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Abstract

We prove strong consistency and asymptotic normality of least-squares estimators
for the subcritical Heston model based on continuous-time observations. We also
present some numerical illustrations of our results.
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1 Introduction

Stochastic processes given by solutions to stochastic differential equations (SDEs)
have been frequently applied in financial mathematics. So the theory and practice of
stochastic analysis and statistical inference for such processes are important topics.
In this note, we consider such a model, namely the Heston model
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{le:(a—bYt)dt+61\/7tde >0
= 1)

dX, = (a = pY) di +051/Y,(0dW, + /1 - 0 dB)), (L)

where a > 0, b,a,f €R, 6, > 0,0, >0, 0 € (-1,1), and (W,, B))5 is a 2-dimen-
sional standard Wiener process, see Heston [14]. For interpretation of ¥ and X in
financial mathematics, see, e.g., Hurn et al. [20, Section 4], here we only note that
X, is the logarithm of the asset price at time ¢ and ¥, its volatility for each # > 0. The
first coordinate process Y is called a Cox—Ingersoll-Ross (CIR) process (see Cox
et al. [9]), square-root process or Feller process.

Parameter estimation for the Heston model (1.1) has a long history, for a short
survey of the most recent results, see, e.g., the introduction of Barczy and Pap [5].
The importance of the joint estimation of (a, b, @, f) and not only of (a, b) stems
from the fact that X, is the logarithm of the asset price at time ¢ having high impor-
tance in finance. In fact, in Barczy and Pap [5], we investigated asymptotic prop-
erties of maximum likelihood estimator of (a, b, a, f) based on continuous-time
observations (X,),io7;» T > 0. In Barczy et al. [6], we studied asymptotic behavior
of conditional least-squares estimator of (a, b, a, ) based on discrete-time observa-
tions (Y;,X;), i = 1, ...,n, starting the process from some known non-random ini-
tial value (yy,xy) € (0, 00) X R. In this note, we study least-squares estimator (LSE)
of (a,b,a, f) based on continuous-time observations (X,),cjo.7;, T > 0, starting the
process (Y, X) from some known initial value (¥, X)) satisfying P(Y,, € (0, 00)) = 1.
The investigation of the LSE of (a, b, a, f) based on continuous-time observations
(Xt)te[O,T]’ T > 0, is motivated by the fact that the LSEs of (a, b, a, ) based on appro-
priate discrete-time observations converge in probability to the LSE of (a, b, @, )
based on continuous-time observations (X,),c0.7, T > 0, see Proposition 3.1. We do
not suppose that the process (Y,),¢(o 7| is observed, since it can be determined using
the observations (X,),c(o 1 and the initial value Y, which follows by a slight modifi-
cation of Remark 2.5 in Barczy and Pap [5] (replacing y, by Y,;). We do not estimate
the parameters ¢,, o, and g, since these parameters could—in principle, at least—be
determined (rather than estimated) using the observations (X,),c(o.ry and the initial
value Y, see Barczy and Pap [5, Remark 2.6]. We investigate only the so-called sub-
critical case, i.e., when b > 0, see Definition 2.3.

