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Abstract
We prove strong consistency and asymptotic normality of least-squares estimators 
for the subcritical Heston model based on continuous-time observations. We also 
present some numerical illustrations of our results.
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1 Introduction

Stochastic processes given by solutions to stochastic differential equations (SDEs) 
have been frequently applied in financial mathematics. So the theory and practice of 
stochastic analysis and statistical inference for such processes are important topics. 
In this note, we consider such a model, namely the Heston model

Mátyás Barczy is supported by the János Bolyai Research Scholarship of the Hungarian Academy of 
Sciences.

 * Mátyás Barczy 
 barczy@math.u-szeged.hu

 Balázs Nyul 
 nyul.balazs@inf.unideb.hu

 Gyula Pap 
 papgy@math.u-szeged.hu

1 MTA-SZTE Analysis and Stochastics Research Group, Bolyai Institute, University of Szeged, 
Aradi vértanúk tere 1, Szeged 6720, Hungary

2 Faculty of Informatics, University of Debrecen, Pf. 12, Debrecen 4010, Hungary
3 Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, Szeged 6720, Hungary

http://crossmark.crossref.org/dialog/?doi=10.1007/s42519-018-0007-6&domain=pdf


 Journal of Statistical Theory and Practice (2019) 13:18

1 3

18 Page 2 of 25

where a > 0, b, �, � ∈ ℝ , 𝜎1 > 0 , 𝜎2 > 0 , � ∈ (−1, 1) , and (Wt,Bt)t⩾0 is a 2-dimen-
sional standard Wiener process, see Heston [14]. For interpretation of Y and X in 
financial mathematics, see, e.g., Hurn et al. [20, Section 4], here we only note that 
Xt is the logarithm of the asset price at time t and Yt its volatility for each t ⩾ 0 . The 
first coordinate process Y is called a Cox–Ingersoll–Ross (CIR) process (see Cox 
et al. [9]), square-root process or Feller process.

Parameter estimation for the Heston model (1.1) has a long history, for a short 
survey of the most recent results, see, e.g., the introduction of Barczy and Pap [5]. 
The importance of the joint estimation of (a, b, �, �) and not only of (a,  b) stems 
from the fact that Xt is the logarithm of the asset price at time t having high impor-
tance in finance. In fact, in Barczy and Pap [5], we investigated asymptotic prop-
erties of maximum likelihood estimator of (a, b, �, �) based on continuous-time 
observations (Xt)t∈[0,T] , T > 0 . In Barczy et al. [6], we studied asymptotic behavior 
of conditional least-squares estimator of (a, b, �, �) based on discrete-time observa-
tions (Yi,Xi) , i = 1,… , n , starting the process from some known non-random ini-
tial value (y0, x0) ∈ (0,∞) ×ℝ . In this note, we study least-squares estimator (LSE) 
of (a, b, �, �) based on continuous-time observations (Xt)t∈[0,T] , T > 0 , starting the 
process (Y, X) from some known initial value (Y0,X0) satisfying ℙ(Y0 ∈ (0,∞)) = 1 . 
The investigation of the LSE of (a, b, �, �) based on continuous-time observations 
(Xt)t∈[0,T] , T > 0 , is motivated by the fact that the LSEs of (a, b, �, �) based on appro-
priate discrete-time observations converge in probability to the LSE of (a, b, �, �) 
based on continuous-time observations (Xt)t∈[0,T] , T > 0 , see Proposition 3.1. We do 
not suppose that the process (Yt)t∈[0,T] is observed, since it can be determined using 
the observations (Xt)t∈[0,T] and the initial value Y0 , which follows by a slight modifi-
cation of Remark 2.5 in Barczy and Pap [5] (replacing y0 by Y0 ). We do not estimate 
the parameters �1 , �2 and � , since these parameters could—in principle, at least—be 
determined (rather than estimated) using the observations (Xt)t∈[0,T] and the initial 
value Y0 , see Barczy and Pap [5, Remark 2.6]. We investigate only the so-called sub-
critical case, i.e., when b > 0 , see Definition 2.3.

In Sect. 2, we recall some properties of the Heston model (1.1) such as the exist-
ence and uniqueness of a strong solution of the SDE (1.1), the form of conditional 
expectation of (Yt,Xt) , t ⩾ 0 , given the past of the process up to time s with s ∈ [0, t] , 
a classification of the Heston model and the existence of a unique stationary distri-
bution and ergodicity for the first coordinate process of the SDE (1.1). Section  3 
is devoted to derive a LSE of (a, b, �, �) based on continuous-time observations 
(Xt)t∈[0,T] , T > 0 , see Proposition 3.1. We note that Overbeck and Rydén [27, Theo-
rems 3.5 and 3.6] have already proved the strong consistency and asymptotic nor-
mality of the LSE of (a, b) based on continuous-time observations (Yt)t∈[0,T] , T > 0 , 
in case of a subcritical CIR process Y with an initial value having distribution as the 
unique stationary distribution of the model. Overbeck and Rydén [27, page 433] also 
noted that (without providing a proof) their results are valid for an arbitrary initial 
distribution using some coupling argument. In Sect. 4, we prove strong consistency 

(1.1)

�
dYt = (a − bYt) dt + �1

√
Yt dWt,

dXt = (� − �Yt) dt + �2
√
Yt
�
� dWt +

√
1 − �2 dBt

�
,

t ⩾ 0,
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and asymptotic normality of the LSE of (a, b, �, �) introduced in Sect.  3, so our 
results for the Heston model (1.1) in Sect. 3 can be considered as generalizations of 
the corresponding ones in Overbeck and Rydén [27, Theorems 3.5 and 3.6] with the 
advantage that our proof is presented for an arbitrary initial value (Y0,X0) satisfying 
ℙ(Y0 ∈ (0,∞)) = 1 , without using any coupling argument. The covariance matrix 
of the limit normal distribution in question depends on the unknown parameters a 
and b as well, but somewhat surprisingly not on � and � . We point out that our 
proof of technique for deriving the asymptotic normality of the LSE in question is 
completely different from that of Overbeck and Rydén [27]. We use a limit theo-
rem for continuous martingales (see, Theorem 2.6), while Overbeck and Rydén [27] 
use a limit theorem for ergodic processes due to Jacod and Shiryaev [21, Theorem 
VIII.3.79] and the so-called Delta method (see, e.g., Theorem 11.2.14 in Lehmann 
and Romano [24]). We also remark that the approximation in probability of the LSE 
of (a, b, �, �) based on continuous-time observations (Xt)t∈[0,T] , T > 0 , given in Prop-
osition 3.1 is not at all used for proving the asymptotic behavior of the LSE in ques-
tion as T → ∞ in Theorems 4.1 and 4.2. Further, we mention that the covariance 
matrix of the limit normal distribution in Theorem 3.6 in Overbeck and Rydén [27] 
is somewhat complicated, while, as a special case of our Theorem 4.2, it turns out 
that it can be written in a much simpler form by making a simple reparametrization 
of the SDE (1) in Overbeck and Rydén [27], estimating −b instead of b (with the 
notations of Overbeck and Rydén [27]), i.e., considering the SDE (1.1) and estimat-
ing b (with our notations), see Corollary 4.3. Section 5 is devoted to present some 
numerical illustrations of our results in Sect. 4.

