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Abstract
Designed experiments for ANOVA studies are ubiquitous across all areas of scien-
tific endeavor. An important decision facing experimenter is that of the experiment 
run size. Often the run size is chosen to meet a desired level of statistical power. The 
conventional approach in doing so uses the lower bound on statistical power for a 
given experiment design. However, this minimum power specification is conserva-
tive and frequently calls for larger experiments than needed in many settings. At 
the very least, it does not give the experimenter the entire picture of power across 
competing arrangements of the factor effects. In this paper, we propose to view the 
unknown effects as random variables, thereby inducing a distribution on statistical 
power for an experimental design. The power distribution can then be used as a new 
way to assess experimental designs. It turns out that using the proposed expected 
power criterion often recommends smaller, less costly, experimental designs.

Keywords Statistical minimum power specification · Power distribution · ANOVA

1 Introduction

When planning an experiment, a critical first question to be addressed is whether or 
not the allocated run size is sufficient to meet the aim of the investigation. A natural 
way to assess an experimental design is to see if it achieves a satisfactory level of 
power for the effects of interest (e.g., Fairweather [3] and Gerrodette [4]).

The power of a statistical test is the probability of correctly detecting the presence 
of a significant effect (In most of the discussion throughout, we follow the more 
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colloquial description of power as a percentage). In ANOVA studies, the power is a 
function of the minimum effect size to be detected, significance level of the hypoth-
esis test, system variability and the design characteristics (e.g., number of treat-
ment levels for a factor, number of replicates, etc.). The effect size, Δ , is typically 
defined as the difference between the largest and smallest level of treatment effects. 
For effects involving two-level factors, the effect size is directly related to the coef-
ficients in a least squares regression model and can be easily utilized to calculate 
power [1]. On the other hand, for explanatory variables with more than two levels, 
there are infinitely many choices for treatment effects under a given effect size. It 
turns out that these differences in the assignment of treatment effects can have a 
large impact on the power for detecting significant effects of the desired magnitude.

A common approach for computing power in ANOVA studies, where the sum-
to-zero constraint is used, is to set the treatment effect for two of the factor-level 
settings so that their difference is the minimum size the experimenter wishes to 
detect, and the remaining treatment effects are set to zero. This gives the lowest 
power among all specifications for the experimenter’s desired difference in treatment 
effects (i.e., the effect size) and is known as the minimum power specification.

While conservative, the minimum power specification provides a lower bound for 
the power [1] for the design. Using this approach ensures that the statistical power of 
the experimental procedure is at least the level chosen by the experimenter. On the 
other hand, it is highly unlikely that the treatment effects are those of the minimum 
power specification (i.e., two large treatment effects, while the remaining effects are 
exactly zero). The practical result of using this specification is being too conserva-
tive in the assessment of the design and requiring a potentially costly increase in the 
run size to achieve the desired lower bound for power, or removing levels and fac-
tors from consideration to meet a certain level for the power.

In this paper, a new approach for the assessment of power in designed experi-
ments is proposed. Instead of using a specific pattern for the treatment effects, we 
propose using a distribution for the treatment means. From this, a distribution for the 
power is induced. Expected values and percentiles of the power distribution can then 
be employed to help a researcher evaluate an experiment based on desired statisti-
cal power. This allows for more flexibility in assessing the experimental setup, and 
frequently results in a reduction in the required run size versus the common mini-
mum power specification. By considering the distribution of the treatment effects, a 
practitioner can get a better assessment for the likelihood of detecting a significant 
effect over a range of plausible specifications, rather than focusing on a specific, 
potentially extreme, case.

This paper is outlined as follows. In Sect.  2, basic concepts of power analysis 
for ANOVA models are reviewed and illustrated with a motivating example. The 
“power distribution” is then proposed in Sect. 3, followed by examples in Sect. 4. 
Concluding remarks are made in Sect. 5.
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2  Power in ANOVA Studies

We begin by introducing some of the issues related to power analysis using an applica-
tion from the literature [6] where the chemical behavior of different combinations of 
material was studied. This design is used throughout to help illustrate the main ideas. 
The experiment was performed as a completely randomized design with five factors 
with two-, three- or four-level settings (see Table 1). The outcome of the experiment is 
the measurement of chemical species present in a closed container containing multiple 
materials. The corresponding main effects ANOVA model can be written as

where i is an index vector denoting the experimental treatment, the elements of i 
indicate the level setting for each factor, yij is the jth response for treatment i, � is the 
overall mean, and  is the measurement error. Let �A , �B , �C , �S 
and �T be the vectors of treatment effects with, for example, �A = (�A,1, �A,2, �A,3, �A,4)

�.