In Sect. 2, we recall some properties of the Heston model (1.1) such as the exist-
ence and uniqueness of a strong solution of the SDE (1.1), the form of conditional
expectation of (¥, X,), t > 0, given the past of the process up to time s with s € [0, 7],
a classification of the Heston model and the existence of a unique stationary distri-
bution and ergodicity for the first coordinate process of the SDE (1.1). Section 3
is devoted to derive a LSE of (a, b, a, f) based on continuous-time observations
XDserorp T > 0, see Proposition 3.1. We note that Overbeck and Rydén [27, Theo-
rems 3.5 and 3.6] have already proved the strong consistency and asymptotic nor-
mality of the LSE of (a, b) based on continuous-time observations (¥,),cio.7, T > 0,
in case of a subcritical CIR process Y with an initial value having distribution as the
unique stationary distribution of the model. Overbeck and Rydén [27, page 433] also
noted that (without providing a proof) their results are valid for an arbitrary initial
distribution using some coupling argument. In Sect. 4, we prove strong consistency
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and asymptotic normality of the LSE of (a, b, a, §) introduced in Sect. 3, so our
results for the Heston model (1.1) in Sect. 3 can be considered as generalizations of
the corresponding ones in Overbeck and Rydén [27, Theorems 3.5 and 3.6] with the
advantage that our proof is presented for an arbitrary initial value (Y, X)) satisfying
P, € (0, )) = 1, without using any coupling argument. The covariance matrix
of the limit normal distribution in question depends on the unknown parameters a
and b as well, but somewhat surprisingly not on @« and . We point out that our
proof of technique for deriving the asymptotic normality of the LSE in question is
completely different from that of Overbeck and Rydén [27]. We use a limit theo-
rem for continuous martingales (see, Theorem 2.6), while Overbeck and Rydén [27]
use a limit theorem for ergodic processes due to Jacod and Shiryaev [21, Theorem
VIII.3.79] and the so-called Delta method (see, e.g., Theorem 11.2.14 in Lehmann
and Romano [24]). We also remark that the approximation in probability of the LSE
of (a, b, @, p) based on continuous-time observations (X,),(o.) T > 0, given in Prop-
osition 3.1 is not at all used for proving the asymptotic behavior of the LSE in ques-
tion as 7 — oo in Theorems 4.1 and 4.2. Further, we mention that the covariance
matrix of the limit normal distribution in Theorem 3.6 in Overbeck and Rydén [27]
is somewhat complicated, while, as a special case of our Theorem 4.2, it turns out
that it can be written in a much simpler form by making a simple reparametrization
of the SDE (1) in Overbeck and Rydén [27], estimating —b instead of b (with the
notations of Overbeck and Rydén [27]), i.e., considering the SDE (1.1) and estimat-
ing b (with our notations), see Corollary 4.3. Section 5 is devoted to present some
numerical illustrations of our results in Sect. 4.

2 Preliminaries

LetN, Z,R,R,,R,,,R_and R__ denote the sets of positive integers, non-negative
integers, real numbers non-negative real numbers, positive real numbers, non-posi-
tive real numbers and negative real numbers, respectively. For x,y € R, we will use
the notation x Ay := min(x, y). By ||x|| and ||A||, we denote the Euclidean norm of a
vector x € R? and the induced matrix norm of a matrix A € R%, respectively. By
I, € R™4 we denote the d-dimensional unit matrix.

Let (Q, F, [P’) be a probability space equipped with the augmented filtration
(Fier, corresponding to (W, B),cp, and a given initial value (7, {,) being inde-
penden+t of (W, B))er, such that P(n, € R,) = 1, constructed as in Karatzas and
Shreve [22, Section 5.2]. Note that (¥,),c, satisfies the usual conditions, i.e., the
filtration (F,) g, is right-continuous and 7, contains all the P-null sets in F.

By C2(R X IR R) and C®(R, X R,R), we denote the set of twice continuously
dlfferentlable real-valued functlons on R, X R with compact support, and the set
of infinitely differentiable real-valued functions on R, X R with compact support,
respectively.

The next proposition is about the existence and uniqueness of a strong solution of
the SDE (1.1), see, e.g., Barczy and Pap [5, Proposition 2.1].
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Proposition 2.1 Let (ny,¢,) be a random vector independent of (W, B,)eg, sat-
isfying P(ny € R,)=1. Then for all aeR,,, b,a,p €ER, 0,0, €ER,,, and
0 € (=1, 1), there is a pathwise unique strong solution (Y,,X,),c, of the SDE (1.1)
such that P((Yy, X,) = (g, &) = 1 and P(Y, € R, forall t € R,) = 1. Further, for
all s,t € R, withs <1,

{ Y,=eP9Y +a fsl e du + ¢, fsl e =0\ Y, dW,, o

X, =X, + [Na—pY,)du+o, ['\/Y,doW, + \/1 - 0?B,).

Next we present a result about the first moment and the conditional moment of
(Y}, X))ser,» see Barczy et al. [6, Proposition 2.2].

