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Abstract
Covering arrays are increasingly being used by test engineers to derive test cases to 
test complex engineered systems. This approach to testing is known as combinato-
rial testing and has proven to be a cost-efficient way to determine test cases that are 
highly effective at identifying faults in the system that are due to the combination of 
several inputs. However, when such faults are encountered and failures occur, the 
test engineer is tasked with determining the inputs and associated values that trig-
gered the failures. This exercise typically involves examining a long list of potential 
causes and may even require performing follow-up tests to reduce the number of 
potential causes. This paper addresses this issue by considering the prior knowledge 
of the system under test that test engineers often have. We show how this knowledge 
can be used to evaluate and improve the effectiveness of a suite of test cases before 
any test cases are executed. Finally, we address the case where failures occur and 
show how this prior knowledge can aid in determining the inputs, and associated 
values, that triggered the failures. In addition, throughout the paper, we compare and 
contrast the use of covering arrays for testing complex engineered systems to the use 
of factorial experiments in traditional experimental design settings.
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1 Introduction

Testing complex engineered systems is a difficult undertaking where, for a system 
under test (SUT) and its corresponding input space, test engineers are tasked with 
constructing a set of test cases that can efficiently identify faults in the SUT. Test 
engineers are typically limited by tight budgetary constraints and, as a result, testing 
all possible combinations of the inputs is infeasible. As is the case in a traditional 
experimental design setting, focusing on only one input at a time is inefficient. Fur-
thermore, when faults are due to the combination of settings for two or more inputs, 
testing one input at a time is likely to miss some combinations of settings and is 
also ineffective. In a statistical design of experiments setting, a fractional factorial 
design would be one way to address such a problem. While deriving test cases to 
test a complex engineered system can be thought of as being conceptually similar to 
developing an experimental design [7], there are some important differences. First, 
the SUT must be deterministic, thus ensuring reproducible testing results. This also 
implies that replicated runs add no additional information to a test suite, and need 
not be considered. Also, the measured response (outcome) of interest to the test 
engineer is binary, pass or fail, where a pass indicates that for a given test case, the 
actual behavior of the SUT corresponds to the expected behavior, while a fail indi-
cates that actual behavior deviates from expected behavior. In addition, after testing 
a complex engineered system, when failures occur, the outcomes of the test cases 
are used by the test engineer to isolate the underlying cause of observed failures, not 
to estimate effects as would be done in a statistical design of experiments setting.

One of the approaches to testing that seeks to address the challenge of testing 
such complex engineered systems is combinatorial testing. Combinatorial testing 
currently implies a covering array as the underlying mathematical construct [19]. 
The columns of the covering array correspond to inputs of the SUT and rows cor-
respond to test cases. Covering arrays ensure that all possible combinations of levels 
among t inputs appear in a test suite, where t is known as the strength of the cover-
ing array. Note that orthogonal arrays are covering arrays but, whereas every level 
combination involving t or fewer inputs appears equally often for orthogonal arrays, 
every level combination involving t or fewer inputs needs to only appear at least 
once for covering arrays. This less restrictive property means that covering arrays in 
general need much fewer runs compared to the corresponding orthogonal array for 
the same number of inputs. For strength 2 covering arrays with binary inputs, the 
problem of finding the covering array having the minimal number of runs has been 
solved [11, 13, 21]. Table  1 provides some examples comparing the run size for 

Table 1  Comparison of optimal 
binary covering arrays (CA) to 
orthogonal arrays (OA) for k 
inputs

Cell values indicate the minimum run size required for specified 
value of k

k 2–3 4 10 15 35 56 126 1000

CA 4 5 6 7 8 9 10 14
OA 4 8 12 16 36 60 128 1004
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strength 2 covering arrays (CA) versus orthogonal arrays (OA) for k binary inputs. 
Note that the strength of a covering array can be thought of as the projectivity of an 
orthogonal array [1].

The efficiency and effectiveness of the combinatorial testing approach derives 
from the economic run size and the coverage property of covering arrays. Consider 
a set of test cases derived from a covering array. If all the test cases result in a pass, 
then the coverage property allows a test engineer to assert that there are no faults 
due to combinations involving t or fewer inputs. However, when there are failures, 
the test engineer is faced with the task of fault localization—identifying the inputs 
and their level combinations that precipitated the failures. Fortunately, the test engi-
neer typically has prior knowledge of the system, through inputs, or combinations of 
inputs that may have been problematic in the past or due to recent changes that may 
not have been rigorously tested.

While the goal of testing complex engineered systems is not to measure effects, 
for those familiar with factorial designs, the fundamental principles for factorial 
effects [22] are instructive when considering testing such systems. The effects in this 
case are not model effects, but rather failure-inducing combinations of inputs. We 
will review these fundamental principles, from the factorial effect standpoint, before 
discussing how they relate to combinatorial testing.

Effect hierarchy/combination hierarchy: (1) Lower-order effects are more likely 
to be important than higher-order effects. In an empirical study of software failures 
across a variety of domains by Kuhn et al. [16], nearly all faults were due to some 
combination of values for five or fewer inputs. When investigating a failure, a test 
engineer will start with the potential failure-inducing combinations involving the 
fewest number of inputs.

(2) Effects of the same order are equally likely to be important. Without prior 
knowledge of the system, a test engineer will treat all combinations of the same 
number of inputs as being equally likely to induce a failure. However, a test engineer 
may have knowledge of the system that allows the likelihood of some combinations 
of the same order to be more likely to induce a failure [18]. The use of this knowl-
edge is shown in Sect. 4.

Effect sparsity/combination sparsity: The number of relatively important effects 
will be small. For combinatorial testing, sparsity of failure-inducing combinations is 
critical to attain useful information about failures induced by a test suite. If there are 
too many failure-inducing combinations, the SUT is perhaps not ready for combina-
torial testing as almost every test results in a failure.