For standard ANOVA models, there is an identifiability issue due to over-parameteri-
zation (e.g., see Dean et al. [2], Section 3.4). That is, not all elements of the � ’s are simul-
taneously estimable. To address this issue, constraints are placed on the model param-
eters. Throughout, the sum-to-zero constraints (e.g., see Dean et  al. [2]) are assumed 
(i.e., the treatment effects for each factor sum to zero). Of course, there are other types 
of constraints (e.g., baseline constraints in Wu and Hamada [7]) that can be applied. It is 
worth noting that the hypothesis test for equality of treatments remains the same across 
different types of constraints, but the practical interpretation may be different.

Let � = (�, �A,1, �A,2, �A,3, �B,1, �B,2, �C,1, �C,2, �S,1, �T ,1)
� denote the vector of estima-

ble parameters for a main effects model. This parametrization defines the model uniquely 
as the zero-sum constraint implies that �A,4 = −�A,1 − �A,2 − �A,3 , �B,3 = −�B,1 − �B,2 
and �C,3 = −�C,1 − �C,2 . For the experimental design in Table 2 [6], the corresponding 
model matrix, � , and column vector of responses, � , are used to obtain the ordinary least 
squares estimate of � (i.e., �̂� = (𝐗T𝐗)−1𝐗T𝐘 ). To test the significance of, for instance, 
factor A under H0 : �A = � versus Ha : �A = �

a
A
 , as an example, the F test statistic is

(1)yij = � + �A,iA + �B,iB + �C,iC + �S,iS + �T ,iT + �ij, i = (iA, iB, iC, iS, iT )
�

(2)FA =
(𝜏A,1, 𝜏A,2, 𝜏A,3)Σ

−1
𝜏A
(𝜏A,1, 𝜏A,2, 𝜏A,3)

T∕𝜈1

𝜎−2(�T� − �̂T�T��̂)∕𝜈2

,

Table 1  Material factors [6] Factor Treatment

Material A a0, a1, a2, a3

Material B b0 , b1 , b2
Material C c0 , c1 , c2
Spacing S s1 , s2
Temperature T t1 , t2
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where �̂A is the least squares estimate of �A , �1 and �2 are the degrees of freedom, and 
Σ𝜏A

 is the variance–covariance matrix of (𝜏A,1, 𝜏A,2, 𝜏A,3)�.
With � and �a

A
 specified, along with the error variance, �2 , and significance level 

for the test, � , the calculation of power for factor A makes use of the probability dis-
tributions of FA under H0 and Ha in the following steps: (1) find the critical value, 
F∗
A
 , under the null hypothesis of the equality of treatment effects for factor A, from 

an F distribution with degrees of freedom �1 = 3 , �2 = 24 − 10 = 14 under H0 ; (2) 
compute the power as P(FA > F∗

A
|Ha) , where FA follows a non-central F distribution 

of FA , with non-centrality parameter 𝜙A = (𝜏a
A,1

, 𝜏a
A,2

, 𝜏a
A,3

)Σ−1
𝜏A
(𝜏a

A,1
, 𝜏a

A,2
, 𝜏a

A,3
)� [5] 

under Ha (not all treatment effects are the same). Note that we have chosen factor A 
somewhat arbitrarily, and the calculations for the other factors in the material study 
can be made similarly.

Many different choices are available for �a
A
 under the sum-to-zero constraint and 

effect size ΔA . Figure  1 depicts four examples for �a
A
 that satisfy the sum-to-zero 

constraints with ΔA = 2 . In the far left panel of the figure, the first and last effects 
are set to − 1 and + 1, respectively, while the other two effects are set to zero. This 
corresponds to an extreme case where the effects are overall “minimal” (having as 
many effects of zero as possible). The second panel demonstrates a “maximal” effect 
pattern (having large absolute effects) where the first two effects are specified as − 1 
and the last two effects are set to + 1. The specifications for the final two scenarios 
are examples of not-so-extreme treatment effects.

The different specifications have consequences in the assessment of the power 
for the experiment. In practice, the minimum power specification is commonly used 
since it offers a lower bound on the power for the specified effect sizes (e.g., ΔA ). 
While using the minimum power specification is tempting, the corresponding effects 
specification is unlikely to occur in practice and can lead to larger recommended run 
sizes than necessary. For instance, with effect size ΔA = 2 and measurement error 
variance �2 = 1 , the power of factor A for design D (Table 2) under the minimum 
power specification is around 70%, which suggests more trials should be performed 
if one wishes to detect an effect size of 2 with higher power. In fact, obtaining a 
power over 90% under this specification requires a design that is twice as costly. 
On the other hand, if the experimenter uses the arrangement in the second panel of 
Fig. 1 (i.e., �a

A
= (−1,−1, 1, 1)� ), the power for factor A is above 95%, indicating that 

Table 2  24-run design from 
Wendelberger et al. [6]

Run A B S C T Run A B S C T Run A B S C T

1 0 0 0 0 0 9 2 2 0 1 0 17 1 1 1 0 1
2 0 1 0 1 0 10 3 0 0 0 1 18 1 2 1 1 0
3 0 2 0 2 1 11 3 1 0 1 1 19 2 0 1 0 0
4 1 0 0 1 1 12 3 2 0 2 1 20 2 1 1 1 1
5 1 1 0 2 0 13 0 0 1 1 1 21 2 2 1 2 1
6 1 2 0 0 0 14 0 1 1 2 0 22 3 0 1 1 0
7 2 0 0 2 0 15 0 2 1 0 1 22 3 1 1 2 0
8 2 1 0 0 1 16 1 0 1 2 1 24 3 2 1 0 0
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the 24-run design would be sufficient. The patterns in the final two panels of Fig. 1 
(i.e., evenly spaced and all-but-one same specifications) produce power of 76.40% 
and 88.47%, respectively.

