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Abstract
The American Statistical Association (ASA) published a statement in 2016 in The 
American Statistician for “researchers, practitioners and science writers who are not 
primarily statisticians” on the proper use and interpretation of p-values. Three years 
later, the ASA acknowledged that telling researchers what not to do with p-values 
was insufficient. Consequently, 3 years later an open access, special issue appeared 
with 43 papers proposing various novel and sophisticated alternatives to classical 
p-values for use with scientific methods in the twenty-first century. In the opening 
remarks, the editors stated that “no p-value can reveal the plausibility, presence, 
truth, or importance of an association or effect” and banned statistical significance: 
“don’t say it, don’t use it.” This paper questions both statements with a simulated 
data study. It is shown that p-values are strongly related to correlation coefficients 
under a true null hypothesis; hence, can reveal the “importance of an association or 
effect.” Furthermore, it demonstrates why a cut point for statistical significance is 
still a viable, ancillary tool for assessing the substantive significance of statistical 
effects with small sample sizes (n < 1000).

Keywords p-values · Statistical significance · Substantive significance · Pearson 
correlation coefficient · Fisher r to z transformation · Effect size

1 Introduction

The American Statistical Association (ASA) published a statement in The American 
Statistician to address the confusion, misinterpretation and abuse of p-values, noting 
that “statisticians and others have been sounding the alarm about these matters for 
decades, to little avail” [1, p. 5]. The ASA acknowledged their paper underscored 
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the problems but offered little in terms of solutions. Consequently, 3  years later 
an open access, special issue of The American Statistician was published with 43 
papers proposing various sophisticated, alternatives to classical p-values. In their 
opening remarks, the editors proclaimed that a “p-value, or statistical significance, 
does not measure the size of an effect or the importance of a result.” Although they 
acquiesced with the use of p-values on a continuous scale, they called for a ban on 
the concept of statistical significance: “don’t say it and don’t use it [2, p. 2]. This 
paper demonstrates that p-values are a measure of the importance of an effect and 
that statistical significance is still a viable concept. However, this paper does not 
dismiss the sound warnings against the indiscriminate use of p-values by researchers 
who ignore potential systematic errors and other confounding design issues [3].

There is no doubt that the twenty-first century of big data requires innovative 
alternatives to classical frequentist statistical techniques [4]. Nonetheless, as Fisher 
remarked: “it is with small samples, less than 100, that the practical research worker 
ordinarily wishes to use the correlation coefficient” [5, p. 195]. Furthermore, “it is 
not true…that valid conclusions cannot be drawn from small samples, if accurate 
methods are used in calculating the probability” [5, p. 198].

Fisher [6] developed the classical concepts of p-values and statistical signifi-
cance at the beginning of the twentieth century as tools for use by applied research-
ers who worked with small sample sizes (n < 1000). These tools remain valuable in 
the twenty-first century. This paper demonstrates how these tools work with corre-
lational analyses. Contrary to the ASA statement, this paper shows that p-values do 
reveal the size of an effect or importance of a result. Under a true null hypothesis, 
correlation coefficients and their corresponding p-value are strongly and inversely 
related. As correlations increase to unity (|r| = 1.0), their corresponding p-values 
decrease to zero. Furthermore, the ASA ban on statistical significance is unwise 
because the ban surely opens the correlational research literature to even more irre-
producible results [7].

2  Methods

SAS Base Procedures [8] were used with the University Edition of SAS for WIN-
DOWS [9] for simulating raw data and subsequent analyses. The simulations con-
sisted of drawing independent, identically distributed normal random variables from 
a standard normal distribution (µ = 0, σ = 1). The number of variables (k) could be 
viewed as items on a survey that presumably measured a common construct. The 
number of items increased from 5 to 30 by 5 (k = 5, 10, 15, 20, 25, or 30). Also, 
there were 13 sample size conditions starting with n = 10, increased by 5–50, and 
finally 100, 500 and 1000. Imagine the variables as items on surveys that varied 
in length from 5 to 30 items and administered to 13 groups comprised by different 
number of people.