Effect heredity/combination heredity: An interaction is significant only if at least 
one of the parent factors involving the interaction is significant. As stated, the effect 
heredity principle does not apply to combinatorial testing. If there is a failure due to 
a certain combination of k input levels, then any higher-order combination contain-
ing that k input combination will also result in a failure. The failures can then only 
be attributed to the lower-order failure-inducing combination. Then, once a system 
has no single input that precipitates a failure, the notion of a significant parent factor 
is not appropriate. However, knowledge of the system is particularly useful in identi-
fying inputs more likely to be involved in a fault. That is, higher-order combinations 
involving certain inputs may be more likely to induce a failure.
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Viewed in this way, the appeal of covering arrays becomes more apparent. With 
effect hierarchy, a test engineer wants to focus their attention on lower-order com-
binations of inputs. The guarantee of covering all combinations of inputs involving 
t or fewer inputs is precisely what a test engineer wants in a test suite. The sparsity 
principle allows the test engineer to benefit from the run size economy of cover-
ing arrays and still have confidence that faults can be detected and identified. If we 
reframe heredity in a way that uses prior information about inputs more likely to be 
involved in a fault, it can benefit both the design of a test suite and our ability to do 
fault localization.

Section 2 provides examples of complex engineered systems. In Sect. 3, we pre-
sent notation and discuss some preliminary details. Section 4 discusses quantifying 
prior knowledge through weights, while Sect. 5 uses these weights to evaluate the 
effectiveness and aid in the construction of covering arrays before testing begins. In 
Sect. 6, we show how fault localization can be aided by providing a ranking of the 
inputs and associated values of the set of potential causes that trigger failures. We 
conclude the paper with a discussion of future work in Sect. 7.

2  Motivation

Let us consider XGBoost, a widely used open-source gradient boosting software 
library [3] which is an example of a complex engineered system. Before running 
XGBoost, users often tweak several parameters to get the best possible performance 
from the underlying algorithms. There are several categories of parameters and, 
within each category, there are usually many parameters. For example, Tree Booster 
is one of four boosters that XGBoost offers (release 0.90), and there are twenty-
two parameters to configure Tree Booster. An example of one of these parameters 
is learning rate, which ranges between 0 and 1 and is used to control overfitting. 
Another example is tree method, which allows the user to specify one of five tree 
construction algorithms. Since most of these twenty-two parameters are continuous 
values, the configuration space for the parameters of Tree Booster alone is infinitely 
large. A test engineer faced with validating XGBoost must therefore contend with 
several challenges. First, the engineer must ensure that the parameters that are used 
to configure XGBoost work as intended. Second, the underlying algorithms that 
constitute XGBoost must also work as intended.

As it turns out, most modern software systems present the dual validation chal-
lenge that XGBoost presents [20]. To further complicate matters, test engineers 
must also take into account the nature of failures that may occur when validating 
such systems. Failures may take many forms and the severity of a failure could 
range from catastrophic to benign. For example, in [14], the authors describe a traf-
fic collision avoidance system (TCAS) that is mandated by civil aviation authorities 
around the world for commercial aircraft of a certain size. TCAS is an example of 
a complex engineered system where any failure could be catastrophic. On the other 
hand, in [15], the authors discuss a case where the complex engineered system is a 
browser. Failure for such systems could be benign or may even be costly but would 
not be catastrophic in the way that failure of a TCAS-like system would.
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We will use an example from a commercially available software product (see 
Fig. 1) to illustrate the fault localization discussion in Sect. 6. The example is similar 
to XGBoost but is simpler in that there are only six user-configurable options. These 
options allow users to specify how they would like the application to present its out-
put. This simple, but real, example will allow us to demonstrate how the ideas in this 
paper would help a test engineer to identify failure-inducing input combinations.

3  Notation and Preliminaries

Consider an array D with n rows and l columns. Let column i have si levels for 
i = 1,… , l . D is said to be a covering array of strength t if any subset of t columns 
has the property that all 

∏
si level combinations occur at least once.

Covering arrays may be used to derive a suite of test cases for combinatorial test-
ing. If we map the inputs of the SUT to the columns of a covering array, then the 
levels of the columns would map to the allowed values of the corresponding inputs, 
and the rows of the covering array would then be the test cases of the test suite. For 
continuous factors, one may need to partition the input into discrete levels. In soft-
ware testing, this is referred to as equivalence partitioning. Since a strength t cover-
ing array ensures that all combinations of values for any t inputs are covered then 
a covering array-based combinatorial testing approach allows test engineers to be 
confident that faults due to t or fewer inputs will be discovered, which are the most 
likely to exist by the combination hierarchy principle. If instead, the test engineer 
generated a set of test cases of the same size by randomly selecting from the input 
space, then there is a nonzero probability that combinations for t or fewer inputs 
would be missed.

For many systems, devising a test suite is only the beginning. If a failure is dis-
covered, the test engineer typically wants to know which combination of inputs 
and associated levels induced the failure. This is known as the fault localization 

Fig. 1  Set of inputs for Exam-
ple 3
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problem [9]. To devise the list of potential causes, exact methods have been pro-
posed to evaluate the outcomes of test suites [6]. In the simplest form, for com-
binations involving k inputs, the exact method starts with all input combinations 
involved in test cases that induce a failure, and removes input combinations that 
appear in the test suite for test cases in which a failure did not occur. The value of 
k investigated is typically the smallest value for which the set of potential causes 
is non-empty [16], which we adopt throughout this paper. However, it is not 
uncommon for a test engineer to be faced with a long list of potential causes, and 
so examining the list of potential causes can be an onerous task.

Before using a test suite, there are a number of considerations for fault locali-
zation that can be made, based on test cases in the test suite. For instance, let 
us assume that  failures occur on a subset of test cases, while all remaining test 
cases result in passes. Define �k({m1,… ,mb}) as the set of potential causes due 
to k inputs if failures only occur in rows m1,… ,mb of the test suite with all other 
tests passing. Define Ci1,…,ik

(j1,… , jk) as the combination of level j1 for input i1 , 
level j2 for input i2 , and so on. If Ci1,…,ik

(j1,… , jk) induces a failure, any row in 
the test suite that contains this combination will result in a failure. If there is only 
one failure ( b = 1 ), a test engineer needs to examine the k-input combinations in 
�k({m1}) and find the failure-inducing combination. When b > 1 , there may be 
potential causes that appear on more than one row, while others may appear in one 
row only. If b > 1 , and a combination that appears in only one row is in fact a fail-
ure-inducing combination, then the remaining failure(s) still need to be accounted 
for. For example, when b = 2 , there may be a combination in �k({m1,m2}) that 
would singly account for the failures in m1 and m2 , while the remaining combina-
tions would belong to m1 alone and m2 alone. Under the assumption of sparsity, 
a single combination that can account for both failures is more likely to be the 
actual cause of the failures than different combinations.