The act of declaring power derived from any one specification of �a
A
 is poten-

tially substantial. It also raises the question of whether performing the most costly 
experiment is the right thing to do in practical settings. It is desirable to incorporate 
the uncertainty of �a

A
 to produce power calculations of typical arrangements for the 

effects, and to move away from being overly conservative with specifications that 
describe only unlikely scenarios. In the next section, new methodology for assessing 
statistical power in designed experiments is proposed to address this issue.

3  The Power Distribution

In this section, we propose a new way to assess statistical power. Our approach is 
to define statistical power as a random variable, and instead of producing one fixed 
number, the probability distribution of the statistical power (the power distribution) 
is used to reflect possible specifications of the treatment effects. With the power dis-
tribution in hand, the expected value and percentiles of the power distribution, for 
example, can be used to assess experimental designs or to aid in run size selection. 
The proposed methodology can be employed used in place of, or as a complement 
to, the traditional power calculation.

It turns out that integration of the density for the power distribution is analytically 
intractable, and an approach is developed in Sect. 3.1 for fast numerical evaluation 
to obtain the expected value of power (or expected power). Exploration of the entire 
distribution of power requires Monte Carlo methods which can also be accom-
plished quickly and is discussed in Sect. 4.1 (Details on numerical evaluation and 
considerations for computing resources are presented in “Appendix C.”) Throughout 
Sect. 3, the material example from Sect. 2 serves as an illustration of our methodol-
ogy, and results are compared to that of different specifications to demonstrate the 
benefits of adopting the proposed approach.

We begin the introduction of power distribution by considering a general 
ANOVA setting. For a factor with k levels, denote by �a = (�a

1
, �a

2
,… , �a

k
)� the vec-

tor of treatment effects under the alternative hypothesis. To perform power calcula-
tions, the effect size, Δ , the residual variance, �2 and the significance level, � must 
be specified. Without loss of generality, it is assumed that �a

1
, �a

2
,… , �a

k
 are in non-

decreasing order, where �a
1
 and �a

k
 are the minimum and maximum of all treatment 

effects, respectively. That is to say, �a
k
− �a

1
= Δ , and �a

1
≤ �a

2
≤ … ≤ �a

k
.

A multivariate probability distribution, f�(⋅) with domain [�a
1
, �a

k
] , is used to 

reflect the experimenter’s belief about the size and potential arrangements of the 
remaining effects in �a (i.e., the elements of �a other than the extreme setting, 
�a
1
 and �a

k
 ). The sum-to-zero constraint can be readily imposed by applying a 

shift to sampled �a under the factor effects model. That is, the constrained vec-
tor of treatment effect, denoted by �a∗ , is (�a

1
− �, �a

2
− �,… , �a

i
− �,… , �a

k
− �)� 

with scalar � =
∑

i �
a
i
∕k . As a result, the statistical power function 

�(D, �a) = P(reject H0|Ha ∶ � = �a∗ is true) is a random variable whose 
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distribution will be used in assessing the power under all possible values of �a 
within the domain of f�(⋅) . In our framework, the minimum power specification 
is a special case that can be defined through f�(⋅) by assigning point mass prob-
ability of 1 to {�a

1
= −Δ∕2, �a

2
= �a

3
= ⋯ = �a

k−1
= 0, �a

k
= +Δ∕2} , and probability 

of 0 to all other arrangements. Generally, f�(⋅) puts a distribution on the model 
space for the treatment effects, and the minimum power specification is just one 
of many possible realizations from f�(⋅).

Returning to the material example, we now examine the power distribution 
for factor A with the 24-run near-orthogonal design proposed in Wendelberger 
et al. [6] (Table 2) as an illustration. The first step is to specify the effect size of 
interest, the residual variance and the significance level. Here, we use ΔA = 2 , 
�2 = 1 and � = 0.05 . Next, the distribution f�(⋅) must be selected. We consider 
four specifications for f�(⋅) (see histograms shown in the top row of Fig. 2). The 
first distribution (top left in Fig. 2) is a truncated normal distribution with mean 
zero and scale �� = 0.33 . This distribution can be viewed as a relaxation of the 
minimum power specification where the density peaks at � = 0 and decreases as 
the effects deviate from 0. The second one is an example of asymmetric distribu-
tion (top row, second panel in Fig. 2); specifically, a truncated normal distribu-
tion on [−1, 1] with �� = 0.5 and �� = 0.3 is chosen. The third distribution (top 
row, second from the right in Fig. 2) is a uniform distribution on (−1, 1) , which 
can be thought of the uninformative choice. The final distribution (top right in 
Fig. 2) is mixture of normals with mean ±1 and scale �� = 0.3 on (−1, 1) . It is 
chosen as a relaxed version of the maximum power specification.