Each k and n combination produced its own unique empirical sampling distribution 
of bivariate correlations. For example, with n = 10, there were 10 bivariate correla-
tions (5C2) with k = 5. Next, with n = 15, a new correlation matrix with 10 unique pair-
wise correlations. This process was followed until n = 1000. The theoretical center or 
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expected value of each sampling distribution was zero (ρ = 0) because all correlations 
were computed with independent, identically distributed, normal random variables 
drawn from the standard normal distribution (µ = 0, σ = 1).

The p-value for each correlation coefficient was computed with the z-test using 
the Fisher transformation of r to zr to test the null hypothesis  H0: ρ = ρ0, with ρ0 = 0. 
In the notation, zr represents the value of the correlation coefficient that results from 
applying the Fisher transformation, which is the hyperbolic tangent function. The 
major benefit of the transformation is the conversion of a potentially skewed r sam-
pling distribution to a relatively normal zr sampling distribution. As a result, the 
z-test with the zr statistic is used to determine the significance of an observed corre-
lation coefficient. The standard error, which is discussed next, plays a crucial role for 
detection of statistical significance.

Gosset (‘Student’) [10] focused on differences in means in his statistical research 
and recognized that estimates of the “standard errors of the mean ( �√

n
 ) can be 

obtained by replacing the unknown population standard deviation (σ) with the 
known sample estimate (s). The use of n in the denominator was before Fisher devel-
oped the degrees of freedom concept for small sample sizes. Gosset proposed two 
ways for dealing with the uncertainty of the standard error: “An experiment may be 
repeated many times, until such a long series is obtained that the standard deviation 
is determined once and for all with sufficient accuracy” [10, p. 2]. Gosset recognized 
that often it was not easy to repeat the same experiment many times, so the sample 
standard deviation is used for the calculation of the standard error of the mean. 
However, the sample standard deviation as an estimate of the population standard 
deviation is subject to sampling error. Student’s t-distributions take this variability 
into account by stretching the tails of the t-distribution beyond the z distribution for 
small sample sizes (n < 1000).

Fisher [6] explained that the standard error of the correlation coefficient was 
derived from large sample theory:

and calculated as

where “with small samples the value of r is often very different from the true value, 
ρ, and the factor 1 − r2, correspondingly in error; in addition the distribution of r 
is far from normal, so that tests of significance based on the large sample formula 
are often very deceptive” [6, p. 195]. As a result, Fisher recommended the standard 
error that was used to test for significance of an r with the Student’s t-test

(1)�
r
=

1 − �2

√

n − 1

(2)s
r
=

1 − r
2

√

n − 1

(3)t = (n − 2)
1

2

(

r
2

1 − r2

)
1

2



 Journal of Statistical Theory and Practice (2020) 14:49

1 3

49 Page 4 of 13

where the probability is computed by treating t-statistic as coming from a t sampling 
distribution with (n − 2) degrees of freedom. SAS uses this formula for computing r 
and the corresponding p-value with PROC CORR [8, p. 20].

Nonetheless, Fisher [6] developed a simpler standard error (σz) for his r to z trans-
formed correlation (zr)

He refers to zr as simply z in the following where he promotes the benefits of this 
standard error because it is approximately:

independent of the value of the correlation in the population from which the 
sample was drawn. In the second place, the distribution of r is not normal in 
small samples, and even for large samples it remains far from normal for high 
correlations The distribution of z is not strictly normal, but it tends to normal-
ity rapidly as the sample is increased, whatever maybe the value of the correla-
tion [6, pp. 200–201].

In short, although the sampling distributions of r could be skewed if ρ ≠ 0, the 
distribution of zr is approximately normal for all values of ρ. However, because the 
mean of the zr sampling distribution (ζ) is slightly bigger than the mean r of the the-
oretical sampling distribution (ρ), especially when ρ is near the boundary, Fisher 
developed a bias adjustment �

0

2(n−1)
 (see 5).

For this paper, all statistical tests of the null hypothesis were conducted by first 
applying Fisher’s transformation to both an observed r and ρ0 such that zr = tanh−1 
(r) and ζ0 = tanh−1 (ρ0), where  tanh−1 is the inverse hyperbolic tangent function. The 
standard error of Fisher’s z appears in the denominator of the z-test

SAS [8] states that the bias adjustment is always used for computing p-values for 
the z-test with the Fisher option in PROC CORR. However, the default null hypoth-
esis is  H0: ρ = ρ0 where ρ0 = 0, so the bias adjustment by default is zero. For other 
values of ρ0, the bias adjustment becomes increasingly negligible as sample size 
increases. For example, for ρ0 = .30 and n = 10 the bias adjustment is 0.01667 but 
with n = 1000 the adjustment is relatively trivial 0.00015.