Proposition 2.2 Let (Y,, X,),cg, be the unique strong solution of the SDE (1.1) sat-
isfying P(Y, € R,) =1 and E(Y)) < oo, E(|Xy|) < 00. Then for all s,t € R, with

s < t, we have

t
EQY,|F,) =e 9y + a/ e P dy, 2.2)

s

EX, | F) =X, + / (a— PE(Y, | 7)) du

t t u
=X, +a(t—s) — fY, / e =) dy — ap / ( / e b= dv) du,
s N N

2.3)

and hence

EQ) | _[e™” Of[Ey ], Jy e du 0[a
EX) |~ | =B fy e du 1| [EXY) | " | =4 fy (fy'e™dv)dut |[a]
Consequently, if b € R, then
lim E(Y,) = £ lim E(X) = o — P2
-0 #? = b’ t—o0 = b’

ifb =0, then

limE(Y)=a,  lim2EX) = _% fa,

1—00 t—00
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ifb e R__, then

—

. bt _ a . bt _ ﬂ ﬂa
lim eME(Y) =E(Y) - £, lim e"ECY) = DE(Y) - 2.

Based on the asymptotic behavior of the expectations (E(Y,), E(X,)) as t = oo, we
recall a classification of the Heston process given by the SDE (1.1), see, Barczy and
Pap [5, Definition 2.3].

Definition 2.3 Let (Y,,X,),cg, be the unique strong solution of the SDE (1.1) sat-
isfying P(Y, € R,) = 1. We call (¥}, X)),ep, subcritical, critical or supercritical if
beR,,,b=0orb e R__,respectively.

In the sequel i), i, and 2, will denote convergence in probability, in distribu-
tion and almost surely, respectively.

The following result states the existence of a unique stationary distribution and
the ergodicity for the process (¥,),cg, given by the first equation in (1.1) in the sub-
critical case, see, e.g., Cox et al. [9, Equation (20)], Li and Ma [25, Theorem 2.6] or
Theorem 3.1 with @ = 2 and Theorem 4.1 in Barczy et al. [4].

Theorem 2.4 Let a,b,0, € R,,. Let (Y)),cp, be the unique strong solution of the
first equation of the SDE (1.1) satisfying P(Y, € R,) = 1. Then

c
(1) Y,—Y ast— oo, and the distribution of Y  is given by

2 —2a/o}
E(e =) = 1+ﬁ/1 AER 2.4)
2b ’ + ’

i.e., Y. has Gamma distribution with parameters 2a/ 0'12 and2b/ 0'12, hence
2a + alz)a
202

2 2 2
E(Y,) = %, E(Y2) = ( a+01)(a+0'1)a.

2b3

E(Y2) =

(2) supposing that the random initial value Y, has the same distribution as Y, the
process (Y)ep, is strictly stationary.
(3) for all Borel measurable functions f : R — Rsuch thatE(|f(Y,)|) < oo, we have

T
: /0 F)ds SSE(F(Y)  asT - oo. @5)
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In what follows we recall some limit theorems for continuous (local) martingales.
We will use these limit theorems later on for studying the asymptotic behaviour of
least-squares estimators of (a, b, a, ff). First we recall a strong law of large numbers
for continuous local martingales.

Theorem 2.5 (Liptser and Shiryaev [26, Lemma 17.4]) Let (Q, F, (Frer, P)bea
filtered probability space satisfying the usual conditions. Let M)er, be a square-
integrable continuous local martingale with respect to the filtration (F, ),E[R such

that [F’(MO =0)= L Let (§)en, be a progressively measurable process such that
P( [/ Ed(M), <o) = 1,1 € R,, and

/ E£dM), —>c0  ast — oo, 2.6)
0

where ((M) Drer, denotes the quadratic variation process of M. Then

t
dM, ...
@ —50 ast — oo. 2.7)
Jo & dm),

If (M))ep, is a standard Wiener process, the progressive measurability of (§)ep,
can be relaxed to measurability and adaptedness to the filtration (F)ep -

The next theorem is about the asymptotic behaviour of continuous multivariate
local martingales, see van Zanten [28, Theorem 4.1].

