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Abstract
Computer simulators are widely used to understand complex physical systems in 
many areas such as aerospace, renewable energy, climate modelling, and manufac-
turing. One fundamental aspect of the study of computer simulators is known as 
experimental design, that is, how to select the input settings where the computer 
simulator is run and the corresponding response is collected. Extra care should be 
taken in the selection process because computer simulators can be computation-
ally expensive to run. The selection should acknowledge and achieve the goal of 
the analysis. This article focuses on the goal of producing more accurate prediction 
which is important for risk assessment and decision making. We propose two new 
methods of design approaches that sequentially select input settings to achieve this 
goal. The approaches make novel applications of simultaneous and sequential con-
tour estimations. Numerical examples are employed to demonstrate the effectiveness 
of the proposed approaches.

Keywords  Computer experiment · Contour estimation · Gaussian process · Latin 
hypercube · Maximin design · Sequential design · Space-filling

1  Introduction

Computer models or simulators are increasingly becoming popular for gaining 
insights of the physical processes and phenomena that are too expensive or infeasi-
ble to observe. For example, Greenberg [15] developed a finite volume community 
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ocean model (FVCOM) for simulating the flow of water in the Bay of Fundy; Bower 
et al. [3] discussed the formation of galaxies using a simulator called GALFORM; 
and Bayarri et al. [2] used a simulator called TITAN2D for modelling the maximum 
volcanic eruption flow height. Realistic computer simulators of complex processes 
can also be computationally expensive to run, and thus, statistical surrogates trained 
on a handful of simulator runs are often used for the deeper understanding of the 
underlying phenomena. Sacks et al. [38] proposed using a realization of the Gauss-
ian process (GP) model as a surrogate for such processes.

The popular objectives of such computer experiments include global fitting, vari-
able screening, and estimation of process features like the maximum, a pre-specified 
contour or a tail quantile region. The global fitting refers to finding accurate estima-
tion of the underlying true response surface and thus making accurate prediction 
over the design domain. Assuming that the simulator under consideration is expen-
sive to run, the number of simulator runs would be limited and thus one must be 
careful in choosing the inputs. Over the last two decades, several innovative meth-
odologies and algorithms have been developed to address some of the concerns. See 
[10, 34, 35] for details.

We focus on efficient designs for global fitting. In computer experiments litera-
ture, a popular technique is to use Latin hypercube designs [27] with some space-
filling properties like maximin interpoint distance [18, 28], minimum pairwise 
coordinate correlation [17, 21], orthogonal array-based structure [29, 39], pro-
jection property [19], etc. Such designs aim at filling the input space as evenly as 
possible, but do not consider the complexity of the response surface. On the other 
hand, D-optimal designs [18], integrated mean-squared prediction error (IMSPE)-
optimal designs [36], and maximum mean-squared prediction error (MMSPE)-opti-
mal designs [37] use the process response information in finding a design for global 
fitting.

Most of these designs follow one-shot approach, i.e. all design points are obtained 
at the same time. However, over the past decade, a few sequential designs have also 
been proposed for global fitting of the response surface that have higher prediction 
accuracy, for instance, the D-optimal design [12, 14], expected improvement (EI) cri-
terion-based design [22], and minimum potential energy-based design [20]. More spe-
cifically, for example, the R package tgp provided the implementation of creating a 
sequential D-Optimal design for a stationary GP model of fixed parameterization by 
subsampling from a list of candidates. The algorithm is sequential in nature in that it 
adds one design point a time from the list of candidates, and the design point is added 
by maximizing the determinant of the covariance matrix constructed with the exist-
ing design points and a point from the list of candidates. In this paper, we propose two 
new sequential design approaches for global fitting. The proposed approaches obtain 
the sequential designs for achieving higher prediction accuracy based on the general-
ized EI criteria for contour estimation which aim to find the input settings that achieve a 
specific response value [33]. The rationale behind this idea is that to gain higher predic-
tion accuracy is to have more accurate estimate of a response surface, and the estima-
tion of a response surface can be approximated by the estimation of a large number 
of contours over the range of the responses. Thus, we can generalize the EI criterion 
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for a single-level contour estimation to that for multiple-level contour estimation. This 
allows us to use the closed form of the generalized EI criterion for searching sequential 
designs.

We propose two generalizations of EI-based criteria for contour estimation. First, 
we recommend splitting the range of simulator outputs into k equi-spaced contours and 
then develop a new EI criterion for the simultaneous estimation of these pre-specified 
multiple contours. Second, we propose a new adaptive approach of choosing contour 
levels for selecting the follow-up trial by maximizing the EI criterion for contour esti-
mation. The performance of the proposed approaches has been compared with several 
state-of-the-art designs for global fitting.

