
Vol.:(0123456789)

Journal of Statistical Theory and Practice (2020) 14:7
https://doi.org/10.1007/s42519-019-0075-2

1 3

ORIGINAL ARTICLE

Covering Arrays: Using Prior Information for Construction,
Evaluation and to Facilitate Fault Localization

Ryan Lekivetz1 · Joseph Morgan1

Published online: 2 December 2019
© Grace Scientific Publishing 2019

Abstract
Covering arrays are increasingly being used by test engineers to derive test cases to
test complex engineered systems. This approach to testing is known as combinato-
rial testing and has proven to be a cost-efficient way to determine test cases that are
highly effective at identifying faults in the system that are due to the combination of
several inputs. However, when such faults are encountered and failures occur, the
test engineer is tasked with determining the inputs and associated values that trig-
gered the failures. This exercise typically involves examining a long list of potential
causes and may even require performing follow-up tests to reduce the number of
potential causes. This paper addresses this issue by considering the prior knowledge
of the system under test that test engineers often have. We show how this knowledge
can be used to evaluate and improve the effectiveness of a suite of test cases before
any test cases are executed. Finally, we address the case where failures occur and
show how this prior knowledge can aid in determining the inputs, and associated
values, that triggered the failures. In addition, throughout the paper, we compare and
contrast the use of covering arrays for testing complex engineered systems to the use
of factorial experiments in traditional experimental design settings.

Keywords Covering arrays · Design of experiments · Fault localization · Prior
information

Part of special issue guest edited by Pritam Ranjan and Min Yang—Algorithms, Analysis and
Advanced Methodologies in the Design of Experiments.

 * Ryan Lekivetz
 ryan.lekivetz@jmp.com

 Joseph Morgan
 joseph.morgan@jmp.com

1 JMP Division, SAS Institute, Cary, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42519-019-0075-2&domain=pdf

 Journal of Statistical Theory and Practice (2020) 14:7

1 3

7 Page 2 of 20

1 Introduction

Testing complex engineered systems is a difficult undertaking where, for a system
under test (SUT) and its corresponding input space, test engineers are tasked with
constructing a set of test cases that can efficiently identify faults in the SUT. Test
engineers are typically limited by tight budgetary constraints and, as a result, testing
all possible combinations of the inputs is infeasible. As is the case in a traditional
experimental design setting, focusing on only one input at a time is inefficient. Fur-
thermore, when faults are due to the combination of settings for two or more inputs,
testing one input at a time is likely to miss some combinations of settings and is
also ineffective. In a statistical design of experiments setting, a fractional factorial
design would be one way to address such a problem. While deriving test cases to
test a complex engineered system can be thought of as being conceptually similar to
developing an experimental design [7], there are some important differences. First,
the SUT must be deterministic, thus ensuring reproducible testing results. This also
implies that replicated runs add no additional information to a test suite, and need
not be considered. Also, the measured response (outcome) of interest to the test
engineer is binary, pass or fail, where a pass indicates that for a given test case, the
actual behavior of the SUT corresponds to the expected behavior, while a fail indi-
cates that actual behavior deviates from expected behavior. In addition, after testing
a complex engineered system, when failures occur, the outcomes of the test cases
are used by the test engineer to isolate the underlying cause of observed failures, not
to estimate effects as would be done in a statistical design of experiments setting.

One of the approaches to testing that seeks to address the challenge of testing
such complex engineered systems is combinatorial testing. Combinatorial testing
currently implies a covering array as the underlying mathematical construct [19].
The columns of the covering array correspond to inputs of the SUT and rows cor-
respond to test cases. Covering arrays ensure that all possible combinations of levels
among t inputs appear in a test suite, where t is known as the strength of the cover-
ing array. Note that orthogonal arrays are covering arrays but, whereas every level
combination involving t or fewer inputs appears equally often for orthogonal arrays,
every level combination involving t or fewer inputs needs to only appear at least
once for covering arrays. This less restrictive property means that covering arrays in
general need much fewer runs compared to the corresponding orthogonal array for
the same number of inputs. For strength 2 covering arrays with binary inputs, the
problem of finding the covering array having the minimal number of runs has been
solved [11, 13, 21]. Table 1 provides some examples comparing the run size for

Table 1 Comparison of optimal
binary covering arrays (CA) to
orthogonal arrays (OA) for k
inputs

Cell values indicate the minimum run size required for specified
value of k

k 2–3 4 10 15 35 56 126 1000

CA 4 5 6 7 8 9 10 14
OA 4 8 12 16 36 60 128 1004

1 3

Journal of Statistical Theory and Practice (2020) 14:7 Page 3 of 20 7

strength 2 covering arrays (CA) versus orthogonal arrays (OA) for k binary inputs.
Note that the strength of a covering array can be thought of as the projectivity of an
orthogonal array [1].

The efficiency and effectiveness of the combinatorial testing approach derives
from the economic run size and the coverage property of covering arrays. Consider
a set of test cases derived from a covering array. If all the test cases result in a pass,
then the coverage property allows a test engineer to assert that there are no faults
due to combinations involving t or fewer inputs. However, when there are failures,
the test engineer is faced with the task of fault localization—identifying the inputs
and their level combinations that precipitated the failures. Fortunately, the test engi-
neer typically has prior knowledge of the system, through inputs, or combinations of
inputs that may have been problematic in the past or due to recent changes that may
not have been rigorously tested.

While the goal of testing complex engineered systems is not to measure effects,
for those familiar with factorial designs, the fundamental principles for factorial
effects [22] are instructive when considering testing such systems. The effects in this
case are not model effects, but rather failure-inducing combinations of inputs. We
will review these fundamental principles, from the factorial effect standpoint, before
discussing how they relate to combinatorial testing.

Effect hierarchy/combination hierarchy: (1) Lower-order effects are more likely
to be important than higher-order effects. In an empirical study of software failures
across a variety of domains by Kuhn et al. [16], nearly all faults were due to some
combination of values for five or fewer inputs. When investigating a failure, a test
engineer will start with the potential failure-inducing combinations involving the
fewest number of inputs.

(2) Effects of the same order are equally likely to be important. Without prior
knowledge of the system, a test engineer will treat all combinations of the same
number of inputs as being equally likely to induce a failure. However, a test engineer
may have knowledge of the system that allows the likelihood of some combinations
of the same order to be more likely to induce a failure [18]. The use of this knowl-
edge is shown in Sect. 4.

Effect sparsity/combination sparsity: The number of relatively important effects
will be small. For combinatorial testing, sparsity of failure-inducing combinations is
critical to attain useful information about failures induced by a test suite. If there are
too many failure-inducing combinations, the SUT is perhaps not ready for combina-
torial testing as almost every test results in a failure.