Theorem 2.6 (van Zanten [28, Theorem 4.1]) Let (Q F, (FZ)E&, [P’) be a filtered
probability space satisfying the usual conditions. Let M)er, be a d-dimensional
square-integrable continuous local martingale with respect to 'the filtration (F)),eg,
such that P(M, = 0) = 1. Suppose that there exists a funcnon 0:R, —» R such
that Q(t) is an invertible (non-random) matrix for allt € R, lim,_, ||Q(t)|| = 0and

QM) QO — n as 1 — o,

where 1 is a d X d random matrix. Then, for each R*-valued random vector v defined
on (Q, F,P), we have

©QOM,,v) i>(11Z, V) ast — oo,

where Z is a d-dimensional standard normally distributed random vector independ-
ent of (n,v).
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We note that Theorem 2.6 remains true if the function Q is defined only on an
interval [£,, o0) with some 7, € R ,.

3 Existence of LSE Based on Continuous-Time Observations

First, we define the LSE of (a,b,a,f) based on discrete-time observations
(Yi,Xi)icion,...1aryp " €N, T € Ry [see (3.1)] by pointing out that the sum appear-

ing in this definition of LSE can be considered as an approximation of the corre-
sponding sum of the conditional LSE of (a, b, a, #) based on discrete-time obser-
vations (Yi,Xi)ieqo1,. jor)p m €N, T € R, (which was investigated in Barczy
et al. [6]). Then, we introduce the LSE of (a, b, a, ) based on continuous-time obser-
vations (X))o T € R, [see (3.4) and (3.5)] as the limit in probability of the

LSE of (a,b, a, ) based on discrete-time observations (Yi,Xi)cqo1,. (a7 " €N,
T € R, (see Proposition 3.1).
A LSE of (a,b,a, p) based on discrete-time observations (Y, Xi)ieo.1,... a7}

n €N, T € R_,, can be obtained by solving the extremum problem

ALSED 2LSED ALSED ALSE,D
<aT,n by @ Br )

> T
arg min & 1 2
= (@b p eR 2[(“‘@‘;(“‘”%)) 3.1

i=l n
1 2
# (X = o))
n n n n

Here in the notations the letter D refers to discrete-time observations. This defini-
tion of LSE can be considered as the corresponding one given in Hu and Long [17,
formula (1.2)] for generalized Ornstein-Uhlenbeck processes driven by a-stable
motions, see also Hu and Long [18, formula (3.1)]. For a heuristic motivation of the
LSE (3.1) based on the discrete observations, see, e.g., Hu and Long [16, page 178]
(formulated for Langevin equations), and for a mathematical one, see as follows. By
(2.2), for alli € N,

- -2 " b
Yi—[E<Y£|Fﬂ)_Yi—ean—a/ PG dy
n n n n n i—1

I
i
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Using first-order Taylor approximation of e_g at b=0 by 1 — g, and that of
%(e_f — 1) at (a,b) = (0,0) by —3, the random variable Yi — Yii — i(a —bYiu)in

the definition (3.1) of the LSE of (a, b, a, f) can be considered as a first-order Taylor
approximation of

Y: - [E(Yi | Yy, X, Yl,Xl,...,Yﬂ,Xg) -y, - [E<Y£ |Fﬂ),

n

which appears in the definition of the conditional LSE of (a, b, a, ) based on dis-
crete-time observations (Yi,Xi)e(o1,.. a7 # €N, T € R,,. Similarly, by (2.3),

foralli e N,

Xi —EQX: |[Fo)=X: —Xu - 2
n n n n n n

; = A
+ pYia / e P du + ap </ e P dv)du
v Jiot i-1 i-1

n
1

1 1 u
=xi—xi—9+ﬁyi/" e d +a/3/” (/ e"”’dv)du
n n n nJo 0 0

XL’—XQ—E+£YQ+ﬂ ifb =0,
n - n n- 2n?

) ) a  p .- ap 1 l-en .
Xi—X%—;+Z(1—en)Y%+7(;— ) ifb#0.

. . . ap
Using first-order Taylor approximation of 2z at (a,p) =(0,0) by 0, that of

b

p -2 _ B af (1 _ 1-e"n)\ _ af yo b/n)f
Z(1—en) at (b, f) = (0,0) by £, and that ofj(; - %) = Zk:()(—l)"(m)! at

(a,b, p) = (0,0,0) by 0O, the random variable X: — Xi-1 — %(a — BY 1) in the defini-

tion (3.1) of the LSE of (a, b, a, ) can be considered as a first-order Taylor approxi-
mation of

Xi —E(Xi [ Y, Xp, Yi, X1y oo, Y , X)) = Xi — BE(X: | Fizr),

which appears in the definition of the conditional LSE of (a, b, a, ) based on dis-
crete-time observations (Yi, X )ieqo1, . (a7 " €N T € R .