The remainder of the article is organized as follows. Section  2 presents a quick 
review of the GP model for building a surrogate of the computer model output, popular 
sequential design approaches for global fitting [20, 22], and the EI criterion for con-
tour estimation [33]. Section 3 presents the new multiple-contour estimation-based EI 
method for constructing designs for global fitting of the response surface. In Sect. 4, 
we propose the new adaptive method of estimating the contour levels for choosing fol-
low-up design points in the sequential framework. The performance comparison of the 
proposed methods and the existing approaches is discussed in Sect. 5. Finally, Sect. 6 
summarizes the key findings and concluding remarks.

2 � Background Review

This section reviews the necessary background and the existing relevant work for later 
development. More specifically, we provide a brief account of reviews on GP models 
used throughout, the existing sequential design approaches for global fitting as well as 
the contour estimation in Ranjan et al. [33].

2.1 � Gaussian Process Models

Gaussian process models are most widely used in computer experiments to emulate 
outputs from computer codes (e.g. [38]). Its popularity is due to its simplicity, flex-
ibility, and the ability of providing the predictive uncertainty. Here we cover the key 
concepts of GP models and refer the reader to Santner et al. [35] and Rasmussen and 
Williams [34] for details. For a training data of size n, let the ith input and output of a 
computer code be a d-dimensional vector �i = (xi1,… , xid)

T and a scalar yi = y(�i) , for 
i = 1,… , n . Typically, without loss of generality, the design domain is assumed to be a 
unit hypercube, � = (0, 1)d . A GP model assumes

where � is a vector of regression functions, � is the vector of regression parameters, 
Z(�) is a stationary stochastic process with mean zero, constant variance �2 , and the 
correlation between two outputs y(�i) and y(�j) is denoted by R(�i, �j) = corr(�i, �j) . 
In this article, we focus on the GP models with a constant mean, that is, �T� = � . 
Let � = (y1,… , yn)

T be the vector of responses for the training data, and � be an 

(1)y(�i) = �T� + Z(�i), i = 1, 2,… , n,
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n × n spatial correlation matrix with the (i, j)th element R(�i, �j) . For a GP model in 
(1), it is equivalent to assume that � follows a multivariate normal distribution with 
mean vector ��n and the covariance matrix �2� with � = (�(�i, �j)) , where �n is an 
n-dimensional column vector of all 1’s. Notationally, we denote � ∼ GP(��n, �

2�) . 
There are many choices of valid correlation functions. One popular choice is the 
Gaussian correlation function,

where �k is the correlation parameter for the kth input variable. The unknown param-
eters in the model include the mean � , the variance �2 , and d correlation parameters 
�1,… , �d . They can be estimated via the maximum likelihood approach or Bayesian 
approach such as Markov chain Monte Carlo (MCMC) [5, 10, 23, 35]. For the maxi-
mum likelihood approach, if the correlation parameters are known, the estimates of 
� and �2 in (1) are

and

The best linear unbiased predictor (BLUP) at an input �0 is given by

where �(�0) = (R(�0, �1),… ,R(�0, �n))
T . Moreover, the predictive variance of y(�) 

is

In practice, the unknown correlation parameters in (3) and (4) are replaced with the 
estimates. Thus, �, �2, �, and �(�0) in (5) and (6) are replaced by 𝜇̂ , 𝜎̂2 , �̂, and 
�̂(�0) , respectively. There are a number of R packages that can provide the GP model 
fitting, for example, mlegp, GPfit, DiceKriging, tgp, RobustGaSP and SAVE [6, 
14, 16, 26, 30, 32]. These R packages are different in terms of computational effi-
ciency andstability. In general, they should provide similar results. For the reason of 
stability, we use the R package GPfit [26] in this article.

2.2 � Existing Sequential Design Approaches for Global Fitting

The general setup of a sequential design approach starts with an initial design and 
adds one point or a batch of points at a time sequentially. We focus on the sequential 
approaches of adding one point at a time. The next follow-up point should be chosen 
based on the information gathered from the existing data and should be most inform-
ative among the candidate points. The process of adding points is repeated until a 

(2)R(�i, �j) =

d∏
k=1

exp{−�k(xik − xjk)
2},

(3)𝜇̂ = (� T
n
�−1�n)

−1� T
n
�−1�

(4)𝜎̂2 =
(� − �n𝜇̂)

T�−1(� − �n𝜇̂)

n
.