Ideally, when a failure is due to a particular input combination, we would like 
to be able to directly identify the actual cause. Error-locating arrays [5] can pro-
vide this capability, but at a cost of additional runs in the test suite. For fault 
localization, we propose a metric based on the potential causes that generate fail-
ures on the same tests of the test suite, assuming there is a single failure-inducing 
combination. If a combination Ci1,…,ik

(j1,… , jk) induces a failure, and appears on 
rows m�

1
,… ,m�

a
 of the test suite, define �(Ci1,…,ik

(j1,… , jk)) as the corresponding 
set of potential causes that would be generated. That is,

While the number of k-input combinations in �(Ci1,…,ik
(j1,… , jk)) may be large, 

because of the sparsity of failure-inducing combinations, the question is if there are 
any single k-input combinations that would produce failures on the exact same rows. 
If there are, a test engineer cannot distinguish the actual failure-inducing combina-
tion from the set of potential causes. Define Con(Ci1,…,ik

(j1,… , jk)) as the number of 
single combinations (distinct from Ci1,…,ik

(j1,… , jk) ) that generate the same poten-
tial cause set. So

�(Ci1,…,ik
(j1,… , jk)) = �k({m

�
1
,… ,m�

a
}).



1 3

Journal of Statistical Theory and Practice (2020) 14:7 Page 7 of 20 7

for Ci1,…,ik
(j1,… , jk) ≠ Ci�

1
,…,i�

k
(j�
1
,… , j�

k
) . We refer to Con(Ci1,…,ik

(j1,… , jk)) as the 
confounding number for a combination. It is the additional number of combinations 
that generate the same set of potential causes.

Example 1 Consider a 4-factor binary strength 2 covering array with 5 rows, as 
shown in Table 2. Let this covering array represent a test suite before the results are 
collected. Take C1,2(1, 1) , the level combination of level 1 in both columns 1 and 2. 
That combination appears only in test 5, and enumerating the two-factor combina-
tions that appear only in test 5, assuming the only failure observed is in test 5, we 
have

With six items in �2({5}) , Con(C1,2(1, 1)) = 5 . Similarly, C1,2(2, 2) appears on rows 
1 and 2 of the test suite. Assuming C1,2(2, 2) is a singular cause and failures are only 
observed on rows 1 and 2,

However, C1,2(2, 2) is the only combination that appears on both rows 1 and 2, so 
Con(C1,2(2, 2)) = 0.

Large values of Con(Ci1,…,ik
(j1,… , jk)) indicate that it is more difficult to iden-

tify Ci1,…,ik
(j1,… , jk) as failure-inducing, as there are more combinations that 

are equally likely to be failure-inducing under the hierarchy assumption. As there 
are many Con(Ci1,…,ik

(j1,… , jk)) values when considering all combinations, as an 
overall measure one can take the average Con(Ci1,…,ik

(j1,… , jk)) for all combina-
tions of order k. For a strength t covering array, for combinations with k < t inputs, 
Con(Ci1,…,ik

(j1,… , jk)) = 0 . This is because for any Ci1,…,ik
(j1,… , jk) , if we take any 

other input, all levels of that input must occur with Ci1,…,ik
(j1,… , jk) by the defini-

tion of the strength of a covering array.
For a strength t covering array, Con(Ci1,…,ik

(j1,… , jk)) is most appropri-
ate for k = t . If one considers the Con(Ci1,…,ik

(j1,… , jk)) for k > t , there may be 

Con(Ci1,…,ik
(j1,… , jk)) = |�(Ci1,…,ik

(j1,… , jk)) = �(Ci�
1
,…,i�

k
(j�
1
,… , j�

k
))|

�(C1,2(1, 1)) = �2({5})

= {C1,2(1, 1),C1,3(1, 1),C1,4(1, 1),C2,3(1, 1),C2,4(1, 1),C3,4(1, 1)}.

(1)
�(C1,2(2, 2)) = �2({1, 2}) = {C1,2(2, 2),C1,4(2, 1),C2,4(2, 1),C3,4(2, 1),

C1,3(2, 1),C2,3(2, 1),C3,4(1, 2)}.

Table 2  Test suite for 
Example 1

1 2 3 4 Result

2 2 2 1 ∙

2 2 1 2 ∙

2 1 2 2 ∙

1 2 2 2 ∙

1 1 1 1 ∙
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combinations of order less than k but greater than or equal to t that result in failures 
in the same rows. By the hierarchy principle, the lower-order combinations are more 
likely failure-inducing. Then, if one does want to consider Con(Ci1,…,ik

(j1,… , jk)) 
with k > t , all combinations of order less than k (but ≥ t ) that produce the same set 
of potential causes should be generated, and one should consider the number of con-
founding combinations for each order up to k. With this in mind, for k > t , a practi-
tioner can evaluate the number of combinations that would need to be examined to 
localize a particular failure-inducing combination of order k that appears in the test 
suite.

In Example  1, |�(C1,2(2, 2))| = 7 , yet Con(C1,2(2, 2)) = 0 as C1,2(2, 2) was the 
only combination appearing on both rows. From a testing perspective, if the only 
failures occur in tests 1 and 2 with successes elsewhere, a test engineer would start 
their investigation with the intuitively most likely explanation—namely C1,2(2, 2) . If 
it turns out that there is no fault due to such a combination, one would investigate the 
remaining combinations in the potential cause set. Contrast this with �(C1,2(1, 1)) , 
where a test engineer has six combinations to investigate. Not surprisingly, to reduce 
the confounding number of a particular combination will require additional test 
cases, which may not always be feasible. As the number of factors grows, the num-
ber of combinations in the set of potential causes can become daunting. Even for 
a small example as in Example 1, a failure for test case 5 means that there are six 
two-factor combinations that need to be investigated. The next two sections discuss 
the use of weights as proposed in Lekivetz and Morgan [18] that can help provide a 
ranking of potential causes to guide a test engineer in fault localization.