We note that in Barczy et al. [6] we proved strong consistency and asymptotic
normality of conditional LSE of (a, b, a, f) based on discrete-time observations
(Yis XDie1...ap 7 €N, starting the process from some known non-random initial
value (yy,xy) € R, X R, as the sample size n tends to infinity in the subcritical
case.

Solving the extremum problem (3.1), we have
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. |nT | )
ALSE.D 7LSED arg min 1
" Pr) = by eme & (ri-ve - (a-bra)).

. |nT| )
ALSED ALSED) _  argmin _ _ 1 .
(aT,n ’ﬁT,n )_(a,ﬁ)ERz <Xi_X%_Z((X—ﬂY%)> s

i=1

hence, similarly as on page 675 in Barczy et al. [3], we get

nT -1
la;SE,D] LnTJ —_ z[ ! Yia lYLllrJ -Y, ]
=n ]

HLSED ZlnTJ Ylf ZLnTJ Y2 ZlnTJ (Yi = Y)Y
(3.2)
and
-1
&;SE,D LnTJ - Z[nTJ Yio X — XO
BI;iE,D =n ZlnTJ Y ZlnTJ Y2 ZlnTJ Xi —Xe)Yier |7
3.3)

provided that the inverse exists, i.e., |nT| ZWJ Y2 (ZWJ Yiu ) . By Lemma

3.1 in Barczy et al. [6], for all n€N and T € R,, with [nT] > 2, we have
2
e(1r T > (2 ra) ) =1

Proposition 3.1 If aeR,,, bER, o, fER, 0,0, €R,,, 0€(-1,1), and
P(Y, € R,,) =1, thenforanyT € R_, we have

&LSED ALSE
bLSED B bLSE
&LSE D |~ fSE asn — oo,
A 85D ALSE
'BTn ﬂ
where
ALSE T -1 VoY
dr —|T - [y Yids %o
bLSE ~ [ v ds [ ¥2ds ~ /i Y,dY,
_ 1 l(YT — ¥y [T v2ds - [ v,ds [ v,
- P _ T _ T s
T/OT v2ds - </Or sts> (Yr =Yy [y Y ds—T [ Y,dY,
(3.4)
and
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[45] - lT —/Jndsﬁxr—xo |

5" — T vds [ v2ds — T ydx,

B 1 X=Xy [y Y2ds— [ v,ds [, ¥,dX,

- 2 _ T _ T
T/OT des—(/OTsts) l(XT Xo) Jy Y ds =T [, Y dX;

s

(3.5)

which exist almost surely, since

T T 2
[F"(T/O Yszds> <'/0 sts> >=1 forallT e R,,. (3.6)

By definition, we call (a;SE, ZIfSE, a;SE, /?}SE) the LSE of (a, b, a, ) based on contin-
uous-time observations (X))o T € R4

Proof First, we check (3.6). Note that P(f; ¥, ds < o0) = landP(/; ¥2ds < o) = 1
forall T € R,, since Y has continuous trajectories almost surely. ForeachT € R,
put

Ar :={w e Q : t - Y,(w)is continuous and non-negative on [0, T]}.

Then A; € F,P(A;) = 1, and for all w € Ay, by the Cauchy—Schwarz’s inequality,
we have

2

T T
T / Y (w)* ds > < / Ys(a))ds) ,
0 0

2
and T/OT Y (w)*ds — (/OT Y () ds) =0 if and only if Y (w) = K;(w) for almost
every s € [0, 7] with some K;(w) € R,. Hence Y (w) = Y (w) for all s € [0,T7] if

2
w€A;, and T /OT Y*(w)ds — ( /OT Y (w) ds) =0. Consequently, using that
P(A;) = 1, we have

T T 2 T T 2
IP<T/ Y2ds — (/ des> =0) =P<{T/ Y2ds — (/ des> =0} nAT>
0 0 0 0
<P, =Y, Vs €[0,T]) < P(Y; = Yy) =0,

where the last equality follows by the fact that Y is absolutely continuous (see, e.g.,
Alfonsi [2, Proposition 1.2.11]) together with the law of total probability. Hence