(5)ŷ(�0) = E[y(�0)|�] = 𝜇 + �T (�0)�
−1(� − 𝜇�n),

(6)s2(�0) = Var(y(�0)|�) = �2
(
1 − �T (�0)�

−1�(�0)
)
.
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tolerance based stopping criterion is met or a pre-specified budget is exhausted. The 
step-by-step process of the sequential design approach is as follows.

Step 1	 Choose an initial design of run size n0 . Let n = n0.
Step 2	 Build a statistical surrogate model using the available data 

{(�i, yi), i = 1,… , n}.
Step 3	 Choose the next design point �n+1 based on a criterion. Run the computer 

code at the new input �n+1 and obtain the corresponding response yn+1.
Step 4	 Let n = n + 1 and repeat Steps 2 and 3 until it reaches the run size budget or 

satisfies the stopping criterion.

A few remarks are in order. First, the initial design typically comes with some 
space-filling property like maximin interpoint distance, minimum pairwise coordi-
nate correlation, etc. If the initial run size n0 is too small, the resulting surrogate 
model could be wildly inaccurate and mislead the follow-up design choice. On the 
other hand, if the n0 is relatively large, it may not fully take the advantage of sequen-
tial design criterion in Step 3. Ranjan et al. [33] recommended that the value of n0 
should be between 25 and 35% of the ultimate run size budget. Such a recommenda-
tion is based on their sequential design approach for contour estimation. Second, the 
run size budget certainly depends on the computer code of interest. Loeppky et al. 
[25] provided a rule of thumb for selecting a sample size, that is, 10 times the num-
ber of input variables. In our illustrative examples, the total run size is at least 10d. 
Third, in principle, any modelling methods such as GP, treed GP (TGP), or Bayesian 
additive regression trees (BART) [4, 11] can be used as a surrogate in Step 2. We 
focus on GP modelling in the examples.

2.2.1 � Expected Improvement Criterion by Lam and Notz [22]

Lam and Notz [22] introduced a sequential design approach based on an expected 
improvement for global fit (EIGF) criterion which chooses the next input point that 
maximizes the following expected improvement. The improvement function I(�) is 
defined as

with y(�j∗ ) being the observed output at the sampled point, �j∗ , that is closest in dis-
tance to the candidate point � . The expected improvement is given by

Lam and Notz [22] used the Euclidean distance to determine this nearest sampled 
design point. The expectation in (7) is taken with respect to the predictive distribu-
tion of y(�) under the GP model, i.e. y(�) ∼ N(ŷ(�), s2(�)) . The EIGF criterion in 
(7) balances the local search and global search of the next potential design input 
that guides the search for the ‘informative’ regions with significant variation in the 
response values.

I(�) = (y(�) − y(�j∗ ))
2

(7)E(I(�)) = (ŷ(�) − y(�j∗ ))
2 + Var(ŷ(�)) = (ŷ(�) − y(�j∗ ))

2 + s2(�).
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2.2.2 � Sequential Minimum Energy Designs by Joseph et al. [20]

Motivated by the fact in physics that the charged particles in a box repel and try to 
remain away from each other as much as possible, Joseph et al. [20] viewed a space-fill-
ing design in the experimental region as the positions occupied by the charged particles 
in a box. The charge of each particle represents the experimental response. A minimum 
energy design is obtained by minimizing the potential energy. Let q(�) be the charge of 
the particle at the design input �, and d(�i, �j) denote the Euclidean distance between 
the ith and the jth input. Joseph et al. [20] defined the potential generalized energy (GE) 
of a design �n = {�1,… , �n} as

where p is in the range of [1,∞) . They further proposed a sequential minimum 
energy design approach which works as follows. Let q̂(�) = {ŷ(�)}−1∕(2d) , where d 
is the dimensionality of the input � . Then the proposed one-point at-a-time greedy 
algorithm finds the next follow-up design point given by

The design generated by this algorithm is called sequential minimum energy design 
(SMED).

