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Abstract
This manuscript emphasizes the estimation procedure of population mean in two-
phase sampling when non-response occurs during survey in both phases of sam-
ple data. To cope with the problem of missing data, some new imputation methods 
have been suggested for estimating the population mean which utilize the informa-
tion on two auxiliary variables. The properties of the resultant estimators are stud-
ied which are followed by empirical and simulation studies accomplished on real 
as well as on artificial data sets which justify the suggested imputation methods. 
Results are significantly analyzed, and appropriate suggestions are made to the sur-
vey practitioners.

Keywords  Non-response · Auxiliary variable · Imputation · Bias · Mean square 
error · Sampling design

Mathematics Subject Classification  62D05

1  Introduction

Missing data are the most frequent occurring feature in sample surveys, and rec-
ognizing its stochastic nature is of utmost importance in order to use appropriate 
methodology for handling the data sets. Failure in recognition of its nature may 
distort the inferences about population characteristics/parameters; therefore, the 
assiduous attempt is needed for handling of the data sets with missing values. A 
fundamental query appears in this regard that what assumptions to be considered 
while justifying the ignorability of the complete mechanism. Rubin [1] discussed 
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this fundamental query for missing data by establishing ignorability conditions 
under the classical and Bayesian approach for statistical inference. Further, [2, 3] 
subsequently generalized the [1] model to include other forms of incompleteness. 
Initially, [1] addressed three key concepts related to missing pattern of the data 
sets: missing at random (MAR), observed at random (OAR) and parameter distri-
bution (PD). He mentioned “The data are MAR if the probability of the observed 
missingness pattern, given the observed and unobserved data, does not depend on 
the values of the unobserved data. The data are OAR, if for every possible value 
of the missing data, the probability of the observed missingness pattern, given the 
observed and unobserved data, does not depend on the values of observed data.” 
Later, the combination of MAR and OAR is called missing completely at random 
(MCAR). Heitain and Basu [4] have differentiated MAR and MCAR mechanism 
with series of examples. Based on these works, the pattern of the missing mecha-
nism of data sets is recognized and inference related to population parameter is 
made under some strategies according to their obtained pattern. These methods 
are termed as “imputation methods.” Imputation is the procedure of replacing 
missing data with fabricated values. Abundant of works have been carried out 
based on imputation methods, such as [5–17].

The information related to the auxiliary variable may be used either at the 
planning stage or at design stage or survey stage or at estimation stage to get 
the improved precision of the estimates. When the information on auxiliary vari-
able correlated with study variable is readily available, ratio, regression and their 
transformed and improved methods have been widely used to obtain efficient 
estimates, anticipating the information on the population mean of the auxiliary 
variable. In spite of that, the knowledge of the population mean of the auxiliary 
variable is not always available. In such circumstances, two-phase sampling or 
double scheme is a widely used sampling scheme to obtain the reliable estimates 
of unknown population mean of auxiliary variable in survey studies. The pres-
ence of missing data during survey sampling under two-phase sampling design 
enforces the researchers to implement the imputation methods for obtaining 
trustworthy conclusion regarding population parameters. Several researchers like 
[18–21] and others have suggested some imputation methods for compensating 
existence of the missing data with the assumption that the complete response 
may not be available on the study variable as well as on the auxiliary variable in 
second-phase sample. It is worth to be mentioned that very limited attention has 
been paid to deal with the situations, when the complete response is not available 
in the first-phase sample as well.

Following the aforementioned arguments and motivated with the work of [9], 
authors have proposed some effective imputation methods under missing completely 
at random (MCAR) response mechanism, which result in the point estimators of the 
population mean of study variable in two-phase sampling design. The properties of 
the proposed estimators have been discussed. Empirical and simulation studies are 
accomplished to authenticate the propositions of the suggested imputation methods 
and resultant estimators. Suitable recommendations have been made to the survey 
practitioners for real-life applications.
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2 � Sampling Design and Notations

Let P = (P1,P2 …PN) be a finite population of size N indexed by triplet characters 
(y, x, z). It is assumed that y is the study variable and (x and z) are the (first and second) 
auxiliary variables, respectively, such that y is positively correlated with x and z, while 
in comparison with x, it is remotely correlated with z. When the population mean X̄ of 
the first auxiliary variable is not known but information on the second auxiliary vari-
able z is available for all the units of the population, the following two-phase sampling 
scheme has been designed for making inference about the population parameters.

Let s′ be the first-phase sample of size n′ drawn using simple random sampling with-
out replacement (SRSWOR) scheme from the population and surveyed for the auxil-
iary variable x to estimate its population mean X̄ . The second-phase sample of size 
n < n′ is drawn to measure the study characteristic y under the following design:

Design I The second-phase sample s is drawn from the first-phase sample s′
Design II The second-phase sample s is independently drawn from the entire popu-
lation.

We have assumed that non-response occurs in the first- and second-phase samples 
where r′ and r are the number of responding units in the first- and second-phase sam-
ples of sizes n′ and n, respectively. The corresponding sets of responding units are 
denoted by ( R1 and R2 ) and the sets of non-responding units by ( Rc

1
 and Rc

2
 ), respec-

tively. We have also assumed that sample units in the second-phase sample s have been 
drawn from the responding set R1.

3 � Proposed Methods of Imputation and Subsequent Estimators

In this section, using the compromised method of imputation in the first-phase sample, 
we have proposed some new compromised imputation methods under MCAR response 
mechanism in the second-phase sample for missing data on the study variable y. The 
proposed imputation methods and resultant estimators are given below:

3.1 � Imputation for Missing Data in the First‑Phase Sample

To compensate the missing values on auxiliary variable x in the first-phase sample, we 
considered the ratio method of imputation; hence, after imputation, the sample data in x 
take the following form:

(1)x.i =

⎧⎪⎨⎪⎩

𝛼n�xi

r�
+ (1 − 𝛼)b̂�zi if i ∈ R1

(1 − 𝛼)b̂�zi if i ∈ Rc
1
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where b̂� =
∑r�

i=1
xi∑r�

i=1
zi

 and � is an unknown constant. Under the imputation method 

described in Eq. (1), the point estimator of the population mean X̄ in the first-phase 
sample is derived as

which produces the point estimator of the population mean X̄ in the first-phase sam-
ple as

where x̄r� =
∑

i∈R1
xi

r�
 , z̄r� =

∑
i∈R1

zi

r�
 and z̄n� =

∑n�

i=1
zi

n�
.

