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Abstract
A covering design is a traditional class of experimental plans for hardware and soft-
ware testing purposes. This paper presents a class of size-optimal covering designs 
for testing experiments with mixed-level factors. Among all the factors of differ-
ent levels, one or two factors have a high number of levels while other factors form 
a full factorial so that all level combinations among factor pairs are “covered” at 
least once and appeared almost equally frequent. We use the coloring techniques for 
hypergraphs to construct such near-balanced mixed-level covering designs with the 
minimum run size.

Keywords Covering designs · Near-continuous factors · Hyperedge coloring · Mixed 
covering array on hypergraph
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1 Introduction

In the regime of artificial intelligence and robotics, engineered systems consist of 
many different testing points or components, each with a different number of options, 
that work interactively in a variety of situations. Although one can test a specific 
level of a component in isolation, the origin of a system failure may come from 
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interactions among different components at specific option settings. A complete 
enumeration of testing interactions among all components at all possible options is 
infeasible especially when many components have a large number of options. How-
ever, [15] reported that testing all possible interactions between the pair components 
would detect around 70% of all faults. Thus, [16] suggested a pseudo-exhaustive 
approach that uses covering designs to test all possible interactions among every 
choice of t components for 2 ≤ t ≤ 6 . An N × k experimental plan with s levels is 
a covering design of strength t denoted as CA(N, k, s, t) if all st level combinations 
for any t columns appear at least once. Some literature uses the term “t-covering” to 
describe similar design property, but we will use the term “strength t” for the rest 
of the paper. A covering design usually requires that all combinations of levels be 
“covered”, but unlike an orthogonal array (OA), it does not require equal appear-
ances of all level combinations. Because of the orthogonality requirement, the latter 
arrays may have a large run size whereas a covering design can be constructed with 
a smaller number of runs than an OA under the same number of factors but at the 
cost of poorer estimation of the factor effects.

When different components have a different number of options, we call it mixed-
level covering design (MCD). The construction and analysis of mixed-level OAs are 
surveyed and detailed in [13, 24]. For reasons of run size economy or flexibility, 
nearly OAs [23, 25], OAs of weak strength t [12, 26], and almost OAs [18] are con-
sidered as potential alternatives to OAs. Algorithmic constructions for MCDs have 
been studied in [8–10]. By simply including a set of columns from an optimal size 
CA(n, k�, 2, 2) to a given MCD of strength two, [10] provided the construction for 
MCD(2s, s ⋅ 2k, 2) with k = 2s−1 , MCD(3s, s ⋅ 2k, 2) with k = 3s

2

(
s

s∕2

)
 if s is even, 

MCD(4s, s ⋅ 2k, 2) with k = the coefficient of xs in (4 + 6x + 4x2)s , 
MCD(9, 32 ⋅ 220, 2) , MCD(12, 3 ⋅ 4 ⋅ 2243, 2) , and MCD(16, 42 ⋅ 23,453, 2) . Some of 
these designs are optimal in size but they may not exhibit the near-balanced prop-
erty. The constructions for optimal size MCD of strength two with four factors or 
five factors are presented in [21]. Algorithmic constructions for MCDs of strength 
two to cover every level combination at least twice are proposed in [2]. However, the 
generated designs are not optimal in size. A mixed covering array on the graph is 
another generalization of MCD in which not all pair of columns are required to have 
their level combinations covered. The construction of optimal size MCD on bipar-
tite, cycles, and upper bounds on the size of mixed covering arrays on all 3-chro-
matic and on a large number of 4- and 5-chromatic graphs are provided in [20]. A 
further generalization to MCD on hypergraphs has been systematically studied in [1, 
22]. We extend the results of [20] and [2] to construct optimal size MCD on the fan 
hypergraphs. The coloring techniques for constructing MCD on bipartite graphs 
from [20] and the single-vertex hyperedge hooking operations from [2] are general-
ized to a higher rank. The previous studies in this area mostly concentrate on the 
hypergraphs of rank 3 whereas the results in this paper are not limited to any such 
ranks. Following the definition of OA of weak strength from [26], the MCD obtained 
in Theorem 1 is an OA of weak strength t for t = 1, 2.

The purpose of this paper is to construct a class of near-balanced MCDs for a test-
ing experiment that consists of a few near-continuous (or very-high-level) factors. 
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The term “near-continuous” implies that practitioners with continuous factors of 
interest in their experiments may consider discretizing these factors into factors with 
a very high number of levels; then, they can conduct their experiments using MCDs. 
In specific, given the factor levels s1 ≤ s2 ≤ ⋯ ≤ sr and a near-continuous factor 
attaining the values {1, 2,… , h} , where h ≤

∏r−1

i=1
si , we prove the existence of a 

size-optimal MCD that is a full factorial design on its r discrete factors while covers 
all pairwise level combinations with the near-continuous factor almost equally often. 
Moreover, the near-continuous factor attains all its levels almost equally often (up 
to the difference of 1). In addition, if the near-continuous factor attains the values 
{1, 2,… , h1} , where h1 ≤

∏r−2

i=1
si , then we can also include another factor attaining 

the values within {1, 2,… , h2} , where h2 ≤ min{h, sr} , without an increase in the 
number of runs such that all pairwise level combinations between the first r + 1 fac-
tors (including the first near-continuous factor) and the last factor are covered.

Starting with a full factorial design D with n runs, one could think of randomly 
searching for a vector v of length n with entries from a set of h symbols until it satis-
fies the following three properties.

1. The frequency of each symbol is either ⌊n∕h⌋ or ⌈n∕h⌉;
2. It covers all pairwise level combinations with each factor in D;
3. All pairwise level combinations between v and any factors in D are covered almost 

equally often.

This approach does not guarantee the existence of a vector with the required proper-
ties and exhaustive search is computationally infeasible. Therefore, we address this 
problem by providing a theoretic proof based on the existence of specific colorings 
in the r-uniform complete r-partite hypergraph.

