
Vol.:(0123456789)

Journal of Statistical Theory and Practice (2020) 14:52
https://doi.org/10.1007/s42519-020-00119-2

1 3

ORIGINAL ARTICLE

Development of Preliminary Test Estimators 
and Preliminary Test Confidence Intervals for Measures 
of Reliability of Kumaraswamy‑G Distributions Based 
on Progressive Type‑II Censoring

Ajit Chaturvedi1 · Anshika Bhatnagar1 

Published online: 8 July 2020 
© Grace Scientific Publishing 2020

Abstract
Classical estimators and preliminary test estimators (PTEs) of the powers of 
model parameter and the two measures of reliability, namelyR(t) = P(X > t) and 
P = P(X > Y) of Kumaraswamy-G distribution, are developed under progressive 
type-II censoring. The preliminary test confidence intervals (PTCIs) are also devel-
oped based on uniformly minimum variance unbiased estimators  (UMVUEs) and 
maximum likelihood estimators (MLEs). Merits of PTEs and PTCIs are established. 
Simulation results are presented, and real-life data set is also analysed.

Keywords Kumaraswamy-G distribution · Preliminary test estimators · Progressive 
type-II censoring · Uniformly minimum variance unbiased estimators · Maximum 
likelihood estimators

1 Introduction

Life-testing experiments are usually time-consuming and expensive in nature. To 
reduce the cost and time of experimentation, various types of censoring schemes 
are used. The two most common adopted censoring schemes in the literature 
are type-I and type-II censoring schemes. But these censoring schemes do not 
allow intermediate removal of the experimental units other than the final termi-
nation point. Therefore, to overcome this restriction, a more general censoring 
scheme known as progressive censoring scheme is considered. Progressive type-
II censoring scheme was first discussed by Cohen [14]. Further, Balakrishnan 
and Aggarwala [2] and Rastogi and Tripathi [26] provide elaborate treatment on 
the issue. Recently, the progressive censoring scheme has received considerable 
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attention in life-testing and reliability studies. The progressive type-II censoring 
scheme can briefly be described as follows: Let us assume that n units are placed 
on test at time zero. Immediately following the first failure, R1 surviving units 
are removed from the test at random. Similarly, after the second failure, R2 of the 
surviving units are removed at random. The process continues until at the time of 
mth failure, the remaining Rm = n − R1 − R2 −…− Rm−1 − m units are removed 
from the test. In this censoring scheme, failure times of m units are completely 
observed.

The reliability function R(t) is defined as the probability of failure-free opera-
tion until time t. Thus, if the random variable X denotes the lifetime of an item or 
a system, then R(t) = P(X > t) . Another measure of reliability under stress strength 
set-up is the probability P = P(X > Y) , which represents the reliability of an item or 
a system of random strength X subject to random stress Y  . For a brief review of the 
literature related to inferential procedures of R(t) and P , one may refer to Bartho-
lomew [5, 6], Johnson [17], Kelly et al. [18] and Chaturvedi and Kumari [9]. Awad 
and Gharraf [1] provided a simulation study which compared minimum variance 
unbiased, the maximum likelihood and Bayes estimators for P(Y < X) when Y and X 
were two independent but not identically distributed Burr random variables. Chatur-
vedi and Rani [11] obtained the classical as well as Bayesian estimates of reliability 
in respect of generalized Maxwell failure distribution, and Chaturvedi and Surinder 
[12] obtained the estimates of reliability functions in respect of exponential distribu-
tion under type-I and type-II censoring schemes. The classical as well as Bayesian 
estimates in respect of negative binomial distribution were obtained by Chaturvedi 
and Tomer [13]. Estimates of the reliability function for the four-parameter expo-
nentiated generalized lomax distribution were obtained by Chaturvedi and Pathak 
[10].

In many situations, we come across cases in which there may exist some prior 
information on the parameters, the usage of which may lead to improved inferential 
results. It is well known that the estimators with the prior information (called the 
restricted estimator) perform better than the estimators with no prior information 
(called the unrestricted estimator). However, when the prior information is doubtful 
(or not sure), one may combine the restricted and unrestricted estimators to obtain 
an estimator with better performance, which leads to the PTEs. The preliminary test 
approach was first discussed by Bancroft [4]. Saleh and Kibria [29] combined the 
preliminary test and ridge regression approach to estimate regression parameter in 
a multiple regression model. Kibria [19] considered the shrinkage preliminary test 
ridge regression estimators (SPTRRE) based on Wald (W), the likelihood ratio (LR) 
and the Lagrangian multiplier (LM) and further derived the bias and risk functions 
of the proposed estimators. Saleh [28] discussed the preliminary test and related 
shrinkage estimation technique. Belaghi et al. [7] proposed the confidence intervals 
based on preliminary test estimator, Thompson shrinkage estimator and Bayes esti-
mator for the scale parameter in respect of the Burr type-XII distribution. Belaghi 
et al. [8] defined the Bayes and empirical Bayes preliminary test estimators on the 
basis of record-breaking observations in the Burr type-XII model.

Motivated by the work of Kumaraswamy [20–22], Cordeiro and De Castro 
[16] proposed Kumaraswamy-G distribution. Nadarajah et  al. [24] recommended 
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Kumaraswamy-G distribution as a reliability model, and Tamandi and Nadarajah 
[30] developed estimation procedures for the parameters based on complete samples.

In the present paper, the ambit of our work dovetailing with Kumaraswamy-G 
distribution is multi-pronged. In Sect.  2, the estimators (point as well as interval) 
are obtained for the powers of parameter, R(t) and P for Kumaraswamy-G distribu-
tion besides developing testing procedures. In Sect.  3, we propose the PTEs, and 
in Sect. 4, the PTCIs are developed by us. In Sect. 5, we provide simulated results 
and also present analysis of real-life data. Lastly, Sect. 6 summarizes findings and 
conclusions.

2  The Kumaraswamy‑G Distribution and Related Inferential 
Procedures

A random variable (rv) X is said to follow Kumaraswamy-G distribution if its proba-
bility density function (pdf) and cumulative density function (cdf) are given, respec-
tively, by

and

where G(x) is the baseline cdf, g(x) is the pdf of G(x). � and � are the shape param-
eters of this distribution. Under progressive type-II censoring, let us denote the m 
failure time by Xi;m,n, i = 1, 2,… ,m.