4  Prior Knowledge

If a test suite results in failures, a test engineer is faced with determining a plan 
of action for reducing the set of potential causes to identify the failure-inducing 
combination(s). If one follows the hierarchy principle, all potential causes of the 
same order are treated equally likely to induce a failure, while the heredity princi-
ple is not relevant without the notion of main effects. However, test engineers typi-
cally know something about the system. In practice, given a set of potential causes, 
a test engineer often uses their intuition and knowledge of the system, through pre-
vious failures and possibly recent changes, to rank the set of potential causes. That 
is, given a set of potential causes, a test engineer would not consider all the combi-
nations equally likely to induce a failure. This difference between combinations is 
commonly due to information about the individual inputs or lower-order combina-
tions involved in that combination. In this way, using prior knowledge, we do have 
a concept akin to the idea of effect heredity—namely particular inputs (possibly 
individual levels of) are known to be more or less problematic for any combination 
involving them, even if they do not directly induce a failure on their own. The task 
of investigating a potential set of causes could be made less burdensome if we could 
automate the process of ranking potential causes by using prior knowledge that a 
test engineer may have of the system. The remainder of this section outlines such a 
method as introduced in Lekivetz and Morgan [18]. The multiplicity of weights is 
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similar to that as described in Bryce et al. [2], which discusses different mechanisms 
for deriving priorities (weights). Often these weights are arbitrary by nature, based 
on prioritization from test engineers, but their utility is to achieve a relative ranking 
of potential causes.

We quantify prior knowledge through weights. Define wi(j) ≥ 0 as the weight of 
level j for input i, for j = 1,… , si . We use a baseline weight for all wi(j) to be 1, as 
in the authors’ experience, test engineers find this to be more intuitively appealing 
when deciding on weights. A wi(j) should be assigned a value greater than 1 if level 
j of input i is assumed more likely to be involved in a failure based on prior knowl-
edge. A weight of less than 1 is used for levels that are known to be less problem-
atic. A value of 0 assigned to a wi(j) is only used in fault characterization, where it 
is known with absolute certainty that a failure cannot occur due to any interactions 
that include level j for input i. Such a situation would occur when a test engineer has 
been able to test that particular input, as would be the case with checking an if state-
ment in a segment of software code. The magnitude of weight wi(j) can be thought 
of as how much more (or less) likely level j for input i may lead to a failure com-
pared to a baseline input having weight 1. If all weights are set to 1, all effects of the 
same order are thought to be equally likely to induce a failure.

We denote the weight for the combination of input i1 at level j1 and input i2 
( i1 ≠ i2 ) at level j2 by wi1i2

(j1, j2) . The weight of wi1i2
(j1, j2) is calculated as

where j1 ∈ 1,… , si1 and j2 ∈ 1,… , si2 . Using baseline weights of 1, values of 
wi1i2

(j1, j2) greater than 1 indicate combinations more likely to induce a failure, while 
a value less than 1 indicates combinations less likely to induce a failure. The specifi-
cation also implies if both inputs are thought to be more likely involved in inducing 
a failure, their combination is as well. Equation (2) does not preclude the test engi-
neer from changing the value of wi1i2

(j1, j2) . If a test engineer wishes to be more spe-
cific about their knowledge of particular combinations, it can be reflected by using a 
different value for wi1i2

(j1, j2) instead of through Eq. (2). This is particularly relevant 
if one wishes to place a high weight on combinations that have induced failures in 
the past.

To extend this to three inputs, for distinct inputs i1 , i2 , and i3 at levels j1 , j2 , and j3 
( ja ∈ 1,… , sa ), respectively, the weight of the three-input combination, denoted by 
wi1i2i3

(j1, j2, j3) , can be calculated as

assuming that Eq.  (2) is used for the weights of two-input combinations. As 
before, prior knowledge may dictate that a different weight should be assigned to 
wi1i2i3

(j1, j2, j3) instead of using Eq. (3). If Eq. (2) was not used for any pair of inputs 
in {i1, i2, i3} , one can make an adjustment such as using the average or maximum 
over different configurations of the lower-order weights [18].

Weights for combinations involving more than three inputs can be defined in a 
similar fashion. In general for f > 2 inputs, the weight of a combination is the prod-
uct of the weights of the individual inputs:

(2)wi1i2
(j1, j2) = wi1

(j1)wi2
(j2),

(3)wi1i2i3
(j1, j2, j3) = wi1

(j1)wi2
(j2)wi3

(j3),
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with adjustments as deemed necessary by the test engineer. We now discuss how 
these weights can be used in evaluating a covering array.

While the SUT is deterministic, before running a test suite, it is unknown which, 
if any, combinations are failure-inducing. Let Xi1,…,ik

(j1,… , jk) take a value of 1 
if Ci1,…,ik

(j1,… , jk) induces a fault, and 0 otherwise. Before running any tests, we 
treat Xi1,…,ik

(j1,… , jk) as a Bernoulli random variable. For convenience, we use 
P(Ci1,…,ik

(j1,… , jk)) to denote P(Xi1,…,ik
(j1,… , jk) = 1) . This reflects the prior 

belief that Ci1,…,ik
(j1,… , jk) will be failure-inducing, whereby any test involving 

Ci1,…,ik
(j1,… , jk) will result in a failure. Define

where a is sufficiently large. While a ≥ max(wi1,…,ik
(j1,… , jk)) for all possible 

combinations of size k, in cases where the sparsity assumption holds, a reasonable 
value of a is 

∑
wi1,…,ik

(j1,… , jk) over all combinations of size k. That is, if we take 
the expected value over all combinations of size k, the expected number of failure-
inducing combinations is 1. We assume throughout that Xi1,…,ik

(j1,… , jk)
�s are 

independent, and if a particular subset of fewer than k inputs is failure-inducing, 
the fault localization problem needs to address the smaller subset first. Note that 
P(Xi1,…,ik

(j1,… , jk)) = 0) is close to 1, as it is expected that almost every combina-
tion is not failure-inducing.