This paper is organized as follows. Section  2 provides the formal definition of 
MCD and the necessary background for this paper along with the application of pro-
posed designs in a software testing experiment. Section 3 contains our main results 
for the existence of size-optimal MCD for systems that consist of near-continuous 
factors. In Sect. 4, we derive results from the theory of hypergraph colorings to con-
struct a size-optimal MCD and prove the theorems from Sect. 3. Some discussions 
and future directions are provided in the last section.

2  Definition and Background

2.1  Mixed‑Level Covering Designs and Their Application

The covering design, also known as covering array, has been in focus during the 
past 30 years for its cost efficiency in implementing experiments for software test-
ing, hardware testing, drug screening, and other areas where the interactions of 
multiple parameters are required to be tested. As the number of runs (test tri-
als) is proportional to the logarithmic value of the number of factors, covering 
designs fulfill the desire of most applications in minimizing the experimental run 
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sizes or resources [7, 8, 11]. In this work, we consider covering designs where 
different factors can have a different number of levels, and we call it mixed-level 
covering design or MCD in short. Here is the formal definition of MCD and its 
balance property.

Definition 1 A mixed-level covering design of strength t MCD(N, s
k1
1
s
k2
2
⋯ s

k�
� , t) is 

an N × k matrix, where k = k1 + k2 +⋯ + k� is the total number of factors, in which 
the first k1 columns have symbols from ℤs1

 , the next k2 columns have symbols from 
ℤs2

 , and so on, with the property that in any N × t subarrays every possible t-tuple 
occurs at least once as a row.

When each t-tuple is covered the same number of times, then the design is called 
an OA. However, in a covering design, t-tuples can be covered a different number of 
times which makes the structure unbalanced. If the structure is highly unbalanced, 
then measuring the interaction effect for the estimation of variation is difficult. The 
equal number of observations for all combinations of factor levels is desired for vari-
ation standardization. The existence of such a design is restricted and requires the 
number of runs to be a multiple of the product of the number of levels for any t 
factors. To address this issue using several new designs like nearly OAs [25], OAs 
of weak strength t [12, 26], almost OAs [18] have been introduced by relaxing the 
requirement on an OA of strength t that all level combinations must appear equally 
often for any t factors. We aim to cover all tuples almost equal number of times and 
define the near-balance property of a design as follows.

Definition 2 A mixed-level covering design of strength t is said to be balanced if all 
level combinations for any t columns appear equally often. A mixed-level covering 
design of strength t is near-balanced if for each 1 ≤ t′ ≤ t all level combinations for 
any t′ columns appear as equally often as possible, that is, the difference of occur-
rences of level combinations does not exceed one.

A balanced covering design is essentially the same as the OA, and a near-bal-
anced covering design of strength t is an OA of weak strength s for s = 1, ..., t as 
defined in [26]. Unlike an OA of weak strength t defined in [12], a near-balanced 
covering design of strength t need not be an OA of strength t − 1.

Here is an example of software testing during the development of an Android 
application. There are a large number of configuration options for Android apps to 
control the behavior of the device, and these options operate across a variety of hard-
ware and software platforms. For simplicity, we consider a scenario that an Android 
developer is interested in designing a test suite for an app based on the combination 
of five basic features: the initial status of GPS navigation (NAVIGATIONHIDDEN) 
during start-up, the app orientation on the device (ORIENTATION), the type of 
keyboard for app input (KEYBOARD), the availability of touchscreen setting for the 
app (TOUCHSCREEN), and a parameter UI_MODE_TYPE that describes which 
type of device the app is used. Table 1 lists these five parameters and their corre-
sponding level options found in the resource configuration file for Android apps.
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In the experimental design, NAVIGATIONHIDDEN and ORIENTATION are 
2-level factors X1 and X2 , KEYBOARD and TOUCHSCREEN are 3-level factors X3 
and X4 , and Y is a near-continuous or high-level factor UI_MODE_TYPE. Note that 
the developer file provides only nine options, but it can be used to investigate up to 
12 options, and we put ND1, ND2, ND3 to denote some new Android-based devices 
in the future. Since UI_MODE_TYPE has a large number of choices as compared to 
the other four factors, studying all level combinations of the basic features with the 
UI_MODE_TYPE is not cost efficient. To design an experiment for studying all 
combinations of basic features and the pair of each basic feature and the UI_MODE_
TYPE, we need an MCD of five factors such that the first four factors form a full fac-
torial design and the MCD is of strength 2. Figure 1 provides the design matrices of 
MCD(36, 22 ⋅ 32 ⋅ g1, 2) for g = 9, 10, 11, 12 obtained using Algorithm 1 from Sect. 3. 
These designs suggest that 36 runs are adequate to conduct an experiment that ful-
fills the experimental requirements for at most 12 options for UI_MODE_TYPE. It is 
easy to verify that the design matrix that consists of X1,X2,X3 , and X4 forms a full 

Table 1  Google android configuration options in the illustrative example

Parameter name # Options Option values in example

X
1

NAVIGATIONHIDDEN 2 NO, YES
X
2

ORIENTATION 2 LANDSCAPE, PORTRAIT
X
3

KEYBOARD 3 12KEY, NOKEYS, QWERTY 
X
4

TOUCHSCREEN 3 FINGER, NOTOUCH, STYLUS
Y UI_MODE_TYPE ≤ 12 APPLIANCE, CAR, DESK, MASK, NORMAL, 

TELEVISION, UNDEFINED, VR_HEAD-
SET, WATCH, ND1, ND2, ND3

X1 X2 X3 X4 Y Y Y Y
(9) (10) (11) (12)