Denoting by 
c = n

(
n − R1 − 1

)(
n − R1 − R2 − 2

)
…

(
n − R1 − R2 −…− Rm−1 − m + 1

)
 , from 

(2.1) and (2.2), the joint pdf of Xi;m,n, i = 1, 2,… ,m is given by,

The following theorem establishes the relationship between Kumaraswamy-G 
distribution and exponential distribution.

(2.1)f (x;𝜎, 𝛾) = 𝜎𝛾g(x)G𝛾−1(x){1 − G𝛾 (x)}𝜎−1 ;𝜎, 𝛾 > 0

(2.2)F(x;�, �) = 1 − {1 − G� (x)}�

(2.3)

f
(
xi;m,n;i = 1, 2,… ,m;�, �

)
= c

m∏
i=1

f (xi;�, �)
(
1 − F

(
xi;�, �

))Ri

= c

m∏
i=1

��g(xi)G
�−1

(
xi
){

1 − G�
(
xi
)}�−1{

1 − G�
(
xi
)}�Ri

= cexp

{
−�

m∑
i=1

−
(
Ri + 1

)
log

(
1 − G�

(
xi
))} m∏

i=1

��g(xi)
G�−1

(
xi
)

{
1 − G�

(
xi
)}
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Theorem  1 The rv Y = − log (1 − G� (X)) follows exponential distribution with 
mean life 1/σ.

Proof Let us make the transformation

or,

Making substitutions from (2.4) and (2.5) in (2.1), we get the pdf of Y to be

and the theorem follows.
Let us consider the transformations

Then Z�

j
s(j = 1, 2,… ,m) follow exponential distribution with mean life 1/� . 

Since,

Applying Theorem 1 and additive property of exponential distribution, Sm follows 
gamma distribution with pdf

Utilizing (2.6), it follows from (2.3) that 

The following theorem provides the UMVUE of �p(p ≠ 0)

Theorem 2 For (p ≠ 0), the UMVUE of �p is given by

Proof It follows from (2.6) and factorization theorem that Sm is sufficient for σ. 
Moreover, since the distribution of Sm belongs to exponential family, it is also com-
plete, the theorem now follows from Lehmann–Scheffe’s theorem and the fact that 

y = − log (1 − G� (x)),

(2.4)1 − G� (x) = e−y,

(2.5)�g(x)G�−1(x)dx = e−ydy,

h(y;�) = �e−(�−1)ye−y = �e−�y

Z1 = nY1;Z2 =
(
n − R1 − 1

)(
Y2 − Y1

)
;… ;Z

m
=
(
n − R1 − R2 −…− R

m−1 − m + 1
)(
Y
m
− Y

m−1

)

Sm =

m∑
j=1

−
(
Rj + 1

)
log

(
1 − G�

(
xj
))

=

m∑
j=1

Zj

(2.6)w
(
sm;�

)
=

e−�smsm−1
m

�m

⌜m

(2.7)f
(
xi;m,n;i = 1, 2,… ,m;�, �

)
= c�me−�Sm

m∏
i=1

�g(xi)
G�−1

(
xi
)

{
1 − G�

(
xi
)}

�̂�
p

U
=

⌜m

⌜(m−p)

S−p
m
; m > p
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The proof of following theorem is a direct consequence of (2.7).

Theorem 3 For (p ≠ 0), the MLE of �p is given by

Lemma 1 The UMVUE of sampled pdf vide (2.1) at a specified point ‘x’ is given by

Proof Equation (2.1) may be written as

Applying Theorem 2 and a result due to Chaturvedi and Tomer [13], it follows 
from (2.8) that

and the desired result is obtained on simplification.

Lemma 2 The MLE of sampled pdf vide (2.1) at a specified point ‘x’ is given by

Proof The result follows from (2.1) in conjunction with Theorem 3 and invariance 
property of MLEs.

Theorem 4 The UMVUE of R(t) is given by

Proof We have

E
(
S−p
m

)
=

⌜(m − p)

⌜m
�p

�̂�
p

ML
=

(
m

Sm

)p

f̂U(x;𝜎, 𝛾) =

⎧
⎪⎨⎪⎩

(m − 1)𝛾g(x)G𝛾−1(x)

Sm(1 − G𝛾 (x))

�
1 +

log(1 − G𝛾 (x))

Sm

�m−2
; Sm > − log(1 − G𝛾 (x))

0 ; otherwise

(2.8)

f (x;�, �) = ��g(x)G�−1(x)exp{(� − 1) log(1 − G� (x)}

=
�g(x)G�−1(x)

(1 − G� (x))

∞∑
i=0

1

i!
{log (1 − G� (x))}i�i+1

f̂U(x;𝜎, 𝛾) =
𝛾g(x)G𝛾−1(x)

(1 − G𝛾 (x))

∞∑
i=0

1

i!
{log (1 − G𝛾 (x))}i�̂�i+1

U

=
𝛾g(x)G𝛾−1(x)

(1 − G𝛾 (x))

m−2∑
i=0

1

i!
{log (1 − G𝛾 (x))}i

⌜m

⌜(m − i − 1)
S−i−1
m

f̂ML(x;𝜎, 𝛾) =
m

Sm
𝛾g(x)G𝛾−1(x)(1 − G𝛾 (x))

m

Sm
−1

R̂U(t) =

{[
1 +

log (1−G𝛾 (t))

Sm

]m−1
; Sm > − log (1 − G𝛾 (t))

0; otherwise

0;
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Thus,

Therefore, from Lemma 1,

on substituting

and solving the integral, the desired result follows.

Theorem 5 The MLE of R(t) is given by

Proof The proof follows on similar lines as in previous theorem.

Suppose X and Y  are two independent rvs with parameters 
(
�1, �1

)
and

(
�2, �2

)
 , 

respectively. Then, the UMVUE of P is given by following theorem.