3.2 � Imputation for Missing Data in the Second‑Phase Sample

To derive the reliable substitutes for missing values in the second-phase sample, we 
suggest two new compromised imputation methods which are presented below:

First Imputation Method Under this method of imputation, sample data take the 
following forms

where c = 1

x̄n
𝛼x̄r� + (1 − 𝛼)x̄r�

z̄n�

z̄r�
 , b̂ =

∑r

i=1
yi∑

i=1
zi

 and �1 is suitably chosen constant 

such that the mean square error of resultant estimator is minimum.
Under the imputation method described in Eq. (3), the point estimator of the pop-

ulation mean Ȳ  takes the following form

Second Imputation Method  Under this method of imputation, sample data take the 
following forms

x̄� =
1

n�

⎧
⎪⎨⎪⎩

�
i∈R1

x.i +
�
i∈Rc

1

x.i

⎫
⎪⎬⎪⎭

(2)x̄� = 𝛼x̄r� + (1 − 𝛼)x̄r�
z̄n�

z̄r�

(3)y.i =

{ 𝛼1nyic

r
+ (1 − 𝛼1)b̂zic if i ∈ R2

(1 − 𝛼1)cb̂zi if i ∈ Rc
2

(4)𝜁1 =

{
𝛼1ȳr + (1 − 𝛼1)ȳr

z̄n

z̄r

}

x̄n

{
𝛼x̄r� + (1 − 𝛼)x̄r�

z̄n�

z̄r�

}
.



1 3

Journal of Statistical Theory and Practice (2019) 13:19	 Page 5 of 24  19

where b̂yx(r) =
syx

s2
x

 and �2 is suitably chosen constant such that the mean square error 

of resultant estimator is minimum.
Under the imputation method described in Eq. (5), the point estimator of the popula-

tion mean Ȳ takes the following form

4 � Properties of Estimators �
1
 and �

2

The properties of the proposed estimators �1 and �2 have been explored under two differ-
ent types of two-phase sampling design opted for MCAR response mechanism. Large 
sample approximations have been used in order to obtain the expressions of biases and 
mean square errors of the proposed estimators using the following transformations:

Under the above transformations, the estimators �1 and �2 take the following forms:

and

where �YX =
SYX

S2
X

.

(5)y.i =

⎧
⎪⎨⎪⎩

𝛼2nyi

r
+ (1 − 𝛼2)b̂zi if i ∈ R2

(1 − 𝛼2)b̂zi +
1

n − r
b̂yx(r)

�
𝛼x̄r� + (1 − 𝛼)x̄r�

z̄n�

z̄r�
− x̄n

�
if i ∈ Rc

2

(6)𝜁2 =

{
𝛼2ȳr + (1 − 𝛼2)ȳr

z̄n

z̄r

}
+ b̂yx(r)

{
𝛼x̄r� + (1 − 𝛼)x̄r�

z̄n�

z̄r�
− x̄n

}
.

ȳr = Ȳ
(
1 + e0

)
, x̄r = X̄

(
1 + e1

)
, x̄r� = X̄

(
1 + e�

1

)
, x̄

n
= X̄(1 + e

2
), x̄n� = X̄(1 + e�

2
),

z̄r� = Z̄(1 + e�
3
), z̄n = Z̄(1 + e4), z̄n� = Z̄(1 + e�

4
), syx(r) = SYX(1 + e

5
), s2

x
(r) = S2

X
(1 + e

6
),

such that E(e�
i
) = E(e

i
) = 0, |e�

i
| ≤ 1 and |e

i
| ≤ 1∀i, i� = 0, 1, 2, 3, 4, 5, 6.

(7)𝜁1 = Ȳ

{
𝛼1(1 + e0) + (1 + 𝛼1)(1 + e0)

1 + e4

1 + e3

}
(1 + e�

1
)

(1 + e
2
)

(1 + e�
4
)

(1 + e�
3
)

(8)

𝜁2 = Ȳ(1 + e0)

{
𝛼2 + (1 − 𝛼2)

(1 + e4)

(1 + e3)

}

+ 𝛽YX
(1 + e5)

(1 + e6)
X̄

[
(1 + e�

1
)

{
𝛼 + (1 − 𝛼)

(1 + e�
4
)

(1 + e�
3
)

}
− (1 + e2)

]
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4.1 � Biases and Mean Square Errors of Estimators �
1
 and �

2

Let B(.)d and MSE(.)d be the bias and mean square error, respectively, of an estima-
tor under a given two-phase sampling design d(= I, II).

Theorem 4.1  The biases of the estimators �1 and �2 are given by

where

�6 =

(
1

r�
−

1

N

)
 and f1 =

(
1

n
−

1

N

)
.