1 0 0 0 0 0 0 0 0
2 0 0 0 1 1 1 1 1
3 0 0 0 2 2 2 2 2
4 0 0 1 0 3 3 3 3
5 0 0 1 1 4 4 4 4
6 0 0 1 2 5 5 5 5
7 0 0 2 0 6 6 6 6
8 0 0 2 1 7 7 7 7
9 0 0 2 2 8 8 8 8
10 0 1 0 0 4 9 9 9
11 0 1 0 1 5 3 10 10
12 0 1 0 2 3 4 6 11
13 0 1 1 0 7 7 2 1
14 0 1 1 1 8 8 0 2
15 0 1 1 2 6 6 1 0
16 0 1 2 0 1 2 4 5
17 0 1 2 1 2 5 5 3
18 0 1 2 2 0 1 3 4

X1 X2 X3 X4 Y Y Y Y
(9) (10) (11) (12)

19 1 0 0 0 8 5 5 4
20 1 0 0 1 6 6 3 5
21 1 0 0 2 7 7 4 3
22 1 0 1 0 2 1 8 10
23 1 0 1 1 0 2 9 11
24 1 0 1 2 1 0 10 9
25 1 0 2 0 5 4 10 2
26 1 0 2 1 3 3 1 0
27 1 0 2 2 4 9 0 1
28 1 1 0 0 0 8 3 7
29 1 1 0 1 1 6 8 8
30 1 1 0 2 2 3 7 6
31 1 1 1 0 3 4 7 8
32 1 1 1 1 4 9 6 6
33 1 1 1 2 5 1 0 7
34 1 1 2 0 6 2 1 11
35 1 1 2 1 7 0 2 9
36 1 1 2 2 8 5 9 10

Fig. 1  Design matrix corresponding to a system involving one near-continuous factor



 Journal of Statistical Theory and Practice (2020) 14:6

1 3

6 Page 6 of 18

factorial design MCD(36, 22 ⋅ 32, 4) . If we include the column of Y(i) with i = 9 to 
the full factorial design, we have a near-balanced MCD(36, 22 ⋅ 32 ⋅ 91, 2) . Similarly, 
MCD(36, 22 ⋅ 32 ⋅ 101, 2) , MCD(36, 22 ⋅ 32 ⋅ 111, 2) , and MCD(36, 22 ⋅ 32 ⋅ 121, 2) 
are obtained by including the columns Y(10), Y(11), and Y(12), respectively, to the 
full factorial design. All three MCDs are verified as size-optimal, meaning that these 
MCDs use the smallest number of test trials to achieve their desired property with the 
indicated numbers of factors with their levels.

2.2  Some Backgrounds on the Hyperedge Coloring

Our construction of an MCD is related to hypergraph and its coloring scheme. We 
associate an r-uniform r-partite hypergraph H = (V1 ∪⋯ ∪ Vr,E) to a given set of r 
factors {f1,… , fr} in a design by defining a class of vertices Vi for each factor fi . Each 
class has a vertex for each level of the associated factor and each trial is represented as a 
hyperedge containing the vertices for the level combinations covered in that trial. Then, 
we use a coloring of the hyperedges in H to assign the levels for a new factor included 
in the given design. Any two trials test the same level for the new factor when the cor-
responding two hyperedges have the same color. A further detail on this is provided in 
Sect. 3. Here, we briefly introduce some terminologies and concepts in hypergraphs 
that are useful in this work.

A hypergraph H consists of a pair of sets (V, E), where V is a finite set of vertices 
and E is a finite family of nonempty subsets of V called hyperedges. The H is called 
r-uniform hypergraph if every hyperedge contains precisely r vertices. Let H = (V ,E) 
be a hypergraph, where E = {e1, e2,… , em} . For a set J ⊂ {1, 2, ...,m} , the partial 
hypergraph generated by J is the hypergraph 

(
V �, {ei ∶ i ∈ J}

)
 , where V � =

⋃
i∈j ei . 

For a set A ⊂ V , the sub-hypergraph HA induced by A is defined as 
HA = (A, {ei ∩ A ∶ 1 ≤ i ≤ m, ei ∩ A ≠ �}) . The r-uniform complete r-partite hyper-
graph Kr

n1,n2,…,nr
 is an r-uniform hypergraph with vertex set V decomposed into r dis-

joint sets (called sides) V1,V2,… ,Vr , where |Vi| = ni for 1 ≤ i ≤ r such that every 
choice of r vertices, one from each side, is a hyperedge. The degree dH(v) of a vertex v 
is the size of the family H(v) = {e ∶ e ∈ E and v ∈ e}.

A k-coloring (weak coloring) of the hyperedges in H = (V ,E) is a k-partition 
(S1, S2,… , Sk) of E such that for every vertex v with dH(v) > 1 , H(v) has at least two 
hyperedges of different colors. A good k-coloring of the hyperedges is a k-coloring such 
that for every vertex v, H(v) contains the largest possible number of different colors 
(taking account of the value of k), namely min{dH(v), k} . An equitable k-coloring of 
the hyperedges is a k-coloring such that for every vertex v, all the colors appear the 
same number of times (or to within 1, if k does not divide dH(v) ) in H(v), that is,

Hence, for every k, an equitable k-coloring is always a good coloring. A k-coloring 
of hyperedges is uniform if the number of hyperedge of the same color is always the 
same (or to within 1, if k does not divide |E|), that is,

⌊
dH(v)

k

⌋
≤ |H(v) ∩ Si| ≤

⌈
dH(v)

k

⌉
i = 1, 2,… , k.
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A hyperedge cover is a subset of E such that each vertex of the hypergraph is con-
tained in at least one hyperedge in that subset. Thus, for every k ≤ min

v∈V
dH(v) , each 

color class of a good k-coloring of hyperedges is a hyperedge cover of H. A k-color-
ing (S1, S2,… , Sk) of hyperedges defines a factorization of hypergraph into k factors 
H1,H2,… ,Hk , where Hi = (V , Si) . A factor Hi is an f-factor if Hi is an f-regular 
hypergraph and hypergraph is f-factorizable if there exists a factorization such that 
each factor is an f-factor. A factorization of the complete uniform hypergraph is pro-
vided in [3]. For details and the description of undefined terms used in this article, 
we refer to [6].