2.3 � Contour Estimation via EI Criterion

The contour at level ‘a’ of a simulator response surface consists of all the inputs � that 
yield the same response a, that is,

Ranjan et al. [33] developed an expected improvement criterion under the sequential 
design methodology for estimating a contour from an expensive to evaluate com-
puter simulator with scalar responses. The proposed improvement function is,

where y(�) has a normal predictive distribution, i.e. y(�) ∼ N(ŷ(�), s2(�)) , and 
�(�) = �s(�) for a positive constant � . A suggested value for � is 1.96 for the reason 
that this value defines a region of interest around S(a) to be 95% confidence inter-
val under the normality assumption of the responses. Letting v1(�) = a − �(�) and 
v2(�) = a + �(�) , the closed form of the expectation of the improvement function 
I(�) with respect to the predictive distribution of y(�) is given by,

(8)GEp =

{
n−1∑
i=1

n∑
j=i+1

(
q(�i)q(�j)

d(�i, �j)

)p
}1∕p

,

(9)�n+1 = argmin
�0∈𝜒

n∑
i=1

(
q̂(�i)q̂(�0)

d(�i, �0)

)p

.

(10)S(a) = {� ∈ � ∶ y(�) = a}.

(11)I(�) = �2(�) −min
{
(y(�) − a)2, �2(�)

}
,
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where u1 = [v1(�) − ŷ(�)]∕s(�) , u2 = [v2(�) − ŷ(�)]∕s(�) , and �(⋅) and Φ(⋅) are the 
probability density function and the cumulative distribution function of a standard 
normal random variable, respectively. Note that we define the three terms T1 , T2 and 
T3 for easy explanation below. See Ranjan et al. [33] and the associated Errata for 
the derivation of (12). The first term T1 in (12) suggests an input with a large s(�) 
in the neighbourhood of the predicted contour, while the last term T3 assigns the 
weights to points that are far away from the predicted contour with large uncertain-
ties. The second term T2 is often dominated by the other two terms in (12). Maxi-
mizing the EI criterion in (12) results in the inputs with high uncertainty near the 
predicted contour as well as those far away, achieving both aims of local search and 
global exploration.

3 � Global Fitting by Estimating Multiple Contours

This section proposes a new method for constructing a sequential design for achiev-
ing higher prediction accuracy of the overall global fit. The basic sequential framework 
would remain the same as in Sect.  2.2, that is, start with a good initial design (e.g. 
maximin Latin hypercube) of size n0 ≪ n and then sequentially add the remaining 
n − n0 points using some method that feeds on the objective of global fitting. Instead of 
the conventional approach of trying to evenly fill the input space, the proposed idea is 
to slice the response surface into multiple contours and then use the sequential design 
approach to simultaneously estimate those contours. Next, we generalize the EI crite-
rion for contour estimation [33] for simultaneous estimation of multiple contours.

For a given integer k > 0 and the set of scalar values a1,… , ak ∈ [ymin, ymax] , sup-
pose that we are interested in estimating k contours S(a1),… , S(ak) , where [ymin, ymax] 
represents the range of the true simulator response and S(⋅) is defined in (10). Without 
loss of generality, assume a1 < a2 < ⋯ < ak . For choosing the follow-up trial, we pro-
pose the improvement function at input � as

where y(�) ∼ N(ŷ(�), s2(�)) and �(�) = �s(�) for some positive constant � . This 
improvement function will be nonzero only if (y(�) − aj)

2 < 𝜖2(�) for some j. There-
fore, the improvement function can be rewritten as:

Since a1 < a2 < ⋯ < ak , the improvement function can be further simplified as

(12)

E(I(�)) =∫
v2(�)

v1(�)

[𝜖2(�) − (t − a)2]𝜙

(
t − ŷ(�)

s(�)

)
dt

=[𝜖(�)2 − (ŷ(�) − a)2 − s2(�)](Φ(u2) − Φ(u1)) + s2(�)(u2𝜙(u2) − u1𝜙(u1))

+ 2(ŷ(�) − a)s(�)(𝜙(u2) − 𝜙(u1)),

=T1 + T2 + T3

(13)I(�) = �2(�) −min{(y(�) − a1)
2,… , (y(�) − ak)

2, �2(�)},

I(�) =max
{
0, �2(�) − (y(�) − aj)

2, j = 1, 2,… , k
}
.
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The term �(�) defines an uncertainty band around each contour that is a function 
of the predictive standard deviation s(�) . For the design points already chosen, the 
radius of the band is exactly zero. In addition, the criterion will tend to be large for the 
samples from one of the sets ({� ∶ y(�) = a1}, {� ∶ y(�) = a2},… , {� ∶ y(�) = ak}) , 
where s(�) is large.