2  Preliminaries

Let ℕ , ℤ+ , ℝ , ℝ+ , ℝ++ , ℝ− and ℝ−− denote the sets of positive integers, non-negative 
integers, real numbers, non-negative real numbers, positive real numbers, non-posi-
tive real numbers and negative real numbers, respectively. For x, y ∈ ℝ , we will use 
the notation x ∧ y ∶= min(x, y) . By ‖x‖ and ‖A‖ , we denote the Euclidean norm of a 
vector x ∈ ℝd and the induced matrix norm of a matrix A ∈ ℝd×d , respectively. By 
Id ∈ ℝd×d , we denote the d-dimensional unit matrix.

Let 
(
Ω, ,ℙ

)
 be a probability space equipped with the augmented filtration 

(t)t∈ℝ+
 corresponding to (Wt,Bt)t∈ℝ+

 and a given initial value (�0, �0) being inde-
pendent of (Wt,Bt)t∈ℝ+

 such that ℙ(�0 ∈ ℝ+) = 1 , constructed as in Karatzas and 
Shreve [22, Section 5.2]. Note that (t)t∈ℝ+

 satisfies the usual conditions, i.e., the 
filtration (t)t∈ℝ+

 is right-continuous and 0 contains all the ℙ-null sets in .
By C2

c
(ℝ+ ×ℝ,ℝ) and C∞

c
(ℝ+ ×ℝ,ℝ) , we denote the set of twice continuously 

differentiable real-valued functions on ℝ+ ×ℝ with compact support, and the set 
of infinitely differentiable real-valued functions on ℝ+ ×ℝ with compact support, 
respectively.

The next proposition is about the existence and uniqueness of a strong solution of 
the SDE (1.1), see, e.g., Barczy and Pap [5, Proposition 2.1].
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Proposition 2.1 Let (�0, �0) be a random vector independent of (Wt,Bt)t∈ℝ+
 sat-

isfying ℙ(�0 ∈ ℝ+) = 1. Then for all a ∈ ℝ++ , b, �, � ∈ ℝ , �1, �2 ∈ ℝ++, and 
� ∈ (−1, 1), there is a pathwise unique strong solution (Yt,Xt)t∈ℝ+

 of the SDE (1.1) 
such that ℙ((Y0,X0) = (�0, �0)) = 1 and ℙ(Yt ∈ ℝ+ for all t ∈ ℝ+) = 1. Further, for 
all s, t ∈ ℝ+ with s ⩽ t,

Next we present a result about the first moment and the conditional moment of 
(Yt,Xt)t∈ℝ+

 , see Barczy et al. [6, Proposition 2.2].

Proposition 2.2 Let (Yt,Xt)t∈ℝ+
 be the unique strong solution of the SDE (1.1) sat-

isfying ℙ(Y0 ∈ ℝ+) = 1 and �(Y0) < ∞ , �(|X0|) < ∞. Then for all s, t ∈ ℝ+ with 
s ⩽ t, we have

and hence

 Consequently, if b ∈ ℝ++, then

 if b = 0, then

(2.1)
�

Yt = e−b(t−s)Ys + a ∫ t

s
e−b(t−u) du + �1 ∫ t

s
e−b(t−u)

√
Yu dWu,

Xt = Xs + ∫ t

s
(� − �Yu) du + �2 ∫ t

s

√
Yu d(�Wu +

√
1 − �2Bu).

(2.2)�(Yt |s) = e−b(t−s)Ys + a�
t

s

e−b(t−u) du,

(2.3)

�(Xt |s) = Xs + �
t

s

(� − ��(Yu |s)) du

= Xs + �(t − s) − �Ys �
t

s

e−b(u−s) du − a� �
t

s

(
�

u

s

e−b(u−v) dv

)
du,

[
�(Y

t
)

�(X
t
)

]
=

[
e
−bt

0

−� ∫ t

0
e
−bu

du 1

][
�(Y

0
)

�(X
0
)

]
+

[ ∫ t

0
e
−bu

du 0

−� ∫ t

0

(∫ u

0
e
−bv

dv
)
du t

][
a

�

]
.

lim
t→∞

�(Yt) =
a

b
, lim

t→∞
t−1�(Xt) = � −

�a

b
,

lim
t→∞

t−1�(Yt) = a, lim
t→∞

t−2�(Xt) = −
1

2
�a,
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 if b ∈ ℝ−−, then

Based on the asymptotic behavior of the expectations (�(Yt),�(Xt)) as t → ∞ , we 
recall a classification of the Heston process given by the SDE (1.1), see, Barczy and 
Pap [5, Definition 2.3].

Definition 2.3 Let (Yt,Xt)t∈ℝ+
 be the unique strong solution of the SDE (1.1) sat-

isfying ℙ(Y0 ∈ ℝ+) = 1 . We call (Yt,Xt)t∈ℝ+
 subcritical, critical or supercritical if 

b ∈ ℝ++ , b = 0 or b ∈ ℝ−− , respectively.

In the sequel ℙ

⟶
 , 
⟶

 and a.s.
⟶ will denote convergence in probability, in distribu-

tion and almost surely, respectively.
The following result states the existence of a unique stationary distribution and 

the ergodicity for the process (Yt)t∈ℝ+
 given by the first equation in (1.1) in the sub-

critical case, see, e.g., Cox et al. [9, Equation (20)], Li and Ma [25, Theorem 2.6] or 
Theorem 3.1 with � = 2 and Theorem 4.1 in Barczy et al. [4].

Theorem 2.4 Let a, b, �1 ∈ ℝ++. Let (Yt)t∈ℝ+
 be the unique strong solution of the 

first equation of the SDE (1.1) satisfying ℙ(Y0 ∈ ℝ+) = 1. Then

(1) Yt


⟶Y∞ as t → ∞, and the distribution of Y∞ is given by 

 i.e., Y∞ has Gamma distribution with parameters 2a∕�2
1
 and 2b∕�2

1
, hence 

(2) supposing that the random initial value Y0 has the same distribution as Y∞, the 
process (Yt)t∈ℝ+

 is strictly stationary.
(3) for all Borel measurable functions f ∶ ℝ → ℝ such that �(|f (Y∞)|) < ∞, we have 

lim
t→∞

ebt�(Yt) = �(Y0) −
a

b
, lim

t→∞
ebt�(Xt) =

�

b
�(Y0) −

�a

b2
.

(2.4)𝔼(e−�Y∞) =

(
1 +

�2
1

2b
�

)−2a∕�2
1

, � ∈ ℝ+,

�(Y∞) =
a

b
, �(Y2

∞
) =

(2a + �2
1
)a

2b2
, �(Y3

∞
) =

(2a + �2
1
)(a + �2

1
)a

2b3
.

(2.5)1

T ∫
T

0

f (Ys) ds
a.s.
⟶�(f (Y∞)) as T → ∞.
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In what follows we recall some limit theorems for continuous (local) martingales. 
We will use these limit theorems later on for studying the asymptotic behaviour of 
least-squares estimators of (a, b, �, �) . First we recall a strong law of large numbers 
for continuous local martingales.

Theorem 2.5 (Liptser and Shiryaev [26, Lemma 17.4]) Let 
(
Ω, , (t)t∈ℝ+

,ℙ
)
 be a 

filtered probability space satisfying the usual conditions. Let (Mt)t∈ℝ+
 be a square-

integrable continuous local martingale with respect to the filtration (t)t∈ℝ+
 such 

that ℙ(M0 = 0) = 1. Let (�t)t∈ℝ+
 be a progressively measurable process such that 

ℙ
� ∫ t

0
𝜉2
u
d⟨M⟩u < ∞

�
= 1 , t ∈ ℝ+, and

where (⟨M⟩t)t∈ℝ+
 denotes the quadratic variation process of M. Then

If (Mt)t∈ℝ+
 is a standard Wiener process, the progressive measurability of (�t)t∈ℝ+

 
can be relaxed to measurability and adaptedness to the filtration (t)t∈ℝ+

.

