.11 0.05 0.01 0.17
-0.05 0.11 0.07 0.23 0.13 0.29 0.25 0.41 0.19 0.35 0.31 0.47
0.11 0.27 0.23 0.39 0.17 0.33 0.29 0.45 -0.13 0.03 —-0.01 0.15
—0.07 0.09 0.05 0.21 -0.15 0.01 —-0.03 0.13 -0.09 0.07 0.03 0.19
0.09 0.25 0.21 0.37 0.15 0.31 0.27 0.43 0.07 0.23 0.19 0.35
0.13 0.29 0.25 0.41
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Table 4 The R Code : randomization test for the boys’ shoes data

> x <- 10*treatmentl

> y <- 10*treatment2

> library(exactRankTests)

> perm.test(x,y,paired=T,alternative="less”
1-sample Permutation Test
data: x and y
T = 3, p-value = 0.006836

alternative hypothesis: true mu is less than 0

ﬁ?fs ﬂ%P?dewQ i POGx5) PO2x5) 4

1 10000 00010 - 295
01000 00001 =
00100 o

2 10000 00001 - 1.87
01000 00100
00010

3 10000 00010 -4.28
01000 00100
00001

4 10000 01000 9.72
00100 00001
00010

5 10000 01000 7.30
00100 00010
00001

6 01000 10000 —5.70
00100 00001
00010

7 01000 10000 -8.12
00100 00010
00001

8 10000 01000 8.38
00010 00100
00001

9 01000 10000 -7.03
00010 00100
00001

10 00100 10000 455
00010 01000
00001
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Table6 The R Code: permutation test for the tomato fertilizer data

> A <-¢(29.9,11.4,25.3)

> B <-¢(26.6,23.7)

> library(perm)

> permTS(A,B,alternative = “less”, exact= TRUE)
Exact Permutation Test (network algorithm)

data: A and B

p-value = 0.5

alternative hypothesis: true mean A - mean B is less than 0

sample estimates:

mean A - mean B

-2.95
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