Similar to other sequential design approaches, we suggest choosing follow-up 
design points by maximizing the corresponding expected improvement, where the 
expectation is taken with respect to the predictive distribution, y(�) ∼ N(ŷ(�), s2(�)) . 
For j = 1,… , k , let vj1(�) ’s and vj2(�) ’s be defined as follows,

and

Then, the expectation of the improvement function in (13) is simply the sum of the 
individual contour estimation EI criterion of Ranjan et al. [33] over k cases, i.e.

where uj1 = (vj1(�) − ŷ(�))∕s(�) and uj2 = (vj2(�) − ŷ(�))∕s(�) , �(⋅) and Φ(⋅) are the 
probability density function and the cumulative distribution function of a standard 
normal random variable, respectively. The formulation in (16) reduces to (12) when 
the number of contour levels is k = 1 . Compared with the EI criterion in (7) by Lam 
and Notz [22], the proposed criterion has different weighting on the variance.

Note that the maximization of E[I(�)] over I(�) has two advantages. First, the true 
value of y(�) (and hence I(�) ) is unknown for any unsampled design point. Second, 
some regions of the design space may not have been sufficiently explored yet and the 

I(�) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�2(�) − (y(�) − a1)
2, a1 − �(�) ≤ y(�) ≤ min{a1 + �(�), (a1 + a2)∕2}

…

max{aj − �(�), (aj−1 + aj)∕2} ≤ y(�),

�2(�) − (y(�) − aj)
2, y(�) ≤ min{aj + �(�), (aj + aj+1)∕2},

2 ≤ j ≤ k − 1;

…

�2(�) − (y(�) − ak)
2, max{ak − �(�), (ak−1 + ak)∕2} ≤ y(�) ≤ ak + �(�),

0, otherwise.

(14)vj1(�) =

{
a1 − �(�), j = 1;

max{aj − �(�), (aj−1 + aj)∕2}, 2 ≤ j ≤ k,

(15)vj2(�) =

{
min{aj + �(�), (aj + aj+1)∕2}, 1 ≤ j ≤ k − 1;

ak + �(�), j = k.

(16)

E[I(�)] =

k∑
j=1

∫
vj2(�)

vj1(�)

[𝜖2(�) − (t − aj)
2]𝜙

(
t − ŷ(�)

s(�)

)
dt

=

k∑
j=1

{
[𝜖(�)2 − (ŷ(�) − aj)

2 − s2(�)](Φ(uj2) − Φ(uj1))

+ s2(�)(uj2𝜙(uj2) − uj1𝜙(uj1)) + 2(ŷ(�) − aj)s(�)(𝜙(uj2) − 𝜙(uj1))
}
,
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predictive variance of ŷ(�) is relatively high. For such an unsampled design point, 
the predicted response is not within the �(�)-band of one of those k estimated con-
tours, but it may be close to the true contours that may lie in the unexplored region. 
As a result, the EI approach facilitates a balance between the local exploitation ver-
sus global exploration.

The use of the EI criterion in (16) involves the choices of k - the number of con-
tours, and the contour levels a1, a2,… , ak . Finding their optimal choice with respect 
to achieving more accurate predictions appears to be a challenging task. A reason-
able way to choose their values is to use equi-spaced k contours in the simulator 
output range [ymin, ymax] . The values of ymin and ymax are unknown in general. We 
thus estimate these two values using the fitted model. That is, we approximate ymin 
and ymax using the minimal and maximal of ŷ(�1),… , ŷ(�m) where �1,… , �m are a 
large number of inputs from the design domain, m is chosen to be 1000d in all the 
examples and ŷ(�j) is the fitted response at �j using the fitted model at the current 
stage. Note that the existing methods reviewed in Sect. 2.2 do not make use of the 
information of ymin and ymax . Using such information in the proposed method may 
contribute to its superior performance.

We now present two illustrations of the proposed multiple-contour estimation EI 
criterion (referred to as MC criterion) for global fitting with different values of k.

Example 1  Consider the computer model [13] that relates the one-dimensional input 
x and the output y as,

The true relationship between the input x and the output y is displayed in the blue 
solid curve in Fig. 1. Five initial design points are shown by black empty circles. We 
then sequentially add 15 design points using the MC criterion in (16). The numeri-
cal labels represent the order of the newly added design points. Figure 1a–d illus-
trates the sequential design scheme with the MC criterion for 1, 5, 10, 20 equally 
spaced contour levels within the ranges of the fitted surface. When k = 1 , the major-
ity of the added points are around the contour level a = 2.0 . For larger values of k, 
as k equally spaced contour levels are used, the added points by the proposed MC 
criterion-based sequential design approach are more space-filling. In addition, Fig. 1 
reveals that in this example, the proposed approach can choose the inputs that are 
around the areas where the function changes the direction and locate most of the 
points in the areas where the computer model is more complex.