5  Evaluation of Covering Arrays Using Weights

If combinations having higher weight are more likely to induce failures, then a 
test engineer would like to have those combinations appear in the test suite. For a 
strength t covering array, Lekivetz and Morgan [17] propose the weighted k-cover-
age ( k > t ) as a criterion to be used in construction. The weighted k-coverage of a 
covering array is defined as

where the summation is over all possible k-column projections and associated lev-
els and I(wi1,…,ik

(j1,… , jk)) takes a value of wi1,…,ik
(j1,… , jk) if the combination 

Ci1,…,ik
(j1,… , jk) appears in the test suite and 0 otherwise. Maximizing this meas-

ure during construction or as a post-construction optimization step increases the use 
of combinations more likely to induce a failure. Since preference is given to level 
combinations having higher weight, k-factor combinations involving them are likely 
to appear more than once, aiding in the fault localization problem. One method of 
post-construction optimization is to use don’t care cells, for which any eligible level 
for that column that contains the cell can be used for that cell without altering the 
t-coverage of the covering array [4]. Kim, Jang, and Anderson-Cook [12] investigate 

wi1,i2,…,if
(j1, j2,… , jf ) = wi1

(j1)wi2
(j2)⋯wif

(jf ),

P(Xi1,…,ik
(j1,… , jk) = 1) = wi1,…,ik

(j1,… , jk)∕a

coveragew(k) =

∑
I(wi1,…,ik

(j1,… , jk))
∑

wi1,…,ik
(j1,… , jk)
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some criteria for evaluating covering arrays and the use of don’t care cells (wild card 
entries). The appeal of don’t care cells is that a test engineer can set those particu-
lar entries in the test suite to any valid value they choose. The choice of values is 
typically used to optimize t + i coverage ( i ≥ 1 ) of the covering array. However, the 
don’t care cells can be used to maximize the weighted t + 1-coverage [17]. When all 
the weights are 1, using don’t care cells to maximize the weighted t + 1-coverage 
is equivalent to maximizing the t + 1 coverage. We demonstrate through a simple 
example.

Example 2 Table 3 provides a strength 2 covering array with 4 binary input factors in 
6 runs. Table 4 presents Table 3 with the last row identified as having all positions as 
don’t care cells (denoted by *) [10]. That is, the cells of the last row can take on any 
value and still remain a strength 2 covering array. Consider the weighting scheme 
w1(1) = 4 and w2(1) = 4 , with all remaining weights set to 1. That is, the test engi-
neer believes that level 1 of inputs 1 and 2 are more likely to be involved in combi-
nations that induce failures. Using the weighted 3-coverage criterion, considering all 
possible combinations of values for the don’t care cells, the values (1, 1, 2, 2) would 
maximize weighted 3-coverage. Using this weighting scheme, without taking into 
account the don’t care row, the baseline weighted 3-coverage is 0.529. When the row 
of don’t care cells is set to (2, 2, 1, 1), weighted 3-coverage increases marginally to 
0.543. However, if the row of don’t care cells is set to (1, 1, 1, 2), weighted 3-cov-
erage increases to 0.7 and when set to (1, 1, 2, 2), weighted 3-coverage attains its 
optimal value of 0.757. Similarly, using w3(1) = 4 and w4(1) = 4 with the remain-
ing weights set to 1, the row of don’t care cells should be set to (2, 2, 1, 1) to ensure 
optimal weighted 3-coverage. 

Table 3  Strength 2 binary 
covering array for Example 2

1 2 3 4

2 2 2 1
2 2 1 2
2 1 2 2
1 2 2 2
1 1 1 1
2 1 1 2

Table 4  Strength 2 binary 
covering array with don’t care 
cells marked in Example 2

1 2 3 4

2 2 2 1
2 2 1 2
2 1 2 2
1 2 2 2
1 1 1 1
* * * *
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One of the advantages of using the weighted coverage criterion is that when able 
to make changes through don’t care cells or added rows, the confounding numbers 
of higher weighted, more likely failure-inducing, combinations are more likely to 
decrease. In Example 2, prior to changing the don’t care cells, Con(C12(1, 1)) = 4 , 
whereas setting the don’t care cells to (1, 1, 2, 2), Con(C12(1, 1)) = 0 . As it turns 
out, lowering these confounding numbers tends to be done by increasing the num-
ber of occurrences of higher-weighed combinations, which in turn aids in isolating 
those combinations if they do induce a failure. In the next section, we introduce how 
weights can aid in isolating failure-inducing combinations when failures occur in a 
test suite.

6  Fault Localization

In this section, we discuss how one can examine a combinatorial test suite when 
failures are observed and use prior information for guidance in localizing failure-
inducing combinations. That is, given failures in rows m1,… ,mb , a test engineer 
needs guidance to isolate potential causes in �k({m1,… ,mb}) . The value of k is the 
smallest such value where the set of potential causes is non-empty, either by suc-
cesses in the original test suite, or follow-up testing based on the original test suite. 
Not surprisingly, the frequency and location of the potential causes play a role in 
fault localization.

The purpose here is to provide a ranking of the potential causes to aid the test 
engineer in which combinations to investigate first. Assume that we observe fail-
ures in rows m1,… ,mb . In our treatment of the problem, we focus only on those 
combinations that induce a failure—namely Xi1,…,ik

(j1,… , jk) = 1 . While one could 
consider multiple configurations (i.e., combinations of Xi1,…,ik

(j1,… , jk)
�s being 0 

and 1), of the potential causes maintaining failures only being observed on  rows 
m1,… ,mb , the fact that any given P(Xi1,…,ik

(j1,… , jk) = 0) is close to 1, makes it 
impractical to consider these cases beyond the simplest explanations. For example, 
if we observe a failure on one row, we assume there is only one failure-inducing 
combination rather than all possibilities with one or more failure-inducing combina-
tions. In addition, if a failure-inducing combination is found and fixed, so long as a 
test engineer reruns the particular test with all inputs again, the remaining failure-
inducing combination(s) will still be present and the test will still fail.