2.3  Covering Design on Hypergraph

When conducting an experiment or performing a test, it may be the case that 
certain factors are known to not interact or the interaction between them is 
not important or influential. Then, there is no need to cover all level combina-
tions between such factors. Thus, only a set of parameters that jointly affect the 
response must be considered for testing. The covering designs on hypergraphs 
provide the design matrix to perform testing for such system. A weighted hyper-
graph with a positive weight assigned to each vertex is used to represent the inter-
acting factors and their associated number of factor levels.

Let H = (V ,E) be a weighted hypergraph with k vertices and weights 
s1 ≤ s2 ≤ ⋯ ≤ sk and let N be a positive integer. A mixed-level covering design 
on H, denoted as MCD(N,H,

∏k

i=1
si) , is an N × k array with the following 

properties:

1. column i corresponds to vertex vi ∈ V  with weight si;
2. the entries in column i are from ℤsi

;
3. if e = {v1, v2,… , vt} is a hyperedge in E, the columns correspond to vertices 

v1, v2,… , vt contain all possible ordered t-tuples at least once as a row.

The other names that have been used for mixed-level covering designs on hyper-
graphs are mixed covering arrays on hypergraphs and variable strength mixed cov-
ering arrays. For details, we refer to [1]. The product weight PW(H) of a weighted 
hypergraph is defined as

⌊|E|
k

⌋
≤ |Si| ≤

⌈|E|
k

⌉
i = 1, 2,… , k.

PW(H) = max

{∏
vi∈e

wH(vi) ∶ e ∈ E

}
,
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where wH(vi) is the weight of vertex vi . An MCD on a hypergraph with size PW(H) 
is known to be size optimal. A near-balanced covering design on H is a covering 
design on H with the properties:

1. all levels for any columns appear as equally often as possible, that is, the differ-
ence of occurrences of levels does not exceed one;

2. all level combinations for any pair of columns correspond to the vertices in a 
hyperedge appear as equally often as possible, that is, the difference of occur-
rences of level combinations does not exceed one.

The columns of MCD are closely related to the qualitatively independent partitions 
introduced in [19]. We generalize this definition for the mixed-level case as follows. 
Let k1, k2 , and n be positive integers with n ≥ k1k2 . Let A be a k1-partition and B be 
a k2-partition of an n-set. Assume A = {A1,A2,… ,Ak1

} and B = {B1,B2,… ,Bk2
} . 

The partitions A and B are qualitatively independent if Ai ∩ Bj ≠ ∅ for all i and j. It 
is easy to observe that for each pair of factors in an MCD with N runs, the two parti-
tions of an N-set defined by the observations corresponding to the same factor level 
are qualitatively independent partitions.

3  Existence of Mixed‑Level Covering Designs

In this section, we state two theorems on the existence of size-optimal MCDs and 
provide an algorithm to construct such designs.

Theorem  1 Let s1 ≤ s2 ≤ ⋯ ≤ sr be positive integers. Then, for any s ≤
∏r−1

i=1
si , 

there exists a size-optimal near-balanced MCD(
∏r

i=1
si, s1s2 ⋯ srs, 2) such that the 

projection on the first r factors is a full factorial design.

The proof of Theorem 1 is given in the next section. This theorem states the exist-
ence of a size-optimal MCD with r + 1 factors, where the first r factors form a full 
factorial design and when any factor from the first r factors is paired with the last 
factor, all level combinations between these two factors covered at least once and an 
almost equal number of times. Moreover, first r factors are uniform, and the last fac-
tor is almost uniform on the respective level set. Given a set of r factors and factor 
levels, we associate an r-uniform complete r-partite hypergraph (V1 ∪… ∪ Vr,E) to 
it by defining a vertex vi

x
∈ Vi for each level x of the ith factor and adding a hyper-

edge {v1
x
, v2

y
… , vr

z
} for every factor-level combination (x, y,… , z) . Following the 

algorithm outlines the construction of a near-balanced mixed-level covering design 
described in Theorem 1.
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Algorithm 1 Near-balanced MCD via hyperedge coloring
Input: The number of factors r and factor levels s1 ≤ . . . ≤ sr, and a positive integer
s ≤ r−1

i=1 si.
Step 1. Construct the r-uniform complete r-partite hypergraph Kr

s1,...,sr
associated with

the given number of factors and factor levels.
Step 2. Find an equitable, uniform s-coloring (F1, . . . , Fs) of hyperedges in Kr

s1,...,sr
.

Step 3. Construct an MCD with r + 1 factors and s1, . . . , sr , s levels and r
i=1 si runs

by adding a run (x, y, . . . , z, i) for each hyperedge {v1x, v2y, . . . , vrz} in Fi for i = 1, . . . , s.
Output: A near-balanced MCD with r + 1 factors and s1, . . . , sr, s levels.