Theorem 6 The UMVUE of P is given by

where

∞

∫
t

∞

∫
0

f (x;�, �)w
(
sm;�

)
dxdsm = R(t)

∞

∫
t

f̂U(x;𝜎, 𝛾)dx is the UMVUE ofR(t)

R̂U(t) =

∞

∫
t

(m − 1)𝛾g(x)G𝛾−1(x)

Sm(1 − G𝛾 (x))

[
1 +

log (1 − G𝛾 (x))

Sm

]m−2
dx

log (1 − G� (x))

Sm
= −v,

R̂ML(t) =
[
1 − G𝛾 (t)

] m

Sm

P̂
U
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(l − 1) ∫ U

0

⎡
⎢⎢⎢⎢⎢⎣

1 +

log

⎧⎪⎨⎪⎩
1−G𝛾1

⎛⎜⎜⎝
H
−1

⎛⎜⎜⎝
(1−evTl )

l

𝛾2
⎞⎟⎟⎠

⎞⎟⎟⎠

⎫⎪⎬⎪⎭
Sm

⎤
⎥⎥⎥⎥⎥⎦

m−1

(1 − v)l−2dv;G−1
�
1 − e

−Sm
� 1
𝛾1 ≤ H

−1

��
1 − e

−Tl
� 1
𝛾2

�

(l − 1) ∫ 1

0

⎡
⎢⎢⎢⎢⎢⎣

1 +

log

⎧
⎪⎨⎪⎩
1−G𝛾1

⎛⎜⎜⎝
H
−1

⎛⎜⎜⎝
(1−evTl )

l

𝛾2
⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎫
⎪⎬⎪⎭

Sm

⎤
⎥⎥⎥⎥⎥⎦

m−1

(1 − v)l−2dv;G−1
�
1 − e

−Sm
� 1
𝛾1 > H

−1

��
1 − e

−Tl
� 1
𝛾2

�
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Proof Let the pdf of X and Y  are given by f1
(
x;�1, �1

)
and f2

(
y;�2, �2

)
 , respectively

and

Suppose that n units are put on test. Let Xi∶m∶n;i = 1, 2,… ,m be m observed 
failure times from X and Yj∶l∶n;j = 1, 2,… , l be l observed failure times from Y .

We denote by Tl =
l∑

j=1

−
�
R∗
j
+ 1

�
log

�
1 − H�2

�
yj
��

 where R∗
j
 is the censoring 

scheme for second sample.
From the arguments similar to those used for Theorem 4,

where

On substituting

and taking different values of c, we get the desired result on solving the integral.

Corollary 1 When X and Y  belong to same family of distributions, i.e. G(.) = H(.) , 
the UMVUE of P is given by

U =

log

{
1 − H�2

(
G−1

((
1 − e−Sm

) 1

�1

))}

Tl

f1
(
x;𝜎1, 𝛾1

)
= 𝜎1𝛾1g(x)G

𝛾1−1(x){1 − G𝛾1 (x)}𝜎1−1; 𝜎1, 𝛾1 > 0

f2
(
y;𝜎2, 𝛾2

)
= 𝜎2𝛾2h(y)H

𝛾2−1(y){1 − H𝛾2 (y)}𝜎2−1; 𝜎2, 𝛾2 > 0

P̂U =

∞

∫
y=0

∞

∫
x=y

f̂1U
(
x;𝜎1, 𝛾1

)
f̂2U

(
y;𝜎2, 𝛾2

)
dxdy

=

∞

∫
y=0

R̂1U(y, 𝜎1, 𝛾1)f̂2U
(
y;𝜎2, 𝛾2

)
dy

= (l − 1)

c

∫
y=0

[
1 +

log (1 − G𝛾1 (y))

Sm

]m−1
𝛾2h(y)H

𝛾2−1(y)

Tl(1 − H𝛾2 (y))

[
1 +

log (1 − H𝛾2 (y))

Tl

]l−2
dy

c = min

{
G−1

((
1 − e−Sm

) 1

�1

)
,H−1

((
1 − e−Tl

) 1

�2

)}

log (1 − H�2 (y))

Tl
= −v,
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where

Corollary 2 When G(.) = H(.) and � 1 = � 2, the UMVUE of P is given by

Theorem 7 The MLE of P when G(.) = H(.) and �1  = �2 = � (say) is given by

Proof We have

On substituting H�2 (y) = v , we get

When G(.) = H(.), we get

P̂U =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(l − 1)
W∫
0

⎡⎢⎢⎣
1 +

log

�
1−(1−evTl)

𝛾1
𝛾2

�

Sm

⎤⎥⎥⎦

m−1

(1 − v)l−2dv;
�
1 − e−Sm

� 1

𝛾1 ≤ �
1 − e−Tl

� 1

𝛾2

(l − 1)
1∫
0

⎡⎢⎢⎣
1 +

log

�
1−(1−evTl)

𝛾1
𝛾2

�

Sm

⎤⎥⎥⎦

m−1

(1 − v)l−2dv;
�
1 − e−Sm

� 1

𝛾1 >
�
1 − e−Tl

� 1

𝛾2

W =
log

{
1 −

(
1 − e−Sm

) �2

�1

}

Tl

P̂U =

⎧
⎪⎪⎨⎪⎪⎩

l−2∑
i=0

(−1)i(l−1)!(m−1)!

(l−2−i)!(m+i)!

�
Sm

Tl

�i+1

; Sm ≤ Tl

m−1∑
i=0

(−1)i(l−1)!(m−1)!

(l+i−1)!(m−1−i)!

�
Tl

Sm

�i

; Sm > Tl

P̂ML =
�̂�2ML

�̂�1ML + �̂�2ML

P̂ML =

∞

∫
y=0

R̂1ML(y, 𝜎1, 𝛾1)f̂2ML

(
y;𝜎2, 𝛾2

)
dy

=

∞

∫
y=0

[
1 − G𝛾1 (y)

]�̂�1ML �̂�2ML𝛾2h(y)H
𝛾2−1(y){1 − H𝛾2 (y)}�̂�2ML−1dy

P̂ML =

1

∫
v=0

[
1 − G𝛾1

{
H−1

(
v

1

𝛾2

)}]�̂�1ML

�̂�2ML(1 − v)�̂�2ML−1dv

P̂ML =

1

∫
v=0

[
1 − v

𝛾1

𝛾2

]�̂�1ML

�̂�2ML(1 − v)�̂�2ML−1dv
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Using the condition that �1  = �2 = � (say), we get the desired result on solving the 
integral.

In the following theorem, we derive critical region for the hypotheses regarding 
σ.

Theorem  8 Let the null hypothesis be H0 ∶ � = �0 against the alternative 
H1 ∶ � ≠ �0 . Then, the critical region is given by

where, � is the level of significance

Proof We know that

The critical region is then given by

or

In what follows, we obtain the critical region for the hypotheses related to R(t).

Theorem  9 Let the null hypothesis be H0 ∶ R(t) = R0(t) against the alternative 
H1 ∶ R(t) ≠ R0(t) . Then, the critical region comes out to be,

Proof From (2.2), we know that,

Therefore, H0 ∶ R(t) = R0(t) against the alternative H1 ∶ R(t) ≠ R0(t) is equiva-
lent toH0 ∶ � = �0 against the alternative H1 ∶ � ≠ �0

Thus, the theorem follows from Theorem 8.
The following theorem provides critical region for hypotheses regarding P.