With large sample sizes (i.e., n ≥ 1000), provided assumptions are satisfied (line-
arity, bivariate normality and no outliers), any observed zr is a precise estimate of � , 
the center of Fisher’s z sampling distribution. Similarly, it follows that any observed 
r is also precise estimate of ρ, the center of Pearson’s r sampling distribution. This 
can be deduced from the standard errors of each distribution. For example, suppose 
an r = .30 was found with n = 1000. Fisher’s transformation produces zr = .31 with 
standard error 0.032 (4). Because this zr distribution is normal, 99.7% of the val-
ues are between − .095 and .095. This is a narrow range revealing that almost all zr 
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are near a fixed, central parameter. An estimate of � was not needed for calculating 
Fisher’s standard error, but the large sample value for standard error of r requires 
ρ (1). Just like Gosset’s [10] sample standard deviation was inserted for the popu-
lation standard deviation to calculate a standard error of the mean; the observed r 
serves as the estimate of the population parameter ρ (2). For instance, with r = .30, 
the standard error ( �

r
) is 0.029 where the theoretical sampling distribution of r is 

assumed normal because of the large sample size. As a result, 99.7% of the correla-
tions in this sampling distribution are between − .39 and .39, or very near ρ = .30. It 
is important to recognize the role of sample size in these calculations. For instance, 
with n = 10 and ρ = .30 the standard error ( �

r
 ) is 0.303, whereas with n = 1000 it is 

0.029. The increase in sample size from 10 to 1000 produced a 91% reduction in the 
standard error, hence, provided all assumptions are satisfied, and all observed corre-
lations are excellent and precise estimates of ρ. The same cannot be said with small 
sample sizes as will be demonstrated next with simulated data.

To assess the nature of the relationship between statistical significance and sub-
stantive significance, the cut point for statistical significance was α = 0.05. Because 
it was known that all simulated correlations were derived from the null sampling 
distribution that was centered at zero, all statistically significant correlations were 
type 1 errors. For determining substantive significance, Cohen’s [11] criteria for cor-
relation coefficients as effect sizes (|r|) was utilized where a small effect size was 
r ≥ .10 to < .30, medium effect was r ≥ .30 to < .50, and large effect was r ≥ .50. Sim-
ilarly, because all simulated correlations were random realizations of a null param-
eter, all substantively significant correlations were effect size errors (ES errors).

3  Results

3.1  Relationship Between p‑values and Correlation Coefficients

Table 1 presents just the summary statistics for sampling distributions of 435 cor-
relation coefficients over 13 sample size conditions. This table demonstrates the 
properties that also applied to all the other sets of correlation coefficients (data not 
shown). Table 1 reveals close agreement between theoretical and empirical standard 
errors as sample size increases. In calculating the large sample theoretical standard 
errors of r (2), the mean ( ̄r ) of each sampling distribution was the estimate of ρ 
because each individual r was subject to more sampling error (evident from the min 
and max values). 

In contradistinction to the ASA statement [2] that p-values cannot reveal the 
importance of an association or effect, the scatterplots in Fig.  1 revealed strong 
monotonic relationships between p-values and their corresponding Fisher’s z values.

Figure 1 displays  consistent patterns. As the number of correlation coefficients 
increased, the shapes of the relationships between r and their corresponding Fisher’s 
r to z p-values came into sharper focus. For example, with k = 5 there was 10 unique 
bivariate correlations for each sample size condition, but with k = 30 there were 435 
correlations. Like pixels in a photograph, more dots (coordinate pairs of Fisher’s 
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z and p-value) produced higher resolution. Notice there is no “scatter” because r 
and p-values are in a monotonic one-to-one relationship. Each scatterplot includes 
a dashed reference line at p = 0.05 below which a correlation coefficient would be 
considered statistically significant.