Effect heredity/combination heredity: An interaction is significant only if at least
one of the parent factors involving the interaction is significant. As stated, the effect
heredity principle does not apply to combinatorial testing. If there is a failure due to
a certain combination of k input levels, then any higher-order combination contain-
ing that k input combination will also result in a failure. The failures can then only
be attributed to the lower-order failure-inducing combination. Then, once a system
has no single input that precipitates a failure, the notion of a significant parent factor
is not appropriate. However, knowledge of the system is particularly useful in identi-
fying inputs more likely to be involved in a fault. That is, higher-order combinations
involving certain inputs may be more likely to induce a failure.

 Journal of Statistical Theory and Practice (2020) 14:7

1 3

7 Page 4 of 20

Viewed in this way, the appeal of covering arrays becomes more apparent. With
effect hierarchy, a test engineer wants to focus their attention on lower-order com-
binations of inputs. The guarantee of covering all combinations of inputs involving
t or fewer inputs is precisely what a test engineer wants in a test suite. The sparsity
principle allows the test engineer to benefit from the run size economy of cover-
ing arrays and still have confidence that faults can be detected and identified. If we
reframe heredity in a way that uses prior information about inputs more likely to be
involved in a fault, it can benefit both the design of a test suite and our ability to do
fault localization.

Section 2 provides examples of complex engineered systems. In Sect. 3, we pre-
sent notation and discuss some preliminary details. Section 4 discusses quantifying
prior knowledge through weights, while Sect. 5 uses these weights to evaluate the
effectiveness and aid in the construction of covering arrays before testing begins. In
Sect. 6, we show how fault localization can be aided by providing a ranking of the
inputs and associated values of the set of potential causes that trigger failures. We
conclude the paper with a discussion of future work in Sect. 7.

2 Motivation

Let us consider XGBoost, a widely used open-source gradient boosting software
library [3] which is an example of a complex engineered system. Before running
XGBoost, users often tweak several parameters to get the best possible performance
from the underlying algorithms. There are several categories of parameters and,
within each category, there are usually many parameters. For example, Tree Booster
is one of four boosters that XGBoost offers (release 0.90), and there are twenty-
two parameters to configure Tree Booster. An example of one of these parameters
is learning rate, which ranges between 0 and 1 and is used to control overfitting.
Another example is tree method, which allows the user to specify one of five tree
construction algorithms. Since most of these twenty-two parameters are continuous
values, the configuration space for the parameters of Tree Booster alone is infinitely
large. A test engineer faced with validating XGBoost must therefore contend with
several challenges. First, the engineer must ensure that the parameters that are used
to configure XGBoost work as intended. Second, the underlying algorithms that
constitute XGBoost must also work as intended.

As it turns out, most modern software systems present the dual validation chal-
lenge that XGBoost presents [20]. To further complicate matters, test engineers
must also take into account the nature of failures that may occur when validating
such systems. Failures may take many forms and the severity of a failure could
range from catastrophic to benign. For example, in [14], the authors describe a traf-
fic collision avoidance system (TCAS) that is mandated by civil aviation authorities
around the world for commercial aircraft of a certain size. TCAS is an example of
a complex engineered system where any failure could be catastrophic. On the other
hand, in [15], the authors discuss a case where the complex engineered system is a
browser. Failure for such systems could be benign or may even be costly but would
not be catastrophic in the way that failure of a TCAS-like system would.

1 3

Journal of Statistical Theory and Practice (2020) 14:7 Page 5 of 20 7

We will use an example from a commercially available software product (see
Fig. 1) to illustrate the fault localization discussion in Sect. 6. The example is similar
to XGBoost but is simpler in that there are only six user-configurable options. These
options allow users to specify how they would like the application to present its out-
put. This simple, but real, example will allow us to demonstrate how the ideas in this
paper would help a test engineer to identify failure-inducing input combinations.

3 Notation and Preliminaries

Consider an array D with n rows and l columns. Let column i have si levels for
i = 1,… , l . D is said to be a covering array of strength t if any subset of t columns
has the property that all

∏
si level combinations occur at least once.

Covering arrays may be used to derive a suite of test cases for combinatorial test-
ing. If we map the inputs of the SUT to the columns of a covering array, then the
levels of the columns would map to the allowed values of the corresponding inputs,
and the rows of the covering array would then be the test cases of the test suite. For
continuous factors, one may need to partition the input into discrete levels. In soft-
ware testing, this is referred to as equivalence partitioning. Since a strength t cover-
ing array ensures that all combinations of values for any t inputs are covered then
a covering array-based combinatorial testing approach allows test engineers to be
confident that faults due to t or fewer inputs will be discovered, which are the most
likely to exist by the combination hierarchy principle. If instead, the test engineer
generated a set of test cases of the same size by randomly selecting from the input
space, then there is a nonzero probability that combinations for t or fewer inputs
would be missed.

For many systems, devising a test suite is only the beginning. If a failure is dis-
covered, the test engineer typically wants to know which combination of inputs
and associated levels induced the failure. This is known as the fault localization

Fig. 1 Set of inputs for Exam-
ple 3

 Journal of Statistical Theory and Practice (2020) 14:7

1 3

7 Page 6 of 20

problem [9]. To devise the list of potential causes, exact methods have been pro-
posed to evaluate the outcomes of test suites [6]. In the simplest form, for com-
binations involving k inputs, the exact method starts with all input combinations
involved in test cases that induce a failure, and removes input combinations that
appear in the test suite for test cases in which a failure did not occur. The value of
k investigated is typically the smallest value for which the set of potential causes
is non-empty [16], which we adopt throughout this paper. However, it is not
uncommon for a test engineer to be faced with a long list of potential causes, and
so examining the list of potential causes can be an onerous task.

Before using a test suite, there are a number of considerations for fault locali-
zation that can be made, based on test cases in the test suite. For instance, let
us assume that failures occur on a subset of test cases, while all remaining test
cases result in passes. Define �k({m1,… ,mb}) as the set of potential causes due
to k inputs if failures only occur in rows m1,… ,mb of the test suite with all other
tests passing. Define Ci1,…,ik

(j1,… , jk) as the combination of level j1 for input i1 ,
level j2 for input i2 , and so on. If Ci1,…,ik

(j1,… , jk) induces a failure, any row in
the test suite that contains this combination will result in a failure. If there is only
one failure (b = 1), a test engineer needs to examine the k-input combinations in
�k({m1}) and find the failure-inducing combination. When b > 1 , there may be
potential causes that appear on more than one row, while others may appear in one
row only. If b > 1 , and a combination that appears in only one row is in fact a fail-
ure-inducing combination, then the remaining failure(s) still need to be accounted
for. For example, when b = 2 , there may be a combination in �k({m1,m2}) that
would singly account for the failures in m1 and m2 , while the remaining combina-
tions would belong to m1 alone and m2 alone. Under the assumption of sparsity,
a single combination that can account for both failures is more likely to be the
actual cause of the failures than different combinations.