⎛
⎜⎜⎜⎝
0 < Sm <

𝜒2
2m

�
𝛼

2

�

2𝜎0

⎞
⎟⎟⎟⎠
∪

⎛
⎜⎜⎜⎝

𝜒2
2m

�
1 −

𝛼

2

�

2𝜎0
< Sm < ∞

⎞
⎟⎟⎟⎠

2�Sm ∼ �2
2m

(
0 < 𝜒2

2m
< 𝜒2

2m

(
𝛼

2

))
∪
(
𝜒2
2m

(
1 −

𝛼

2

)
< 𝜒2

2m
< ∞

)

⎛⎜⎜⎜⎝
0 < Sm <

𝜒2
2m

�
𝛼

2

�

2𝜎0

⎞⎟⎟⎟⎠
∪

⎛⎜⎜⎜⎝

𝜒2
2m

�
1 −

𝛼

2

�

2𝜎0
< Sm < ∞

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝
0 < Sm <

𝜒2
2m

�
𝛼

2

�

2𝜎0

⎞⎟⎟⎟⎠
∪

⎛⎜⎜⎜⎝

𝜒2
2m

�
1 −

𝛼

2

�

2𝜎0
< Sm < ∞

⎞⎟⎟⎟⎠

R(t) =
[
1 − G� (t)

]�
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Theorem  10 Let us take the null hypothesis H0 ∶ P = P0 against the alternative 
H1 ∶ P ≠ P0 . Then, the critical region turns out to be,

where k =
P0

1−P0

Proof We know that 

P = P0 gives �2 = k�1

Therefore, H0 is equivalent to

As we know that,

Therefore,

The critical region for testing H0 ∶ P = P0 is given by,

The theorem follows using (2.9) and (2.10)
The following three theorems provide confidence intervals for σ, R(t) and P, 

respectively. The proofs of these theorems emanate as a direct consequence of Theo-
rems 8, 9 and 10, respectively.

Theorem 11 The 100(1 − �)% confidence interval for σ is given by

Theorem 12 The 100(1 − �)% confidence interval for R(t) comes out to be

(
Sm

Tl
<

mk

l
F2m,2l

(
𝛼

2

))
∪

(
mk

l
F2m,2l

(
1 −

𝛼

2

)
<

Sm

Tl

)

P =
�2

�1 + �2

H0 ∶ �2 = k �1 against H1 ∶ �2 ≠ k �1

Sm ∼ Gamma
(
m, �1

)
and Tl ∼ Gamma

(
l, �2

)

(2.9)
l�1Sm

m�2Tl
∼ F2m,2l

(2.10)
(
F2m,2l < F2m,2l

(
𝛼

2

))
∪
(
F2m,2l

(
1 −

𝛼

2

)
< F2m,2l

)
.

⎡⎢⎢⎢⎣

�2
2m

�
�

2

�

2Sm
,

�2
2m

�
1 −

�

2

�

2Sm

⎤⎥⎥⎥⎦
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Theorem 13 The 100(1 − �)% confidence interval for P turns out to be

3  Proposed Preliminary Test Estimators

The prior information for the parameter σ can be expressed in the form of the null 
hypothesis discussed in Theorem 8.

Let us suppose

and I(A) is the Indicator function of the set

The PTEs of �p based on UMVUE and MLE are then given, respectively, by

and

where �̂�p

U
and �̂�

p

ML
 are as defined in Theorems 2 and 3, respectively.

Let us suppose
� =

�

�o
 where �o is the true value of �

The bias of the PTE given at (3.1) is

where H� (.) denotes the cdf  of �2 distribution with Ψ degrees of freedom

⎡
⎢⎢⎢⎣
exp

⎧
⎪⎨⎪⎩

�2
2m

�
1 −

�

2

�

2Sm
log (1 − G� (t))

⎫
⎪⎬⎪⎭
, exp

⎧
⎪⎨⎪⎩

�2
2m

�
�

2

�

2Sm
log (1 − G� (t))

⎫
⎪⎬⎪⎭

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1

1 +
mTl

lSm
F2m,2l

�
1 −

�

2

� , 1

1 +
mTl

lSm
F2m,2l

�
�

2

�
⎤
⎥⎥⎥⎦

�2
2m

(
�

2

)
= C1and �

2
2m

(
1 −

�

2

)
= C2

A =
{
�2
2m
;C1 ≤ �2

2m
≤ C2

}

(3.1)�̂�
p

PT_U
= �̂�

p

U
−
(
�̂�
p

U
− 𝜎

p

0

)
I(A)

(3.2)�̂�
p

PT_ML
= �̂�

p

ML
−
(
�̂�
p

ML
− 𝜎

p

0

)
I(A),

Bias
(
�̂�
p

PT_U

)
= E

[
�̂�
p

U
−
(
�̂�
p

U
− 𝜎

p

0

)
I(A) − 𝜎p

]

= 𝜎
p

0
P(A) − E

(
�̂�
p

U
I(A)

)

or, Bias
(
�̂�
p

PT_U

)
= 𝜎

p

0

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}
− 𝜎p

{
H2(m−p)

(
𝛿C2

)
− H2(m−p)

(
𝛿C1

)}
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The mean sum of squares due to error (MSE) of the PTE given at (3.1) comes out to 
be

The bias of the PTE given at (3.2) is

The MSE of PTE given at (3.2) comes out to be

The prior information for R(t) can be expressed in the form of the null hypoth-
esis discussed in Theorem 9. Accordingly, the PTEs of R(t) based on MLE and 
UMVUE are given, respectively, by

MSE

(
�̂�
p

PT_U

)
= 𝜎2p

[
𝛤 (m − 2p)𝛤 (m)

𝛤 2(m − p)
− 1

]
+ 𝜎2p

𝛤 (m − 2p)𝛤 (m)

𝛤 2(m − p)

{
H2(m−2p)

(
𝛿C2

)
− H2(m−2p)

(
𝛿C1

)}

− 𝜎2p
{
H2(m−p)

(
𝛿C2

)
− H2(m−p)

(
𝛿C1

)}2

+ 𝜎2p
o

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}[
1 −

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}]

− 2𝜎p
o
𝜎p

{
H2(m−p)