From the four different distributions, samples of the treatment effects �a
A
 

are drawn. For each sampled �a
A
 , the power for factor A can be calculated as 

described in Sect. 2. The corresponding histograms for power are presented in 
the second row in Fig.  2. The power using the conventional minimum power 
specification is indicated by the dotted black line, and the maximum power 
obtained by letting �a

A
= (−1,−1, 1, 1)� is indicated by dashed blue line. The 

mean of the power distribution is identified by the solid red line.
Of course, under all four f�(⋅)’s, the power distribution (bottom row in Fig. 2) 

indicates that the power is always between the minimum and maximum power 
specification. When f�(⋅) assigns less mass in the area near � = 0 (left to right), 
the power distribution shifts to the right indicating more power. That is, the 
probability of having higher power increases, and the expected value of the 
power distribution also becomes larger. This shift in the power distribution coin-
cides with the intuition that effects with magnitudes near zero tend to lead to 
lower power.

Different metrics can be extracted from the power distribution that can be 
used to improve the overall assessment of statistical power for a design over and 
above the minimum power specification. For example, if an experimenter does 
not want to be too conservative or optimistic, and chooses a uniform distribu-
tion for f�(⋅) , they can use the expected power (slightly above 80% in the above 
example) for the experiment. Next, we discuss a method for fast evaluation of 
expected power.
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3.1  Expected Power

Denote the power under a design, D, as �(D, �a) . Having defined the power distri-
bution, we can evaluate the expected power and use this to assess a design. The 
expected value of the power distribution is

Generally, this integral will not be tractable. The following theorem provides a way 
to evaluate the expected power of a design D given any distribution f�(⋅) for the 
treatment effects.

Theorem 4 The expected power, E[�(D, �a)] , for a k-level factor and distribution 
f�(⋅) for the treatment effects can be obtained as

where I(⋅) is the regularized incomplete beta function, c is the critical value of the 
test, H0 : � = � versus Ha : � = ∗�a (sum-to-zero constrained version of �a ) , ne is the 
degrees of freedom for the residuals, and

where � is the non-centrality parameter for the non-central F distribution that the 
test statistic follows under Ha.

Proof See “Appendix A”.   ◻

It is worth noting that the above theorem applies to normal ANOVA models in 
general, and not just to the main effect model. To maintain the desired effect size, 
the domain of f�(⋅) needs to be studied beforehand for �a ’s that require more than 
one sum-to-zero constraint, such as the interaction effects in two-way ANOVA mod-
els. One of many approaches is to first use Monte Carlo method to generate factor 
effects and then to only keep candidate that satisfies all constraints.

For simplicity, denote I∗(s) as the incomplete beta function in Eq. (4),

since the other quantities (k, c and ne ) are fixed for a given design. The expected 
power then becomes

(3)E
[
�(D, �a)

]
= ∫ �(D, �a)f�(�

a)d�a.

(4)E
[
�(D, �a)

]
= 1 −

∞∑

s=0

I

(
(k − 1)c

ne + (k − 1)c

||||
k − 1

2
+ s,

ne

2

)
⋅ g(s),

(5)g(s) = ∫
e−�∕2(�∕2)s

s!
⋅ f�(�

a)d�a,

I

(
(k − 1)c

ne + (k − 1)c

||||
k − 1

2
+ s,

ne

2

)
,
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where an infinite series indexed by s needs to be evaluated.
The analytic form of the summation in Eq. (4) is not tractable. Fortunately, fast 

numerical integration can be performed for g(s) via Monte Carlo. The sum can then 
be approximated by truncating the index, s, at some large number M (see “Appendix 
C” for theoretical justification and numerical illustrations).

Evaluation of the expected power for all factors in the material study, with distri-
butions for the f�(⋅)’s, is shown in Table 3 with M = 30 . The minimum power and 
maximum power are also included for comparative purposes. It can be seen from 
the results that the expected power is often much higher than the minimum value. 
Realistically, this implies that a design might be much more effective than the mini-
mum power specification would lead one to believe. The expected power provides 
an additional assessment of designs and shows the utility of cost-effective designs 
which are otherwise considered inadequate if only minimum power is used. It is 
worth noting that as the probability of having treatment effects near zero gets lower, 
the expected power increases. In practice, it is unlikely to have exactly two of the 
treatment effects being large and all of the remaining treatment effects having mag-
nitudes near zero. Thus, assessing a design using a uniform distribution for f�(⋅) and 
computing the expected power can give a more sensible assessment of statistical 
power.