Ideally, when a failure is due to a particular input combination, we would like
to be able to directly identify the actual cause. Error-locating arrays [5] can pro-
vide this capability, but at a cost of additional runs in the test suite. For fault
localization, we propose a metric based on the potential causes that generate fail-
ures on the same tests of the test suite, assuming there is a single failure-inducing
combination. If a combination Ci1,…,ik

(j1,… , jk) induces a failure, and appears on
rows m�

1
,… ,m�

a
 of the test suite, define �(Ci1,…,ik

(j1,… , jk)) as the corresponding
set of potential causes that would be generated. That is,

While the number of k-input combinations in �(Ci1,…,ik
(j1,… , jk)) may be large,

because of the sparsity of failure-inducing combinations, the question is if there are
any single k-input combinations that would produce failures on the exact same rows.
If there are, a test engineer cannot distinguish the actual failure-inducing combina-
tion from the set of potential causes. Define Con(Ci1,…,ik

(j1,… , jk)) as the number of
single combinations (distinct from Ci1,…,ik

(j1,… , jk)) that generate the same poten-
tial cause set. So

�(Ci1,…,ik
(j1,… , jk)) = �k({m

�
1
,… ,m�

a
}).

1 3

Journal of Statistical Theory and Practice (2020) 14:7 Page 7 of 20 7

for Ci1,…,ik
(j1,… , jk) ≠ Ci�

1
,…,i�

k
(j�
1
,… , j�

k
) . We refer to Con(Ci1,…,ik

(j1,… , jk)) as the
confounding number for a combination. It is the additional number of combinations
that generate the same set of potential causes.

Example 1 Consider a 4-factor binary strength 2 covering array with 5 rows, as
shown in Table 2. Let this covering array represent a test suite before the results are
collected. Take C1,2(1, 1) , the level combination of level 1 in both columns 1 and 2.
That combination appears only in test 5, and enumerating the two-factor combina-
tions that appear only in test 5, assuming the only failure observed is in test 5, we
have

With six items in �2({5}) , Con(C1,2(1, 1)) = 5 . Similarly, C1,2(2, 2) appears on rows
1 and 2 of the test suite. Assuming C1,2(2, 2) is a singular cause and failures are only
observed on rows 1 and 2,

However, C1,2(2, 2) is the only combination that appears on both rows 1 and 2, so
Con(C1,2(2, 2)) = 0.

Large values of Con(Ci1,…,ik
(j1,… , jk)) indicate that it is more difficult to iden-

tify Ci1,…,ik
(j1,… , jk) as failure-inducing, as there are more combinations that

are equally likely to be failure-inducing under the hierarchy assumption. As there
are many Con(Ci1,…,ik

(j1,… , jk)) values when considering all combinations, as an
overall measure one can take the average Con(Ci1,…,ik

(j1,… , jk)) for all combina-
tions of order k. For a strength t covering array, for combinations with k < t inputs,
Con(Ci1,…,ik

(j1,… , jk)) = 0 . This is because for any Ci1,…,ik
(j1,… , jk) , if we take any

other input, all levels of that input must occur with Ci1,…,ik
(j1,… , jk) by the defini-

tion of the strength of a covering array.
For a strength t covering array, Con(Ci1,…,ik

(j1,… , jk)) is most appropri-
ate for k = t . If one considers the Con(Ci1,…,ik

(j1,… , jk)) for k > t , there may be

Con(Ci1,…,ik
(j1,… , jk)) = |�(Ci1,…,ik

(j1,… , jk)) = �(Ci�
1
,…,i�

k
(j�
1
,… , j�

k
))|

�(C1,2(1, 1)) = �2({5})

= {C1,2(1, 1),C1,3(1, 1),C1,4(1, 1),C2,3(1, 1),C2,4(1, 1),C3,4(1, 1)}.

(1)
�(C1,2(2, 2)) = �2({1, 2}) = {C1,2(2, 2),C1,4(2, 1),C2,4(2, 1),C3,4(2, 1),

C1,3(2, 1),C2,3(2, 1),C3,4(1, 2)}.

Table 2 Test suite for
Example 1

1 2 3 4 Result

2 2 2 1 ∙

2 2 1 2 ∙

2 1 2 2 ∙

1 2 2 2 ∙

1 1 1 1 ∙

 Journal of Statistical Theory and Practice (2020) 14:7

1 3

7 Page 8 of 20

combinations of order less than k but greater than or equal to t that result in failures
in the same rows. By the hierarchy principle, the lower-order combinations are more
likely failure-inducing. Then, if one does want to consider Con(Ci1,…,ik

(j1,… , jk))
with k > t , all combinations of order less than k (but ≥ t) that produce the same set
of potential causes should be generated, and one should consider the number of con-
founding combinations for each order up to k. With this in mind, for k > t , a practi-
tioner can evaluate the number of combinations that would need to be examined to
localize a particular failure-inducing combination of order k that appears in the test
suite.

In Example 1, |�(C1,2(2, 2))| = 7 , yet Con(C1,2(2, 2)) = 0 as C1,2(2, 2) was the
only combination appearing on both rows. From a testing perspective, if the only
failures occur in tests 1 and 2 with successes elsewhere, a test engineer would start
their investigation with the intuitively most likely explanation—namely C1,2(2, 2) . If
it turns out that there is no fault due to such a combination, one would investigate the
remaining combinations in the potential cause set. Contrast this with �(C1,2(1, 1)) ,
where a test engineer has six combinations to investigate. Not surprisingly, to reduce
the confounding number of a particular combination will require additional test
cases, which may not always be feasible. As the number of factors grows, the num-
ber of combinations in the set of potential causes can become daunting. Even for
a small example as in Example 1, a failure for test case 5 means that there are six
two-factor combinations that need to be investigated. The next two sections discuss
the use of weights as proposed in Lekivetz and Morgan [18] that can help provide a
ranking of potential causes to guide a test engineer in fault localization.

4 Prior Knowledge

If a test suite results in failures, a test engineer is faced with determining a plan
of action for reducing the set of potential causes to identify the failure-inducing
combination(s). If one follows the hierarchy principle, all potential causes of the
same order are treated equally likely to induce a failure, while the heredity princi-
ple is not relevant without the notion of main effects. However, test engineers typi-
cally know something about the system. In practice, given a set of potential causes,
a test engineer often uses their intuition and knowledge of the system, through pre-
vious failures and possibly recent changes, to rank the set of potential causes. That
is, given a set of potential causes, a test engineer would not consider all the combi-
nations equally likely to induce a failure. This difference between combinations is
commonly due to information about the individual inputs or lower-order combina-
tions involved in that combination. In this way, using prior knowledge, we do have
a concept akin to the idea of effect heredity—namely particular inputs (possibly
individual levels of) are known to be more or less problematic for any combination
involving them, even if they do not directly induce a failure on their own. The task
of investigating a potential set of causes could be made less burdensome if we could
automate the process of ranking potential causes by using prior knowledge that a
test engineer may have of the system. The remainder of this section outlines such a
method as introduced in Lekivetz and Morgan [18]. The multiplicity of weights is

1 3

Journal of Statistical Theory and Practice (2020) 14:7 Page 9 of 20 7

similar to that as described in Bryce et al. [2], which discusses different mechanisms
for deriving priorities (weights). Often these weights are arbitrary by nature, based
on prioritization from test engineers, but their utility is to achieve a relative ranking
of potential causes.