(
𝛿C2

)
− H2(m−p)

(
𝛿C1

)}[
1 −

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}]

− 2𝜎2p
𝛤 (m − 2p)𝛤 (m)

𝛤 2(m − p)

{
H2(m−2p)

(
𝛿C2

)
− H2(m−2p)

(
𝛿C1

)}

+ 2𝜎p
o
𝜎p

{
H2(m−p)

(
𝛿C2

)
− H2(m−p)

(
𝛿C1

)}
+ 2𝜎2p

{
H2(m−p)

(
𝛿C2

)
− H2(m−p)

(
𝛿C1

)}

− 2𝜎p
o
𝜎p

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}

+
[
𝜎
p

0

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}
− 𝜎p

{
H2(m−p)

(
𝛿C2

)
− H2(m−p)

(
𝛿C1

)}]2

Bias

(
�̂�
p

PT_ML

)
= (𝜎m)p

Γ(m − p)

Γ(m)

[
1 −

{
H2(m−p)

(
𝛿C2

)
− H2(m−p)

(
𝛿C1

)}]

+ 𝜎p

o

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}
− 𝜎p

MSE

(
�̂�
p

PT_ML

)
= (𝜎m)2p

{
Γ(m − 2p)

Γ(m)
−

(
Γ(m − p)

Γ(m)

)2
}

− (𝜎m)2p
Γ(m − 2p)

Γ(m)

{
H2(m−2p)

(
𝛿C2

)
− H2(m−2p)

(
𝛿C1

)}

− (𝜎m)2p
{

Γ(m − p)

Γ(m)

}2{
H2(m−p)

(
𝛿C2

)
− H2(m−p)

(
𝛿C1

)}2

+ 𝜎2p

o

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}[
1 −

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}]

− 2𝜎p

o
(𝜎m)p

Γ(m − p)

Γ(m)

{
H2(m−p)

(
𝛿C2

)
− H2(m−p)

(
𝛿C1

)}[
1 −

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}]

+ 2(𝜎m)p
{

Γ(m − p)

Γ(m)

}2{
H2(m−p)

(
𝛿C2

)
− H2(m−p)

(
𝛿C1

)}

− 2(𝜎m)2p
Γ(m − 2p)

Γ(m)

{
H2(m−2p)

(
𝛿C2

)
− H2(m−2p)

(
𝛿C1

)}

+ 2𝜎p

o
(𝜎m)p

{
Γ(m − p)

Γ(m)

}{
H2(m−p)

(
𝛿C2

)
− H2(m−p)

(
𝛿C1

)}

− 2𝜎p

o
(𝜎m)p

Γ(m − p)

Γ(m)

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}

+

[
(𝜎m)p

Γ(m − p)

Γ(m)

[
1 −

{
H2(m−p)

(
𝛿C2

)
− H2(m−p)

(
𝛿C1

)}]

+𝜎p

o

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}
− 𝜎p

]2
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where R0(t) = [1 − G� (t)]�0 , underH0

and

where R̂U(t) and R̂ML(t) are as defined in Theorems 4 and 5, respectively.
The bias of the PTE given at (3.3) is

where

The MSE of PTE given at (3.3) is

where

The bias of the PTE given at (3.4) is

where

The MSE of PTE given at (3.4) is

(3.3)R̂PT_ML(t) = R̂ML(t) −
(
R̂ML(t) − R0(t)

)
I(A)

(3.4)R̂PT_U(t) = R̂U(t) −
(
R̂U(t) − R0(t)

)
I(A)

Bias
(
R̂PT_ML(t)

)
= I1 − 𝜑1 + R0(t)

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}
− R(t)

I1 =

∞

∫
0

1

� (m)
e−u(1 − G� (t))

−u

�m um−1du, where u = �Sm

and �1 =

C2∕2

∫
C1∕2

um−1

(m − 1)!
e−u(1 − G� (t))

−u

�m du

MSE
(
R̂PT_ML(t)

)
= I2 − I12 − 𝜑2 − 𝜑2

1

+ R2
o
(t)
{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}{
1 −

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}}

+ 2Ro(t)
{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}(
𝜑1 − I1

)
+ 2𝜑1I1

+
[
I1 − 𝜑1 + R0(t)

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}
− R(t)

]2

I2 =

∞

∫
0

1

� (m)
e−u(1 − G� (t))

−2u

�m um−1du and�2 =

C2∕2

∫
C1∕2

um−1

(m − 1)!
e−u(1 − G� (t))

−2u

�m du

Bias
(
R̂PT_U(t)

)
= Ro(t)

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}
− 𝜑3

�3 =

C2∕2

∫
C1∕2

um−1e−u

(m − 1)!

(
1 +

�log(1 − G� (t))

u

)m−1

du
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where

and

The prior information for P can be expressed in the form of the null hypothesis 
discussed in Theorem 10.

Let I(B) be indicator function of the set

where

The PTEs of P based on MLE and UMVUE are then given, respectively, by

and

where P̂U and P̂ML are as defined in Theorems 6 and 7, respectively.
Now, we derive bias and MSE expressions of PTEs of P based on MLE and 

UMVUE.

We know that,

MSE
{
R̂PT_U(t)

}
= I3 − R2(t) − 𝜑4 − 𝜑2

3

+ R2
0
(t)
{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}{
1 −

(
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

))}

+ 2R0(t)
{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}(
𝜑3 − R(t)

)
+ 2𝜑3R(t)

+
(
Ro(t)

{
H2m

(
𝛿C2

)
− H2m

(
𝛿C1

)}
− 𝜑3

)2

�4 =

C2∕2

∫
C1∕2

um−1e−u

(m − 1)!

(
1 +

�log(1 − G� (t))

u

)2(m−1)

du

I3 =

∞

∫
0

um−1e−u

(m − 1)!

(
1 +

�log(1 − G� (t))

u

)2(m−1)

du

B =
{
F2m,2l;C3 ≤ F2m,2l ≤ C4

}

C3 = F2m,2l

(
�

2

)
andC4 = F2m,2l

(
1 −

�

2

)

(3.5)P̂PT_ML = P̂ML −
(
P̂ML − P0

)
I(B)

(3.6)P̂PT_U = P̂U −
(
P̂U − P0

)
I(B)

(3.7)Bias
(
P̂PT_ML

)
= E

(
P̂ML

)
− E

(
P̂MLI(B)

)
+ PoE(I(B)) − P

E
(
P̂ML

)
= E

(
�̂�2ML

�̂�1ML + �̂�2ML

)

= E
(
Q̂
)
, (say)
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We make use of the approach given by Constantine [15] to obtain the pdf of Q̂ 
by transformation into two new independent random variables r > 0 and 
� ∈

(
0,

�

2

)
 such that �̂�1ML =

𝜎1rsin
2𝜃

m
 and �̂�2ML =

𝜎2rcos
2𝜃

l
.