Example 2  Consider a computer model with two-dimensional input variables 
� = (x1, x2) , and the output given by

The contour plot of the response surface is visually displayed in Fig. 2. Suppose a 
maximin Latin hypercube design of 10 points is generated and the corresponding 

(17)y =
sin(10�x)

2x
+ (x − 1)4, 0.5 ≤ x ≤ 2.5.

(18)y(�) = [1 + (4x1 + 4x2 + 1)](3 + 192x1x2), 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.
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responses are collected from the computer model. First, we consider searching for 
the next follow-up design point for estimating only one contour at the level a = 300 . 
Figure 3 shows these 10 design points, the inputs with I(�) > 0 , and the maximizer 
of the EI criterion for contour estimation in (12) from the candidate set on a regular 
100 × 100 rectangular grid.

Next, we consider the simultaneous estimation of three contours at levels 
a1 = 150 , a2 = 300 and a3 = 600 using the MC criterion in (16). Figure  4 shows 
the inputs from the same 50 × 50 grid candidate set that achieve nonzero improve-
ment (13), and the point that maximizes the MC criterion. This point, depicted by 
red empty circle in Fig. 4, is in fact from the set of the points that yield nonzero 
improvement around the contour level a1 = 150.

(a) (b)

(c) (d)

Fig. 1   Illustration of MC criterion with k contour levels. The blue curves represent the true relationship 
between x and y of the computer model in (17); the black empty circles are the five initial design points; 
the red stars are locations of follow-up design points, and the numerical values are the order of the added 
points



1 3

Journal of Statistical Theory and Practice (2020) 14:9	 Page 11 of 21  9

Figure 5 illustrates the complete sequential design scheme with 20 initial design 
points and 30 follow-up design points for simultaneously estimating three contours 
at levels a1 = 150 , a2 = 300, and a3 = 600 . The red squares are the new follow-
up points, and the label corresponds to the order the point is added. The last panel 
displays the squared distance between the estimated contour and the true contour 
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Fig. 2   The contour plot of the response surface of the computer simulator in (18)
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Fig. 3   Illustration of the follow-up point selection method using the EI criterion for contour estimation 
from the computer model (18). The black solid circles denote the training points, blue dots represent 
nonzero improvement value, i.e. {� ∶ |y(�) − a| ≤ �(�)} for the contour level a = 300 , the contour lines 
display log(E[I(�)]) values, and the red solid circle shows the maximizer of the EI criterion
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Fig. 4   Illustration of the follow-up point selection method using the MC criterion (at levels a1 = 150 , 
a2 = 300 , a3 = 600 ) for the computer model (18). The black solid circles denote 20 training points. The 
purple square circles, blue pluses, and red triangles represent improvement around the three contour lev-
els, respectively. The contour lines display log(E(I(�))) , and the red circle represents the maximizer of 
the MC criterion in (16)

(a) (b) (c)

(d) (e) (f)

Fig. 5   Illustration of the MC criterion for contour levels a1 = 150 , a2 = 300 and a3 = 600 with n0 = 20 
initial design points and 30 follow-up points. The accuracy in f is measured by the squared distance 
between the estimated contour after adding i-follow-up points and the true contour
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at each stage. It can be observed from Fig. 5 that the estimated uncertainty bands 
around the three contours become narrower and more accurate. It can also be seen 
that more points are added to estimate the contour level a1 = 150 than to estimate 
the other two contours. Some points such as the second point are away from the 
contour bands.

It is clear from the two examples that the resulting designs do not have the con-
ventional space-filling property. This is desirable as the objective is an overall good 
fit of the response surface and not to explore the input space. However, as illustrated 
in Fig. 5, a significant fraction of design points tend to line up on the pre-specified 
contours, which could lead to biased designs if a1,… , ak are not chosen appropri-
ately. Next, we propose an efficient method of selecting contour levels.

4 � Sequential Estimation of Contours for Global Fitting

In this section, we propose a new approach for choosing the follow-up design points. 
Different from the previous section where the simultaneous estimation of multiple 
contours was used for global fitting, we adopt the EI criterion for estimating only 
one contour level at each stage. That is, at each stage, we choose a contour level and 
find the design point that maximizes the criterion (12) with the chosen contour level. 
The important issue then is how to choose the contour level at each stage. We pro-
pose the following way to choose such contour level in an automatic way. Suppose 
at stage j, the training data are {(�i, yi), i = 1,… , n)} and the corresponding emulator 
gives the predictive distribution as y(�) ∼ N(ŷ(�), s2(�)) for any input � . Let the can-
didate set for the next follow-up point be �∗

1
,… , �∗

m
 and

Then, we choose the contour level at stage j as aj = ŷ(�∗
opt
) . In other words, at each 

stage, we set the contour level to be the fitted response that has maximum predictive 
variance. This is to encourage exploring the area with maximum uncertainty.