The next theorem is about the asymptotic behaviour of continuous multivariate 
local martingales, see van Zanten [28, Theorem 4.1].

Theorem 2.6 (van Zanten [28, Theorem 4.1]) Let 
(
Ω, , (t)t∈ℝ+

,ℙ
)
 be a filtered 

probability space satisfying the usual conditions. Let (Mt)t∈ℝ+
 be a d-dimensional 

square-integrable continuous local martingale with respect to the filtration (t)t∈ℝ+
 

such that ℙ(M0 = 0) = 1. Suppose that there exists a function Q ∶ ℝ+ → ℝd×d such 
that Q(t) is an invertible (non-random) matrix for all t ∈ ℝ+ , limt→∞ ‖Q(t)‖ = 0 and

 where � is a d × d random matrix. Then, for each ℝk-valued random vector v defined 
on (Ω, ,ℙ), we have

 where Z is a d-dimensional standard normally distributed random vector independ-
ent of (�, v).

(2.6)∫
t

0

�2
u
d⟨M⟩u

a.s.
⟶∞ as t → ∞,

(2.7)
∫ t

0
�u dMu

∫ t

0
�2
u
d⟨M⟩u

a.s.
⟶0 as t → ∞.

Q(t)⟨M⟩t Q(t)⊤
ℙ

������→ ��
⊤ as t → ∞,

(Q(t)Mt, v)


⟶(�Z, v) as t → ∞,
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We note that Theorem 2.6 remains true if the function Q is defined only on an 
interval [t0,∞) with some t0 ∈ ℝ++.

3  Existence of LSE Based on Continuous‑Time Observations

First, we define the LSE of (a, b, �, �) based on discrete-time observations 
(Y i

n

,X i

n

)i∈{0,1,…,⌊nT⌋} , n ∈ ℕ , T ∈ ℝ++ [see (3.1)] by pointing out that the sum appear-

ing in this definition of LSE can be considered as an approximation of the corre-
sponding sum of the conditional LSE of (a, b, �, �) based on discrete-time obser-
vations (Y i

n

,X i

n

)i∈{0,1,…,⌊nT⌋} , n ∈ ℕ , T ∈ ℝ++ (which was investigated in Barczy 
et al. [6]). Then, we introduce the LSE of (a, b, �, �) based on continuous-time obser-
vations (Xt)t∈[0,T] , T ∈ ℝ++ [see (3.4) and (3.5)] as the limit in probability of the 
LSE of (a, b, �, �) based on discrete-time observations (Y i

n

,X i

n

)i∈{0,1,…,⌊nT⌋} , n ∈ ℕ , 
T ∈ ℝ++ (see Proposition 3.1).

A LSE of (a, b, �, �) based on discrete-time observations (Y i

n

,X i

n

)i∈{0,1,…,⌊nT⌋} , 

n ∈ ℕ , T ∈ ℝ++ , can be obtained by solving the extremum problem

Here in the notations the letter D refers to discrete-time observations. This defini-
tion of LSE can be considered as the corresponding one given in Hu and Long [17, 
formula (1.2)] for generalized Ornstein-Uhlenbeck processes driven by �-stable 
motions, see also Hu and Long [18, formula (3.1)]. For a heuristic motivation of the 
LSE (3.1) based on the discrete observations, see, e.g., Hu and Long [16, page 178] 
(formulated for Langevin equations), and for a mathematical one, see as follows. By 
(2.2), for all i ∈ ℕ,

(3.1)

�
â
LSE,D

T ,n
, b̂

LSE,D

T ,n
, �̂LSE,D

T ,n
, �̂LSE,D

T ,n

�

∶=
argmin

(a, b, �, �) ∈ ℝ4

⌊nT⌋�
i=1

��
Y i

n

− Y i−1

n

−
1

n

�
a − bY i−1

n

��2

+
�
X i

n

− X i−1

n

−
1

n

�
� − �Y i−1

n

��2
�
.

Y i

n

− �

(
Y i

n

| i−1

n

)
= Y i

n

− e
−

b

n Y i−1

n

− a�
i

n

i−1

n

e
−b(

i

n
−u)

du

= Y i

n

− e
−

b

n Y i−1

n

− a�
1

n

0

e−bv dv

=

{
Y i

n

− Y i−1

n

−
a

n
if b = 0,

Y i

n

− e
−

b

n Y i−1

n

+
a

b
(e−

b

n − 1) if b ≠ 0.
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Using first-order Taylor approximation of e−
b

n at b = 0 by 1 − b

n
 , and that of 

a

b
(e−

b

n − 1) at (a, b) = (0, 0) by − a

n
 , the random variable Y i

n

− Y i−1

n

−
1

n
(a − bY i−1

n

) in 

the definition (3.1) of the LSE of (a, b, �, �) can be considered as a first-order Taylor 
approximation of

which appears in the definition of the conditional LSE of (a, b, �, �) based on dis-
crete-time observations (Y i

n

,X i

n

)i∈{0,1,…,⌊nT⌋} , n ∈ ℕ , T ∈ ℝ++ . Similarly, by (2.3), 

for all i ∈ ℕ,

Using first-order Taylor approximation of a�

2n2
 at (a, �) = (0, 0) by 0, that of 

�

b
(1 − e

−
b

n ) at (b, �) = (0, 0) by �
n
 , and that of a�

b

�
1

n
−

1−e−
b
n

b

�
=

a�

n2

∑∞

k=0
(−1)k

(b∕n)k

(k+2)!
 at  

(a, b, �) = (0, 0, 0) by 0, the random variable X i

n

− X i−1

n

−
1

n
(� − �Y i−1

n

) in the defini-

tion (3.1) of the LSE of (a, b, �, �) can be considered as a first-order Taylor approxi-
mation of

which appears in the definition of the conditional LSE of (a, b, �, �) based on dis-
crete-time observations (Y i

n

,X i

n

)i∈{0,1,…,⌊nT⌋} , n ∈ ℕ , T ∈ ℝ++.

We note that in Barczy et  al. [6] we proved strong consistency and asymptotic 
normality of conditional LSE of (a, b, �, �) based on discrete-time observations 
(Yi,Xi)i∈{1,…,n} , n ∈ ℕ , starting the process from some known non-random initial 
value (y0, x0) ∈ ℝ++ ×ℝ , as the sample size n tends to infinity in the subcritical 
case.

Solving the extremum problem (3.1), we have

Y i

n

− �

(
Y i

n

|Y0,X0, Y 1

n

,X 1

n

,… , Y i−1

n

,X i−1

n

)
= Y i

n

− �

(
Y i

n

| i−1

n

)
,

X i

n

− �(X i

n

� i−1

n

) = X i

n

− X i−1

n

−
�

n

+ �Y i−1

n �
i

n

i−1

n

e
−b(u−

i−1

n
)
du + a� �

i

n

i−1

n

�
�

u

i−1

n

e−b(u−v) dv

�
du

= X i

n

− X i−1

n

−
�

n
+ �Y i−1

n �
1

n

0

e−bu du + a� �
1

n

0

�
�

u

0

e−bv dv

�
du

=

⎧⎪⎨⎪⎩

X i

n

− X i−1

n

−
�

n
+

�

n
Y i−1

n

+
a�

2n2
if b = 0,

X i

n

− X i−1

n

−
�

n
+

�

b
(1 − e

−
b

n )Y i−1

n

+
a�

b

�
1

n
−

1−e−
b
n

b

�
if b ≠ 0.