Proof  The bias of the estimator �1 is derived as

Now, expanding the right-hand sides of Eq.  (13) binomially, taking expectation 
under the sampling designs I and II, respectively, and retaining the terms up to the 

(9)
B(𝜁1)I = Ȳ

[
𝛿2(C

2
X
− 𝜌YXCYCX) + {𝛿3(1 − 𝛼1) + 𝛿4(1 − 𝛼)}(C2

Z
− 𝜌YZCYCZ)

]

(10)
B(𝜁1)II = Ȳ

[
f1(C

2
X
− 𝜌YXCYCX) + 𝛿3(1 − 𝛼1)(C

2
Z
− 𝜌YZCYCZ)

+ 𝛿4(1 − 𝛼)(C2
Z
− 𝜌XZCXCZ)

]

(11)
B(𝜁2)I = Ȳ𝛿3(1 − 𝛼2)(C

2
Z
− 𝜌YZCYCZ) + 𝛽YXX̄

[
𝛿4(1 − 𝛼)(C2

Z
− 𝜌XZCXCZ)

]

+ 𝛽YXX̄

[
𝛿2

X̄

(
𝜇030

𝜇020

−
𝜇120

𝜇110

)
+

(1 − 𝛼)(𝛿4)

Z̄

(
𝜇021

𝜇020

−
𝜇111

𝜇110

)]

(12)
B(𝜁2)II = Ȳ𝛿3(1 − 𝛼2)(C

2
Z
− 𝜌YZCYCZ) + 𝛽YXX̄

[
𝛿4(1 − 𝛼)(C2

Z
− 𝜌XZCXCZ)

]

+ 𝛽YXX̄
f1

X̄

(
𝜇120

𝜇110

−
𝜇030

𝜇020

)

�1 =

(
1

r
−

1

N

)
, �2 =

(
1

n
−

1

r�

)
, �3 =

(
1

r
−

1

n

)
, �4 =

(
1

r�
−

1

n�

)
, �5 =

(
1

n�
−

1

N

)
,

(13)

B(𝜁1)d = E(𝜁1 − Ȳ)

= E

[
Ȳ

{
𝛼1(1 + e0) + (1 + 𝛼1)(1 + e0)

1 + e4

1 + e3

}
(1 + e�

1
)

(1 + e
2
)

(1 + e�
4
)

(1 + e�
3
)
− Ȳ

]
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first order of approximations, we get the expression of the bias of the proposed esti-
mator �1 under sampling designs I and II as obtained in Eqs. (9)–(10).

In similar fashion, we derive the expression of bias of the proposed estimator �2 
under sampling designs I and II as obtained in Eq. (11)–(12). 	�  □

Theorem 4.2  The mean square errors of the estimators �1 and �2 are given by

and

Proof  The mean square error of the estimator �1 is derived as

Now, expanding the right-hand sides of Eq.  (18) binomially, taking expectation 
under the sampling designs I and II, respectively, and retaining the terms up to the 
first order of approximations, we get the expressions of the mean square error of the 
proposed estimator �1 under sampling designs I and II as obtained in Eqs. (14)–(15).

(14)

MSE(𝜁1)I = Ȳ2
[
𝛿1C

2
Y
+ 𝛿2(C

2
X
− 2𝜌YXCYCX) + 𝛿3{(1 − 𝛼1)

2C2
Z

− 2(1 − 𝛼1)𝜌YZCYCZ}} + 𝛿4{(1 − 𝛼)2C2
Z
− 2(1 − 𝛼)𝜌YZCYCZ}

]

(15)

MSE(𝜁1)II = Ȳ2
[
𝛿1C

2
Y
+ 𝛿6C

2
X
+ f1(C

2
X
− 2𝜌YXCYCX) + 𝛿3{(1 − 𝛼1)

2C2
Z

− 2(1 − 𝛼1)𝜌YZCYCZ} + 𝛿4{(1 − 𝛼)2C2
Z
− 2(1 − 𝛼)𝜌XZCXCZ}

]

(16)
MSE(𝜁2)I = Ȳ2

[
(𝛿1 − 𝛿2𝜌

2
YX
)C2

Y
+ 𝛿3{(1 − 𝛼2)

2C2
Z
− 2(1 − 𝛼2)𝜌YZCYCZ}

]

+ 𝛿4

[
(1 − 𝛼)2𝛽2

YX
X̄2C2

Z
− 2(1 − 𝛼)ȲX̄𝛽YX𝜌YZCYCZ)

]

(17)
MSE(𝜁2)II = Ȳ2

[
(𝛿1 − f1𝜌

2
YX
)C2

Y
+ 𝛿3{(1 − 𝛼2)

2C2
Z
− 2(1 − 𝛼2)𝜌YZCYCZ}

]

+ 𝛽2
YX
X̄2

[
𝛿4{(1 − 𝛼)2C2

Z
− 2(1 − 𝛼)𝜌XZCXCZ)} + 𝛿6C

2
X

]
.

(18)

MSE(𝜁1)d = E(𝜁1 − Ȳ)2

= E

[
Ȳ

{
𝛼1(1 + e0) + (1 + 𝛼1)(1 + e0)

1 + e4

1 + e3

}
(1 + e�

1
)

(1 + e
2
)

(1 + e�
4
)

(1 + e�
3
)
− Ȳ

]2



	 Journal of Statistical Theory and Practice (2019) 13:19

1 3

19  Page 8 of 24

In similar fashion, we derive the expression of mean square error of the proposed 
estimator �2 under sampling designs I and II as obtained in Eqs. (16)–(17). 	�  □

4.2 � Minimum Biases and Mean Square Errors of the Estimators �
1
 and �

2

Since the mean square errors of estimators �1 and �2 under two types of sampling 
designs mentioned in Eqs. (14)–(17) are the functions of unknown scalars �, �1 and 
�2 , the optimum choices of �, �1 and �2 are obtained by minimizing the mean square 
errors given in Eqs. (14)–(17) with respect to �, �1 and �2 as

For estimator �1 , we have

For estimator �2 , we have

The optimum biases of the proposed estimators �1 and �2 have been obtained by put-
ting the optimum choices of �, �1 and �2 from Eqs. (19)–(22) in Eqs. (9)–(12). The 
optimum biases of the proposed estimators �1 and �2 under two types of two-phase 
sampling designs are given as

(19)�1(opt)I = �1(opt)II = 1 − �YZ
CY

CZ

(20)�2(opt)I = 1 − �YZ
CY

CZ

��� �2(opt)II = 1 − �YZ
CY

CZ

(21)�(opt)I = 1 − �YZ
CY

CZ

��� �(opt)II = 1 − �XZ
CX

CZ

(22)�(opt)I = 1 −
�YZCX

�YXCZ

��� �(opt)II = 1 − �XZ
CX

CZ

(23)B∗(𝜁1)I = Ȳ
[
𝛿2(C

2
X
− 𝜌YXCYCX) + (𝛿3 + 𝛿4)(𝜌YZCYCZ − 𝜌2

YZ
C2
Y
)
]