We quantify prior knowledge through weights. Define wi(j) ≥ 0 as the weight of
level j for input i, for j = 1,… , si . We use a baseline weight for all wi(j) to be 1, as
in the authors’ experience, test engineers find this to be more intuitively appealing
when deciding on weights. A wi(j) should be assigned a value greater than 1 if level
j of input i is assumed more likely to be involved in a failure based on prior knowl-
edge. A weight of less than 1 is used for levels that are known to be less problem-
atic. A value of 0 assigned to a wi(j) is only used in fault characterization, where it
is known with absolute certainty that a failure cannot occur due to any interactions
that include level j for input i. Such a situation would occur when a test engineer has
been able to test that particular input, as would be the case with checking an if state-
ment in a segment of software code. The magnitude of weight wi(j) can be thought
of as how much more (or less) likely level j for input i may lead to a failure com-
pared to a baseline input having weight 1. If all weights are set to 1, all effects of the
same order are thought to be equally likely to induce a failure.

We denote the weight for the combination of input i1 at level j1 and input i2
(i1 ≠ i2) at level j2 by wi1i2

(j1, j2) . The weight of wi1i2
(j1, j2) is calculated as

where j1 ∈ 1,… , si1 and j2 ∈ 1,… , si2 . Using baseline weights of 1, values of
wi1i2

(j1, j2) greater than 1 indicate combinations more likely to induce a failure, while
a value less than 1 indicates combinations less likely to induce a failure. The specifi-
cation also implies if both inputs are thought to be more likely involved in inducing
a failure, their combination is as well. Equation (2) does not preclude the test engi-
neer from changing the value of wi1i2

(j1, j2) . If a test engineer wishes to be more spe-
cific about their knowledge of particular combinations, it can be reflected by using a
different value for wi1i2

(j1, j2) instead of through Eq. (2). This is particularly relevant
if one wishes to place a high weight on combinations that have induced failures in
the past.

To extend this to three inputs, for distinct inputs i1 , i2 , and i3 at levels j1 , j2 , and j3
(ja ∈ 1,… , sa), respectively, the weight of the three-input combination, denoted by
wi1i2i3

(j1, j2, j3) , can be calculated as

assuming that Eq. (2) is used for the weights of two-input combinations. As
before, prior knowledge may dictate that a different weight should be assigned to
wi1i2i3

(j1, j2, j3) instead of using Eq. (3). If Eq. (2) was not used for any pair of inputs
in {i1, i2, i3} , one can make an adjustment such as using the average or maximum
over different configurations of the lower-order weights [18].

Weights for combinations involving more than three inputs can be defined in a
similar fashion. In general for f > 2 inputs, the weight of a combination is the prod-
uct of the weights of the individual inputs:

(2)wi1i2
(j1, j2) = wi1

(j1)wi2
(j2),

(3)wi1i2i3
(j1, j2, j3) = wi1

(j1)wi2
(j2)wi3

(j3),

 Journal of Statistical Theory and Practice (2020) 14:7

1 3

7 Page 10 of 20

with adjustments as deemed necessary by the test engineer. We now discuss how
these weights can be used in evaluating a covering array.

While the SUT is deterministic, before running a test suite, it is unknown which,
if any, combinations are failure-inducing. Let Xi1,…,ik

(j1,… , jk) take a value of 1
if Ci1,…,ik

(j1,… , jk) induces a fault, and 0 otherwise. Before running any tests, we
treat Xi1,…,ik

(j1,… , jk) as a Bernoulli random variable. For convenience, we use
P(Ci1,…,ik

(j1,… , jk)) to denote P(Xi1,…,ik
(j1,… , jk) = 1) . This reflects the prior

belief that Ci1,…,ik
(j1,… , jk) will be failure-inducing, whereby any test involving

Ci1,…,ik
(j1,… , jk) will result in a failure. Define

where a is sufficiently large. While a ≥ max(wi1,…,ik
(j1,… , jk)) for all possible

combinations of size k, in cases where the sparsity assumption holds, a reasonable
value of a is

∑
wi1,…,ik

(j1,… , jk) over all combinations of size k. That is, if we take
the expected value over all combinations of size k, the expected number of failure-
inducing combinations is 1. We assume throughout that Xi1,…,ik

(j1,… , jk)
�s are

independent, and if a particular subset of fewer than k inputs is failure-inducing,
the fault localization problem needs to address the smaller subset first. Note that
P(Xi1,…,ik

(j1,… , jk)) = 0) is close to 1, as it is expected that almost every combina-
tion is not failure-inducing.

5 Evaluation of Covering Arrays Using Weights

If combinations having higher weight are more likely to induce failures, then a
test engineer would like to have those combinations appear in the test suite. For a
strength t covering array, Lekivetz and Morgan [17] propose the weighted k-cover-
age (k > t) as a criterion to be used in construction. The weighted k-coverage of a
covering array is defined as

where the summation is over all possible k-column projections and associated lev-
els and I(wi1,…,ik

(j1,… , jk)) takes a value of wi1,…,ik
(j1,… , jk) if the combination

Ci1,…,ik
(j1,… , jk) appears in the test suite and 0 otherwise. Maximizing this meas-

ure during construction or as a post-construction optimization step increases the use
of combinations more likely to induce a failure. Since preference is given to level
combinations having higher weight, k-factor combinations involving them are likely
to appear more than once, aiding in the fault localization problem. One method of
post-construction optimization is to use don’t care cells, for which any eligible level
for that column that contains the cell can be used for that cell without altering the
t-coverage of the covering array [4]. Kim, Jang, and Anderson-Cook [12] investigate

wi1,i2,…,if
(j1, j2,… , jf) = wi1

(j1)wi2
(j2)⋯wif

(jf),

P(Xi1,…,ik
(j1,… , jk) = 1) = wi1,…,ik

(j1,… , jk)∕a

coveragew(k) =

∑
I(wi1,…,ik

(j1,… , jk))
∑

wi1,…,ik
(j1,… , jk)

1 3

Journal of Statistical Theory and Practice (2020) 14:7 Page 11 of 20 7

some criteria for evaluating covering arrays and the use of don’t care cells (wild card
entries). The appeal of don’t care cells is that a test engineer can set those particu-
lar entries in the test suite to any valid value they choose. The choice of values is
typically used to optimize t + i coverage (i ≥ 1) of the covering array. However, the
don’t care cells can be used to maximize the weighted t + 1-coverage [17]. When all
the weights are 1, using don’t care cells to maximize the weighted t + 1-coverage
is equivalent to maximizing the t + 1 coverage. We demonstrate through a simple
example.