X i

n

− �(X i

n

| Y0,X0, Y 1

n

,X 1

n

,… , Y i−1

n

,X i−1

n

) = X i

n

− �(X i

n

| i−1

n

),
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hence, similarly as on page 675 in Barczy et al. [3], we get

and

provided that the inverse exists, i.e., ⌊nT⌋∑⌊nT⌋
i=1

Y2
i−1

n

>
�∑⌊nT⌋

i=1
Y i−1

n

�2

 . By Lemma 

3.1 in Barczy et  al. [6], for all n ∈ ℕ and T ∈ ℝ++ with ⌊nT⌋ ⩾ 2 , we have 

ℙ

�
⌊nT⌋∑⌊nT⌋

i=1
Y2

i−1

n

>
�∑⌊nT⌋

i=1
Y i−1

n

�2
�

= 1.

Proposition 3.1 If a ∈ ℝ++ , b ∈ ℝ , �, � ∈ ℝ , �1, �2 ∈ ℝ++ , � ∈ (−1, 1), and 
ℙ(Y0 ∈ ℝ++) = 1, then for any T ∈ ℝ++, we have

 where

 and

�
â
LSE,D

T ,n
, b̂

LSE,D

T ,n

�
=

argmin

(a, b) ∈ ℝ2

⌊nT⌋�
i=1

�
Y i

n

− Y i−1

n

−
1

n

�
a − bY i−1

n

��2

,

�
�̂LSE,D

T ,n
, �̂LSE,D

T ,n

�
=

argmin

(�, �) ∈ ℝ2

⌊nT⌋�
i=1

�
X i

n

− X i−1

n

−
1

n

�
� − �Y i−1

n

��2

,

(3.2)

�
â
LSE,D

T ,n

b̂
LSE,D

T ,n

�
= n

⎡⎢⎢⎣
⌊nT⌋ −

∑⌊nT⌋
i=1

Y i−1

n

−
∑⌊nT⌋

i=1
Y i−1

n

∑⌊nT⌋
i=1

Y2
i−1

n

⎤⎥⎥⎦

−1�
Y ⌊nT⌋

n

− Y0

−
∑⌊nT⌋

i=1
(Y i

n

− Y i−1

n

)Y i−1

n

�
,

(3.3)

�
�̂�LSE,D

T ,n

𝛽LSE,D
T ,n

�
= n

⎡⎢⎢⎣
⌊nT⌋ −

∑⌊nT⌋
i=1

Y i−1

n

−
∑⌊nT⌋

i=1
Y i−1

n

∑⌊nT⌋
i=1

Y2
i−1

n

⎤⎥⎥⎦

−1�
X ⌊nT⌋

n

− X0

−
∑⌊nT⌋

i=1
(X i

n

− X i−1

n

)Y i−1

n

�
,

⎡⎢⎢⎢⎢⎣

â
LSE,D

T ,n

b̂
LSE,D

T ,n

�̂�LSE,D

T ,n

𝛽LSE,D
T ,n

⎤⎥⎥⎥⎥⎦

ℙ

→

⎡⎢⎢⎢⎣

âLSE
T

b̂LSE
T

�̂�LSE
T

𝛽LSE
T

⎤⎥⎥⎥⎦
as n → ∞,

(3.4)

[
âLSE
T

b̂LSE
T

]
∶=

[
T − ∫ T

0
Ysds

− ∫ T

0
Ysds ∫ T

0
Y2
s
ds

]−1[
YT − Y0

− ∫ T

0
YsdYs

]

=
1

T ∫ T

0
Y2
s
ds −

(∫ T

0
Ysds

)2

[
(YT − Y0) ∫ T

0
Y2
s
ds − ∫ T

0
Ysds ∫ T

0
YsdYs

(YT − Y0) ∫ T

0
Ysds − T ∫ T

0
YsdYs

]
,
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 which exist almost surely, since

By definition, we call 
(
âLSE
T

, b̂LSE
T

, �̂LSE
T

, �̂LSE
T

)
 the LSE of (a, b, �, �) based on contin-

uous-time observations (Xt)t∈[0,T] , T ∈ ℝ++.

Proof First, we check (3.6). Note that ℙ(∫ T

0
Ys ds < ∞) = 1 and ℙ(∫ T

0
Y2
s
ds < ∞) = 1 

for all T ∈ ℝ+ , since Y has continuous trajectories almost surely. For each T ∈ ℝ++ , 
put

Then AT ∈  , ℙ(AT ) = 1 , and for all � ∈ AT , by the Cauchy–Schwarz’s inequality, 
we have

and T ∫ T

0
Ys(�)

2 ds −
(∫ T

0
Ys(�) ds

)2

= 0 if and only if Ys(�) = KT (�) for almost 

every s ∈ [0, T] with some KT (�) ∈ ℝ+ . Hence Ys(�) = Y0(�) for all s ∈ [0, T] if 

� ∈ AT and T ∫ T

0
Y2
s
(�) ds −

(∫ T

0
Ys(�) ds

)2

= 0 . Consequently, using that 

ℙ(AT ) = 1 , we have

where the last equality follows by the fact that YT is absolutely continuous (see, e.g., 
Alfonsi [2, Proposition 1.2.11]) together with the law of total probability. Hence 
ℙ

(
T ∫ T

0
Y2
s
ds −

( ∫ T

0
Ys ds

)2

= 0
)
= 0 , yielding (3.6).

(3.5)

[
�̂�LSE
T

𝛽LSE
T

]
∶=

[
T − ∫ T

0
Ysds

− ∫ T

0
Ysds ∫ T

0
Y2
s
ds

]−1[
XT − X0

− ∫ T

0
YsdXs

]

=
1

T ∫ T

0
Y2
s
ds −

(∫ T

0
Ysds

)2

[
(XT − X0) ∫ T

0
Y2
s
ds − ∫ T

0
Ysds ∫ T

0
YsdXs

(XT − X0) ∫ T

0
Ysds − T ∫ T

0
YsdXs

]
,

(3.6)ℙ

(
T ∫

T

0

Y2
s
ds >

(
∫

T

0

Ys ds

)2
)

= 1 for all T ∈ ℝ++.

AT ∶= {� ∈ Ω ∶ t ↦ Yt(�) is continuous and non-negative on [0, T]}.

T ∫
T

0

Ys(�)
2 ds ⩾

(
∫

T

0

Ys(�) ds

)2

,

ℙ

(
T ∫

T

0

Y2
s
ds −

(
∫

T

0

Ys ds

)2

= 0

)
= ℙ

({
T ∫

T

0

Y2
s
ds −

(
∫

T

0

Ys ds

)2

= 0

}
∩ AT

)

⩽ ℙ(Ys = Y0, ∀ s ∈ [0, T]) ⩽ ℙ(YT = Y0) = 0,
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Further, we have

since (Yt)t∈ℝ+
 is almost surely continuous. By Proposition I.4.44 in Jacod and Shir-

yaev [21] with the Riemann sequence of deterministic subdivisions 
(
i

n
∧ T

)
i∈ℕ

 , 
n ∈ ℕ , and using the almost sure continuity of (Yt,Xt)t∈ℝ+

 , we obtain

By Slutsky’s lemma, using also (3.2), (3.3) and (3.6), we obtain the assertion.□

Note that Proposition 3.1 is valid for all b ∈ ℝ , i.e., not only for subcritical Hes-
ton models.