(24)
B∗(𝜁1)II = Ȳ

[
f1(C

2
X
− 𝜌YXCYCX) + 𝛿3(𝜌YZCYCZ − 𝜌2

YZ
C2
Y
)

+ 𝛿4(𝜌XZCXCZ − 𝜌2
XZ
C2
X
)

]

(25)

B∗(𝜁2)I = Ȳ𝛿3(𝜌YZCYCZ − 𝜌2
YZ
C2
Y
) + 𝛽YXX̄

[
𝛿4
𝜌YZ

𝜌YX
(CXCZ − 𝜌XZC

2
X
)

]
+ 𝛽YXX̄

[
𝛿2

X̄

(
𝜇030

𝜇020

−
𝜇120

𝜇110

)
+

(1 − 𝛼)(𝛿4)

Z̄

(
𝜇021

𝜇020

−
𝜇111

𝜇110

)]
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The minimum mean square errors of the proposed estimators �1 and �2 have been 
obtained by putting the optimum choices of �, �1and�2 from Eqs.  (19)–(22) in 
Eqs.  (14)–(17). The optimum mean square errors of the proposed estimators �1 
and �2 under two types of two-phase sampling designs are denoted by M(�1)d and 
M(�1)d , respectively, and given as

and

5 � Some Well‑Known Methods of Imputation

In the single-phase sampling design when the sample of size n is selected from the 
population under SRSWOR scheme and the non-response occurs in the sample data, 
some classical methods of imputation are presented in this section under the assump-
tion that information on the auxiliary variable x is available for each and every units of 
the population.

5.1 � Mean Method of Imputation

The mean method of imputation gives the data as:

Under the imputation method discussed in Eq. (31), the corresponding point estima-
tor of the population mean Ȳ  is derived as

(26)
B∗(𝜁2)II = Ȳ𝛿3(𝜌YZCYCZ − 𝜌2

YZ
C2
Y
) + 𝛽YXX̄

[
𝛿4(𝜌XZCXCZ − 𝜌2

XZ
C2
Z
)
]

+ 𝛽YXf1

(
𝜇120

𝜇110

−
𝜇030

𝜇020

)
.

(27)M(𝜁1)I = Ȳ2
[
{𝛿1 − (𝛿3 + 𝛿4)𝜌

2
YZ
}C2

Y
+ 𝛿2(C

2
X
− 2𝜌YXCYCX)

]

(28)M(𝜁1)II = Ȳ2
[
(𝛿1 − 𝛿3𝜌

2
YZ
)C2

Y
+ (𝛿6 − 𝛿4𝜌

2
XZ
)C2

X
+ f1(C

2
X
− 2𝜌YXCYCX)

]

(29)M(𝜁2)I = Ȳ2
[
(𝛿1 − 𝛿2𝜌

2
YX
)C2

Y
− (𝛿3 + 𝛿4)𝜌

2
YZ

]

(30)M(𝜁2)II = Ȳ2
[
(𝛿1 − f1𝜌

2
YX
) − 𝛿3𝜌

2
yz

]
C2
Y
+ 𝛽2

yx
X̄2C2

X

(
𝛿6 − 𝛿4𝜌

2
xz

)
.

(31)y.i =

{
yi if i ∈ R

ȳr if i ∈ Rc

(32)ȳm =
1

r

r∑
i=1

y.i = ȳr.
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The variance of the estimator ȳm is obtained as

5.2 � Ratio Method of Imputation

The ratio method of imputation gives the data as:

where b̂ =

∑.

i∈R
yi∑.

i∈R
xi

.

Under the imputation method discussed in Eq. (34), the corresponding point estima-
tor of the population mean Ȳ is derived as

The mean square error of the estimator ȳrat up to the first order of approximations is 
obtained as

5.3 � Regression Method of Imputation

The regression method of imputation gives the data as

where b̂yx =
syx(r)

s2
x
(r)

and â =
(
ȳr − b̂yxx̄r

)
. Under the imputation method discussed in 

Eq. (37), the corresponding point estimator of the population mean Ȳ  is derived as

The mean square of the estimator ȳreg up to the first order of approximations is 
obtained as

(33)v(ȳm) = 𝛿1Ȳ
2C2

Y
.

(34)y.i =

{
yi if i ∈ R

b̂xi if i ∈ Rc

(35)ȳrat =
1

n

n∑
i=1

y.i = ȳr
x̄n

x̄r
.

(36)M(ȳrat) = Ȳ2
[
𝛿1C

2
Y
+ 𝛿3(C

2
X
− 2𝜌YXCYCX)

]
.

(37)y.i =

{
yi if i ∈ R

â + b̂yxxi if i ∈ Rc

(38)ȳreg =
1

n

n∑
i=1

y.i = ȳr + b̂yx
(
x̄n − x̄r

)
.

(39)M(ȳreg) = Ȳ2C2
Y

[
𝛿1 − 𝛿3𝜌

2
yx

]
.
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6 � Analytical Comparison

In this section, we compare the suggested estimators with existing classical esti-
mators ȳm , ȳrat and ȳreg.

Lemma 6.1 

	 (i)	 The proposed estimator �1 under first-phase design is more efficient than ȳm if

	 (ii)	 The proposed estimator �1 under second--phase design is more efficient than 
ȳm if

	 (iii)	 The proposed estimator �2 under first-phase design is more efficient than ȳm if

which is always true.
	 (iv)	 The proposed estimator �2 under second-phase design is more efficient than 

ȳm if

Lemma 6.2 

	 (i)	 The proposed estimator �1 under first-phase design is more efficient than ȳrat 
if

	 (ii)	 The proposed estimator �1 under second-phase design is more efficient than 
ȳrat if

M(𝜁1)I − v(ȳm) < 0 ⇒
1 − 2𝜌YX

𝜌2
YZ

<
𝛿3 + 𝛿4

𝛿2
.