We first consider the simplest case, where there is a single failure in the test suite 
on row m1 . Given the set of potential causes, �k({m1}) , we can use the weights as 
described in Sect. 4 to rank each of the combinations. Using the weights, the prob-
ability that a particular combination is failure-inducing is

where P[Ci1,…,ik
(j1,… , jk)|�k({m})] = 0 if Ci1,…,ik

(j1,… , jk) ∉ �k({m}) . Simply 
put, given a set of potential causes, if we focus on a single failure, the likelihood 

(4)
P[Ci1,…,ik

(j1,… , jk)|�k({m1})] =
wi1,…,ik

(j1,… , jk)
∑

Ca1,…,ak
(b1,…,bk)∈�k({m1})

wa1,…,ak
(b1,… , bk)

,
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of a particular combination inducing that failure is the weight for that combina-
tion divided by the sum of the weights for all combinations in �k({m}) . There are 
two underlying assumptions in using Eq.  (4): (1) that the failure is not caused by 
a combination of greater than k inputs, and (2) if it is due to a combination of k 
inputs, there is only one cause for the failure in test case m. In practice, this follows 
the approach test engineers intuitively follow in fault localization. Failure-inducing 
combinations empirically adhere to the hierarchy principle, and a test engineer will 
typically eliminate all combinations of k inputs as potential causes before consider-
ing k + 1 inputs. Alternatively, on the occasions that the most likely potential causes 
for k inputs have been eliminated, a test engineer may use the same approach for 
k + 1 inputs. In regard to (2) while there is a chance that such a situation can occur, 
such occurrences are rare in a well-tested SUT.

Example 3 Test engineers for a commercially available software product want to test 
the preferences system of a particular routine in the software. There are six differ-
ent preferences that can be either checked or unchecked (on/off) as shown in Fig. 1. 
Table  5 provides weights for each input and associated levels that test engineers 
agreed on given prior knowledge of the system. A failure in a test case could be 
incorrect calculations of statistics, graphical elements not displaying correctly, to the 
software crashing and shutting down prematurely. Examining Table 5, the test engi-
neers have set the weight of checked level of “Save Dens Formula” to be 3, indicat-
ing it is known to be problematic, as are the unchecked level of “Diagnostic Plot” 
and unchecked level of “Save Fit Quantiles,” but to a lesser extent with a weight of 
2. The remaining weights are set at the baseline value of 1. Table 6 provides a test 

Table 5  Weights assigned to 
each input in Example 3

Input Levels Weights

Diagnostic Plot Checked, unchecked 1, 2
Density Curve Checked, unchecked 1, 1
Goodness of Fit Checked, unchecked 1, 1
Save Fit Quantiles Checked, unchecked 1, 2
Save Dens Formula Checked, unchecked 3, 1
Save Spec Limit Checked, unchecked 1, 1

Table 6  Test suite for Example 3

Result Diagnostic 
Plot

Density Curve Goodness 
of Fit

Save Fit Quan-
tiles

Save Dens 
Formula

Save Spec 
Limit

Pass Unchecked Unchecked Unchecked Unchecked Unchecked Unchecked
Pass Checked Checked Checked Checked Checked Checked
Fail Checked Unchecked Checked Unchecked Checked Unchecked
Pass Checked Checked Unchecked Checked Unchecked Unchecked
Pass Unchecked Unchecked Unchecked Checked Checked Checked
Pass Unchecked Checked Checked Unchecked Unchecked Checked



 Journal of Statistical Theory and Practice (2020) 14:7

1 3

7 Page 14 of 20

suite that is a strength 2 covering array, for the inputs in Table 5. The outcome of 
each test case is presented in the first column. Using the outcome of the test suite, 
Table 7 presents the potential causes, along with the wi1i2

(j1, j2) values and their rela-
tive probability. Instead of treating all combinations equally likely to have caused 
the failure, the most likely candidate is C45(2, 1) , followed by C56(1, 2) and C14(1, 2) . 
The remaining potential causes are equally likely. This allows the test engineers 
to first focus on “Save Fit Quantiles” at unchecked and “Save Dens Formula” at 
checked, and if C45(2, 1) is not failure-inducing, then C56(1, 2) and C14(1, 2) would be 
the next candidates for investigation.  

Example  3 is simple, both in terms of the number of tests and the number of 
inputs, yet there were still six potential causes for the single failure. Using weights 
is a way of ranking the potential causes in an automated way that accounts for a test 
engineer’s experience with the system. In Example 3, based on the weights the test 
engineers used, any combination involving “Save Dens Formula” as checked would 
be the natural place to look for the cause of the failure given the heredity principle. 
As the number of inputs grows and test suites become larger, the resulting increase 
in the number of potential causes is an issue that test engineers have to deal with. 
The ranking provided by this method makes such situations manageable.

When there is more than one failure, fault localization requires additional care. 
This is due to the possibility that there may be more than one failure-inducing com-
bination. There may be single combinations that could cause all the failures, which 
would be the most likely causes. But one may still have a set of multiple combina-
tions that would result in failures of the same rows, albeit less likely. A test engineer 
may be interested in the likelihood that these combinations might be the cause, par-
ticularly when using prior information. Lekivetz and Morgan [18] considered the 
case of two failures.

Assume that failures have been observed on tests m1,… ,mb of the test suite. As 
in Sect. 3, let �k({m1,… ,mb}) be the set of potential causes for k inputs if a failure 
was to occur in rows m1,… ,mb of the test suite with all other tests passing. The test 
engineer wants to ascertain which combination(s) are most likely to have induced the 
observed failures. Given the set of potential causes �k({m1,… ,mb}) , we need to con-
sider sets of potential cause(s) from �k({m1,… ,mb}) that minimally account for fail-
ures on all of the rows m1,… ,mb without any redundancies. Note that not all sets from 

Table 7  Probabilities and weights assigned to potential causes Ci1 i2
(j1, j2) in Example 3