2
P(T/OT YS2 ds — </()T Y, ds) = ()) = 0, yielding (3.6).
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Further, we have

ZL”TJ Yx— ZL”TJ YZ hadlod

n

|nT|
1| L) X Yo lr — [\ vds

" la.s T 7, asn — oo,
_/0 stsfo Y:ds ]

since (Y)),cq, 1s almost surely continuous. By Proposition 1.4.44 in Jacod and Shir-
yaev [21] with the Riemann sequence of deterministic subdivisions ( A T)
n € N, and using the almost sure continuity of (¥, X,),cp . we obtain

ieN’

Y =Y, . Y, - Y,

l Z[nTJ (Y‘ Y%)Y%]ﬁ[_/oTstYs] asn — oo,

lxw o ]P[XT_XO ] asn — oo.
Z[nTJ (Xi_X%)Y% - _A)TXYdXY

By Slutsky’s lemma, using also (3.2), (3.3) and (3.6), we obtain the assertion.[]

Note that Proposition 3.1 is valid for all b € R, i.e., not only for subcritical Hes-
ton models.

We call the attention that (aLSE bLSE, '\%SE, ﬂSE) can be considered to be based
only on (X,),.7}» Since the process (Y )rejo.r) can be determined using the observa-
tions (X,),0,r) and the initial value ¥, see Barczy and Pap [5, Remark 2.5]. We also
point out that Overbeck and Rydén [27, formulae (22) and (23)] have already come
up with the definition of LSE (czLSE ALSE) of (a, b) based on continuous-time obser-
vations (Y,),cior» T € R, for the CIR process Y. They investigated only the CIR
process Y, so our definitions (3.4) and (3.5) can be considered as generalizations
of formulae (22) and (23) in Overbeck and Rydén [27] for the Heston model (1.1).
Overbeck and Rydén [27, Theorem 3.4] also proved that the LSE of (a, b) based
on continuous-time observations can be approximated in probability by conditional
LSEs of (a, b) based on appropriate discrete-time observations.

In the next remark, we point out that the LSE of (a, b, a, f) given in (3.4) and
(3.5) can be approximated using discrete-time observations for X, which can be reas-
suring for practical applications, where data in continuous record is not available.

Remark 3.2 The stochastic integral /0 Y, dY, in (3.4) is a measurable function of
(X)sero.r) and Y. Indeed, for all 7 € [0, T], ¥, and /0 Y, ds are measurable functions
of (Xy)sef0.77 and ¥y, i.€., they can be determined from a sample (X,) (o 71 and Y, fol-
lowing from a slight modification of Remark 2.5 in Barczy and Pap [5] (replacing
Yo by Y;), and, by It6’s formula, we have d(le) =2Y,dY, + alet dt, t € R, imply-
ing that /OT Y, dY, = %(Y? -Y} -0} /OT Y,ds), T € R,. For the stochastic integral
/(]T Y, dX, in (3.5), we have
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[nT)

T
P
E Yo (Xi — X)) — stX‘Y asn — oo,
N n n n 0 (3.7)

following from Proposition 1.4.44 in Jacod and Shiryaev [21] with the Riemann
sequence of deterministic subdivisions (i AT , n € N. Thus, there exists a
n ieN

mgasurable function ®: C(0, T, Ry xR - R such that
Jo Y, dX, = ©((X,)sepo.17- Yo): since the convergence in (3.7) holds almost surely
along a suitable subsequence, for each n € N, the members of the sequence in (3.7)
are measurable functions of (X,),c(o.) and ¥, and one can use Theorems 4.2.2 and
4.2.8 in Dudley [13]. Hence, the right-hand sides of (3.4) and (3.5) are measurable
functions of (X,)c(o 7 and ¥y, i.e., they are statistics. O

Using the SDE (1.1) and Corollary 3.2.20 in Karatzas and Shreve [22], one can

check that
-1
ast—a] | T —fvds | oy fy v 2aw,
BLSE —p — [l yds [ v2ds —oy Jy v 2aw, |

-1
&I;SE—a]_lT —fOTYSds] lazfo y!2aw, ]