M(𝜁1)II − v(ȳm) < 0 ⇒ 1 − 2𝜌YX <
𝛿3𝜌

2
YZ

+ 𝛿4𝜌
2
XZ

− 𝛿6

f1
.

M(𝜁2)I − v(ȳm) < 0 ⇒ 𝛿2𝜌
2
YZ

+ (𝛿3 + 𝛿4)𝜌
2
YZ

> 0

M(𝜁2)II − v(ȳm) < 0 ⇒ Ȳ2(f1𝜌
2
YX

+ 𝛿3𝜌
2
YZ
) > X̄2𝛽2

YX
(𝛿6 − 𝛿4𝜌

2
XZ
)

M(𝜁1)I −M(ȳrat) < 0 ⇒
1 − 2𝜌YX

𝜌2
YZ

<
𝛿3 + 𝛿4

𝛿2 − 𝛿3
.

M(𝜁1)II −M(ȳrat) < 0 ⇒ 1 − 2𝜌YX <
𝛿3𝜌

2
YZ

+ 𝛿4𝜌
2
XZ

− 𝛿6

f1 − f3
.
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	 (iii)	 The proposed estimator �2 under first-phase design is more efficient than ȳrat 
if

which is always true if 𝜌YX >
1

2
.

	 (iv)	 The proposed estimator �2 under second-phase design is more efficient than 
ȳrat if

Lemma 6.3 

	 (i)	 The proposed estimator �1 under first-phase design is more efficient than ȳreg 
if

	 (ii)	 The proposed estimator �1 under second-phase design is more efficient than 
ȳreg if

	 (iii)	 The proposed estimator �2 under first-phase design is more efficient than ȳreg 
if

	 (iv)	 The proposed estimator �2 under second-phase design is more efficient than 
ȳreg if

Remark 6.1  It may be assumed that CY ≈ CX ≈ CZ in the population.

7 � Efficiency Comparison

In this section, empirical and simulation studies have been carried out to demon-
strate the accomplishment of the proposed methods of imputation and resultant esti-
mators over mean, ratio and regression methods of imputation.

M(𝜁2)I −M(ȳrat) < 0 ⇒ 𝛿2𝜌
2
YX

+ (𝛿3 + 𝛿4)𝜌
2
YZ

+ 𝛿3(1 − 2𝜌YX) > 0

M(𝜁2)II −M(ȳrat) < 0 ⇒ 1 − 2𝜌YX >
𝛽2
YX
X̄2(𝛿6 − 𝛿4𝜌

2
XZ
) − (𝛿3𝜌

2
YZ

+ f1𝜌
2
YX
)Ȳ2

𝛿3Y
2

.

M(𝜁1)I −M(ȳreg) < 0 ⇒ 𝛿3𝜌
2
YX

+ 𝛿2(1 − 2𝜌YX) < (𝛿3 + 𝛿4)𝜌
2
YZ
.

M(𝜁1)II −M(ȳreg) < 0 ⇒ 𝛿3𝜌
2
YX

+ f1(1 − 2𝜌YX) < (𝛿4𝜌
2
XZ

+ 𝛿3𝜌
2
YZ
) − 𝛿6.

M(𝜁2)I −M(ȳreg) < 0 ⇒ (𝛿3 − 𝛿2)𝜌
2
YX

< (𝛿3 + 𝛿4)𝜌
2
YZ

M(𝜁2)II −M(ȳreg) < 0 ⇒ Ȳ2
{
(𝛿3 − f1)𝜌

2
YX

− 𝛿3𝜌
2
YZ

}
+ X̄2𝛽2

YX
(𝛿6 − 𝛿4𝜌

2
XZ
) < 0.
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7.1 � Empirical Study

To show the practicability of the proposed methods of imputation in the real-life 
scenario, four natural populations from various survey studies have been chosen for 
empirical study. The optimum mean square errors of proposed estimators are taken 
under consideration in empirical study. The percent relative efficiencies of the pro-
posed methods with respect to the classical methods of imputations (mean, ratio and 
regression) are obtained as

The detailed information of populations is given below:
Population I [Source [22]] (Page No. 58)

Y: Head length of second son
X: Head length of first son
Z: Head breadth of first son
N = 25, n� = 18, r� = 11, n = 9, r = 7.

Population II [Source: [23] ] (Page No. 399)

Y: Area under wheat in 1964
X: Area under wheat in 1963
Z: : Cultivated area in 1961
N = 34, n� = 22, r� = 14, n = 11, r = 8.

Population III [Source: [24]] (Page No. 182)

Y: Number of ‘placebo’ children
X: Number of paralytic polio cases in the placebo group
Z: Number of paralytic polio cases in the ‘not inoculated’ group
N = 33, n� = 22, r� = 18, n = 12, r = 8.

Population IV [Source: [25] (Page No. 349)

Y: Volume
X: Diameter
Z: Height
N = 31, n� = 22, r� = 16, n = 10, r = 7.

E11 =
v(ȳm)

M(𝜁1)
× 100, E12 =

M(ȳrat)

M(𝜁1)
× 100, E13 =

M(ȳreg)

M(𝜁1)
× 100;

E21 =
v(ȳm)

M(𝜁2)
× 100, E22 =

M(ȳrat)

M(𝜁2)
× 100 and E23 =

M(ȳreg)

M(𝜁2)
× 100.
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The percent relative efficiencies are computed for the above-mentioned populations 
under both sampling designs I and II and shown in Tables 1, 2 and 3.