The visual impression of a strong relationships was confirmed with 36  second 
order polynomial regression models  where. Fisher’s z values were the dependent 
variable and their corresponding p-values and their squares were  two independent 
variables. There were 18 regression models run on the subset of only positive cor-
relations and another 18 for only negative correlations. Although not perfect, the 
regression models confirmed the visual impression of strong relationships. R-square 
across all 36 models ranged from .93 to .99 and because a Fisher’s z can be inversely 
transformed to a Pearson’s r, strong monotonic (albeit nonlinear) relationships 
between r and p-values must also exist on the Pearson r scale.

Table 1  Summary statistics for theoretical and empirical (simulated) sampling distributions of 435 cor-
relation coefficients over 13 sample size conditions

k n Number of 
correlations

Variables Theoretical Empirical

Mean SE Variance Mean SD Variance Min Max

30 10 435 Pearson’s r 0.00 0.32 0.10 0.03 0.34 0.11 − 0.84 0.87
Fisher’s z 0.00 0.38 0.14 0.04 0.38 0.15 − 1.21 1.34

30 15 435 Pearson’s r 0.00 0.26 0.07 0.01 0.34 0.12 − 0.78 0.83
Fisher’s z 0.00 0.29 0.08 0.01 0.38 0.15 − 1.03 1.18

30 20 435 Pearson’s r 0.00 0.22 0.05 − 0.02 0.26 0.07 − 0.68 0.69
Fisher’s z 0.00 0.24 0.06 − 0.02 0.28 0.08 − 0.83 0.86

30 25 435 Pearson’s r 0.00 0.20 0.04 0.00 0.23 0.05 − 0.53 0.63
Fisher’s z 0.00 0.21 0.05 0.00 0.24 0.06 − 0.59 0.74

30 30 435 Pearson’s r 0.00 0.18 0.03 0.00 0.21 0.04 − 0.65 0.63
Fisher’s z 0.00 0.19 0.04 0.00 0.21 0.05 − 0.77 0.74

30 35 435 Pearson’s r 0.00 0.17 0.03 − 0.01 0.20 0.04 − 0.49 0.50
Fisher’s z 0.00 0.18 0.03 − 0.01 0.21 0.04 − 0.54 0.55

30 40 435 Pearson’s r 0.00 0.16 0.02 0.01 0.17 0.03 − 0.44 0.49
Fisher’s z 0.00 0.16 0.03 0.01 0.17 0.03 − 0.48 0.54

30 45 435 Pearson’s r 0.00 0.15 0.02 0.01 0.16 0.03 − 0.40 0.50
Fisher’s z 0.00 0.15 0.02 0.01 0.16 0.03 − 0.43 0.54

30 50 435 Pearson’s r 0.00 0.14 0.02 0.00 0.15 0.02 − 0.39 0.48
Fisher’s z 0.00 0.15 0.02 0.00 0.16 0.03 − 0.41 0.52

30 75 435 Pearson’s r 0.00 0.12 0.01 0.00 0.14 0.02 − 0.46 0.43
Fisher’s z 0.00 0.12 0.01 0.00 0.15 0.02 − 0.50 0.46

30 100 435 Pearson’s r 0.00 0.10 0.01 − 0.01 0.11 0.01 − 0.33 0.35
Fisher’s z 0.00 0.10 0.01 − 0.01 0.12 0.01 − 0.35 0.36

30 500 435 Pearson’s r 0.00 0.04 0.00 0.00 0.04 0.00 − 0.11 0.11
Fisher’s z 0.00 0.04 0.00 0.00 0.04 0.00 − 0.11 0.11

30 1000 435 Pearson’s r 0.00 0.03 0.00 0.00 0.03 0.00 − 0.08 0.09
Fisher’s z 0.00 0.03 0.00 0.00 0.03 0.00 − 0.08 0.09
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3.2  Statistical Significance of Pearson Correlation Coefficients

Fisher defined statistical significance as “the value for which p = .05, or 1 in 20, 
is 1.96 or nearly 2; it is convenient to take this point as a limit in judging whether 
a deviation is to be considered significant or not… small effects will still escape 
notice if the data are insufficiently numerous to bring them out, but no lowering 
of the standard of significance would meet this difficulty” [6, p. 44]. Fisher most 
likely meant small sample size by “insufficiently numerous.” For example, to 
detect a small effect such as ρ = .20, the sampled r is an estimate ( ̂𝜌 ) of the small 
effect. With alpha = 0.05 and n = 193, there is 80% power to detect the difference 
�̂� − ρ0 as significantly different from zero. However, with only n = 10, with all else 
being equal, there is only 8% power to detect the same small effect size; hence, 
this small effect will escape notice.