Putting � = sin2� and � =
�1

�2
 , the pdf of Q̂ =

[
1 + 𝜌

(
l

m

)(
𝜑

1−𝜑

)]−1
 is given by,

When � = 1, using (3.8), we get

When � ≠ 1, on substituting � + q(1 − �) = �, (3.8) gives

where �5 which is obtained by putting c = 1 in the expression of E
(
Q̂c

)
 is as follows

Further,

using (3.10) and (3.11) in (3.7), the bias of PTE of P based on MLE is:

(3.8)

g(q) =
1

𝛽(m, l)

(
Sm

Tl

)m(
m

l

(
1 − 𝜑

𝜑

))m+1
ql−1(1 − q)m−1

(𝜀 + q(1 − 𝜀))−m−l
;0 < q < 1, 𝜀 =

Sm

Tl

m

l

(
1 − 𝜑

𝜑

)

(3.9)E
(
Q̂c

)
=

𝛽(l + c,m)

𝛽(m, l)

(
Sm

Tl

)m(
m

l

(
1 − 𝜑

𝜑

))m+1

E
�
Q̂c

�
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1

𝛽(m,l)

�
Sm

Tl

�m�
m

l

�
1−𝜑

𝜑

��m+1
𝜔m+1

(1−𝜀)m+l+c−1

l+c−1∑
i=0

⎛⎜⎜⎝
l + c − 1

i

⎞⎟⎟⎠
(−1)i𝜀i

m−1∑
j=0

⎛⎜⎜⎝
m − 1

j

⎞⎟⎟⎠
(−1)j

1

j+c−i−l
(1 − 𝜔j+c−i−l), j + c − i − l ≠ 0

1

𝛽(m,l)

�
Sm

Tl

�m�
m

l

�
1−𝜑

𝜑

��m+1
𝜔m+1

(1−𝜀)m+l+c−1

l+c−1∑
i=0

⎛⎜⎜⎝
l + c − 1

i

⎞⎟⎟⎠
(−1)i𝜀i

m−1∑
j=0

⎛⎜⎜⎝
m − 1

j

⎞⎟⎟⎠
(−1)j+1 log 𝜔, j + c − i − l = 0

(3.10)Thus, E
(
P̂ML

)
=

{
l

m+l

(
Sm

Tl

)m(
m

l

(
1−𝜑

𝜑

))m+1

;𝜀 = 1

𝜑5; 𝜀 ≠ 1

�5 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

�(m,l)

�
Sm

Tl

�m�
m

l

�
1−�

�

��m+1
�m+1

(1−�)m+l

l∑
i=0

⎛
⎜⎜⎝
l

i

⎞
⎟⎟⎠
(−1)i�i

m−1∑
j=0

⎛
⎜⎜⎝
m − 1

j

⎞
⎟⎟⎠
(−1)j

1

j+1−i−l
(1 − �j+1−i−l), j + 1 − i − l ≠ 0

1

�(m,l)

�
Sm

Tl

�m�
m

l

�
1−�

�

��m+1
�m+1

(1−�)m+l

l∑
i=0

⎛⎜⎜⎝
l

i

⎞⎟⎟⎠
(−1)i�i

m−1∑
j=0

⎛
⎜⎜⎝
m − 1

j

⎞⎟⎟⎠
(−1)j+1 log �, j + 1 − i − l = 0

(3.11)
E
(
P̂MLI(B)

)
=

1

𝛽(m, l)

(
m

l

)m

C4

∫
C3

𝜐m
(
1 +

(
m

l

)
𝜐

)−m−l

(
𝜐 +

𝜎1

𝜎2

) d𝜐

= 𝜑6, (say)
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and the MSE of PTE of P based on MLE is:

where

Let us define

�10 =
l−2∑
i=0

(−1)i(l−1)!(m−1)!

(l−i−2)!(m+i)!

�
l�1

m�2

�i+1 C4∫
C3

�i+1�1(�)d�, where �1(⋅) is the pdf of f− dis-

tribution with (2m, 2l) degrees of freedom.

�11 =
m−1∑
i=0

(−1)i(l−1)!(m−1)!

(l+i−1)!(m−i−1)!

�
m�2

l�1

�i C4∫
C3

�i�2(�)d� , where �2(⋅) is the of f− distribution 

with (2l, 2m) degrees of freedom.
The bias of PTE of P based on UMVUE is:

where v = Sm

Hl

andP(B) =
{
F2m,2l

(
C4

)
− F2m,2l

(
C3

)}
.

To obtain MSE
(
P̂PT_U

)
 , consider

Bias
�
P̂
PT_ML

�
=

⎧⎪⎨⎪⎩

�
l

m+l

�
Sm

Tl

�m�
m

l

�
1−𝜑

𝜑

��m+1

− 𝜑6 + P
o

�
F2m,2l

�
C4

�
− F2m,2l

�
C3

��
− P; 𝜀 = 1

𝜑5 − 𝜑6 + P
o

�
F2m,2l

�
C4

�
− F2m,2l

�
C3

��
− P; 𝜀 ≠ 1

MSE
�
P̂
PT_ML

�
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜑8 − 𝜑7 − 𝜑2

6
+ 2P0

�
F2m,2l

�
C4

�
− F2m,2l

�
C3

���
𝜑6 − 𝜑8

�
+ P

2

o

�
F2m,2l

�
C4

�
− F2m,2l

�
C3

��
�
1 −

�
F2m,2l

�
C4

�
− F2m,2l

�
C3

���
+ 2𝜑6𝜑8 +

�
Bias

�
P̂
PT_ML

��2
;when 𝜀 = 1

𝜑9 − 𝜑2

5
− 𝜑7 − 𝜑2

6
+ P

2

o

�
F2m,2l

�
C4

�
− F2m,2l

�
C3

�� �
1 −

�
F2m,2l

�
C4

�
− F2m,2l

�
C3

���

+2P0

�
F2m,2l

�
C4

�
− F2m,2l

�
C3

���
𝜑6 − 𝜑5

�
+ 2𝜑5𝜑6 +

�
Bias

�
P̂
PT_ML

��2
;when 𝜀 ≠ 1

�7 =
1

�(m, l)

(
m

l

)m

C4

∫
C3

�m+1
(
1 +

(
m

l

)
�

)−m−l

(
� +

�1

�2

)2
d�

𝜑8 = Var
(
P̂ML

)
=

l

m + l

(
S
m

T
l

)m(
m

l

(
1 − 𝜑

𝜑

))m+1
{

l + 1

m + l + 1
−

l

m + l

(
S
m

T
l

)m(
m

l
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which is obtained by putting c = 2 in the expression of E
(
Q̂c

)

Bias
(
P̂PT_U

)
=

{
PoP(B) − 𝜑10;v ≤ 1

PoP(B) − 𝜑11;v > 1
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where ai =
(−1)i(l−1)!(m−1)!