Example 2 Table 3 provides a strength 2 covering array with 4 binary input factors in
6 runs. Table 4 presents Table 3 with the last row identified as having all positions as
don’t care cells (denoted by *) [10]. That is, the cells of the last row can take on any
value and still remain a strength 2 covering array. Consider the weighting scheme
w1(1) = 4 and w2(1) = 4 , with all remaining weights set to 1. That is, the test engi-
neer believes that level 1 of inputs 1 and 2 are more likely to be involved in combi-
nations that induce failures. Using the weighted 3-coverage criterion, considering all
possible combinations of values for the don’t care cells, the values (1, 1, 2, 2) would
maximize weighted 3-coverage. Using this weighting scheme, without taking into
account the don’t care row, the baseline weighted 3-coverage is 0.529. When the row
of don’t care cells is set to (2, 2, 1, 1), weighted 3-coverage increases marginally to
0.543. However, if the row of don’t care cells is set to (1, 1, 1, 2), weighted 3-cov-
erage increases to 0.7 and when set to (1, 1, 2, 2), weighted 3-coverage attains its
optimal value of 0.757. Similarly, using w3(1) = 4 and w4(1) = 4 with the remain-
ing weights set to 1, the row of don’t care cells should be set to (2, 2, 1, 1) to ensure
optimal weighted 3-coverage.

Table 3 Strength 2 binary
covering array for Example 2

1 2 3 4

2 2 2 1
2 2 1 2
2 1 2 2
1 2 2 2
1 1 1 1
2 1 1 2

Table 4 Strength 2 binary
covering array with don’t care
cells marked in Example 2

1 2 3 4

2 2 2 1
2 2 1 2
2 1 2 2
1 2 2 2
1 1 1 1
* * * *

 Journal of Statistical Theory and Practice (2020) 14:7

1 3

7 Page 12 of 20

One of the advantages of using the weighted coverage criterion is that when able
to make changes through don’t care cells or added rows, the confounding numbers
of higher weighted, more likely failure-inducing, combinations are more likely to
decrease. In Example 2, prior to changing the don’t care cells, Con(C12(1, 1)) = 4 ,
whereas setting the don’t care cells to (1, 1, 2, 2), Con(C12(1, 1)) = 0 . As it turns
out, lowering these confounding numbers tends to be done by increasing the num-
ber of occurrences of higher-weighed combinations, which in turn aids in isolating
those combinations if they do induce a failure. In the next section, we introduce how
weights can aid in isolating failure-inducing combinations when failures occur in a
test suite.

6 Fault Localization

In this section, we discuss how one can examine a combinatorial test suite when
failures are observed and use prior information for guidance in localizing failure-
inducing combinations. That is, given failures in rows m1,… ,mb , a test engineer
needs guidance to isolate potential causes in �k({m1,… ,mb}) . The value of k is the
smallest such value where the set of potential causes is non-empty, either by suc-
cesses in the original test suite, or follow-up testing based on the original test suite.
Not surprisingly, the frequency and location of the potential causes play a role in
fault localization.

The purpose here is to provide a ranking of the potential causes to aid the test
engineer in which combinations to investigate first. Assume that we observe fail-
ures in rows m1,… ,mb . In our treatment of the problem, we focus only on those
combinations that induce a failure—namely Xi1,…,ik

(j1,… , jk) = 1 . While one could
consider multiple configurations (i.e., combinations of Xi1,…,ik

(j1,… , jk)
�s being 0

and 1), of the potential causes maintaining failures only being observed on rows
m1,… ,mb , the fact that any given P(Xi1,…,ik

(j1,… , jk) = 0) is close to 1, makes it
impractical to consider these cases beyond the simplest explanations. For example,
if we observe a failure on one row, we assume there is only one failure-inducing
combination rather than all possibilities with one or more failure-inducing combina-
tions. In addition, if a failure-inducing combination is found and fixed, so long as a
test engineer reruns the particular test with all inputs again, the remaining failure-
inducing combination(s) will still be present and the test will still fail.

We first consider the simplest case, where there is a single failure in the test suite
on row m1 . Given the set of potential causes, �k({m1}) , we can use the weights as
described in Sect. 4 to rank each of the combinations. Using the weights, the prob-
ability that a particular combination is failure-inducing is

where P[Ci1,…,ik
(j1,… , jk)|�k({m})] = 0 if Ci1,…,ik

(j1,… , jk) ∉ �k({m}) . Simply
put, given a set of potential causes, if we focus on a single failure, the likelihood

(4)
P[Ci1,…,ik

(j1,… , jk)|�k({m1})] =
wi1,…,ik

(j1,… , jk)
∑

Ca1,…,ak
(b1,…,bk)∈�k({m1})

wa1,…,ak
(b1,… , bk)

,

1 3

Journal of Statistical Theory and Practice (2020) 14:7 Page 13 of 20 7

of a particular combination inducing that failure is the weight for that combina-
tion divided by the sum of the weights for all combinations in �k({m}) . There are
two underlying assumptions in using Eq. (4): (1) that the failure is not caused by
a combination of greater than k inputs, and (2) if it is due to a combination of k
inputs, there is only one cause for the failure in test case m. In practice, this follows
the approach test engineers intuitively follow in fault localization. Failure-inducing
combinations empirically adhere to the hierarchy principle, and a test engineer will
typically eliminate all combinations of k inputs as potential causes before consider-
ing k + 1 inputs. Alternatively, on the occasions that the most likely potential causes
for k inputs have been eliminated, a test engineer may use the same approach for
k + 1 inputs. In regard to (2) while there is a chance that such a situation can occur,
such occurrences are rare in a well-tested SUT.

Example 3 Test engineers for a commercially available software product want to test
the preferences system of a particular routine in the software. There are six differ-
ent preferences that can be either checked or unchecked (on/off) as shown in Fig. 1.
Table 5 provides weights for each input and associated levels that test engineers
agreed on given prior knowledge of the system. A failure in a test case could be
incorrect calculations of statistics, graphical elements not displaying correctly, to the
software crashing and shutting down prematurely. Examining Table 5, the test engi-
neers have set the weight of checked level of “Save Dens Formula” to be 3, indicat-
ing it is known to be problematic, as are the unchecked level of “Diagnostic Plot”
and unchecked level of “Save Fit Quantiles,” but to a lesser extent with a weight of
2. The remaining weights are set at the baseline value of 1. Table 6 provides a test

Table 5 Weights assigned to
each input in Example 3

Input Levels Weights

Diagnostic Plot Checked, unchecked 1, 2
Density Curve Checked, unchecked 1, 1
Goodness of Fit Checked, unchecked 1, 1
Save Fit Quantiles Checked, unchecked 1, 2
Save Dens Formula Checked, unchecked 3, 1
Save Spec Limit Checked, unchecked 1, 1

Table 6 Test suite for Example 3

Result Diagnostic
Plot

Density Curve Goodness
of Fit

Save Fit Quan-
tiles

Save Dens
Formula

Save Spec
Limit

Pass Unchecked Unchecked Unchecked Unchecked Unchecked Unchecked
Pass Checked Checked Checked Checked Checked Checked
Fail Checked Unchecked Checked Unchecked Checked Unchecked
Pass Checked Checked Unchecked Checked Unchecked Unchecked
Pass Unchecked Unchecked Unchecked Checked Checked Checked
Pass Unchecked Checked Checked Unchecked Unchecked Checked

 Journal of Statistical Theory and Practice (2020) 14:7

1 3

7 Page 14 of 20

suite that is a strength 2 covering array, for the inputs in Table 5. The outcome of
each test case is presented in the first column. Using the outcome of the test suite,
Table 7 presents the potential causes, along with the wi1i2

(j1, j2) values and their rela-
tive probability. Instead of treating all combinations equally likely to have caused
the failure, the most likely candidate is C45(2, 1) , followed by C56(1, 2) and C14(1, 2) .
The remaining potential causes are equally likely. This allows the test engineers
to first focus on “Save Fit Quantiles” at unchecked and “Save Dens Formula” at
checked, and if C45(2, 1) is not failure-inducing, then C56(1, 2) and C14(1, 2) would be
the next candidates for investigation.