Yet, another way to understand Fisher’s “insufficiently numerous” could be in 
terms of number of estimates. For instance, a sampling distribution of 10 cor-
relations with n = 10 produced an empirical range from − .61 to .63, compared to 
− .84 to .87 that was found with n = 10 but now with 435 correlations. In short, 
even though the standard errors (4) were the same for both scenarios, the larger 
correlation matrix simply contained more correlations to evaluate. Of course, 
testing 435 correlations with the same null hypothesis introduces a serious alpha 
inflation problem. Fortunately, the problem can be mollified with statistical 

Fig. 1  Scatterplots of Pearson’s correlation coefficients  and corresponding Fisher’s r to z  p-values for 
select sample sizes and number of correlation coefficients
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techniques like the Bonferroni correction among others [12]. For example, a Bon-
ferroni correction with α = 0.05 and 435 statistical tests of the same null hypoth-
esis, a p-value < 0.00011 is required for statistical significance.

With α = 0.05, statistical significance is defined as an observed correlation that 
deviates from a hypothesized ρ0 by at least two (1.96) standard error units. It is 
important to recall that in this study, all r’s were obtained from a sampling distri-
bution that was centered at ρ = 0 because they were calculated with independent, 
identically distributed random variables. Therefore, any detection of a statisti-
cally significant difference between an observed r ( ̂𝜌 ) and any postulated param-
eter (ρ0) was a type 1 error. A statistically significant r could still have come from 
the null sampling distribution centered at zero despite a very small probability of 
such an event [13]. Nonetheless, a significant correlation is interpreted as a cor-
relation that was obtained from an alternative sampling distribution, or one that is 
not centered at the postulated null parameter. But what is the center of this alter-
native distribution? Unfortunately, this question cannot be answered with classi-
cal statistical tests. Confidence intervals for estimating parameters may help, but 
just like statistical significance, there is always some doubt, especially with small 
sample sizes. For instance, if there is a 95% chance the confidence interval cov-
ers the fixed alternative parameter, there remains a 5% chance that every value 
contained in the confidence interval is wrong. This error cannot be eliminated by 
increasing sample size and furthermore if alpha inflation is induced by multiplic-
ity or p-hacking, that increases the probability of a wrong conclusion [14].

3.3  Null Parameters Other Than Zero

It is possible to test for other values of ρ0 besides 0 with a z-test. PROC CORR per-
mits the specification of any reasonable ρ0 between but not including − 1.0 and 1.0. 
Say a researcher observed an r = .10 and the null hypothesis stated ρ0 = .30. Figure 2 
demonstrates the probability of detecting statistically significant correlations from 
sets of 435 correlations with ρ0 set equal to .30 under three sample size conditions. 
As sample size increased, many more significant correlations were detected. With 
n = 1000, all correlations were significant or were more than two standard errors 
away from .30. To understand this phenomenon, recognize that Fisher’s z standard 
error is 0.032 with n = 1000. The difference between the observed r ( ̂𝜌 ) and the null 
parameter ρ0 is approximately .2 on the Fisher’s z scale. The z-test reveals that .2 
divided by σz (4) corresponds to a z score of 6.61, which is significantly different 
from zero. Notice the x-axis for the n = 100 figure ranges from − .1 to .1 therefore 
any differences smaller than .10 or bigger than .10 (such as .2) must be statistically 
significant.

The dashed reference line at .30 indicates the hypothesized population rho that 
was tested for statistical significance. Nevertheless, there is potential for a confus-
ing and misleading conclusion with classical statistical reasoning. After the null is 
rejected, all possible correlations, except for the one specified under the null (.30), 
became plausible estimates of the fixed but unknown alternative parameter. In this 
case, zero is also plausible and a researcher could mistake this finding as proof of 
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no relationship. It is bad enough that applied researchers seem to mistake p ≥ 0.05 
as indicating the null is true or there is “no relationship.” This misunderstanding is 
pervasive [1]. If the goal is to find evidence of no relationship, then an appropriate 
equivalence testing is required [15].