Example 2 (contd.) Consider finding a design for global fitting of the computer 
simulator in Example 2. The procedure starts with an initial design of size n0 = 10 
obtained via maximin Latin hypercube sampling and n − n0 = 30 follow-up points 
are chosen as per the proposed sequential strategy. Figure 6 displays the follow-up 
design points found by the proposed method, i.e. the sequential contour estimation-
based EI criterion, as well as the trace plot of the contour values.

Note that the resulting design is more space-filling as compared to a systematic 
layout of points on the contour lines shown in Fig. 5. Again, the design is not com-
pletely space-filling and it has some pairs of close-by points.

Before concluding this section, we make some remarks on the computational 
cost of the approaches. We implemented all four methods [(EIGF, SMED, MC and 
sequential contour (SC)] in R with the help of the GPfit package used for fitting GP 
models and obtaining the predicted mean and variance, ŷ(�) and s2(�) , for every � 
in the test set. For all four methods, the overall sequential framework remains the 
same, but the design criteria for choosing the follow-up trial are different. From a 

�∗
opt

= argmax
1≤i≤m

s2(�∗
i
).
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computational cost standpoint, the evaluation of the EIGF criterion is dominated by 
finding y(�j∗) , which amounts to computing and sorting the distance between �0 (the 
candidate test point) and n training points {�1,… , �n} . The computationally domi-
nating part of the SMED criterion is the evaluation of distance between �0 and n 
training points {�1,… , �n} , and then a sum (which is inexpensive). Thus, the SMED 
evaluation should be cheaper than that of the EIGF criterion. For the MC criterion 
with k contour levels, one has to sort 2k − 2 numeric strings of size two each, and 2k 
evaluations of normal cumulative distribution function. For SC criterion evaluation, 
no sorting is required, and the normal cumulative distribution function has to be 
computed for only two values. However, the SC method requires an additional sort-
ing of s2(�) values over the test set.

5 � Simulated Examples

In this section, we conduct a simulation study to demonstrate the effectiveness of 
the proposed sequential design approaches. Specifically, we compare the proposed 
approaches with the following methods:

(a)	 a one-shot maximin Latin hypercube design;
(b)	 the sequential D-optimal design in the R package tgp;
(c)	 the sequential approach by Lam and Notz [22];
(d)	 the sequential minimum energy design in Joseph et al. [20];
(e)	 the proposed multiple contours estimation-based criterion in Sect. 3;
(f)	 the proposed sequential contour estimation-based criterion in Sect. 4.

(a) (b)

Fig. 6   Illustration of the sequential contour estimation-based EI criterion for global fitting with n0 = 10 
and 30 added points in Example 2: a the initial points (in black) and the added points (in red); b the con-
tour value versus the stage j, for j = 1,… , 30
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For approach (e), we use the 10 equally spaced contour levels, that is, k is set to be 
10. These methods are denoted by ‘maximinLHD’, ‘tgp’,‘EIGF’, ‘SMED’, ‘MC_10’, 
and ‘SC_var’.

Several criteria can be used to evaluate the performance of different design 
approaches in comparison. We adopt the root-mean-squared prediction error 
(RMSPE) given by

where ŷ(�) and y(�) are the predicted response and the true response at the new input 
� in the hold-out set Xpred . Another criterion we use is the maximum error provided 
by

For each example below, the initial design for sequential designs is a maximin Latin 
hypercube design of n0 runs generated using the R package SLHD [1]. The model 
fitting is implemented using the default setting of the function GP_fit in the R pack-
age GPfit. The test data are a random Latin hypercube design of 1000d points where 
d is the number of input variables. The parameter � in ‘MC_10’ and ‘SC_var’ is set 
to be 2.

Example 3  We consider the computer model with two input variables x1 and x2,

This model is known as Branin function [9]. We use n0 = 10 initial design points. 
The total run size budget is 30. Figure 7 displays the boxplots of RMSPEs and max-
imum errors of the different design approaches over 100 simulations. The results 
show that in this example the one-shot approach ‘maximinLHD’ is the worst while 
the approaches ‘MC_10’ and ‘SC_var’ are comparably better than the others.