7.2 � Simulation Study

A computer simulation is an endeavor to model a real-life or hypothetical scenarios 
on a computer so that it may be studied to see how the proposed system, strategies 
or methods works. The inference may be made about the behavior of the proposed 
system, strategies or methods by changing parameters in the simulation study. It 
is a tool to virtually investigate the behavior of the method or system under study. 
Inspired by this argument, we have run simulation study to investigate the behavior 
of the proposed imputation methods with respect to classical methods of imputation. 
The simulation studies have been performed on three artificial computer generated 
data sets to know the percent relative efficiencies and losses of proposed estimators 
due to the presence of non-response in the population. The description of artificial 
data sets is given as:

Table 1   Percent relative 
efficiencies of the proposed 
methods of imputation with 
respect to mean method of 
imputation

Population Design I Design II

E11 E21 E11 E21

I 166.7263 120.0599 170.2578 151.791
II 344.1896 347.9319 344.3223 336.9121
III 153.1210 197.6898 204.4901 197.8982
IV 170.9074 103.5229 166.3121 159.7961

Table 2   Percent relative 
efficiencies of the proposed 
methods of imputation with 
respect to ratio method of 
imputation

Population Design I Design II

E12 E22 E12 E22

I 143.9904 103.6878 147.0403 131.0918
II 226.3443 228.8053 226.4315 221.5584
III 123.7454 95.73043 133.0007 130.4266
IV 127.7331 147.7498 152.8322 147.9056

Table 3   Percent relative 
efficiencies of the proposed 
methods of imputation with 
respect to regression method of 
imputation

Population Design I Design II

E13 E23 E13 E23

I 140.7310 101.3406 143.7118 128.1244
II 226.2768 228.7371 226.3640 221.4924
III 102.8689 79.58021 110.5628 108.4229
IV 108.9643 126.0398 130.3755 126.1727
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Population V Source: [Artificially Generated Data Set]
A population of size N = 2000 are generated from the multivariate normal distribu-

tion in R software. The study variable y is positively correlated with auxiliary variables 
with fixed correlations �YX = 0.7 , �YZ = 0.6 and �XZ = 0.5 . The parameters used for 
this population are n� = 800, r� = 640, n = 256, r = 204.

Population VI Source: [Artificially Generated Data Set]
The triplet (y, x, z) is generated of size N = 200 . The study variable y is highly 

correlated with auxiliary variables with fixed correlations �YX = 0.93 , �YZ = 0.87 and 
�XZ = 0.95 . We have taken n� = 80, r� = 64, n = 50, r = 40.

Population VII Source: [Artificially Generated Data Set]
The triplet (y,  x,  z) is generated of size N = 1000 such that 

x ∼ gamma(4, 2.5), e ∼ N(0, 1) , z = 1.5x0.5 + e, y = 8x + 7z + e where 𝜌YX > 𝜌Yz . We 
have taken n� = 400, r� = 320, n = 128, r = 102.

In this simulation studies, the following steps have been followed:

Step I Draw a random sample s′ of size n′ from population size N.
Step II Take out (n� − r�) sample units randomly from the first-phase sample each 
time. Impute dropped units using imputation method contemplated for the first-
phase sample.
Step III Draw a random subsample of size n from s′ for design I and independent 
random sample n from N for design II.
Step IV Take out (n − r) sample units randomly from the second-phase sample each 
time. Impute dropped units using proposed method of imputation contemplated for 
the second-phase sample.
Step V Compute relevant statistics.
Step VI Repeat the above steps 

(
N

n=M

)
 (say) times .

The simulated variance and mean square errors of the existing and proposed estimators 
are obtained as:

The simulated percent-related efficiencies are given as

var∗(ȲM) =
1

M

M∑
j=1

((ȳm)j − Ȳ)2,M∗(ȳrat) =
1

M

M∑
j=1

(ȳrat)j − Ȳ)2,M∗(ȳreg)

=
1

M

M∑
j=1

((ȳreg)j − Ȳ)2,

M∗(𝜁1)d =
1

M

M∑
j=1

((𝜁1)dj − Ȳ)2 and M∗(𝜁2)d =
1

M

M∑
j=1

((𝜁1)dj − Ȳ)2

E�
11

=
var∗(ȳm)

M∗(𝜁1)d
× 100, E�

12
=

M∗(ȳrat)

M∗(𝜁1)d
× 100, E�

13
=

M∗(ȳreg)

M∗(𝜁1)d
× 100;

E�
21

=
var(ȳm)

M∗(𝜁2)d
× 100, E�

22
=

M∗(ȳrat)

M∗(𝜁2)d
× 100 and E�

23
=

M∗(ȳreg)

M∗(𝜁2)d
× 100.
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The percent relative losses in efficiencies due to non-response of the estimators �1 
and �2 are obtained with respect to the similar estimators when non-response has 
not observed in any phase. The estimators T1 and T2 are defined under the similar 
circumstances as the estimators �1 and �2 , respectively, but under complete response. 
The simulated percent relative losses in efficiencies of the proposed estimators �1 
and �2 with respect to T1 and T2 , respectively, under their respective design are given 
as

where

l1 =
M�(�1)d −MSE(T1)d

M�(�1)d
× 100 and l2 =

M�(�2)d −MSE(T2)d

M�(�1)d
× 100

MSE(T1)d =
1

M

M∑
j=1

((T1)dj − Ȳ)2 and MSE(T2)d =
1

M

M∑
j=1

((T1)dj − Ȳ)2.