We call the attention that (âLSE
T

, b̂LSE
T

, �̂LSE
T

, �̂LSE
T

) can be considered to be based 
only on (Xt)t∈[0,T] , since the process (Yt)t∈[0,T] can be determined using the observa-
tions (Xt)t∈[0,T] and the initial value Y0 , see Barczy and Pap [5, Remark 2.5]. We also 
point out that Overbeck and Rydén [27, formulae (22) and (23)] have already come 
up with the definition of LSE (âLSE

T
, b̂LSE

T
) of (a, b) based on continuous-time obser-

vations (Yt)t∈[0,T] , T ∈ ℝ++ , for the CIR process Y. They investigated only the CIR 
process Y, so our definitions (3.4) and (3.5) can be considered as generalizations 
of formulae (22) and (23) in Overbeck and Rydén [27] for the Heston model (1.1). 
Overbeck and Rydén [27, Theorem 3.4] also proved that the LSE of (a,  b) based 
on continuous-time observations can be approximated in probability by conditional 
LSEs of (a, b) based on appropriate discrete-time observations.

In the next remark, we point out that the LSE of (a, b, �, �) given in (3.4) and 
(3.5) can be approximated using discrete-time observations for X, which can be reas-
suring for practical applications, where data in continuous record is not available.

Remark 3.2 The stochastic integral ∫ T

0
Ys dYs in (3.4) is a measurable function of 

(Xs)s∈[0,T] and Y0 . Indeed, for all t ∈ [0, T] , Yt and ∫ t

0
Ys ds are measurable functions 

of (Xs)s∈[0,T] and Y0 , i.e., they can be determined from a sample (Xs)s∈[0,T] and Y0 fol-
lowing from a slight modification of Remark 2.5 in Barczy and Pap [5] (replacing 
y0 by Y0 ), and, by Itô’s formula, we have d(Y2

t
) = 2Yt dYt + �2

1
Yt dt , t ∈ ℝ+ , imply-

ing that ∫ T

0
Ys dYs =

1

2

(
Y2
T
− Y2

0
− �2

1
∫ T

0
Ys ds

)
 , T ∈ ℝ+ . For the stochastic integral 

∫ T

0
Ys dXs in (3.5), we have

1

n

⎡
⎢⎢⎣
⌊nT⌋ −

∑⌊nT⌋
i=1

Y i−1

n

−
∑⌊nT⌋

i=1
Y i−1

n

∑⌊nT⌋
i=1

Y2
i−1

n

⎤
⎥⎥⎦
a.s.
�����⃗

�
T − ∫ T

0
Ysds

− ∫ T

0
Ysds ∫ T

0
Y2
s
ds

�
as n → ∞,

�
Y ⌊nT⌋

n

− Y0

−
∑⌊nT⌋

i=1
(Y i

n

− Y i−1

n

)Y i−1

n

�
ℙ
��⃗

�
YT − Y0

− ∫ T

0
YsdYs

�
as n → ∞,

�
X ⌊nT⌋

n

− X0

−
∑⌊nT⌋

i=1
(X i

n

− X i−1

n

)Y i−1

n

�
ℙ
��⃗

�
XT − X0

− ∫ T

0
YsdXs

�
as n → ∞.
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following from Proposition I.4.44 in Jacod and Shiryaev [21] with the Riemann 
sequence of deterministic subdivisions 

(
i

n
∧ T

)
i∈ℕ

 , n ∈ ℕ . Thus, there exists a 

measurable function Φ ∶ C([0, T],ℝ) ×ℝ → ℝ such that 
∫ T

0
Ys dXs = Φ((Xs)s∈[0,T], Y0) , since the convergence in (3.7) holds almost surely 

along a suitable subsequence, for each n ∈ ℕ , the members of the sequence in (3.7) 
are measurable functions of (Xs)s∈[0,T] and Y0 , and one can use Theorems 4.2.2 and 
4.2.8 in Dudley [13]. Hence, the right-hand sides of (3.4) and (3.5) are measurable 
functions of (Xs)s∈[0,T] and Y0 , i.e., they are statistics. □

Using the SDE (1.1) and Corollary 3.2.20 in Karatzas and Shreve [22], one can 
check that

provided that T ∫ T

0
Y2
s
ds >

(∫ T

0
Ys ds

)2

 , where W̃t ∶= �Wt +
√
1 − �2Bt , t ∈ ℝ+ , 

and hence

(3.7)

⌊nT⌋�
i=1

Y i−1

n

(X i

n

− X i−1

n

)
ℙ

⟶∫
T

0

Ys dXs as n → ∞,

[
â
LSE

T
− a

b̂
LSE

T
− b

]
=

[
T − ∫ T

0
Y
s
ds

− ∫ T

0
Y
s
ds ∫ T

0
Y2

s
ds

]−1[
𝜎
1
∫ T

0
Y
1∕2
s dW

s

− 𝜎
1
∫ T

0
Y
3∕2
s dW

s

]
,

[
�̂�LSE

T
− 𝛼

𝛽LSE
T

− 𝛽

]
=

[
T − ∫ T

0
Y
s
ds

− ∫ T

0
Y
s
ds ∫ T

0
Y2

s
ds

]−1[
𝜎
2
∫ T

0
Y
1∕2
s d �W

s

− 𝜎
2
∫ T

0
Y
3∕2
s d �W

s

]
,

(3.8)

âLSE
T

− a =
�1

(∫ T

0
Y
1∕2
s dWs

)(∫ T

0
Y2
s
ds
)
− �1

(∫ T

0
Ys ds

)(∫ T

0
Y
3∕2
s dWs

)

T ∫ T

0
Y2
s
ds −

(∫ T

0
Ys ds

)2
,

b̂LSE
T

− b =
�1

(∫ T

0
Y
1∕2
s dWs

)(∫ T

0
Ys ds

)
− �1T ∫ T

0
Y
3∕2
s dWs

T ∫ T

0
Y2
s
ds −

(∫ T

0
Ys ds

)2
,

�̂LSE
T

− � =
�2

(∫ T

0
Y
1∕2
s dW̃s

)(∫ T

0
Y2
s
ds
)
− �2

(∫ T

0
Ys ds

)(∫ T

0
Y
3∕2
s dW̃s

)

T ∫ T

0
Y2
s
ds −

(∫ T

0
Ys ds

)2
,

�̂LSE
T

− � =
�2

(∫ T

0
Y
1∕2
s dW̃s

)(∫ T

0
Ys ds

)
− �2T ∫ T

0
Y
3∕2
s dW̃s

T ∫ T

0
Y2
s
ds −

(∫ T

0
Ys ds

)2
,



1 3

Journal of Statistical Theory and Practice (2019) 13:18 Page 13 of 25 18

provided that T ∫ T

0
Y2
s
ds >

(∫ T

0
Ys ds

)2

.

4  Consistency and Asymptotic Normality of LSE

Our first result is about the consistency of LSE in case of subcritical Heston models.

Theorem  4.1 If a, b, �1, �2 ∈ ℝ++ , �, � ∈ ℝ , � ∈ (−1, 1), and ℙ((Y0,X0) ∈ ℝ++ 
×ℝ) = 1, then the LSE of (a, b, �, �) is strongly consistent, i.e., (
âLSE
T

, b̂LSE
T

, �̂LSE
T

, �̂LSE
T

) a.s.
⟶(a, b, �, �) as T → ∞.

Proof By Proposition  3.1, there exists a unique LSE 
(
âLSE
T

, b̂LSE
T

, �̂LSE
T

, �̂LSE
T

)
 of 

(a, b, �, �) for all T ∈ ℝ++ . By (3.8), we have

provided that ∫ T

0
Ys ds ∈ ℝ++ , which holds almost surely, see the proof of Proposi-

tion 3.1. Since, by part (1) of Theorem 2.4, �(Y∞) , �(Y2
∞
) , 𝔼(Y3

∞
) ∈ ℝ++ , part (3) of 

Theorem 2.4 yields

as T → ∞ , and then

as T → ∞ . Hence, by a strong law of large numbers for continuous local martingales 
(see, e.g., Theorem 2.5), we obtain

where for the last step we also used that 𝔼(Y2
∞
) − (𝔼(Y∞))

2 =
a�2

1

2b2
∈ ℝ++.