ALSE — g — [l yds [ v2ds —oy i Y S/Zdw

2 ~
provided that TfOT Y2ds > (/OT Y, ds) , where W, := oW, + /1 —0?B,, t € R,,

and hence
ALSE or(f v aw,) (S 2 as) = o (S vods) () v aw,)
aSE _ g = |
T Ty v2as— (), ds)z
(e (v as) et ) aw,
bk —p = |
T Ty vrds= () sts>2
ALSE_ 0'2(/07 y!/? dﬁﬂ) (/oT y? ds) B 62</0r v ds) (/oT yon vaVS) |
T Ty v2as—(f) sts)z
fsE_ g Gz(foT y!/? dﬁﬂ) </0T Y, ds) T [TV W,
' ) 5

2
Ty v2ds— () vds)

(3.8)
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2
provided that T /OT Y2ds > ( fOT Y, ds) .

4 Consistency and Asymptotic Normality of LSE

Our first result is about the consistency of LSE in case of subcritical Heston models.

Theorem 4.1 If a,b,0,,0, ER,,, a,fER, o€ (-1,1), and P((Y),X,) ER,,
XR)=1, then the LSE of (a,b,a,p) is strongly consistent, Ii.e.,

A PN A as.
(a;SE, bl;SE, aLSE, /?T“SE) —s(a,b,a,p)asT - .

s : : ALSE 7LSE ALSE ALSE
Proof By Proposition 3.1, there exists a unique LSE (a%SF,bLSE GLSE pLSE) of

(a,b,a,p)forallT € R, . By (3.8), we have

T 1/2
Jo W7aw,
T

/“v Yods

2
T T
%/0 Y2ds— (%/0 sts)

T ,3/2
Ly aw,

1 rT 1 T 0
61';/0 sts~;_/0 Yods- i

1 rT 1 T 3
61';/0 des~;/0 Y’ds-
~LSE
ag” -

a=

provided that fOT Y, ds € R, which holds almost surely, see the proof of Proposi-
tion 3.1. Since, by part (1) of Theorem 2.4, E(Y,,), E(Y2), E(Y2) € R_,, part (3) of
Theorem 2.4 yields

1 r as. 1 r as. 1 T as.
—/ Y, ds —E(Y,), —/ Y2 ds —E(Y2), —/ Y3ds —EY?)
T 0 T 0 s (e8] T 0 N (s3]

as T — oo, and then

T a.s. T 2 a.s. T 3 a.s.
Y, ds — o0, YS ds — 0, YS ds — o0
0 0 0

as T — oo. Hence, by a strong law of large numbers for continuous local martingales
(see, e.g., Theorem 2.5), we obtain

as. 0 - E(Y) - E(Y2) -0 -0 - E(Y,) - E(Y2)-0
N =0

ALSE
_ as T ,
e E(V2) — (E(V,))? o
02
where for the last step we also used that E(Y2) — (E(Y,,))* = ;T; ER,,.
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Similarly, by (3.8),

2 Ty
1 (T LIyl aw, LT aw,
01.(?/0 des) 0/ vas O / Y ds- Uf Y3 ds

%/OT Y2ds— (%/OT sts>

i:q-@u;»LO—ayEaiwo

7LSE —
LSE — p =

=0 as T — oo.
E(YZ) — (E(Y))?
One can prove
st —a 0 and //JTT“SE 5250 asT o o
in a similar way. O

Our next result is about the asymptotic normality of LSE in case of subcritical
Heston models.

Theorem 4.2 If a,b,0,,0, €R,,, a,f R, o (-1,1) and P((Y),X,) e R,
XR) = 1, then the LSE of (a, b, a, B) is asymptotically normal, i.e.,

~LSE

a{SE —da Qa+oi)a 2a+o}
| b —=b | £ 2b P
i i
T2 {SE I e Ny 0,S® 2ate?  2(ared) asT — o0,  (4.1)
LSE o2 62a
ﬂT -p 1 1

where @ denotes the tensor product of matrices, and

2
S = % 0?152 .
00,0, 0,

With a random scaling, we have

~LSE

A=k —a
-3 (TE, 7 — E;  NE, 1E; 1 — E3 )73 0 bRE=b | ¢
furb®) o e EIT] asE g |~ Nal05 8T
A%SE_'B