Example 3 is simple, both in terms of the number of tests and the number of
inputs, yet there were still six potential causes for the single failure. Using weights
is a way of ranking the potential causes in an automated way that accounts for a test
engineer’s experience with the system. In Example 3, based on the weights the test
engineers used, any combination involving “Save Dens Formula” as checked would
be the natural place to look for the cause of the failure given the heredity principle.
As the number of inputs grows and test suites become larger, the resulting increase
in the number of potential causes is an issue that test engineers have to deal with.
The ranking provided by this method makes such situations manageable.

When there is more than one failure, fault localization requires additional care.
This is due to the possibility that there may be more than one failure-inducing com-
bination. There may be single combinations that could cause all the failures, which
would be the most likely causes. But one may still have a set of multiple combina-
tions that would result in failures of the same rows, albeit less likely. A test engineer
may be interested in the likelihood that these combinations might be the cause, par-
ticularly when using prior information. Lekivetz and Morgan [18] considered the
case of two failures.

Assume that failures have been observed on tests m1,… ,mb of the test suite. As
in Sect. 3, let �k({m1,… ,mb}) be the set of potential causes for k inputs if a failure
was to occur in rows m1,… ,mb of the test suite with all other tests passing. The test
engineer wants to ascertain which combination(s) are most likely to have induced the
observed failures. Given the set of potential causes �k({m1,… ,mb}) , we need to con-
sider sets of potential cause(s) from �k({m1,… ,mb}) that minimally account for fail-
ures on all of the rows m1,… ,mb without any redundancies. Note that not all sets from

Table 7 Probabilities and weights assigned to potential causes Ci1 i2
(j1, j2) in Example 3

Input (i) Failure level (j) Weight Probability

Diagnostic Plot (1), Density Curve (2) Checked (1), unchecked (2) 1 1/14
Diagnostic Plot (1), Save Fit Quantiles (4) Checked (1), unchecked (2) 2 1/7
Density Curve (2), Goodness of Fit (3) Unchecked (2), checked (1) 1 1/14
Goodness of Fit (3), Save Spec Limit (6) Checked (1), unchecked (2) 1 1/14
Save Fit Quantiles (4), Save Dens Formula (5) Unchecked (2), checked (1) 6 3/7
Save Dens Formula (5), Save Spec Limit (6) Checked (1), unchecked (2) 3 3/14

1 3

Journal of Statistical Theory and Practice (2020) 14:7 Page 15 of 20 7

�k({m1,… ,mb}) are valid. For a given set of combinations from �k({m1,… ,mb}) , if
none is observed in row mi , then the failure rows (and set of potential causes) cannot be
generated by that subset. Using Xi1,…,ik

(j1,… , jk) as described in Sect. 4, we want

where Ci1,…,ik
(j1,… , jk),… ,Ci�

1
,…,i�

k
(j�
1
,… , j�

k
) being failure-inducing would result in

observing failures only in rows m1,… ,mb.
Once the set of subsets for the Xi1,…,ik

(j1,… , jk) = 1 has been determined, one must
determine the appropriate probabilities. As some combinations may occur on more
than one row, instead of writing the probability for each row (i.e., where the failures
occur), we instead present it in terms of the potential causes that cover all failures in
rows m1,… ,mb . If there is a single combination in that set, Eq. (5) then becomes

while for more than one potential cause,

That is, what is the probability that Ci1,…,ik
(j1,… , jk),… ,Ci�

1
,…,i�

k
(j�
1
,… , j�

k
) are all

failure-inducing combinations, given that failures have been observed in rows
m1,… ,mb . For potential failure-inducing combinations that occur on multiple rows,
intuitively one expects the associated probability to be higher than that of distinct
failure-inducing combinations occurring on different rows. To quantify this, we need
to establish a likelihood of any particular combination inducing a failure, which we
denote by P[Ci1,…,ik

(j1,… , jk)] . We use the weighting scheme described in Sect. 4
(i.e., one expected failure-inducing combination),

Given failures have been observed on certain rows, the likelihood of particular
combinations inducing a failure is either 0, since they passed elsewhere, or much
higher since the set of potential causes is much smaller than the set of all possible
combinations.

Let � be the set of combinations that can generate in �k({m1,… ,mb}) that would
minimally produce failures in m1,… ,mb . As before, we assume failure-inducing com-
binations are independent. Given a Ci1,…,ik

(j1,… , jk),… ,Ci�
1
,…,i�

k
(j�
1
,… , j�

k
) in �,

(5)P(Xi1,…,ik
(j1,… , jk) = 1,… ,= Xi�

1
,…,i�

k
(j�
1
,… , j�

k
) = 1|�k({m1,… ,mb})),

P(Ci1,…,ik
(j1,… , jk)|�k({m1,… ,mb})),

P(Ci1,…,ik
(j1,… , jk),… ,Ci�

1
,…,i�

k
(j�
1
,… , j�

k
)|�k({m1,… ,mb})).

(6)P[Ci1,…,ik
(j1,… , jk)] =

wi1⋯ik
(j1,… , jk)

∑
wa1⋯ak

(b1,… , bk)
.

(7)

P(Ci1,…,ik
(j1,… , jk),… ,Ci�

1
,…,i�

k
(j�
1
,… , j�

k
)|�k({m1,… ,mb}))

=
P(Ci1,…,ik

(j1,… , jk),… ,Ci�
1
,…,i�

k
(j�
1
,… , j�

k
)�k({m1,… ,mb}))

P(�k({m1,… ,mb}))

=
P(Ci1,…,ik

(j1,… , jk))⋯P(Ci�
1
,…,i�

k
(j�
1
,… , j�

k
))

P(�k({m1,… ,mb}))

 Journal of Statistical Theory and Practice (2020) 14:7

1 3

7 Page 16 of 20

where the numerator of Eq. (7) can be derived by noting that the sets of combina-
tions in � are chosen because they can generate �k({m1,… ,mb}).

To calculate P(�k({m1,… ,mb}) , we take the summation over the set of subsets
in �,

where the elements in � may have only one combination.