Aside from the expected value, other quantities of the power distribution might 
also be of great interest to experimenters. One might want to know, for example, 
what is the probability that the power is above 80%? We will address this type of 
question next, by examining the entire power distribution.

(6)E
[
�(D, �a)

]
= 1 −

∞∑

s=0

I∗(s) ⋅ g(s).

Table 3  Expected power for the near-orthogonal design in Table 2 with Δ
A
= Δ

B
= Δ

C
= 2 , �2 = 1

Distributions for � considered include truncated normal with �� = 0 and �� = 0.5 , uniform and mixture 
of normals. Deterministic patterns for the treatment effects include minimum/maximum power specifica-
tion and all-but-one the same pattern

Pattern for �a Factor A (%) Factor B (%) Factor C (%)

Minimum power 71.50 89.82 89.82
Expected power ( �� = 0, �� = 0.33) 74.78 90.78 90.78
Expected power ( �� = 0.5, �� = 0.33) 78.39 92.16 92.16
Expected power (uniform) 80.83 92.44 92.44
Expected power (mixture of normals) 86.74 94.39 94.39
All-but-one same 88.47 96.41 96.41
Maximum power 95.86 96.41 96.41
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3.2  Other Metrics

Besides the expected value, one might also be interested in percentiles to gain more 
insight on the distribution of �(D, �a) . Questions of interest may include (1) what is 
the chance that the power of design D for detecting factor A is greater than 80%? or 
(2) with 95% confidence, what is lower threshold for the power?

3.2.1  Tail Probabilities

To address the first question, it is important to translate it into a probability state-
ment. The probability of power being greater than some threshold � can be expressed 
as P(𝜂(D, �a) > 𝛽) , which is the tail probability of power distribution evaluated at � . 
Using the notation from Eq. (4), this tail probability can be written as

The above integral is typically analytically intractable. However, we will dem-
onstrate how to approximate tail probability via Monte Carlo with the material 
example.

Figure 2 displays random samples of �a
A
 drawn from the three distributions we 

have considered. With these samples, an empirical power distribution is then con-
structed. We revisit these histograms in the first row of Fig. 3, followed by corre-
sponding empirical CDFs in the second row. We can address the question on the 
chance of power for factor A being over 80%. From the empirical CDFs in the sec-
ond row of Fig. 3, it can be seen that the mixture of normals (right column) for �a

A
 

suggests a chance as high as 0.9 of having a power over 80%, while the truncated 
normal distribution (left column) suggests merely a 0.1 chance. An intuitive inter-
pretation can be made by recalling that the truncated normal distribution is consid-
ered as a relaxation of the minimum power specification, and the mixture of normals 
(right column) serves as a relaxation of the maximum power specification. The uni-
form distribution (middle column) produces an intermediate chance of almost 0.5.

3.2.2  Upper Percentile of the Power Distribution

For the second question raised, we are interested in finding the lower threshold for 
the power function with a given confidence level. This question can be addressed by 
the upper percentile of the power distribution. The upper percentile of order p for 
�(D, �a) is defined as

The lower threshold for the power function with a 0.95 confidence level is therefore 
q0.95 , and it can be obtained from empirical CDFs as ones shown in Fig. 3. Alterna-
tively, one could use simulation to perform numerical integration and search for the 
appropriate qp that satisfies

P(𝜂(D, �a) > 𝛽) = E(�{𝜂(D,�a)>𝛽}) = ∫
𝜂(D,�a)>𝛽

f𝜏(�
a)d�a.

(7)qp = max{b ∈ R ∶ ℙ(�(D, �a) ≤ b) ≤ 1 − p}.
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Different qp ’s of the power for factor A (with p = 0.5 , 0.8, 0.9 and 0.95) under dif-
ferent distributions for �a are shown in Table  4. As can be seen, more optimistic 
distributions on �a

A
 (e.g., mixture of normals) lead to a large lower bound on power 

across all confidence levels.

4  Examples: Choosing the Run Size

To illustrate the use of the power distribution in planning experiments, two examples 
are presented in this section. Full factorial designs are considered to gain insights on 
how the power distribution can be used to assess experimental design from a cost or 
run size perspective.

4.1  One‑way ANOVA

At the beginning of an experiment, an experimenter is faced with balancing avail-
able resources with the desire to detect significant effects. In this section, a balanced 
one-way ANOVA model is used as a simple illustration of how the proposed power 
distribution method can be adapted to choose the run size.

Consider a one-way ANOVA model with a factor with k levels

where i = 1, 2,… , k , j = 1, 2,… , r where r is the number of replicates of a full fac-
torial design. Suppose that the experimenter has an initial estimate of the random 
error and specifies that �i,j ∼ N(0, �2).