Input (i) Failure level (j) Weight Probability

Diagnostic Plot (1), Density Curve (2) Checked (1), unchecked (2) 1 1/14
Diagnostic Plot (1), Save Fit Quantiles (4) Checked (1), unchecked (2) 2 1/7
Density Curve (2), Goodness of Fit (3) Unchecked (2), checked (1) 1 1/14
Goodness of Fit (3), Save Spec Limit (6) Checked (1), unchecked (2) 1 1/14
Save Fit Quantiles (4), Save Dens Formula (5) Unchecked (2), checked (1) 6 3/7
Save Dens Formula (5), Save Spec Limit (6) Checked (1), unchecked (2) 3 3/14
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�k({m1,… ,mb}) are valid. For a given set of combinations from �k({m1,… ,mb}) , if 
none is observed in row mi , then the failure rows (and set of potential causes) cannot be 
generated by that subset. Using Xi1,…,ik

(j1,… , jk) as described in Sect. 4, we want

where Ci1,…,ik
(j1,… , jk),… ,Ci�

1
,…,i�

k
(j�
1
,… , j�

k
) being failure-inducing would result in 

observing failures only in rows m1,… ,mb.
Once the set of subsets for the Xi1,…,ik

(j1,… , jk) = 1 has been determined, one must 
determine the appropriate probabilities. As some combinations may occur on more 
than one row, instead of writing the probability for each row (i.e., where the failures 
occur), we instead present it in terms of the potential causes that cover all failures in 
rows m1,… ,mb . If there is a single combination in that set, Eq. (5) then becomes

while for more than one potential cause,

That is, what is the probability that Ci1,…,ik
(j1,… , jk),… ,Ci�

1
,…,i�

k
(j�
1
,… , j�

k
) are all 

failure-inducing combinations, given that failures have been observed in rows 
m1,… ,mb . For potential failure-inducing combinations that occur on multiple rows, 
intuitively one expects the associated probability to be higher than that of distinct 
failure-inducing combinations occurring on different rows. To quantify this, we need 
to establish a likelihood of any particular combination inducing a failure, which we 
denote by P[Ci1,…,ik

(j1,… , jk)] . We use the weighting scheme described in Sect. 4 
(i.e., one expected failure-inducing combination),

Given failures have been observed on certain rows, the likelihood of particular 
combinations inducing a failure is either 0, since they passed elsewhere, or much 
higher since the set of potential causes is much smaller than the set of all possible 
combinations.

Let � be the set of combinations that can generate in �k({m1,… ,mb}) that would 
minimally produce failures in m1,… ,mb . As before, we assume failure-inducing com-
binations are independent. Given a Ci1,…,ik

(j1,… , jk),… ,Ci�
1
,…,i�

k
(j�
1
,… , j�

k
) in �,

(5)P(Xi1,…,ik
(j1,… , jk) = 1,… ,= Xi�

1
,…,i�

k
(j�
1
,… , j�

k
) = 1|�k({m1,… ,mb})),

P(Ci1,…,ik
(j1,… , jk)|�k({m1,… ,mb})),

P(Ci1,…,ik
(j1,… , jk),… ,Ci�

1
,…,i�

k
(j�
1
,… , j�

k
)|�k({m1,… ,mb})).

(6)P[Ci1,…,ik
(j1,… , jk)] =

wi1⋯ik
(j1,… , jk)

∑
wa1⋯ak

(b1,… , bk)
.

(7)

P(Ci1,…,ik
(j1,… , jk),… ,Ci�

1
,…,i�

k
(j�
1
,… , j�

k
)|�k({m1,… ,mb}))

=
P(Ci1,…,ik

(j1,… , jk),… ,Ci�
1
,…,i�

k
(j�
1
,… , j�

k
)�k({m1,… ,mb}))

P(�k({m1,… ,mb}))

=
P(Ci1,…,ik

(j1,… , jk))⋯P(Ci�
1
,…,i�

k
(j�
1
,… , j�

k
))

P(�k({m1,… ,mb}))
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where the numerator of Eq. (7) can be derived by noting that the sets of combina-
tions in � are chosen because they can generate �k({m1,… ,mb}).

To calculate P(�k({m1,… ,mb}) , we take the summation over the set of subsets 
in �,

where the elements in � may have only one combination.

Example 4 We return to the set of inputs in Example 3. In this case, the test engi-
neers have decided on the set of weights given in Table  8. The same strength 2 
covering array is used to test the system, but the results are different as shown in 
Table 9. No single input is failure-inducing, so two-input combinations must be con-
sidered. The summation of all wi1,i2

(j1, j2) is 146. Using Eq. (6), the potential causes 
for each row and the associated probabilities are given in Table 10. Note that the 
combination “Goodness of Fit” at unchecked and “Save Fit Quantiles” at checked 
( C34(2, 1) ) appears in both test cases as a potential cause. This implies that in � , 
C34(2, 1) will be a combination on its own, while the other elements of � will con-
tain one of the potential causes from test case 4 only, and one from test case 5 only. 
Using Eq. (8), we can partition it into P(C34(2, 1))) , plus the sum of the product of 
the remaining pairs of potential causes.

(8)P(�k({m1,… ,mb}) =
∑

�

P(Ci1,…,ik
(j1,… , jk))⋯P(Ci�

1
,…,i�

k
(j�
1
,… , j�

k
)),

Table 8  Weights assigned to 
each input in Example 4

Input Levels Weights

Diagnostic Plot Checked, unchecked 2, 2
Density Curve Checked, unchecked 2, 2
Goodness of Fit Checked, unchecked 1, 1
Save Fit Quantiles Checked, unchecked 1, 1
Save Dens Formula Checked, unchecked 3, 2
Save Spec Limit Checked, unchecked 1, 1

Table 9  Test suite for Example 4

Result Diagnostic 
Plot

Density Curve Goodness 
of Fit

Save Fit Quan-
tiles

Save Dens 
Formula

Save Spec 
Limit

Pass Unchecked Unchecked Unchecked Unchecked Unchecked Unchecked
Pass Checked Checked Checked Checked Checked Checked
Pass Checked Unchecked Checked Unchecked Checked Unchecked
Fail Checked Checked Unchecked Checked Unchecked Unchecked
Fail Unchecked Unchecked Unchecked Checked Checked Checked
Pass Unchecked Checked Checked Unchecked Unchecked Checked
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Table  11 presents the joint probability for potential causes considering both test 
cases. With only two failures, one can examine the marginal probabilities. They are 
shown in Table 11 in the last column for test case 4 and the last row for test case 5.