Example 4 We return to the set of inputs in Example 3. In this case, the test engi-
neers have decided on the set of weights given in Table 8. The same strength 2
covering array is used to test the system, but the results are different as shown in
Table 9. No single input is failure-inducing, so two-input combinations must be con-
sidered. The summation of all wi1,i2

(j1, j2) is 146. Using Eq. (6), the potential causes
for each row and the associated probabilities are given in Table 10. Note that the
combination “Goodness of Fit” at unchecked and “Save Fit Quantiles” at checked
(C34(2, 1)) appears in both test cases as a potential cause. This implies that in � ,
C34(2, 1) will be a combination on its own, while the other elements of � will con-
tain one of the potential causes from test case 4 only, and one from test case 5 only.
Using Eq. (8), we can partition it into P(C34(2, 1))) , plus the sum of the product of
the remaining pairs of potential causes.

(8)P(�k({m1,… ,mb}) =
∑

�

P(Ci1,…,ik
(j1,… , jk))⋯P(Ci�

1
,…,i�

k
(j�
1
,… , j�

k
)),

Table 8 Weights assigned to
each input in Example 4

Input Levels Weights

Diagnostic Plot Checked, unchecked 2, 2
Density Curve Checked, unchecked 2, 2
Goodness of Fit Checked, unchecked 1, 1
Save Fit Quantiles Checked, unchecked 1, 1
Save Dens Formula Checked, unchecked 3, 2
Save Spec Limit Checked, unchecked 1, 1

Table 9 Test suite for Example 4

Result Diagnostic
Plot

Density Curve Goodness
of Fit

Save Fit Quan-
tiles

Save Dens
Formula

Save Spec
Limit

Pass Unchecked Unchecked Unchecked Unchecked Unchecked Unchecked
Pass Checked Checked Checked Checked Checked Checked
Pass Checked Unchecked Checked Unchecked Checked Unchecked
Fail Checked Checked Unchecked Checked Unchecked Unchecked
Fail Unchecked Unchecked Unchecked Checked Checked Checked
Pass Unchecked Checked Checked Unchecked Unchecked Checked

1 3

Journal of Statistical Theory and Practice (2020) 14:7 Page 17 of 20 7

Table 11 presents the joint probability for potential causes considering both test
cases. With only two failures, one can examine the marginal probabilities. They are
shown in Table 11 in the last column for test case 4 and the last row for test case 5.

As demonstrated in Example 4, even when the initial weight of a particular
combination is small, when there is a potential cause (or causes) that appears for
multiple failures, it tends to be the most likely potential cause compared to inde-
pendent causes for different failures. This is intuitively what one would expect if
failures are rare. From a practical standpoint, it is often preferable to present poten-
tial causes from multiple test cases separately from the unique occurrences. That is,
do a weighted comparison of the smallest sets in � first. If it is discovered that none
of the multiple-test case potential causes are failure-inducing, the test engineer can
perform a weighted analysis on the remaining potential causes unique to each test
case. If there are more than two failures, this approach is typically more tractable
than generating the joint probability mass function over all sets in � . We finish this
section with an example where three failures are observed.

(9)P(�2({4, 5})) =
1

146
+

(13)(16)

1462
=

354

1462

Table 10 Potential causes for each failure in Example 4

Test case 4 Test case 5

Ci1 i2
(j1, j2) wi1 i2

(j1, j2) P[Ci1 i2
(j1, j2)] Ci1 i2

(j1, j2) wi1 i2
(j1, j2) P[Ci1 i2

(j1, j2)]

C34(2, 1) 1 1/146 C34(2, 1) 1 1/146
C13(1, 2) 2 2/146 C14(2, 1) 2 2/146
C15(1, 2) 4 4/146 C15(2, 1) 6 6/146
C23(1, 2) 2 2/146 C24(2, 1) 2 2/146
C26(1, 2) 2 2/146 C26(2, 1) 2 2/146
C45(1, 2) 2 2/146 C35(2, 1) 3 3/146
C46(1, 2) 1 1/146 C36(2, 1) 1 1/146

Table 11 Probabilities for potential causes for each failure test case in Example 4

C34(2, 1) C14(2, 1) C15(2, 1) C24(2, 1) C26(2, 1) C35(2, 1) C36(2, 1)

C34(2, 1)
146

354
0 0 0 0 0 0 146/354

C13(1, 2) 0 4

354

12

354

4

354

4

354

6

354

2

354
32/354

C15(1, 2) 0 8

354

24

354

8

354

8

354

12

354

4

354
64/354

C23(1, 2) 0 4

354

12

354

4

354

4

354

6

354

2

354
32/354

C26(1, 2) 0 4

354

12

354

4

354

4

354

6

354

2

354
32/354

C45(1, 2) 0 4

354

12

354

4

354

4

354

6

354

2

354
32/354

C46(1, 2) 0 2

354

6

354

2

354

2

354

3

354

1

354
16/354

146/354 26/354 78/354 26/354 26/354 39/354 13/354 p

 Journal of Statistical Theory and Practice (2020) 14:7

1 3

7 Page 18 of 20

Example 5 We return to the set of inputs in Example 3, using the weights from
Example 4 given in Table 8. In this example, an additional test has been added to
the test suite, given in Table 12. Failures are observed in tests 2, 4, and 7, with the
remaining tests passing. Table 13 provides the set(s) of potential causes in � that
would generate �2({2, 4, 7}) and associated probabilities. In this example, the com-
bination of diagnostic plot and density curve both checked would be a test engi-
neer’s first consideration.

When there are three or more failures in a test suite, the number of sets of combina-
tions in � can be very large. As seen in the examples, the elements of � that contain
more input combinations are less likely to be the cause of the failures, as would be
expected given the sparsity principle. If � has too many elements, a practitioner could
first consider those sets in � having the smallest number of elements.

Table 12 Test suite for Example 5

Result Diagnostic
Plot

Density Curve Goodness
of Fit

Save Fit Quan-
tiles

Save Dens
Formula

Save Spec
Limit

Pass Unchecked Unchecked Unchecked Unchecked Unchecked Unchecked
Fail Checked Checked Checked Checked Checked Checked
Pass Checked Unchecked Checked Unchecked Checked Unchecked
Fail Checked Checked Unchecked Checked Unchecked Unchecked
Pass Unchecked Unchecked Unchecked Checked Checked Checked
Pass Unchecked Checked Checked Unchecked Unchecked Checked
Fail Checked Checked Unchecked Unchecked Unchecked Checked