3.4  Relationship Between Statistical and Substantive Significance

Because all observed r came from a sampling distributions of correlations (popula-
tion) that was known to be centered at zero, rejection of the null (acceptance of the 
alternative hypothesis,  Ha: ρ ≠ ρ0) was a type 1 error. However, suppose a researcher 
decided to abide by the ASA’s ban on statistical significance and evaluated the 
observed r using only Cohen’s   [11] criteria for correlation coefficients as effect 
sizes. Figure 3 demonstrates the most likely outcomes under different sample size 
conditions with 435 correlation coefficients.

The dashed line in Fig.  3 represents “ES errors” that resulted from flagging 
any correlations smaller than − .10 or bigger than .10 as substantive or meaning-
ful based on Cohen’s  [11] criteria. In each sample size condition, the percentage 
of ES errors was the count that fit Cohen’s criteria divided by the total number of 
correlations(435). Statistically significant r had corresponding p-values < 0.05 based 
on Fisher’s r to z transformation. Figure 3 reveals a high percentage of ES errors 
for small sample sizes that progressively diminished and finally disappeared with 

Fig. 2  Three empirical sampling distributions with 435 correlation coefficients and n = 10, 30 or 1000
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n = 1000. On the other hand, statistical significance (p-values < 0.05) remained rela-
tively stable around 5% for all sample size conditions.

Provided all assumptions are met, p-values follow a uniform distribution under a 
true null; therefore, there is always a 5% chance of getting a p-value < 0.05 under the 
null hypothesis. However, the percentage of significant correlations increases when 
the alternative distribution is truly not zero. This is the fundamental concept that 
underlies the power calculations for correlation coefficients [16]. For sample size 
calculations, a researcher needs to postulate a specific parameter value (center) for 
both the null sampling distribution as well as the alternative sampling distribution of 
correlations. The difference between these two centers produces the required sample 
size that would yield, typically, 80% significant p-values in the long run. The prob-
lem here is that the center of the null distribution is known to be “0,” but the center 
of the alternative distribution cannot be a wild guess  [17] nor driven by ancillary 
considerations such as the cost of recruiting participants.

4  Conclusion

Although there is a strong relationship between p-values and their corresponding 
correlation coefficients that says nothing about the important role that statistical 
significance plays for statistical inference. The ASA ban on statistical significance 

Fig. 3  Percentage of wrong rejections of null hypothesis (type 1 error), based on p < 0.05) and wrong 
acceptance of effect sizes (ES error) based on Cohen’s criteria for correlations between |0.1| and |1.0|
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denies “researchers, practitioners and science writers who are not primarily statis-
ticians,” (the audience the ASA [1] was addressing with their p-value principles) 
a very simple, effective statistical tool for probabilistic decision-making. Regard-
less if α = 0.05 or any other level, statistical significance excludes many mislead-
ing and meaningless correlations that will appear randomly with small sample sizes. 
For example, for n = 10 with 435 correlations, 81% (320/435) fit Cohen’s criteria 
(ES ≥ .10), yet only 6% (22/320) were statistically significant. Even if alpha were set 
at 0.50, that would mean about 50% of the correlations would have been significant 
under the true null; however, that would still be a sizeable reduction in the number 
of meaningless correlations or false effect sizes. It appears the ASA ban on statisti-
cal significance will end up stoking the reproducibility crisis with more unreliable 
nonsense.

Standard error is the fundamental concept that underlies statistical significance. 
Researchers should be discouraged from simply reporting statistically significant 
p-values. Say a researcher had n = 10 and discovered an almost perfect correlation 
between two continuous variables (r = .998, zr = 3.45, p < 0.001), which is statisti-
cally significant. (Note, zr is not the z-statistic, which is zr/σr = 9.13). The researcher 
proceeds to speculate about this strong correlation without understanding that the 
standard error (σz) is 0.378. Recognizing the large standard error should make it dif-
ficult to crown r = .998 as the true population correlation when 99.7% of the sam-
pling distribution of zr under the null lies between − .74 to .74. Because of the small 
sample size (n = 10) in a single study the range of possible values precludes prema-
ture conclusions that any observed r with a small sample size is a good estimate of 
an alternative population correlation. This is like getting 8 heads in 10 tosses of a 
two-sided coin that was hypothesized to be fair. The binomial probability mass func-
tion returns a two-tailed p = 0.0273 of getting 8 or more heads in 10 tosses. Reject-
ing the null hypothesis that the coin is fair implies only that the coin maybe biased. 
This conclusion would need to be strengthened considerably by more tosses (repli-
cations/sample size).