Example 1 Consider the testing of an Android app described in Sect. 2. There are 
five basic features and let the feature UI_MODE_TYPE needs to be investigated 
for ten choices. To study all combinations of five basic features, we start with the 
construction of K4

2,2,3,3
 in Step 1. The hyperedges in K4

2,2,3,3
 represent the runs in a 

full factorial design for four factors with levels 2, 2, 3, and 3, respectively. Figure 2 
shows an equitable and uniform 10-coloring (F0,F1,… ,F9) of the hyperedges in 
K4

2,2,3,3
 . Every hyperedge in K4

2,2,3,3
 has four vertices and it is represented as a line 

joining these vertices. For example, the hyperedge {v1
0
, v2

0
, v3

0
, v4

0
} is represented as 

a dotted line joining the vertices v1
0
, v2

0
, v3

0
, and v4

0
 . Each color class Fi can be seen 

as a factor of K4

2,2,3,3
 . Next, for each hyperedge {v1

w
, v2

x
, v3

y
, v4

z
} in Fi , we include a run 

(w, x, y, z,  i) to construct a MCD(36, 22 ⋅ 32 ⋅ 10, 2) . For example, the hyperedges 
{v1

0
, v2

0
, v3

0
, v4

1
} , {v1

0
, v2

1
, v3

2
, v4

2
} , {v1

1
, v2

0
, v3

1
, v4

0
} , and {v1

1
, v2

1
, v3

1
, v4

2
} all have red color, so 

we include (0, 0, 0, 1, 1), (0, 1, 2, 2, 1), (1, 0, 1, 0, 1), and (1, 1, 1, 2, 1) as rows in 
the design matrix. The resulting design has factors X1,X2,X3,X4, and Y(10), where 
the first four factors form a full factorial design as shown in Fig. 1. Since the color-
ing is uniform, each Fi has an almost equal number of hyperedges (either 3 or 4). 
Therefore, each level in Y(10) appears either 3 or 4 times. Moreover, being an equi-
table coloring, each vertex is contained in an almost equal number of hyperedges 
(either 1 or 2) in each Fi and hence each level combination between Xi and Y(10) 
is covered either once or twice. Thus, the design shown in Fig. 1 is a near-balanced 
design.

Derived from Theorem 1, we state the existence of an optimal size, near-balanced 
MCD on a specific hypergraph structure defined below.

Definition 3 The fan of rank r is a hypergraph Fr having r edges of cardinality two 
and one hyperedge of cardinality r, arranged as in Fig. 3.

Corollary 1 Let Fr be a weighted fan of rank r shown in Fig. 3 and s1 ≤ s2 ≤ ⋯ ≤ sr 
be the weights of vertices vi , where i = 1, 2,… , r , and s be the weight of u. If 
s ≤

∏r−1

i=1
si , then there exists a size-optimal near-balanced MCD on Fr.

Consider the design D described in Theorem  1. We consider the associations 
between the ith column of D and the vertex vi in Fr for 1 ≤ i ≤ r and between the 
last column of D and the vertex u in Fr . Since the first r columns of D form a full 
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factorial design, it is a covering design of strength r on the hyperedge of cardinality 
r. Being an MCD(

∏r

i=1
si, s1s2 ⋯ srs, 2) , all possible ordered tuples for each pair of 

columns appear at least once as a row in the respective sub-design of D. Since the 
projection on any t ≤ 2 factors is near balanced, D is a near-balanced MCD on Fr . 
Moreover, the equality of the product weight of Fr and 

∏r

i=1
si implies that the array 

D is a size-optimal design.

Theorem 2 Let s1 ≤ s2 ≤ ⋯ ≤ sr be positive integers. Then, for any s ≤
∏r−2

i=1
si and 

s� ≤ min{s, sr} , there exists a size-optimal MCD(
∏r

i=1
si, s1s2 ⋯ srss

�, 2) such that 
the projection on first r factors is a full factorial design.

The proof of Theorem 2 is given in the next section. Similar to Theorem 1, this 
theorem states that the existence of an MCD with r + 2 factors of which the first r 
factors form a full factorial design. When any factor from the first r factors is paired 
with any one factor of the last two factors, all level combinations between these two 
factors are covered at least once. Moreover, all level combinations between the last 
two factors also exist at least once. Derived from Theorem 2, we state the existence 
of an optimal MCD on another specific fan-type hypergraph structure in the follow-
ing corollary.

Corollary 2 Let H be a weighted hypergraph shown in Fig. 4 and s1 ≤ s2 ≤ ⋯ ≤ sr 
be the weights of the vertices v1, v2,… , vr , respectively. Let s, s′ be the weights of u 
and w , respectively. If s ≤

∏r−2

i=1
si and s� ≤ min{s, sr} , then there exists an optimal 

MCD on H.

Consider the design D described in Theorem 2. The ith column in D corresponds 
to the vertex vi for 1 ≤ i ≤ r , and the last two columns in D correspond to the verti-
ces u and w, respectively. Then, D forms an MCD on H. Since PW(H) =

∏r

i=1
si , D 

is size-optimal.

Fig. 3  The fan of rank r ∶ F
r

v1 v2 v3 . . . . vr−1 vr

u

Fig. 4  A weighted hypergraph H 

v1 v2 v3 . . . . vr−1 vr

u w
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The following is an example of an optimal size MCD(24, 23 · 32 · 4, 2) obtained 
using the construction in Theorem 2 such that the projection on the first four factors 
is a full factorial design (Fig. 5).

4  Proofs

Some additional lemmas are required from graph theory to prove two main theo-
rems, and we summarize them in the first subsection below.

4.1  Coloring the Hyperedges in Kr
n1,n2,…,nr

The uniform and equitable k-coloring of the hyperedges in the r-uniform complete 
r-partite hypergraph Kr

n1,n2,…,nr
 has been studied in [4, 5]. The following theorem for 

such hypergraphs where multiple hyperedges are admissible is proved in [4].

Lemma 1 For every k ≥ 2 , the hyperedges of the r-uniform complete r-partite hyper-
graph Kr

n1,n2,…,nr
 admit an equitable k-coloring that is uniform.