To assess the power using the proposed approach, the distribution of the effects, 
the minimum size of the effect, Δ and the significance level, � , must be specified. In 
this example, a uniform distribution on [−Δ∕2,Δ∕2] is assumed for �a . This assumes 
that other than the two effect levels that are set with a difference of Δ , the distribu-
tion of remaining effects is uniform in this range between. The effect size is chosen 
to be Δ = 1 and 2 . Full factorial designs with factors having k = 4, 5, 6, 7 levels are 
considered using error an error variance of �2 = 1 and significance level � = 0.05.

E
[
�(�(D, �a) ≤ qp)

]
= � �(�(D, �a) ≤ qp) ⋅ f�(�

a)d�a ≤ 1 − p.

(8)yi,j = � + �i + �i,j,

Table 4  Upper percentiles of the power for factor A under different distributions

Distribution for �a q0.5 (%) q0.8 (%) q0.9 (%) q0.95 (%)

Truncated normal �� = 0 74.03 72.31 71.88 71.68
Truncated normal �� = 0.5 78.14 74.98 73.73 72.87
Uniform on (−Δ∕2,Δ∕2) 80.74 75.55 73.59 72.55
Mixture of normals �� = 0.33 85.86 82.14 80.19 78.62
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For comparison, we consider four approaches for the assessment of power and the 
choice of experiment run size: (1) minimum power; (2) maximum power; (3) upper 
90th percentile of the power distribution; and (4) expected value of the power dis-
tribution. These represent the most conservative and liberal choices as well as two 
other potential applications of the proposed methodology.

The minimum run size results when the experimenter under each criterion, for a 
desired power of at least 50%, 70%, 80% and 90%, is summarized in Tables 5 and  
6. The minimum run sizes are shown in columns 3–6. Looking at column 3 (which 
corresponds to a desired power of 90%) of Table 5, for example, we see that a four-
level factor requires at least 36 runs to achieve at least 90% power (i.e., minimum 
power specification) and 20 runs (i.e., maximum power for this run size) if one is 
not worried about being too optimistic. The upper 90th percentile of the power dis-
tribution criteria requires a 32-run design, and the expected power criteria requires 
28-run design.

The same patterns are consistent across different effect sizes ( Δ = 1 and Δ = 2 ) 
and across different numbers factor levels. Overall, using the power distribution 
instead of minimum power allows one to more thoroughly investigate the options 
facing the experimenter. In many cases, there is an opportunity to reduce the run 
size of the experiment. For each of the power thresholds in Tables 5 and 6, as the 
number of levels increases, the differences in the recommended run sizes of the pro-
posed approach and the conventional minimum power specification generally get 

Table 5  Required run 
size for balanced one-way 
ANOVA models with Δ = 2 , 
� ∼ U[−1, 1] and �2 = 1

Specified power level

Factor levels Pattern/quantity 90% 80% 70% 50%

4 Minimum power 36 28 24 16
Upper percentile q0.9 32 28 24 16
Expected power 28 24 20 16
Maximum power 20 16 16 12

5 Minimum power 45 35 30 25
Upper percentile q0.9 40 35 30 20
Expected power 35 30 25 20
Maximum power 25 20 20 15

6 Minimum power 60 48 42 30
Upper percentile q0.9 48 42 36 24
Expected power 42 36 30 24
Maximum power 24 24 18 18

7 Minimum power 70 56 49 35
Upper percentile q0.9 56 49 42 28
Expected power 49 42 35 28
Maximum power 28 28 21 21
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larger. A similar conclusion arises when comparing the expected power and the 90th 
percentile criteria. For example, looking at the 80% power threshold of Table 5, for 
a seven-level factor, one would be satisfied with a experiment of 42 runs based on 
expected power, while the upper 90% percentile suggests that 49 is the appropriate 
size. Either quantity can help one avoid being too optimistic (28 runs from maximum 
power) or too conservative (56 runs from minimum power). In cases with higher 
desired precision (i.e., a smaller Δ ), more substantial gains can be observed for the 
run size using the proposed methodology when compared with the minimum power 
specification. We recommend using the expected power in settings where resources 
are in short supply as a guide for sample size selection as a balance between the two 
extremes. The researcher can now make an informed decision on which quantity and 
threshold are suitable for the individual setting, and the proposed methodology pro-
vides a more thorough, and pragmatic, understanding of a design’s statistical power.