Table 13 Probabilities for
potential causes in � in
Example 5

Potential cause(s) Probability Potential cause(s) Probability

C12(1, 1) 292/353 C15(1, 2),C25(1, 1) 12/353
C13(1, 2),C14(1, 1) 2/353 C15(1, 2),C34(1, 1) 2/353
C13(1, 2),C16(1, 1) 2/353 C16(1, 1),C23(1, 2) 2/353
C13(1, 2),C24(1, 1) 2/353 C16(1, 1),C24(1, 1) 2/353
C13(1, 2),C25(1, 1) 6/353 C16(1, 1),C26(1, 2) 2/353
C13(1, 2),C34(1, 1) 1/353 C16(1, 1),C45(1, 2) 2/353
C14(1, 1),C15(1, 2) 4/353 C16(1, 1),C46(1, 2) 1/353
C14(1, 1),C16(1, 1) 2/353 C23(1, 2),C24(1, 1) 2/353
C14(1, 1),C23(1, 2) 2/353 C23(1, 2),C25(1, 1) 6/353
C15(1, 2),C16(1, 1) 4/353 C23(1, 2),C34(1, 1) 1/353
C15(1, 2),C24(1, 1) 4/353

1 3

Journal of Statistical Theory and Practice (2020) 14:7 Page 19 of 20 7

7 Discussion

In this article, we have discussed the connection between the seemingly disparate
concepts of failure-inducing combinations in a complex engineered system and
the principles of factorial effects that are fundamental to constructing designs for
factorial effects. We have demonstrated how prior information about a system can
be quantified through the use of weights, aiding in both the evaluation and analy-
sis of covering arrays. In the construction of covering arrays, the use of weights
will result in a covering array that will have a higher likelihood of uncovering
faults in the system, while for analysis, they aid in fault localization. An area of
future research is the use of weights to augment a covering array when a test engi-
neer has the budget for additional test cases. These extra test cases can reduce the
number of likely potential causes when failures occur and can therefore provide
a happy medium between optimal size covering arrays and error-locating arrays
[5]. Alternatively, our method of computing weights could be used by algorithms
that construct biased covering arrays [2] or to encode prior information for a test
suite prioritization technique [8].

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

 1. Box G, Tyssedal J (1996) Projective properties of certain orthogonal arrays. Biometrika
83(4):950–955

 2. Bryce RC, Colbourn CJ (2006) Prioritized interaction testing for pair-wise coverage with seeding
and constraints. Inf Softw Technol 48(10):960–970. https ://doi.org/10.1016/j.infso f.2006.03.004
(Advances in model-based testing)

 3. Chen T, He T, Benesty M, Khotilovich V, Tang Y (2015) Xgboost: extreme gradient boosting. R
package version 0.4-2, pp 1–4

 4. Colbourn CJ, Martirosyan SS, Mullen GL, Shasha D, Sherwood GB, Yucas JL (2006) Products of
mixed covering arrays of strength two. J Comb Des 14(2):124–138

 5. Colbourn CJ, McClary DW (2008) Locating and detecting arrays for interaction faults. J Comb
Optim 15(1):17–48. https ://doi.org/10.1007/s1087 8-007-9082-4

 6. Colbourn CJ, Syrotiuk VR (2016) Coverage, location, detection, and measurement. In: IEEE ninth
international conference on software testing, verification and validation workshops (ICSTW), pp
19–25. https ://doi.org/10.1109/ICSTW .2016.38

 7. Dalal SR, Mallows CL (1998) Factor-covering designs for testing software. Technometrics
40(3):234–243. https ://doi.org/10.1080/00401 706.1998.10485 524

 8. Elbaum S, Rothermel G, Kanduri S, Malishevsky AG (2004) Selecting a cost-effective test case
prioritization technique. Softw Qual J 12(3):185–210. https ://doi.org/10.1023/B:SQJO.00000 34708
.84524 .22

 9. Ghandehari LS, Lei Y, Kung D, Kacker R, Kuhn R (2013) Fault localization based on failure-
inducing combinations. In: IEEE 24th international symposium on software reliability engineering
(ISSRE), pp 168–177. https ://doi.org/10.1109/ISSRE .2013.66989 16

 10. Gonzalez-Hernandez L, Torres-Jiménez J, Rangel-Valdez N (2011) An exact approach to maxi-
mize the number of wild cards in a covering array. In: Batyrshin I, Sidorov G (eds) Advances in

https://doi.org/10.1016/j.infsof.2006.03.004
https://doi.org/10.1007/s10878-007-9082-4
https://doi.org/10.1109/ICSTW.2016.38
https://doi.org/10.1080/00401706.1998.10485524
https://doi.org/10.1023/B:SQJO.0000034708.84524.22
https://doi.org/10.1023/B:SQJO.0000034708.84524.22
https://doi.org/10.1109/ISSRE.2013.6698916

 Journal of Statistical Theory and Practice (2020) 14:7

1 3

7 Page 20 of 20

artificial intelligence. MICAI 2011. Lecture notes in computer science, vol 7094. Springer, Berlin,
Heidelberg

 11. Katona GO (1973) Two applications (for search theory and truth functions) of sperner type theo-
rems. Period Math Hung 3(1–2):19–26

 12. Kim Y, Jang DH, Anderson-Cook CM (2017) Selecting the best wild card entries in a covering
array. Qual Reliab Eng Int 33(7):1615–1627

 13. Kleitman DJ, Spencer J (1973) Families of k-independent sets. Discret Math 6(3):255–262
 14. Kuhn DR, Okum V (2006) Pseudo-exhaustive testing for software. In: 30th Annual IEEE/NASA

software engineering workshop. IEEE, pp 153–158
 15. Kuhn DR, Reilly MJ (2002) An investigation of the applicability of design of experiments to soft-

ware testing. In: Proceedings 27th annual NASA Goddard/IEEE software engineering workshop.
IEEE, pp 91–95

 16. Kuhn DR, Wallace DR, Gallo AM (2004) Software fault interactions and implications for software
testing. IEEE Trans Softw Eng 30(6):418–421. https ://doi.org/10.1109/TSE.2004.24

 17. Lekivetz R, Morgan J (2018) Evaluation and construction of covering arrays utilizing prior informa-
tion. In: IEEE international symposium on software reliability engineering workshops (ISSREW).
IEEE, pp 132–133

 18. Lekivetz R, Morgan J (2018) Fault localization: analyzing covering arrays given prior information.
In: IEEE international conference on software quality, reliability and security companion (QRS-C).
IEEE, pp 116–121

 19. Morgan J (2018) Combinatorial testing: an approach to systems and software testing based on cov-
ering arrays. In: Kenett RS, Ruggeri F, Faltin FW (eds) Analytic methods in systems and software
testing. Wiley, pp 131–158

 20. Qu X, Cohen MB, Rothermel G (2008) Configuration-aware regression testing: an empirical study
of sampling and prioritization. In: Proceedings of the 2008 international symposium on software
testing and analysis. ACM, pp 75–86

 21. Rényi A (2007) Foundations of probability. Courier Corporation, North Chelmsford
 22. Wu CJ, Hamada MS (2011) Experiments: planning, analysis, and optimization, vol 552. Wiley,

Hoboken

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/TSE.2004.24

	Covering Arrays: Using Prior Information for Construction, Evaluation and to Facilitate Fault Localization
	Abstract
	1 Introduction
	2 Motivation
	3 Notation and Preliminaries
	4 Prior Knowledge
	5 Evaluation of Covering Arrays Using Weights
	6 Fault Localization
	7 Discussion
	References