In this section, we study the good coloring of hyperedges in the Kr
n1,n2,…,nr

 and 
prove the existence of two distinct good colorings that are also qualitatively inde-
pendent partitions. When ni(≥ 2) are pairwise coprime, we prove the existence of an 
equitable k-coloring of hyperedges, where k is coprime with each ni , that is also uni-
form, and the corresponding factors exhibit a complete bipartite graph between each 
pair of sides in the induced sub-hypergraph.

v1 v2 v3 v4 u w
(2) (2) (2) (3) (4) (3)

1 0 0 0 0 0 0
2 0 0 0 1 1 0
3 0 0 0 2 2 0
4 0 0 1 0 1 1
5 0 0 1 1 2 1
6 0 0 1 2 3 2
7 0 1 0 0 2 2
8 0 1 0 1 3 1
9 0 1 0 2 0 1
10 0 1 1 0 3 0
11 0 1 1 1 0 2
12 0 1 1 2 1 2

v1 v2 v3 v4 u w
(2) (2) (2) (3) (4) (3)

13 1 0 0 0 3 0
14 1 0 0 1 0 2
15 1 0 0 2 1 2
16 1 0 1 0 2 2
17 1 0 1 1 3 1
18 1 0 1 2 0 1
19 1 1 0 0 1 1
20 1 1 0 1 2 1
21 1 1 0 2 3 2
22 1 1 1 0 0 0
23 1 1 1 1 1 0
24 1 1 1 2 2 0

Fig. 5  A size-optimal MCD(24, 23 · 32 · 4, 2) on a fan-type hypergraph
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Lemma 2 Let n1 ≤ n2 ≤ ⋯ ≤ nr and h ≤
∏r−2

i=1
ni be positive integers. Then, for any 

positive integers k ≤ min{h, nr} , the hyperedges of the r-uniform complete r-partite 
hypergraph H = Kr

n1,n2,…,nr
 admit a good k-coloring A = {A0,A1,… ,Ak−1} and a 

good h-coloring B = {B0,B1,… ,Bh−1} such that A and B are qualitatively inde-
pendent partitions.

Proof Let vr
0
, vr

1
,… , vr

nr−1
 be the vertices in the side Vr of H. Let G be the partial 

hypergraph of H, generated by E ∖ ∪k−1
i=0

H(vr
i
) . It is easy to observe that if G is non-

empty then it is the r-uniform complete r-partite hypergraph Kr
n1,n2,…,(nr−k)

 . Using 
Lemma 1, the hyperedges in G admit an equitable k-coloring S = {S0, S1,… , Sk−1} 
and an equitable h-coloring T = {T0,T1,… ,Th−1} that are also uniform.

Now, let Gi be the partial hypergraph of H generated by H(vr
i
) , where 

i = 0, 1,… , k − 1 . As each Gi is the r-uniform complete r-partite hypergraph 
Kr
n1,n2,…,nr−1,1

 using Lemma 1, there exists an equitable h-coloring 
P = {P0,P1,… ,Ph−1} of the hyperedges in Gi . Since for each vertex v, 
dGi

(v) ≥
∏r−2

i=1
ni , the equitable coloring implies that each color class is a hyperedge 

cover of Gi.
Now, define Rij = P(i+j mod k) , where 0 ≤ i ≠ j ≤ k − 1 , and Rii = E ⧵ ∪

0≤i≠j≤k−1
Rij . 

Let Ri = {Ri0,Ri1,… ,Ri(k−1)} be the k-coloring of hyperedges in Gi , where 
0 ≤ i ≤ k − 1 . As k ≤ h , for each vertex v, each color class Rj in this k-coloring con-
tains at least one hyperedge that contains v and hence it is a good k-coloring. Take 
Aj = Sj ∪ (∪k−1

i=0
Rij) , where j = 0, 1,… , k − 1 . Then, A = {A0,A1,… ,Ak−1} is a 

k-coloring of the hyperedges in H. Since S is an equitable k-coloring and each Ri is 
a good k-coloring, the coloring A is also a good k-coloring.

Now, take Bj = Tj ∪ Pj , where j = 0, 1,… , h − 1 . Then, B = {B0,B1,… ,Bh−1} is 
an h-coloring of the hyperedges in H, and since both T  and P are equitable h-col-
orings; the coloring B is a good h-coloring of H. Moreover, for each pair of color 
classes Aj and Bl , where Aj ∈ A and Bl ∈ B

Thus, A and B are qualitatively independent partitions.   ◻

Lemma 3 Let n1 < n2 < … < nr and k < n1n2 ⋯ nr−2 be positive integers that are 
pairwise coprime. Then, the hyperedges of the r-uniform complete r-partite hyper-
graph H = Kr

n1,n2,…,nr
 admit an equitable k-coloring that is uniform and in each cor-

responding factor Hl , where 1 ≤ l ≤ k ; for every pair of sides (Vi,Vj) , where 
1 ≤ i < j ≤ r , the induced sub-hypergraph Hl

Vi∪Vj
 is a complete bipartite graph.

Aj ∩ Bl ⊇ (∪k−1
i=0

Rij) ∩ Pl

⊇ (∪h−1
i=0

Pi) ∩ Pl

⊇ Pl.
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Proof Let vi
0
, vi

1
,… , vi

ni−1
 be the vertices in the side Vi , where 1 ≤ i ≤ r , and E be the 

set of hyperedges in H. For N =
∏r

i=1
ni , we define the following bijective map from 

ℤN to the set of hyperedges in H.