Table 4   Bias of proposed, mean, ratio and regression estimators under imputation method

Population B
(
�1
)
I

B
(
�2
)
I

B
(
�1
)
II

B
(
�2
)
II

B
(
ȳm

)
B
(
ȳrat

)
B
(
ȳreg

)

I − 0.0035 − 0.0185 0.0224 0.0170 − 0.0071 − 0.0158 − 0.0069
II − 0.7398 − 0.3272 − 0.8430 − 0.5335 0.0920 − 0.0525 0.0915
III 0.2768 0.2418 0.2661 0.2195 0.0665 0.2234 − 0.0359
IV − 0.2358 − 0.0651 − 0.1998 − 0.0664 − 0.0034 − 0.0913 − 0.0613

Table 5   Percent relative efficiencies of proposed method with respect to mean, ratio and regression 
methods of imputation under design I

Population E′
11

E′
12

E′
13

E′
21

E′
22

E′
23

V 94.79711 111.2117 172.9588 242.4857 284.4733 442.419
VI 202.5033 167.5122 204.283 131.2021 108.5314 132.3552
VII 198.655 151.9309 202.3274 124.9503 95.56174 127.2602

Table 6   Percent relative efficiencies of proposed method with respect to mean, ratio and regression 
methods of imputation under design II

Population E′
11

E′
12

E′
13

E′
21

E′
22

E′
23

V – – – 166.4769 295.3405 226.3282
VI 110.6395 91.0507 111.6266 132.9174 109.3844 134.1034
VII 165.2897 127.6943 167.7603 135.1092 104.3784 137.1287
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In this study, M = 50,000 has been taken for convenience in calculation. The values 
of E�

ij
(i = 1, 2, ), (j = 1, 2, 3) and lk(k = 1, 2) are calculated based on the above proce-

dures and presented in Tables 5, 6, 7, 8, 9 and 10.

Following the above-mentioned simulation study, we have also calculated the 
biases of the resultant estimators �1 , �2 and existing estimators ȳm , ȳrat and ȳreg for 
populations I-IV and shown in Table 4.

8 � Interpretations of Empirical and Simulation Results

The following interpretation may be read out form Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 and 
10:

(i)	 From Tables 1, 2 and 3, it is seen that the percent relative efficiencies of proposed 
estimators �1 and �2 with respect to the estimators ȳm , ȳrat and ȳreg are more than 
100 in almost cases when percent relative efficiencies have been obtained using 
the large sample approximations. This reflects the dominance nature of the pro-
posed method of imputations and resultant estimators over the classical method 
of imputations.

(ii)	 From Tables 5 and 6, it is observed that simulated percent relative efficiencies 
of proposed estimators �1 and �2 with respect to the estimators ȳm , ȳrat and ȳreg 
are more than 100 in most of the cases when simulation studies are performed 
on artificial data sets.

(iii)	 From Tables 7, 8, 9 and 10, it is indicated that the percent relative losses in 
efficiencies l1 and l2 of the estimators �1 and �2 under two types of two-phase 
sampling designs are not more than 30% for both artificial and real popula-
tions.

(iv)	 From Tables 7 and 8, the negative percent relative losses in efficiencies are 
observed for some cases under two-phase sample design I which indicates the 
gain in the precision of estimate.

(v)	 From Tables 8, 9 and 10, it is also seen that the percent relative losses in effi-
ciencies l1 and l2 are decreasing as the values of r increase for fixed values of 
N, n′, r′ and n under both types of two-phase sampling designs. This shows that 
the percent relative losses in efficiencies are decreasing as percentage of non-
response in the second-phase sample decreases.

In Tables 7 and 8, the impact of percent relative losses in efficiencies of the pro-
posed estimators is observed very closely taking into consideration of minor change 
in percentage of non-response in the second-phase sample and results are shown 
graphically in Figs. 1, 2, 3, 4, 5 and 6 to get more visible pattern under sampling 
designs I and II separately.
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Table 7   Percent relative loss 
in efficiencies of T

1
 and T

2
 for 

population V

Non-
response 
in %

r Design I Design II

l1 l2 l1 l2

20.3 204 − 5.78817 18.37585 9.91844 22.05380
19.9 205 − 6.31469 18.92934 9.78423 22.37468
19.5 206 − 5.99639 17.22236 10.37980 21.97567
19.1 207 − 6.44455 17.85349 9.99347 21.88525
18.8 208 − 6.25436 16.28825 9.78489 21.35387
18.4 209 − 6.44913 16.77161 9.70870 21.05562
18.0 210 − 6.86914 16.30936 10.00350 20.77964
17.6 211 − 7.01849 15.29330 9.81893 20.39861
17.2 212 − 7.70971 15.23885 9.63560 19.20669
16.8 213 − 6.02526 15.57119 9.45744 19.39193
16.4 214 − 7.16053 14.64099 9.57376 18.67739
16.0 215 − 7.52787 13.78702 9.46119 19.30768
15.6 216 − 7.04825 14.22896 9.38657 18.36987
15.2 217 − 7.09088 13.32298 9.12777 17.94182
14.8 218 − 7.64929 13.68114 9.22407 17.84795
14.5 219 − 7.83837 13.46266 9.19650 17.82550
14.1 220 − 7.45660 12.21393 8.91465 16.92621
13.7 221 − 7.39892 11.83445 9.06312 16.69474
13.3 222 − 8.33907 11.31900 9.54730 16.56260
12.9 223 − 8.10236 11.96917 9.03036 15.71908
12.5 224 − 8.25863 11.31934 9.14293 16.08700
12.1 225 − 7.81661 11.24739 9.04696 15.42324
11.7 226 − 8.40448 10.23890 8.74597 14.73185
11.3 227 − 7.98930 10.33325 8.79993 15.01819
10.9 228 − 8.76567 8.98472 9.08217 14.12681
10.5 229 − 8.45887 9.25380 8.48976 13.52911
10.2 230 − 8.50701 9.03267 8.75179 13.04728
9.8 231 − 9.09961 8.03963 9.19510 13.53535
9.4 232 − 9.10836 7.93695 8.73893 13.19960
9.0 233 − 8.44382 7.93043 8.75542 12.76529
8.6 234 − 9.17175 7.76826 8.41679 12.15552
8.2 235 − 9.96900 7.02693 8.81511 11.55354
7.8 236 − 8.82106 7.28959 8.72726 11.69547
7.4 237 − 8.60567 7.07465 8.59408 11.36768
7.0 238 − 9.49687 5.97648 8.64117 11.28274
6.6 239 − 9.05269 5.69001 8.10258 10.63448
6.3 240 − 9.99699 4.80093 8.57878 10.74080
5.9 241 − 9.53311 5.08852 8.59809 10.46995
5.5 242 − 9.63400 4.76279 8.51161 9.71565
5.1 243 − 9.42295 4.44962 8.53528 9.47632
4.7 244 − 10.00734 3.71636 8.34055 9.10798
4.3 245 − 10.48103 3.39492 8.15473 8.24409
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Table 7   (continued) Non-
response 
in %