As demonstrated in Example  4, even when the initial weight of a particular 
combination is small, when there is a potential cause (or causes) that appears for 
multiple failures, it tends to be the most likely potential cause compared to inde-
pendent causes for different failures. This is intuitively what one would expect if 
failures are rare. From a practical standpoint, it is often preferable to present poten-
tial causes from multiple test cases separately from the unique occurrences. That is, 
do a weighted comparison of the smallest sets in � first. If it is discovered that none 
of the multiple-test case potential causes are failure-inducing, the test engineer can 
perform a weighted analysis on the remaining potential causes unique to each test 
case. If there are more than two failures, this approach is typically more tractable 
than generating the joint probability mass function over all sets in � . We finish this 
section with an example where three failures are observed.

(9)P(�2({4, 5})) =
1

146
+

(13)(16)

1462
=

354

1462

Table 10  Potential causes for each failure in Example 4

Test case 4 Test case 5

Ci1 i2
(j1, j2) wi1 i2

(j1, j2) P[Ci1 i2
(j1, j2)] Ci1 i2

(j1, j2) wi1 i2
(j1, j2) P[Ci1 i2

(j1, j2)]

C34(2, 1) 1 1/146 C34(2, 1) 1 1/146
C13(1, 2) 2 2/146 C14(2, 1) 2 2/146
C15(1, 2) 4 4/146 C15(2, 1) 6 6/146
C23(1, 2) 2 2/146 C24(2, 1) 2 2/146
C26(1, 2) 2 2/146 C26(2, 1) 2 2/146
C45(1, 2) 2 2/146 C35(2, 1) 3 3/146
C46(1, 2) 1 1/146 C36(2, 1) 1 1/146

Table 11  Probabilities for potential causes for each failure test case in Example 4

C34(2, 1) C14(2, 1) C15(2, 1) C24(2, 1) C26(2, 1) C35(2, 1) C36(2, 1)

C34(2, 1)
146

354
0 0 0 0 0 0 146/354

C13(1, 2) 0 4

354

12

354

4

354

4

354

6

354

2

354
32/354

C15(1, 2) 0 8

354

24

354

8

354

8

354

12

354

4

354
64/354

C23(1, 2) 0 4

354

12

354

4

354

4

354

6

354

2

354
32/354

C26(1, 2) 0 4

354

12

354

4

354

4

354

6

354

2

354
32/354

C45(1, 2) 0 4

354

12

354

4

354

4

354

6

354

2

354
32/354

C46(1, 2) 0 2

354

6

354

2

354

2

354

3

354

1

354
16/354

146/354 26/354 78/354 26/354 26/354 39/354 13/354 p
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Example 5 We return to the set of inputs in Example  3, using the weights from 
Example 4 given in Table 8. In this example, an additional test has been added to 
the test suite, given in Table 12. Failures are observed in tests 2, 4, and 7, with the 
remaining tests passing. Table  13 provides the set(s) of potential causes in � that 
would generate �2({2, 4, 7}) and associated probabilities. In this example, the com-
bination of diagnostic plot and density curve both checked would be a test engi-
neer’s first consideration.

When there are three or more failures in a test suite, the number of sets of combina-
tions in � can be very large. As seen in the examples, the elements of � that contain 
more input combinations are less likely to be the cause of the failures, as would be 
expected given the sparsity principle. If � has too many elements, a practitioner could 
first consider those sets in � having the smallest number of elements.

Table 12  Test suite for Example 5

Result Diagnostic 
Plot

Density Curve Goodness 
of Fit

Save Fit Quan-
tiles

Save Dens 
Formula

Save Spec 
Limit

Pass Unchecked Unchecked Unchecked Unchecked Unchecked Unchecked
Fail Checked Checked Checked Checked Checked Checked
Pass Checked Unchecked Checked Unchecked Checked Unchecked
Fail Checked Checked Unchecked Checked Unchecked Unchecked
Pass Unchecked Unchecked Unchecked Checked Checked Checked
Pass Unchecked Checked Checked Unchecked Unchecked Checked
Fail Checked Checked Unchecked Unchecked Unchecked Checked

Table 13  Probabilities for 
potential causes in � in 
Example 5

Potential cause(s) Probability Potential cause(s) Probability

C12(1, 1) 292/353 C15(1, 2),C25(1, 1) 12/353
C13(1, 2),C14(1, 1) 2/353 C15(1, 2),C34(1, 1) 2/353
C13(1, 2),C16(1, 1) 2/353 C16(1, 1),C23(1, 2) 2/353
C13(1, 2),C24(1, 1) 2/353 C16(1, 1),C24(1, 1) 2/353
C13(1, 2),C25(1, 1) 6/353 C16(1, 1),C26(1, 2) 2/353
C13(1, 2),C34(1, 1) 1/353 C16(1, 1),C45(1, 2) 2/353
C14(1, 1),C15(1, 2) 4/353 C16(1, 1),C46(1, 2) 1/353
C14(1, 1),C16(1, 1) 2/353 C23(1, 2),C24(1, 1) 2/353
C14(1, 1),C23(1, 2) 2/353 C23(1, 2),C25(1, 1) 6/353
C15(1, 2),C16(1, 1) 4/353 C23(1, 2),C34(1, 1) 1/353
C15(1, 2),C24(1, 1) 4/353
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7  Discussion

In this article, we have discussed the connection between the seemingly disparate 
concepts of failure-inducing combinations in a complex engineered system and 
the principles of factorial effects that are fundamental to constructing designs for 
factorial effects. We have demonstrated how prior information about a system can 
be quantified through the use of weights, aiding in both the evaluation and analy-
sis of covering arrays. In the construction of covering arrays, the use of weights 
will result in a covering array that will have a higher likelihood of uncovering 
faults in the system, while for analysis, they aid in fault localization. An area of 
future research is the use of weights to augment a covering array when a test engi-
neer has the budget for additional test cases. These extra test cases can reduce the 
number of likely potential causes when failures occur and can therefore provide 
a happy medium between optimal size covering arrays and error-locating arrays 
[5]. Alternatively, our method of computing weights could be used by algorithms 
that construct biased covering arrays [2] or to encode prior information for a test 
suite prioritization technique [8].
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