Example 4  We consider the computer model with three input variables x1 , x2, and x3 
[8]

We use n0 = 20 initial design points. The total run size budget is 60. Figure  8 
displays the boxplots of RMSPEs and maximum errors of the different design 
approaches over 100 simulations. Again, here the one-shot approach ‘maximinLHD’ 
is the worst. The approaches ‘tgp’, ‘MC_10’ and ‘SC_var’ are comparably better 

(19)RMSPE =

√
1

|Xpred|
∑

�∈Xpred

(ŷ(�) − y(�))2,

(20)Maximum error = max
�∈Xpred

|ŷ(�) − y(�)|.

(21)
y =

(
x2 −

5.1

4�2
x2
1
+

5

�
x1 − 6

)2

+ 10
(
1 −

1

8�

)
cos(x1) + 10, −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

(22)
y = 4(x1 − 2 + 8x2 − 8x2

2
)2 + (3 − 4x2)

2 + 16
√
x3 + 1(2x3 − 1)2, 0 ≤ xi ≤ 1, for i = 1,… , 3.
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than the others in terms of RMSPE, and the proposed approaches ‘MC_10’ and 
‘SC_var’ are significantly better than the others in terms of maximum errors.

Example 5  We consider the computer model with four input variables x1 , x2 , x3, and 
x4 [31]

maximinLHD tgp EIGF SMED MC_10 SC_var
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Fig. 7   The boxplots of RMSPEs and maximum errors of the methods ‘maximinLHD’, ‘tgp’, ‘EIGF’, 
‘SMED’, ‘MC_10’, and ‘SC_var’ for the computer model in (21) with n0 = 10 and 20 added points over 
100 simulations
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We use n0 = 27 initial design points. The total run size budget is 80. Figure  9 
displays the boxplots of RMSPEs and maximum errors of the different design 

(23)

y =
x1

2

[√
1 + (x2 + x2

3
)
x4

x2
1

− 1

]
+ (x1 + 3x4)exp(1 + sin(x3)), 0 ≤ xi ≤ 1, for i = 1,… , 4.

maximinLHD tgp EIGF SMED MC_10 SC_var

0.
2

0.
3

0.
4

0.
5

R
M

S
P

E

(a)

maximinLHD tgp EIGF SMED MC_10 SC_var

1
2

3
4

5
6

7

M
ax

im
um

 e
rro

r

(b)

Fig. 8   The boxplots of RMSPEs and maximum errors of the methods ‘maximinLHD’, ‘tgp’, ‘EIGF’, 
‘SMED’, ‘MC_10 ’, and ‘SC_var’ for the computer model in (22) with n0 = 20 and 40 added points over 
100 simulations
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approaches over 100 simulations. Here, the approach ‘SMED’ is the worst followed 
by the approach ‘maximinLHD’ in terms of both criteria. The performance of the 
other four approaches is similar based on RMSPE. However, based on the maximum 
error, the proposed approaches give more accurate predictions.
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Fig. 9   The boxplots of RMSPEs and maximum errors of the methods ‘maximinLHD’, ‘tgp’, ‘EIGF’, 
‘SMED’, ‘MC_10 ’, and ‘SC_var’ for the computer model in (23) with n0 = 27 and 53 added points over 
100 simulations
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6 � Concluding Remark

In this article we have developed two sequential design approaches for accurately 
predicting a complex computer code. The approaches are based on the expected 
improvement criteria for simultaneously or sequentially estimating contours. We 
used a GP model as a surrogate for the computer simulator, which is an integral 
component of the proposed criteria for identifying the follow-up trials. Numerical 
examples are given to demonstrate that the proposed approaches can significantly 
outperform the existing approaches.

A few remarks are in order. First, one can easily extend the methodology for a GP 
surrogate with a small nugget term, which are typically used for either increasing the 
numerical stability of the model or to account for small noise in the simulator out-
put. Second, if some other surrogate is used instead of GP model, then also the key 
ideas like formulation of improvement function and sequential estimation of con-
tour levels can be retained. Of course, the resultant expected improvement criteria 
would change, and in fact, one may not even end up with a closed form expression 
of the final design criterion for selecting follow-up points. Third, this article focuses 
on one-point-at-a-time fully sequential designs. However, in some applications, a 
batch sequential design is more desirable and practical than a fully sequential design 
[24]. Extending the expected improvement criteria to batch sequential designs is not 
trivial and would require a thorough investigation. We hope to address such an issue 
in the near future. Other future work includes the application of the proposed con-
tour estimation-based sequential design approaches for global fitting for computer 
experiments with both qualitative and quantitative factors [7] and dynamic computer 
experiments [40].
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