r Design I Design II

l1 l2 l1 l2

3.9 246 − 9.88941 3.38665 8.16975 8.46270
3.5 247 − 10.06214 3.29086 8.04340 7.55059
3.1 248 − 10.14132 2.57034 8.20028 7.52925
2.7 249 − 10.46531 2.45727 8.01292 7.55005
2.3 250 − 10.15615 1.52099 7.69954 7.04355
2.0 251 − 10.54069 1.41321 8.54029 7.05718
1.6 252 − 11.12250 1.11616 8.16445 6.66917
1.2 253 − 10.53713 0.20925 7.92645 5.82650
0.8 254 − 10.27741 0.14196 7.95137 5.64613
0.4 255 − 10.39877 − 0.24243 7.94458 5.42982
0.0 256 − 10.94064 − 0.27996 7.60032 4.94298

Table 8   Percent relative loss 
in efficiencies of T

1
 and T

2
 for 

population VI

Non-
response 
in %

r Design I Design II

l1 l2 l1 l2

20 40 0.38499 3.22463 20.39023 4.10889
18 41 − 0.50571 2.65795 19.58656 3.69353
16 42 − 0.98140 2.63887 19.85537 3.05953
14 43 − 1.62884 1.97126 19.52627 2.68474
12 44 − 2.40481 1.53769 19.07874 2.46456
10 45 − 2.94636 1.15623 18.81600 1.88539
8 46 − 3.93481 0.73010 18.34428 1.44364
6 47 − 4.59481 0.31150 18.46878 1.18639
4 48 − 4.98863 − 0.07682 17.29139 0.69541
2 49 − 5.69632 − 0.49788 17.29067 0.33158
0 50 − 6.27116 − 0.81286 16.90846 0.00644

Table 9   Percent relative loss 
in efficiencies of T

1
 and T

2
 for 

population II

Non-
response 
in %

r Design I Design II

l1 l2 l1 l2

33.3 8 36.95582 14.83099 41.03305 12.51196
25.0 9 30.64520 8.46692 34.14653 8.73106
16.7 10 23.86985 7.58180 27.67686 5.44361
08.3 11 17.51420 3.97377 21.32365 2.58095
00.0 12 15.93921 0.00102 15.31889 0.00006
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Table 10   Percent relative loss 
in efficiencies of T

1
 and T

2
 for 

population VII

Non-
response 
in %

r Design I Design II

l1 l2 l1 l2

0.195 103 26.81336 7.73479 29.08972 8.33188
0.188 104 26.24445 7.42685 28.39203 7.63929
0.180 105 26.23111 7.57448 28.12601 7.05548
0.172 106 25.03845 6.62386 26.57549 7.06049
0.164 107 24.07782 6.23184 26.92988 6.30257
0.156 108 22.02978 6.14109 25.23823 6.22763
0.148 109 22.86167 5.88638 25.19880 5.47770
0.141 110 21.85859 5.56049 24.44542 5.28713
0.133 111 20.30682 5.20738 24.28342 5.20218
0.125 112 20.31858 4.73168 23.29412 4.91795
0.117 113 19.25704 4.37953 22.84402 4.29005
0.109 114 18.74893 4.29919 22.22405 4.03677
0.102 115 17.83962 4.10569 21.72554 3.62004
0.094 116 17.08092 3.48148 21.07267 3.56363
0.086 117 16.17240 3.34654 20.96048 3.25696
0.078 118 15.21242 2.96510 20.23740 2.76381
0.070 119 14.06151 2.70694 19.59230 2.46887
0.063 120 13.79710 2.45448 19.47380 2.18053
0.055 121 13.94238 2.43216 18.36667 2.11684
0.047 122 11.94824 1.80634 17.72348 1.67985
0.039 123 10.74092 1.53694 17.81411 1.41050
0.031 124 10.49605 1.29132 17.09411 1.06919
0.023 125 10.02008 1.20352 16.58742 0.83095
0.016 126 9.02589 0.89909 15.76101 0.56016
0.008 127 7.42204 0.63633 15.51021 0.20878
0.000 128 7.52170 0.36594 14.21055 0.02435
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Fig. 1   Losses in percent relative efficiencies under design I for population V
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Fig. 2   Losses in percent relative efficiencies under design II
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Fig. 3   Losses in percent relative efficiencies under design I for population VI
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Fig. 4   Losses in percent relative efficiencies under design II for population VI
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From Figs. 1, 2, 3, 4, 5 and 6, it is easily seen that the percent relative losses in 
efficiencies of proposed estimators are decreasing as the percentage of non-response 
decreases under both types of sampling designs.

9 � Conclusions and Recommendations

When the proposed methods of imputation under study have implemented in 
real-life scenario, proposed methods are remunerating in terms of percent rela-
tive efficiencies. These strategies are also showing their superiority in terms of 
percent relative efficiencies over classical imputation methods namely mean, 
ratio and regression methods of imputation when simulation studies have been 
performed over artificial data sets. The percent relative losses in efficiency of 
proposed estimators are less than 30% whenever non-response occurs 20% or 
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Fig. 5   Losses in percent relative efficiencies under design I for Population VII
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less of sample size. These results support that the proposed methods of imputa-
tions described in this study are appreciatively favorable in diminishing the pes-
simistic effect of non-response on inference to a greater extend as compared to 
the classical methods of imputation. Hence, looking on the persuaded behavior 
of the suggested imputation methods, survey practitioner may be encouraged for 
their practical applications, whenever non-response is inescapable in the survey 
data.
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