(l−i−2)!(m+i)!
, bi =

(−1)i(l−1)!(m−1)!

(l+i−1)!(m−i−1)!

We obtain the pdf of v as:

For c > 0,

Substituting r = (1 + �v)−1, we get on simplification

where

and � =
1

1+�
.

Similarly, we can obtain

where

let us denote

Further, using (3.13) and (3.14) in (3.12), we get the expression of E
(
P̂2
U

)
as,

(3.12)

E
(
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U
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= E
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i+j+2

||||||
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)
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(
m−1∑
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j=0

bibj(v)
−(i+j)

||||||
v > 1

)
P(v > 1)

f (v) =
𝜌m

𝛽(m, l)
vm−1(1 + 𝜌v)−m−l;v > 0

E(vc|v ≤ 1)P(v ≤ 1) =

1

�
0

�m

�(m, l)
vm+c−1(1 + �v)−m−ldv.

(3.13)
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(
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h
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�
�
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1

�
�
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{
1−� l+h−c

l+h−c
;h ≠ c − l

−log(� );h = c − l

(3.14)
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Thus, Var
(
P̂U

)
= 𝜑14 − P2 and Var

(
P̂UI(B)

)
=

{
𝜑12 − 𝜑2

10
;v ≤ 1

𝜑13 − 𝜑2
11
;v > 1

,

Finally, we obtain the MSE of PTE of P based on UMVUE as:

4  Preliminary Test Confidence Intervals

In this section, we derive the preliminary test confidence intervals (PTCIs) for 
�,R(t) andP based on their UMVUEs and MLEs. After introducing the PTCIs, sub-
sequently the coverage probability is obtained.

From Theorems 2 and 3, we know that

and

Using Theorem  11 and Eqs.  (4.1) and (4.2), 100(1 − �)% equal tail CIs for σ 
based on UMVUE and MLE are as follows

and

Therefore, the PTCIs of σ based on UMVUE and MLE are as follows

E
(
P̂2
U

)
=
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i=0
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aiaj𝜌
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h

) 1

∫
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+
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i=0

m−1∑
j=0

bibj𝜌
i+j

𝛽(m, l)

l+i+j−1∑
h=0

(−1)h
(
l + i + j − 1

h

) 1

∫
1−𝛹

rm−1−i−j+hdr = 𝜑14, say

MSE
(
P̂PT_U
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=
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𝜑14 − P
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+ 2P𝜑10 + P

2
o
P(B)(1 − P(B)) + 2P
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2
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2

�
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�
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2

�
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⎡⎢⎢⎢⎣
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and

where �̂�PT_U and �̂�PT_ML are as defined in (3.1) and (3.2), respectively.
Next we derive the PTCI for R(t),
From Theorem 4, we can write

From Theorem 5, we can write

Using Theorem 12 and Eqs. (4.3) and (4.4), 100(1 − �)% equal tail CIs for R(t) 
based on its UMVUE and MLE may be written as

and

Therefore, the PTCIs of R(t) based on UMVUE and MLE are as follows:

and
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⎢⎢⎢⎣
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⎤
⎥⎥⎥⎦

(4.3)
log (1 − G𝛾 (t))

Sm
=
(
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where R̂PT_ML(t) and R̂PT_U(t) are as defined in (3.3) and (3.4), respectively.
Now, we derive the confidence intervals for P
From Theorem 6, we can write

From Theorem 7, we can write

Using Theorem 12 and Eqs. (4.5) in (4.6), we can write 100(1 − �)% equal tail 
CIs for P based on UMVUE and MLE as

and

Therefore, PTCIs for P based on UMVUE and MLE are defined as follows:
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⎧⎪⎨⎪⎩
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and

where P̂PT_ML and P̂PT_U are as defined in (3.5) and (3.6), respectively.
Now we obtain the coverage probability of PTCI of σ based on its UMVUE.

Let us suppose that, � =
�

�0
, where �0is the true value of � . We know that 
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indicator function. Considering all possible cases of � , we may write
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Similarly, coverage probability for other PTCI may be obtained.

5  Numerical Findings

In this section, we have tried to judge the performance of preliminary test estimators 
based on progressive type-II censored data. Five progressive censoring schemes are 
considered which can be seen in Table 1.

We consider Kumaraswamy distribution [22] as a particular case of Kw-G distri-
butions. A rv X is said to follow the Kumaraswamy distribution, if its pdf and cdf 
are given by

and

For simulation studies, different progressively censored samples are generated 
using the algorithm proposed by Balakrishnan and Sandhu [3] which involves the 
following steps

1. Generate m independent and identically (iid) random numbers 
(
u1, u2,… , um

)
 

from uniform distribution U(0, 1).

2. Set zi = − log
(
1 − ui

)
, so that z′

i
s are iid standard exponential variates.

P
�
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�
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(5.1)f (x;𝜎, 𝛾) = 𝜎𝛾x𝛾−1(1 − x𝛾 )𝜎−1; 0 < x < 1, 𝜎, 𝛾 > 0

(5.2)F(x;𝜎, 𝛾) = 1 − (1 − x𝛾 )𝜎 , 0 < x < 1, 𝜎, 𝛾 > 0

Table 1  Different progressive type-II censoring schemes

S. no (n,m) Notation Censoring scheme (CS)

1 (30,20) R1 (0,1,0,2,0,0,2,0,0,1,0,0,0,2,0,0,1,0,0,1)
2 (30,10) R2 (1,2,2,3,0,4,0,3,2,3)
3 (40,20) R3 (2,0,3,2,0,1,0,0,2,0,0,2,0,1,2,0,0,2,3,0)
4 (40,15) R4 (2,0,3,0,2,1,2,3,3,0,3,0,2,1,3)
5 (50,25) R5 (2,0,1,1,3,0,0,2,0,2,0,2,0,3,0,0,2,0,3,0,1,0,1,0,2)
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3. Given censoring scheme R =
(
R1,R2,… ,Rm

)
,

  set y1 = z1∕m and yi = yi−1 +
zi�

n−
∑i−1

j=1
Rj−i+1

� , i = 2,… ,m

4. Now, 
(
y1, y2,… , ym

)
 is a progressive type-II censored sample from standard expo-

nential distribution.
5. Set wi = 1 − exp

(
−yi

)
, so that w′

i
s form a progressive type-II censored sample 

from U(0, 1).