4.2  Two‑way ANOVA

The power distribution methods can be easily scaled up to studies with more than 
one factor. Consider a two-way ANOVA model with main effects and an interaction 
effect given by:

yij = � + �A,iA + �B,iB + �AB,iAB + �ij, i = (iA, iB, iAB)
�,

Table 6  Required run 
size for balanced one-way 
ANOVA model with Δ = 1 , 
� ∼ U[−0.5, 0.5] and �2 = 1

Specified power level

Factor levels Pattern/quantity 90% 80% 70% 50%

4 Minimum power 120 92 76 52
Upper percentile q0.9 116 88 72 52
Expected power 100 76 64 44
Maximum power 66 48 40 28

5 Minimum power 160 125 105 70
Upper percentile q0.9 145 115 95 65
Expected power 120 95 80 55
Maximum power 70 55 50 35

6 Minimum power 204 162 132 90
Upper percentile q0.9 174 132 114 78
Expected power 144 108 90 66
Maximum power 72 60 48 36

7 Minimum power 252 203 168 112
Upper percentile q0.9 196 154 126 81
Expected power 161 126 105 70
Maximum power 84 63 56 42
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where factors A and B both have three levels with iA ∈ {1, 2, 3, 4} , iB ∈ {1, 2, 3} , 
and the error term is . The interaction effect �AB,⋅ has 12 levels, 
with six degrees of freedom for full factorial designs under the sum-to-zero 
constraint.

Again, we begin by specifying the minimum size of all effects as 
ΔA = ΔB = ΔAB = 1 or 2 , and the significance level � as 0.05. A uniform distribution 
for the appropriate domain imposed by the effect size and the sum-to-zero constraint is 
assumed for the remaining levels of �a

A
 , �a

B
 and �a

AB
 that are not fixed by the effect size. 

Note that for the interaction effect, there are three sum-to-zero constraints required. The 
domain of the uniform distribution for �a

AB
 is obtained through Monte Carlo method. 

In this illustration, full factorial designs with different numbers of replicates are con-
sidered. For the main effects �A and �B and interaction effect �AB , the power is assessed 
with the four distributions discussed in the one-way ANOVA examples, and compared 
with each other for different run sizes (Table 7).

Table  7 reveals that across different effect sizes and experimental run sizes, the 
expected power shows a noticeable improvement on the power level compared with 
the minimum power for all treatment effects. For example, if the desired power is 75% 
for the main effect of factor A with ΔA = 2 , the expected power indicates that only two 
replicates (24 runs) are needed, while the minimum power asks for three replicates 
(36 runs). Such difference is even larger when smaller effect size is considered. For 
the interaction term under ΔAB = 1 , a desired power of merely 40% for the interaction 

Table 7  Power for the two-way ANOVA model with full factorial designs, � following a uniform distri-
bution, experimental noise �2 = 1 and Δ = 1, 2

Effect Δ Repli-
cates (%)

Minimum (%) Upper q0.8 (%) Expected (%) Maximum (%)

Main (A) 2 20.85 22.48 25.41 38.69
1 4 47.13 50.89 56.90 79.11

6 67.98 72.19 77.87 94.46
2 69.27 73.36 78.81 94.67

2 3 92.17 94.30 96.25 99.83
4 98.29 98.97 99.40 100.00

Main (B) 2 33.27 33.66 36.48 42.87
1 4 67.85 68.46 72.45 80.72

6 86.59 87.04 89.71 94.69
2 89.09 89.50 91.86 96.01

2 3 98.90 98.99 99.35 99.86
4 99.90 99.92 99.95 100.00

Interaction 2 9.98 13.21 16.22 34.44
1 4 20.42 31.09 40.03 80.34

6 31.99 49.30 60.72 96.07
2 29.81 45.88 56.70 93.83

2 3 54.34 76.94 85.06 99.91
4 73.12 91.84 95.17 100.00
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requires four replicates based on expected power, while minimum power suggests more 
than six replicates are needed. If researchers use the power distribution to select run 
size instead of minimum power specification, for this simple two-way ANOVA model, 
they may be able to safely save at least one replicate of the full factorial (12 experimen-
tal runs).

5  Discussion

It is evident from the results shown in Sect.  5 that how one chooses to evaluate 
power has a significant impact on one’s choice of run sizes. In cases as simple as a 
full factorial design with one or two factors, to achieve a certain level of power, the 
most economic number of replicates for each treatment combination depends largely 
on assumptions of treatment effects.

The following questions are recommended for practitioners to go through in plan-
ning an experiment:

• What level of power is desired?
• What is the experimental budget?
• Is there any information regarding the potential arrangement of the treatment 

effect that can be used to infer a distribution for the �a?
• What are the potential savings in run size after both the conventional and pro-

posed methodologies for � have been explored?

If the experimental budget is not of major concern, the minimum power specifica-
tion can be adopted to protect experimenters against all possible arrangements of � . 
However, we believe it is important for researchers to understand the “uncertainty” 
of power and evaluate any potential savings and related risks. On the other hand, as 
there are usually constraints on resources in designing an experiment, and viewing 
statistical power as a random variable indicates that a more economical run size may 
be suitable.