âLSE
T

− a =

�1 ⋅
1

T
∫ T

0
Ys ds ⋅

1

T
∫ T

0
Y2
s
ds ⋅

∫ T

0
Y
1∕2
s dWs

∫ T

0
Ys ds

− �1 ⋅
1

T
∫ T

0
Ys ds ⋅

1

T
∫ T

0
Y3
s
ds ⋅

∫ T

0
Y
3∕2
s dWs

∫ T

0
Y3
s
ds

1

T
∫ T

0
Y2
s
ds −

(
1

T
∫ T

0
Ys ds

)2

1

T ∫
T

0

Ys ds
a.s.
⟶�(Y∞),

1

T ∫
T

0

Y2
s
ds

a.s.
⟶�(Y2

∞
),

1

T ∫
T

0

Y3
s
ds

a.s.
⟶�(Y3

∞
)

∫
T

0

Ys ds
a.s.
⟶∞, ∫

T

0

Y2
s
ds

a.s.
⟶∞, ∫

T

0

Y3
s
ds

a.s.
⟶∞

âLSE
T

− a
a.s.
⟶

�1 ⋅ �(Y∞) ⋅ �(Y
2
∞
) ⋅ 0 − �1 ⋅ �(Y∞) ⋅ �(Y

3
∞
) ⋅ 0

�(Y2
∞
) − (�(Y∞))

2
= 0 as T → ∞,
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Similarly, by (3.8),

One can prove

in a similar way. □

Our next result is about the asymptotic normality of LSE in case of subcritical 
Heston models.

Theorem  4.2 If a, b, �1, �2 ∈ ℝ++ , �, � ∈ ℝ , � ∈ (−1, 1) and ℙ((Y0,X0) ∈ ℝ++

×ℝ) = 1, then the LSE of (a, b, �, �) is asymptotically normal, i.e.,

where ⊗ denotes the tensor product of matrices, and

 With a random scaling, we have

as T → ∞, where Ei,T ∶= ∫ T

0
Yi
s
ds , T ∈ ℝ++ , i = 1, 2, 3.

b̂LSE
T

− b =

�1 ⋅
(

1

T
∫ T

0
Ys ds

)2

⋅
∫ T

0
Y
1∕2
s dWs

∫ T

0
Ys ds

− �1 ⋅
1

T
∫ T

0
Y3
s
ds ⋅

∫ T

0
Y
3∕2
s dWs

∫ T

0
Y3
s
ds

1

T
∫ T

0
Y2
s
ds −

(
1

T
∫ T

0
Ys ds

)2

a.s.
⟶

�1 ⋅ (�(Y∞))
2
⋅ 0 − �1 ⋅ �(Y

3
∞
) ⋅ 0

�(Y2
∞
) − (�(Y∞))

2
= 0 as T → ∞.

�̂LSE
T

− �
a.s.
⟶0 and �̂LSE

T
− �

a.s.
⟶0 as T → ∞

(4.1)T
1

2

⎡
⎢⎢⎢⎣

âLSE
T

− a

b̂LSE
T

− b

�̂�LSE
T

− 𝛼

𝛽LSE
T

− 𝛽

⎤⎥⎥⎥⎦


→4

⎛
⎜⎜⎝
�, S⊗

⎡⎢⎢⎣

(2a+𝜎2
1
)a

𝜎2
1
b

2a+𝜎2
1

𝜎2
1

2a+𝜎2
1

𝜎2
1

2b(a+𝜎2
1
)

𝜎2
1
a

⎤
⎥⎥⎦

⎞
⎟⎟⎠

as T → ∞,

S ∶=

[
�2
1

��1�2
��1�2 �2

2

]
.

(4.2)

E
−

1

2

1,T
I2 ⊗

�
(TE2,T − E

2

1,T
)(E1,TE3,T − E

2

2,T
)−

1

2 0

−T E1,T

� ⎡
⎢⎢⎢⎢⎢⎣

â
LSE

T
− a

b̂
LSE

T
− b

�̂�LSE

T
− 𝛼

𝛽LSE
T

− 𝛽

⎤
⎥⎥⎥⎥⎥⎦


→4

�
�, S⊗ I2

�
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Proof By Proposition 3.1, there exists a unique LSE 
(
âLSE
T

, b̂LSE
T

, �̂LSE
T

, �̂LSE
T

)
 of 

(a, b, �, �) . By (3.8), we have

provided that T ∫ T

0
Y2
s
ds >

(∫ T

0
Ys ds

)2

 , which holds almost surely. Consequently,

provided that T ∫ T

0
Y2
s
ds >

(∫ T

0
Ys ds

)2

 , which holds almost surely, where

is a 4-dimensional square-integrable continuous local martingale due to 
∫ t

0
�(Ys) ds < ∞ and ∫ t

0
�(Y3

s
) ds < ∞ , t ∈ ℝ+ . Next, we show that

√
T(âLSE

T
− a) =

1

T
∫ T

0
Y2

s
ds ⋅

�
1√
T

∫ T

0
Y
1∕2
s dW

s
−

1

T
∫ T

0
Y
s
ds ⋅

�
1√
T

∫ T

0
Y
3∕2
s dW

s

1

T
∫ T

0
Y2

s
ds −

�
1

T
∫ T

0
Y
s
ds

�2
,

√
T(b̂LSE

T
− b) =

1

T
∫ T

0
Y
s
ds ⋅

�
1√
T

∫ T

0
Y
1∕2
s dW

s
−

�
1√
T

∫ T

0
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s
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Y
s
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�
1

T
∫ T

0
Y
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,
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Y
s
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�
2√
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Y
1∕2
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s
−

�
2√
T
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0
Y
3∕2
s dW̃

s

1

T
∫ T

0
Y2

s
ds −

�
1

T
∫ T

0
Y
s
ds

�2
,

(4.3)

√
T

⎡⎢⎢⎢⎣

âLSE
T

− a

b̂LSE
T

− b

�̂�LSE
T

− 𝛼
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1

1
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�
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T
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1

T
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0
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0
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−
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T
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s
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1√
T
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M
t
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⎡
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𝜎
1
∫ t

0
Y
1∕2
s dW

s

−𝜎
1
∫ t

0
Y
3∕2
s dW
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𝜎
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Y
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s

⎤
⎥⎥⎥⎥⎥⎥⎦

, t ∈ ℝ+,
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where Z is a 4-dimensional standard normally distributed random vector and 
� ∈ ℝ4×4 such that

Here, the two symmetric matrices on the right-hand side are positive definite, since 
�1, �2 ∈ ℝ++ , � ∈ (−1, 1) , 𝔼(Y∞) =

a

b
∈ ℝ++ and

and, so is their Kronecker product. Hence � can be chosen, for instance, as the 
uniquely defined symmetric positive definite square root of the Kronecker product of 
the two matrices in question. We have

By Theorem 2.4, we have

with Q(t) ∶= t−1∕2I4 , t ∈ ℝ++ . Hence, Theorem  2.6 yields (4.4). Then, by (4.3), 
Slutsky’s lemma yields

where (applying the identities (A⊗ B)⊤ = A⊤ ⊗ B⊤ and 
(A⊗ B)(C⊗ D) = (AC)⊗ (BD))

(4.4)