On the other hand, with a large sample size such as n = 1000 the standard error 
is .032, so there is little variation in the sampling distribution of correlation coeffi-
cients. Suppose a researcher discovers a weak but statistically significant correlation 
[r = 0.065 (1000), p = 0.0396]. The researcher would still need to explain why such a 
tiny correlation is meaningful (notice does not even fit Cohen’s small effect size cri-
teria). The simulated data revealed that both statistical and substantive significance 
are important considerations for correlational analyses with small sample sizes 
(n < 1000). There are important issues besides standard errors that affect statistical 
significance, such as ignoring obvious violation assumptions, multiplicity induced 
alpha inflation also known as p-hacking [7], but these are ethical transgressions that 
are beyond the scope of this paper.

The simulated data produced results that are well understood in statistical the-
ory. There is a mathematical link between t and r as seen in the t-test formula (3). 
Because t maps to a specific p-value indexed by degrees of freedom (n − 2), it is 
obvious that p-values and correlations coefficients are related. Surely this rela-
tionship between p-values and their corresponding correlation coefficients must 
be known by mathematical statisticians; therefore, it is puzzling to read the ASA 
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statement that p-values do not measure the size of an effect. This paper demonstrated 
that p-values are related to correlation coefficients therefore must also measure the 
size of an effect. Furthermore, perhaps the ASA ban on statistical significance was 
their attempt to rescue researchers from the common misinterpretation that p-values 
are the probability of the null hypothesis given the data. However, that confusion 
should be corrected with education, not by eradication of statistical significance. 
The confusion between the correct interpretation (pr. D|NH) and the incorrect one 
(pr. NH|D) could stem from characterizing the null hypothesis as being either “true 
or false,” as typically stated in textbooks. Applied researchers most likely under-
stand true or false as a dichotomy. Therefore, they believe if p-value < 0.05 indicates 
the null hypothesis is likely to be false; then, p-value ≥ 0.05 must indicate that the 
null hypothesis is likely to be true. This intuitive thinking is logical  but does not 
apply to classical statistical reasoning.

4.1  Recommendations for Moving to a World Beyond p < 0.05

Applied researchers do not need to know Kolmogorov’s probability axioms to under-
stand statistical significance. A p-value < 0.05 indicates the observed statistic (such as 
a correlation coefficient), probably came from an alternative sampling distribution. Of 
course, that decision does not immediately mean that the observed r is the center of the 
alternative distribution. Estimating the center requires a big random sample (n ≥ 1000) 
and a confidence interval. On the other hand, a p-value ≥ 0.05 indicates the statistic 
probably came from the null sampling distribution centered at zero as specified with 
the null hypothesis. However, if the researcher still believes the statistic came from an 
alternative sampling distribution, the study should be re-designed with new and more 
data. Fisher stated that “in relation to the test of significance, we may say that a phe-
nomenon is experimentally demonstrable when we know how to conduct an experi-
ment which will rarely fail to give us a statistically significant result” [18, p. 14]. We 
should also know how to conduct observational studies (such as surveys) that rarely fail 
to produce evidence of reliable correlations.

The editors of the New England Journal of Medicine took measured opposition to 
ASA’s diminution of p-values and ban on statistical significance: “Despite the difficul-
ties they pose, p values continue to have an important role in medical research, and we 
do not believe that p values and significance tests should be eliminated altogether” [19, 
p. 286]. Regarding p < 0.05 as the level of significance, Fisher offered the following 
refreshing perspective: “No scientific worker has a fixed level of significance at which 
from year to year, and in all circumstances, he rejects hypotheses; he rather gives his 
mind to each particular case in the light of his evidence and his ideas” [5, p. 45]. Wher-
ever the cut point, statistical significance serves a valuable purpose for correlational 
analyses with small sample sizes. Provided all assumptions are satisfied, statistical sig-
nificance reduces the number of meaningless and irreproducible correlations (effect 
size errors) that are inevitable with small sample sizes.
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