Since H does not have multiple hyperedges, the map � is well defined and the bijec-
tive property follows from the Chinese Remainder Theorem. For 0 ≤ s ≤ N − 1 , we 
label the hyperedge e as es , where s = �−1(e) . For l = 0, 1,… , k − 1 , let 
Sl = {ej ∶ j ≡ l mod k} be the subset of E. Then, (S0, S1,… , Sk−1) defines a parti-
tion of E. To prove that this partition is a coloring of hyperedges in H, we show that 
for each vertex v in H, H(v) ⊄ Sl , where l = 0,… , k − 1 . Consider the hyperedges ej 
and ej+ni in H(vi

j
) . Since ni and k are coprime, j ≢ (j + ni) mod k , the hyperedges ej 

and ej+ni belong to two different color classes. Thus, H(vi
j
) has at least two hyper-

edges of different colors. The uniform k-coloring follows from the fact that 
�Sl� = ⌈N

k
⌉ , where 0 ≤ l ≤ N − 1 − k⌊N

k
⌋ , and �Sl� = ⌊N

k
⌋ , where 

N − k⌊N

k
⌋ ≤ l ≤ k − 1 . For an arbitrary vertex vi

j
 and any Sl , using the Chinese 

Remainder Theorem the pair of congruences x ≡ j mod ni and x ≡ l mod k has a 
unique solution modulo nik . Thus, |H(vi

j
) ∩ Sl| is either ⌊ N

nik
⌋ or ⌈ N

nik
⌉ . Hence, it is an 

equitable k-coloring of E. Moreover, for any pair of vertices vi
a
∈ Vi and vj

b
∈ Vj , 

where i ≠ j and any Sl , again using the Chinese Remainder Theorem, the system of 
congruences x ≡ a mod ni, x ≡ b mod nj, and x ≡ l mod k has a unique solution 
modulo ninjk . Thus, |H(vi

a
) ∩ H(v

j

b
) ∩ Sl| is either ⌊ N

ninjk
⌋ or ⌈ N

ninjk
⌉ that is at least 1. 

Hence, the induced sub-hypergraph Hl
Vi∪Vj

 is a complete bipartite graph.   ◻

4.2  Proof of Theorem 1

Proof To construct a covering design MCD(
∏r

i=1
si, s1s2 ⋯ srs, 2) , we consider the 

r-uniform complete r-partite hypergraph H = Kr
s1,s2,…,sr

= (V1 ∪ V2 ∪⋯ ∪ Vr,E) . 
Let vi

0
, vi

1
,… , vi

si−1
 be the vertices in the side Vi , where 1 ≤ i ≤ r . There are 

N =
∏r

i=1
si hyperedges in E. Using Lemma 1, there exists an equitable s-coloring 

(S0, S1,… , Ss−1) of the hyperedges in E that is also uniform. Since s ≤
∏r−1

i=1
si , for 

each vertex v ∈ Vi and each color class Sk,

� ∶ ℤN → E

s ↦ e = {v1
(s mod n1)

, v2
(s mod n2)

,… , vr
(s mod nr)

}

(1)1 ≤

⎢⎢⎢⎢⎢⎣

r∏
j=1,j≠i

sj

s

⎥⎥⎥⎥⎥⎦
≤ �H(v) ∩ Sk� ≤

⎡
⎢⎢⎢⎢⎢

r∏
j=1,j≠i

sj

s

⎤
⎥⎥⎥⎥⎥

.
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For each hyperedge ej = {v1
a1
, v2

a2
,… , vr

ar
} ∈ Sk , where 0 ≤ k ≤ s − 1 , 

0 ≤ ai ≤ si − 1 , and i = 1, 2,… , r , we include the factor-level combination 
rj = (a1, a2,… , ar, k) as a row to construct an N × (r + 1) array D. Since H is the 
r-uniform complete r-partite hypergraph, for every level combination 
(a1, a2,… , ar) ∈ ℤs1

× ℤs2
×⋯ × ℤsr

, there exists a hyperedge {v1
a1
, v2

a2
,… , vr

ar
} . 

Therefore, the first r columns in D form a full factorial design.
Next, for each pair a ∈ ℤsi

 and b ∈ ℤs using Eq. 1, there exists at least one hyper-
edge ej in Sb that contains the vertex vi

a
 . Then, D(j, i) = a and D(j, r + 1) = b . Thus, 

the projection on the factors i and r + 1 is a full factorial design and D is a covering 
design MCD(

∏r

i=1
si, s1s2 ⋯ srs, 2) . Moreover, as H is a simple r-uniform complete 

r-partite hypergraph, the projection on any two factors among the first r factors is a 
balanced design. Since (S0, S1,… , Ss−1) is an equitable s-coloring, the projection on 
any two factors involving the last one is a near-balanced design.   ◻

Note:  If s1 < s2 < … < sr and s <
∏r−2

i=1
si are positive integers that are pairwise 

coprime. Then, Lemma 3 provides an MCD(
∏r

i=1
si, s1s2 ⋯ srs, 3) such that the pro-

jection on first r factors is a full factorial design.

4.3  Proof of Theorem 2

Proof Let H be the r-uniform complete r-partite hypergraph 
Kr
s1,s2,…,sr

= (V1 ∪ V2 ∪⋯ ∪ Vr,E) and vi
0
, vi

1
,… , vi

si−1
 be the vertices in the side Vi , 

where 1 ≤ i ≤ r . There are N =
∏r

i=1
si hyperedges in E. Using Lemma 2, there exist 

a good s-coloring A = (A0,A1,… ,As−1) and a good s′-coloring 
B = (B0,B1,… ,Bs�−1) such that A and B are qualitatively independent partitions of 
E. Since s� ≤ s ≤

∏r−2

i=1
si < dH(v) , where v is an arbitrary vertex of H, and both the 

coloring are good coloring of hyperedges, for each vertex v and each color class Ak,

Similarly, for each color class Bl,

To construct a covering design MCD(
∏r

i=1
si, s1s2 ⋯ srss

�, 2) , for each hyperedge 
ej = {v1

a1
, v2

a2
,… , vr

ar
} ∈ Ak ∩ Bl , where 0 ≤ k ≤ s − 1 , 0 ≤ l ≤ s� − 1 , 

0 ≤ ai ≤ si − 1 , and i = 1, 2,… , r ; we include the factor-level combination 
rj = (a1, a2,… , ar, k, l) as a row to construct an N × (r + 2) array D. As H is the 
r-uniform complete r-partite hypergraph, for every level combination 
(a1, a2,… , ar) ∈ ℤs1

× ℤs2
×⋯ × ℤsr

 there exists a hyperedge {v1
a1
, v2

a2
,… , vr

ar
} . 