1√
T
MT


⟶�Z as T → ∞,

��
⊤ = S⊗

[
�(Y∞) −�(Y2

∞
)

−�(Y2
∞
) �(Y3

∞
)

]
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𝔼(Y∞)𝔼(Y
3
∞
) −

(
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(
Y2
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))2
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4b4
(2a + �2

1
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⟨M⟩t = S⊗
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0
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0
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s
ds
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0
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s
ds ∫ t

0
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s
ds

�
, t ∈ ℝ+.
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a.s.
�����������→ S⊗

�
�(Y∞) −�(Y2

∞
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∞
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∞
)

�
as t → ∞
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⎡⎢⎢⎢⎢⎢⎣
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4
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which yields (4.1). Indeed, by Theorem 2.4, an easy calculation shows that

Now we turn to prove (4.2). Slutsky’s lemma, (4.1) and (4.5) yield
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where Ei,T ∶=
1

T
∫ T

0
Yi
s
ds , T ∈ ℝ++ , i = 1, 2, 3 , and, applying the identities 

(A⊗ B)⊤ = A⊤ ⊗ B⊤ , (A⊗ B)(C⊗ D) = (AC)⊗ (BD) , and using (4.5),

Thus we obtain (4.2). □

Next, we formulate a corollary of Theorem 4.2 presenting separately the asymp-
totic behavior of the LSE of (a, b) based on continuous-time observations (Yt)t∈[0,T] , 
T > 0 . We call the attention that Overbeck and Rydén [27, Theorem  3.6] already 
derived this asymptotic behavior (for more details on the role of the initial distri-
bution, see the Introduction); however, the covariance matrix of the limit normal 
distribution in their Theorem 3.6 is somewhat complicated. It turns out that it can 
be written in a much simpler form by making a simple reparametrization of the SDE 
(1) in Overbeck and Rydén [27], estimating −b instead of b (with the notations of 
Overbeck and Rydén [27]), i.e., considering the SDE (1.1) and estimating b (with 
our notations).

Corollary 4.3 If a, b, �1 ∈ ℝ++ , and ℙ(Y0 ∈ ℝ++) = 1 , then the LSE of (a, b) given 
in (3.4) based on continuous-time observations (Yt)t∈[0,T] , T > 0 , is strongly consist-

ent and asymptotically normal, i.e., 
(
âLSE
T

, b̂LSE
T

) a.s.
⟶(a, b) as T → ∞ , and
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5  Numerical Illustrations

In this section, first, we demonstrate some methods for the simulation of the Hes-
ton model (1.1), and then we illustrate Theorem 4.1 and convergence (4.1) in Theo-
rem 4.2 using generated sample paths of the Heston model (1.1). We will consider 
a subcritical Heston model (1.1) (i.e., b ∈ ℝ++ ) with a known non-random initial 
value (y0, x0) ∈ ℝ++ ×ℝ . Note that in this case, the augmented filtration (t)t∈ℝ+

 
corresponding to (Wt,Bt)t∈ℝ+

 and the initial value (y0, x0) ∈ ℝ++ ×ℝ , in fact, does 
not depend on (y0, x0) . We recall five simulation methods which differ from each 
other in how the CIR process in the Heston model (1.1) is simulated.

In what follows, let �k , k ∈ {1,… ,N} , be independent standard normally distrib-
uted random variables with some N ∈ ℕ , and put tk ∶= k

T

N
 , k ∈ {0, 1,… ,N} , with 

some T ∈ ℝ++.
Higham and Mao [15] introduced the Absolute Value Euler (AVE) method

with Y (N)

0
= y0 for the approximation of the CIR process, where a, b, �1 ∈ ℝ++ . This 

scheme does not preserve non-negativity of the CIR process.
The Truncated Euler (TE) scheme uses the discretization

with Y (N)

0
= y0 , where a, b, �1 ∈ ℝ++ , for approximation of the CIR process Y, see, 

e.g., Deelstra and Delbaen [10]. This scheme does not preserve non-negativity of the 
CIR process.

The Symmetrized Euler (SE) method gives an approximation of the CIR process 
Y via the recursion

with Y (N)

0
= y0 , where a, b, �1 ∈ ℝ++ , see, Diop [12] or Berkaoui et al. [7] (where the 

method is analyzed for more general SDEs including so-called alpha-root processes 
as well with diffusion coefficient �

√
x with � ∈ (1, 2] instead of 

√
x ). This scheme 

gives a non-negative approximation of the CIR process Y.
The following two methods do not directly simulate the CIR process Y, but its 

square root Z = (Zt ∶=
√
Yt)t∈ℝ+

 . If a >
𝜎2
1

2
 , then ℙ(Yt ∈ ℝ++, ∀ t ∈ ℝ+) = 1 , and, 

by Itô’s formula,

Y
(N)
tk

= Y
(N)
tk−1

+ (a − bY
(N)
tk−1

)(tk − tk−1) + �1

�
�Y (N)

tk−1
�√tk − tk−1 �k, k ∈ {1,… ,N},

Y
(N)
tk

= Y
(N)
tk−1

+ (a − bY
(N)
tk−1

)(tk − tk−1) + �1

�
max(Y

(N)
tk−1

, 0)
√
tk − tk−1 �k, k ∈ {1,… ,N},

Y
(N)
tk

=
����Y

(N)
tk−1

+
�
a − bY

(N)
tk−1

�
(tk − tk−1) + �1

�
Y
(N)
tk−1

√
tk − tk−1 �k

����, k ∈ {1,… ,N},

dZt =

((
a

2
−

�2
1

8

)
1

Zt
−

b

2
Zt

)
dt +

�1
2

dWt, t ∈ ℝ+.
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The Drift Explicit Square Root Euler (DESRE) method (see, e.g., Kloeden and 
Platen [23, Section 10.2] or Hutzenthaler et al. [19, equation (4)] for general SDEs) 
simulates Z by

with Z(N)

0
=
√
y0 , where a >

𝜎2
1

2
 and b, �1 ∈ ℝ++ . Here note that ℙ(Z(N)

tk
= 0) = 0 , 

k ∈ {1,… ,N} , since Z
(N)
tk

 is absolutely continuous. Transforming back, i.e., 
Y
(N)
tk

= (Z
(N)
tk

)2 , k ∈ {0, 1,… ,N} , gives a non-negative approximation of the CIR 
process Y.

The Drift Implicit Square Root Euler (DISRE) method (see, Alfonsi [1] or Dere-
ich et al. [11]) simulates Z by

with Z(N)

0
=
√
y0 , where a >

𝜎2
1

2
 and b, �1 ∈ ℝ++ . This recursion has a unique posi-

tive solution given by

for k ∈ {1,… ,N} with Z(N)

0
=
√
y0 . Transforming again back, i.e., Y (N)

tk
= (Z

(N)
tk

)2 , 
k ∈ {0, 1,… ,N} , gives a strictly positive approximation of the CIR process Y.

We mention that there exist so-called exact simulation methods for the CIR 
process, see, e.g., Alfonsi [2, Section 3.1]. In our simulations, we will use the SE, 
DESRE and DISRE methods for approximating the CIR process which preserve 
non-negativity of the CIR process.

The second coordinate process X of the Heston process (1.1) will be approxi-
mated via the usual Euler–Maruyama scheme given by

for k ∈ {1,… ,N} with X(N)

0
= x0 , where �, � ∈ ℝ , �2 ∈ ℝ++ , � ∈ (−1, 1) , and �k , 

k ∈ {1,… ,N} , be independent standard normally distributed random variables 
independent of �k , k ∈ {1,… ,N} . Note that in (5.1) the factor 

√
Y
(N)
tk−1

 appears, which 

Z
(N)
tk
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+
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is well-defined in case of the CIR process Y is approximated by the SE, DESRE or 
DISRE methods, that we will consider.