Finally, when choosing the distribution for � , the uniform distribution can be 
viewed as the least informative choice. To address the risk related to poor choice of 
f�(⋅) , Table 8 presents an example where a one-way ANOVA model with factor of 4 

Table 8  Comparison between suggested run size and true required run sizes for the one-way ANOVA 
model with factor of 4 levels, Δ = 1 and �2 = 1

The expected power is used to meet the desired power

True distribution

Desired power Uniform Truncated norm Mixture of 
normals

Minimum power

50% 44 44 40 52
70% 64 68 60 76
80% 76 80 72 92
90% 100 104 96 120
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levels considered. The uniform distribution is used to assess the power distribution, 
with expected power, to make recommendations for the run sizes for different desired 
power levels. We then assess the risk by assuming the true distribution of � to be either 
the truncated normal distribution or the mixture of normals as shown in Fig. 2. For 
all desired power levels and both true distributions, the “improper” uniform distribu-
tion suggests run sizes that deviate from the true required run sizes by at most one set 
of replicates, with savings of more than two sets of replicates when compared with 
minimum power specification. We recommend practitioners who are unsure about the 
distribution of � to conduct similar analysis to explore the risk-return trade off, with 
the nature of the experiment in mind (whether additional experimental runs can be 
arranged easily, for example).

Appendix

A Proof of Theorem 4

Proof By definition, the expected value of �(D, �a) satisfies

For any design D and value of �a , �(D, �a) as a power function is bounded between 
0 and 1. Therefore, 1 − E[�(D, �a)] is also bounded between 0 and 1. As both the cdf 
of F distribution and f�(⋅) are nonnegative, by Fubini’s theorem, the integration and 
summation in the above equation are interchangeable. We have
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B Multivariate Truncated Normal Distribution

One example for f�(⋅) that is employed in this work for illustration purposes is the 
truncated normal distribution with truncation range (−Δ∕2,Δ∕2) , which implies that 
�1 = Δ∕2 and �2 = −Δ∕2 . This is done to maintain effect size of Δ . If we further 
assume that �i, i = 3,… , k, are mutually independent and have expected value of 0, we 
can write the joint probability density function for � as

where �� is the scale parameter of the distribution, and fz(⋅) is the pdf of standard 
normal distribution.

C Considerations for Numerical Approximations

As discussed earlier, truncation of an infinite sum and numerical method are employed 
to obtain the expected power in (6). That is

 Here, we provide some theoretical justification and a numerical illustration on the 
accuracy of the above approximation. First, we derive an upper bound of the approx-
imation error. Note that the incomplete beta function is bounded above by the cor-
responding beta function, that is to say,

Furthermore, g(s) can be viewed as the expected value of a Poisson probability mass 
function with parameter �∕2 as

Denote by �max the maximum � (which corresponds to the maximum power) given 
f�(⋅) , � and the experimental setting, we can then assert that for s > ⌈𝜙∕2⌉,

(9)
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by property from the Poisson distribution. Therefore, each term in the summation in 
equation (6) is bounded above by

It follows that the truncation error � which is 1 −
∑M

s=0
I∗(s) ⋅ g(s) − E[�(D, �a)] 

satisfies

With this upper bound and some acceptable numeric error level � , one can choose a 
large enough M ( M > ⌈𝜙max∕2⌉ ) to construct a finite sum as approximation for the 
infinite sum, such that the numeric error of such approximation is within [0, �).

In the material example, factor A has �max = 24 with ΔA = 2 . It can be easily 
calculated that when M = ⌈�max∕2⌉ = 12 , the approximation error � = 0.002 (rela-
tive error �∕0.8074 × 100% = 0.25% ), and when M = 20 , � drops to 0.00024 (rela-
tive error �∕0.8074 × 100% = 0.03% ). In Fig. 4, I∗(s) ⋅ g(s) and 

∑M

t=0
I∗(s) ⋅ g(s) are 

plotted with s ≤ 30 and M ≤ 30 , for each factor in the material example with the 
four illustrative distributions. It can be seen that when s is large enough, I∗(s) ⋅ g(s) 
decreases and approaches zero, which means that 

∑s

t=0
I∗(t) ⋅ g(t) starts to become 

more steady and converge to its limit, 
∑∞

t=0
I∗(t) ⋅ g(t).

The computational resources required to complete numerical approximation of 
the expected power for the material example are presented in Table 9, together with 
approximation accuracy measures. Results are produced on a computer with 2.5 
GHz Intel Core i7 processor and 6 GB 1600 MHz DDR3 memory. Different sizes 
of Monte Carlo in approximating g(s) are considered for each factor. It can be seem 
that within reasonable computation time (no longer than two seconds), satisfactory 
approximation (standard deviation no larger than 0.005) of expected power can be 
achieved.
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Table 9  Computation time and 
error

Monte Carlo size Factor Time (s) Standard error

100 A 0.15 0.004
200 A 0.3 0.003
500 A 0.75 0.002
1000 A 1.5 0.001
100 B 0.15 0.001
200 B 0.3 0.0008
500 B 0.75 0.0005
1000 B 1.5 0.0003
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