Therefore, the array D contains a row having (a1, a2,… , ar) on the first r columns. 
Thus, the first r factors in D form a full factorial design. Next, for each pair a ∈ ℤsi

 
and b ∈ ℤs , using Eq. 2, there exists at least one hyperedge ej in Ab that contains the 
vertex vi

a
 . Then, D(j, i) = a and A(j, r + 1) = b . Thus, the projection on each factor i 

(2)|H(v) ∩ Ak| ≥ 1.

(3)|H(v) ∩ Bl| ≥ 1.
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and r + 1 is a full factorial design. Similarly, using Eq.  3, for each c ∈ ℤs� , there 
exists at least one hyperedge ej in Bc that contains the vertex vi

a
 and hence D(j, i) = a 

and D(j, r + 2) = c . Thus, the projection on the factors i and r + 2 is a full factorial 
design. Now, for each pair b ∈ ℤs and c ∈ ℤs� being the qualitatively independent 
partitions, there exists at least one hyperedge ej ∈ Ab ∩ Bc . Thus, D(j, r + 1) = b and 
D(j, r + 2) = c . Hence, the projection on the factors r + 1 and r + 2 is a full factorial 
design and D is a covering design MCD(

∏r

i=1
si, s1s2 ⋯ srss

�, 2) .   ◻

5  Discussion

This work introduces a class of mixed-level coverage designs (MCD), for experi-
ments that have the following requirements:

1. The experiment consists of a few near-continuous or high-level factors and many 
low-level factors of interest.

2. All pairwise level combinations between the high-level factors and the low-level 
factors are required to be covered at least once in the experiment.

3. All level combinations among low-level factors are required to be covered in the 
experiment.

In specific, using a graph-theoretic approach, we provide the existence results (The-
orems 1 and 2) for MCDs with one or two high-level factors, together with the con-
dition on their near-balance properties.

Traditionally, the covering designs are used in hardware and software testing 
experiments with a large number of testing points. The use of MCD to these testing 
experiments is important as it allows a sequential testing procedure when the experi-
ments performed at a different time. We consider the following scenario. One con-
ducts a testing experiment in the first phase and finds out 12 different testing-point 
orientations for the optimization of a system. In the second phase, four additional 
testing points (two 2-level and two 3-level) are added to the system, and it is known 
that the interactions among these four additional testing points require detailed 
investigation. Then, one may consider conducting this experiment using a 36-run 
MCD where the last factor is 12-level, and the level setting of this MCD is given in 
Sect. 2.1. In general, the high-level factors can be treated as some optimal settings 
in the previous phrase while the low-level factors (those form a full factorial design) 
are the new testing points in the current phrase.

The MCD has a lot of other applications. For example, it can be used in a 
choice experiment. A discrete choice experiment (DCE) is a quantitative tech-
nique for eliciting individual preferences. It is an essential tool for conjoint 
analysis in economics, marketing, health care, and many other research areas. 
A comprehensive study on DCE is referred to [17]. In the framework of MCD, 
the high-level factors are the choice sets consisting of hard-to-adjust factors, 
while the low-level factors are factors that are easy or inexpensive to adjust. This 
experimental plan is applied to some practical problems like a study of the dish 
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orientation on the restaurants’ dinner valued menu, where the high-level factor is 
the choice of the main dish, and the low-level factors include the side dishes and 
drinks.

Although we always define in the MCD the low-level factors as those form a 
full factorial design and the high-level factors are the rest, the whole framework 
works well even one chooses to put a low-level factor in the position of “high” 
level. For example, one may consider a 40-run MCD with four “low”-level fac-
tors (three of them are 2-level and one of them is 5-level) and one “high”-level 
factor with only three levels. Unless it is strictly required in the experiment, the 
assignment of low-level factors to form a full factorial design is always the most 
cost efficient. Moreover, the whole framework also works well when one chooses 
to put important factors, regardless of low- or high-levels, in the position of full 
factorials and a few less-important factors in the original position of “high” level 
factors. In other words, our construction of MCD is useful in designing an experi-
ment involving a group of important factors and one or two factors that are not 
as important as the aforementioned group of factors. The full factorial design 
enables to analyze the important factors in detail while the other less-important 
factors cover all factor-level combinations with the other factors (including the 
important ones).

The first extension from the current framework of MCD is to accommodate an 
additional number of high-level factors. For example, for an MCD with three high-
level factors, one needs to ensure that the pair formed from one of the three high-
level factors and any one of the low-level factors consists of all level combinations, 
and all three pairwise combinations of high-level factors consist of all level combi-
nations too. From a graph-theoretic perspective, it is a fan-type structure where the 
high-level vertices form a triad rather than a dyad or just a vertex. To a better under-
standing and compare covering designs with the same parameters, several graphical 
methods have been introduced in [14]. The coverage evaluation plot, coverage evalu-
ation scatterplot matrix, and the correlation-based r-plot, etc. are proposed to visu-
alize different properties of a covering design. It would be interesting to use these 
graphical methods for evaluating the MCDs obtained in this paper. In particular, we 
would like to investigate the performance of our MCDs based on the t-way coverage 
evaluation plot when t ≥ 3.

The second extension is to consider a further cost reduction in the experiment, or 
a further reduction in the run size of an MCD. It is achievable if we consider form-
ing a fractional factorial design rather than a full factorial design among low-level 
factors. However, it then introduces the problem of aliasing among these factors, no 
matter if it is full aliasing or partial aliasing, which hinders the analysis of experi-
ments. The trade-off between design estimation capacity and the experimental cost 
efficiency always appears when a fractionated rather than a full combination of fac-
tor levels is used, and a further study is under investigation.
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