We also mention that there exist exact simulation methods for the Heston process 
(1.1), see, e.g., Broadie and Kaya [8] or Alfonsi [2, Section 4.2.6].

We will approximate the estimator 
(
âLSE
T

, b̂LSE
T

, �̂LSE
T

, �̂LSE
T

)
 given in (3.4) and 

(3.5) using the generated sample paths of (Y, X). For this, we need to simulate, for a 
large time T ∈ ℝ++ , the random variables

We can easily approximate the Ii,T , i ∈ {1, 2, 3, 4} , respectively, by

Hence, we can approximate âLSE
T

 , b̂LSE
T

 , �̂LSE
T

 , and �̂LSE
T

 by

We point out that â(N)
T

 , b̂(N)
T

 , �̂(N)

T
 and �̂(N)

T
 are well-defined, since

and

Consequently, using that Y (N)
t1

 is absolutely continuous together with the law of total 
probability, we have ℙ(TIN

2,T
− (IN

1,T
)2 ∈ ℝ++) = 1.

For the numerical implementation, we take y0 = 0.2 , x0 = 0.1 , a = 0.4 , 
b = 0.3 , � = 0.1 , � = 0.15 , �1 = 0.4 , �2 = 0.3 , � = 0.2 , T = 3000 , and N = 30000 
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(consequently, tk − tk−1 = 0.1 , k ∈ {1,… ,N} ). Note that a >
𝜎2
1

2
 with this choice of 

parameters. We simulate 10,000 independent trajectories of (YT ,XT ) and the normal-
ized error T

1

2

(
âLSE
T

− a, b̂LSE
T

− b, �̂LSE
T

− �, �̂LSE
T

− �
)
 . Table 1 contains the empiri-

cal mean of Y (N)

T
 and 1

T
X
(N)

T
 , based on 10,000 independent trajectories of (YT ,XT ) , and 

the (theoretical) limit limt→∞ �(Yt) =
a

b
 and limt→∞ t−1�(Xt) = � −

�a

b
 , respectively 

(following from Proposition 2.2), using the schemes SE, DESRE and DISRE for 
simulating the CIR process.

Henceforth, we will use the above choice of parameters except that T = 5000 and 
N = 50, 000 (yielding tk − tk−1 = 0.1 , k ∈ {1,… ,N}).

In Table  2, we calculate the expected bias ( �(�̂LSE
T

− �) ), the L1-norm of error 
( �|�̂LSE

T
− �| ) and the L2-norm of error 

((
�(�̂LSE

T
− �)2

)1∕2) , where � ∈ {a, b, �, �} , 
using the scheme DISRE for simulating the CIR process.

In Table  3, we give the relative errors (�̂(N)
T

− �)∕� , where � ∈ {a, b, �, �} , for 
T = 5000 using the scheme DISRE for simulating the CIR process.

In Fig.  1, we illustrate the limit law of each coordinate of the LSE (
âLSE
T

, b̂LSE
T

, �̂LSE
T

, �̂LSE
T

)
 given in (4.1). To do so, we plot the obtained density his-

tograms of each of its coordinates based on 10,000 independently generated trajec-
tories using the scheme DISRE for simulating the CIR process, we also plotted the 
density functions of the corresponding normal limit distributions in red.With the 
above choice of parameters, as a consequence of (4.1), we have

In case of the parameters a and b, one can see a bias in Fig. 1, which, in our opinion, 
may be related with the different speeds of weak convergence for the LSE of (a, b) 
and that of (�, �) , and with the bad performance of the applied discretization scheme 
for Y.

Table  4 contains the skewness and excess kurtosis of T
1

2 (�̂
(N)

T
− �) , where 

� ∈ {a, b, �, �} , using the scheme DISRE for simulating the CIR process. This con-
firms our results in (4.1) as well.

Using the Anderson–Darling and Jarque–Bera tests, we test whether each of the 

coordinates of T
1

2

(
âLSE
T

− a, b̂LSE
T

− b, �̂LSE
T

− �, �̂LSE
T

− �
)
 follows a normal distribu-

tion or not for T = 5000 . In Table 5 we give the test values and (in parenthesis) the 
p-values of the Anderson–Darling and Jarque–Bera tests using the scheme DISRE 

T
1

2 (âLSE
T

− a)

�������→ (

0,
a

b
(2a + 𝜎2

1
)
)
=  (0, 1.28) as T → ∞,

T
1

2 (b̂LSE
T

− b)

�������→ (

0,
2b

a
(a + 𝜎2

1
)
)
=  (0, 0.84) as T → ∞,

T
1

2 (�̂�LSE
T

− 𝛼)

�������→ 

(
0,

a𝜎2
2

b𝜎2
1

(2a + 𝜎2
1
)

)
=  (0, 0.72) as T → ∞,

T
1

2 (𝛽LSE
T

− 𝛽)

�������→ 

(
0,

2b𝜎2
2

a𝜎2
1

(a + 𝜎2
1
)

)
=  (0, 0.4725) as T → ∞.
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Table 1  Empirical mean of Y (N)

T
 (first row) and 1

T
X
(N)

T
 (second row)

Empirical mean of Y (N)

T
 and 1

T
X
(N)

T
SE DESRE DISRE

lim
t→∞

E(Y
t
) =

a

b
= 1.3333 1.321025 1.325539 1.331852

lim
t→∞

t
−1
E(X

t
) = � −

�a

b
= − 0.1

− 0.09978663 − 0.100054 − 0.09941841

Table 2  Expected bias, L1 - and 
L2-norm of error using DISRE 
scheme

Errors Expected bias L1-norm of error L2-norm of error

a − 0.01089369 0.0153848 0.0190123
b − 0.007639168 0.01189344 0.01474495
� 0.0001779072 0.00957648 0.0120646
� 0.0001402452 0.007776999 0.009771835

Table 3  Relative errors using 
DISRE scheme

Relative errors T = 5000

(â
(N)

T
− a)∕a − 0.02723421

(b̂
(N)

T
− b)∕b − 0.02546389

(�̂
(N)

T
− �)∕� 0.001779072

(�̂
(N)

T
− �)∕� 0.0009349683
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Fig. 1  In the first line from left to right, the density histograms of the normalized errors of T1∕2(â
(N)

T
− a) 

and T1∕2(b̂
(N)

T
− b) , in the second line from left to right, the density histograms of the normalized errors 

of T1∕2(�̂
(N)

T
− �) and T1∕2(�̂

(N)

T
− �) . In each case, the red line denotes the density function of the corre-

sponding normal limit distribution
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for simulating the CIR process (the ∗ after a p-value denotes that the p-value in ques-
tion is greater than any reasonable significance level). It turns out that, with this 
choice of parameters, at any reasonable significance level the Anderson–Darling 

test accepts that T
1

2 (âLSE
T

− a) , T
1

2 (b̂LSE
T

− b) , T
1

2 (�̂LSE
T

− �) , and T
1

2 (�̂LSE
T

− �) follow 

normal laws. The Jarque–Bera test also accepts that T
1

2 (b̂LSE
T

− b) , T
1

2 (�̂LSE
T

− �) , and 

T
1

2 (�̂LSE
T

− �) follow normal laws, but rejects that T
1

2 (âLSE
T

− a) follows a normal law.
All in all, our numerical illustrations are more or less in accordance with our the-

oretical results in (4.1). Finally, we note that we used the open source software R for 
making the simulations.
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