6. Set xi = F−1
(
wi

)
 , where F(.) is the cdf of Kumaraswamy distribution as defined 

in (5.2).

Now 
(
x1, x2,… , xm

)
 is a progressive type-II censored sample from the said dis-

tribution with censoring scheme R =
(
R1,R2,… ,Rm

)
.

For a particular set of sample size, parameter value and progressive censoring 
scheme, we have generated 1000 progressively censored sample. For each case, 
UMVUE and MLE of parameter, R(t) and P are computed. Finally, mean square 
error (MSE) of all the estimators is obtained on the basis of estimates from all 
1000 simulations.

The estimates of σ along with their MSEs for different censoring schemes are 
presented in Table 2. Here, it is assumed for the sake of illustration that the true 
value of σ is 2.5. From Table 2, it can be seen that the MSE of preliminary test 
estimators is less than that of the classical estimators. Further, the preliminary 
test estimates are closer to the true value of � than the classical estimates.

In Table 3, the estimates of R(t) and their MSEs are obtained for different val-
ues of time t under different censoring schemes. It can be observed that the MSE 
of preliminary test estimators is less than that of the classical estimators. Further, 
the preliminary test estimates are closer to the true value of R(t) than the classical 
estimates.

Similarly, the estimates of P and their MSEs for different combination of (m, l) 
and (σ1, σ2) are obtained and presented in Table 4. Similar findings as in the above 
cases may be drawn here. Therefore, it can be concluded that the preliminary test 
estimators of �,R(t) andP perform better that the classical estimators since the 
MSE of preliminary test estimators is less than that of classical estimators in all 
the cases under simulated data set.

Table 2  Estimates and corresponding MSE for parameter σ 

CS Estimates MSE

�̂�
U

�̂�PT_U �̂�ML �̂�PT_ML MSE(�̂�
U
) MSE(�̂�PT_U) MSE(�̂�ML) MSE(�̂�PT_ML)

R1 1.719 2.220 1.910 2.228 0.421 0.029 0.520 0.023
R2 1.959 2.235 2.062 2.240 0.205 0.013 0.227 0.012
R3 1.900 2.239 2.000 2.244 0.209 0.015 0.231 0.015
R4 1.843 2.232 1.975 2.238 0.291 0.020 0.334 0.018
R5 1.929 2.231 2.009 2.236 0.167 0.015 0.182 0.013
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Finally, the coverage probability (CP) of PTCI of σ is plotted against � , which can 
be seen in Fig. 1. It may be seen that for fixed values of n,m and � = 0.15, the CP, as 
a function of � , decreases monotonically. It then increases and crosses the line 1 − � 
and decreases again. It increases and decreases again until reaching a minimum 
value. Finally, it increases and tends to line 1 − � when δ becomes large. Further, it 
is observed that for small values of m , the domination interval is wider than for large 
values of m. Therefore, we may conclude that for some � in specific interval, the CP 
of PTCI of σ is more than that of equal tail confidence interval.

Let us now consider the real data set used by Proschan [25], Rasouli and Bal-
akrisnan [27] and Kumari et al. [23]. The data represent the intervals between failure 
(in hours) of the air conditioning system of a fleet of 13 Boeing 750 jet airplanes. It 
was observed by Proschan [25] that the failure time distribution of the air condition-
ing system for each of the plane can be well approximated by exponential distribu-
tion. For the present study, failure times of plane ‘7913’ are taken which are as fol-
lows:3, 5, 5, 13, 14, 15, 22, 22, 23, 30, 36, 39, 44, 46, 50, 72, 79, 88, 97, 102, 139, 
188, 197, 210
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Fig. 1  Coverage probability of PTCI of σ 
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This data set is transformed to a new data set with range of unit interval by using the 
transformation,

The transformed data set is as follows,0.0142, 0.0237, 0.0237, 0.0616, 0.0664, 
0.0711, 0.1043, 0.1043, 0.1090, 0.1422, 0.1706, 0.1848, 0.2085, 0.2180, 0.2370, 
0.3412, 0.3744, 0.4171, 0.4597, 0.4834, 0.6588, 0.8910, 0.9336, 0.9953

It has been seen by Kumari et  al. [23] that this data set is a good fit for the dis-
tribution under consideration. Further, the ML estimates for the complete data set are 
(�̂�, �̂�) = (1.0854, 0.6054).

Let us suppose that out of this data set, the failure time of only 15 units is completely 
observed, rest all being progressively censored. Then, from Theorem 3, we find that for 
p = 1 , �̂�ML = 1.19862

Consider the hypothesis,

The computed test statistic is 2�0Sm = 37.54319 which does not fall in the critical 
region; therefore, we do not reject the null hypothesis at 5% level of significance which 
indicates that �̂�PT_ML = 1.5 . Further, the estimated value of 𝛿 =

𝜎0

�̂�ML

= 1.25144 which 
falls in the range of (0.422468, 2.367046) which means that the coverage probability of 
PTCI of σ is more than that of the equal tail CI.

6  Conclusions

In this paper, we have obtained estimators (point as well as interval) for the powers of 
parameter, R(t) and P for Kumaraswamy-G distribution under progressive type-II cen-
soring scheme. The PTEs and PTCIs for parameter R(t) and P for the said distribution 
are further developed. The bias and MSE of all the PTEs are obtained. It is shown from 
the numerical analysis that the proposed PTEs perform better than the classical estima-
tors whenever the true value of parameter is close to the prior guessed value. From 
the analysis of real-life data set, it can be inferred that the PTCI of the parameter has 
greater coverage probability than that of the equal tail confidence interval in the neigh-
bourhood of null hypothesis. Thus, one can construct the PTEs and PTCIs which are 
superior to their classical counterparts whenever some prior information is available.
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