4.2)

asT — oo, where E; y :=/()TY;ds,T€ R,.,i=123
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Proof By Proposition 3.1, there exists a unique LSE (a-F, bLSE arsE //B\I‘SE) of

(a,b,a, p). By (3.8), we have
T o T 1/2 1 T o T v3/2
-/0 des-\/—‘?fo Y, dWs—;fo sts-\/—‘ffo Y, dw,

\/_(ALSE s
LT o 1T : ’
;/0 Ys ds — (;/6 YSdS>
| T oy T 1/2 o1 T 3/2
Ly ds -2 [Ty 2w, — 2 [Ty aw,
T(OLSE _ p)y = r VT VT ’
VTHLSE - b) o — >
;/0 YS ds—(;/(; sts)
1 (T o, (T2 5, 1 T o, T 3/2 5
\ﬁ(&LSE_a)— ;/0 des.\/_z_T/O % dWX_?/(’ sts'\/_z?fo Yo dw,
T = 3 ,
lfOTYSst—(lfOTY ds)
1 Y24 V24
\/_(’ISE f /0 ’ /0 i
%fo des—(%/o sts>

2
provided that 7' /OT Yf ds > ( /OT Y, ds) , which holds almost surely. Consequently,

SLSE _ LriTyrge L (Tygq
Vil et |- : z<lz®[€/"f§dsff° )=
il Py vads— (3 4y vias) P s VT

1 L [ Yds 1
=\, ® T TTO s —M,
2 [—%fo Y,ds %/0 des ﬁ T
“4.3)

2
provided that T fOT Y2ds > ( fOT Y, ds) , which holds almost surely, where

1/(')[ l/2dW
—ay f3 Y 2aw,
oy Jo ¥ dw,
—62_/0 Y3/2dWS

, teR,,

is a 4-dimensional square-integrable continuous local martingale due to
JyE(Y,)ds < coand J; E(Y?)ds < oo, 1 € R,. Next, we show that
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c
LMT —nZ as T — oo,
T

where Z is a 4-dimensional standard normally distributed random vector and

4.4

n € R4 such that

_ E(Y,) -EQ?Z)
w =50 | 55 2607 |

Here, the two symmetric matrices on the right-hand side are positive definite, since
0,00 €ER, 0 (-1,1),E(Y,) = % € R, and
252

E(Y,)E(Y)) - (-E(Y2))* = S QatoD ER, .

and, so is their Kronecker product. Hence 5 can be chosen, for instance, as the
uniquely defined symmetric positive definite square root of the Kronecker product of

the two matrices in question. We have

t t
Y ds — /[ Y2ds
M) =8 /0 5 0 s , treR,.
o ®[—f0’Y§ds Jo Yods ] ’
By Theorem 2.4, we have

as. E(Y,) -E(Y2
Q(t)<M>zQ(t)T—> S ® [_EE(O;,ZZO) E(Y%oc)x’)] ast —> o

with Q(r) := t‘1/214, t € R,,. Hence, Theorem 2.6 yields (4.4). Then, by (4.3),
Slutsky’s lemma yields

&I;SE —a
BLSE _p .
T L 1 _[E(Yoo) £
ﬁ &;SE_(X _’<12® |:_|E(Y°o) E(Yi’) ] >7]Z—N4(0,E) as T — 0,
A%SE _ ﬂ

where (applying the identities A®B)'=A"T®B' and

A®B)C®D)=(AC)Q (BD))
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1 Evy ] 1 Evy ] i
. - oo TN, T - oo
> .—[Iz® [—E(Ym) E(r) ] ]n[E(ZZ m [Iz® _E(r,) E(P2) ] ]
-1 -1
_ 1 —E(Y,) E(Ye) —E(Y2) 1 —E(Y)
_[12®[—EE(Y«,) E(Y2) ] ](m[—m&o) E(Y2) D[lm[—m«,) E(Y2) ] ]
I vy | B —E2) ][0 vy |
~E(Yy) E(YZ) -E(Y}) E(YY) || ~E(Ye) E(YD) |
1

T (B0 = (EY)R)?

® (EYQEY) = EXLME(Y ) E(YQ)E(YY) - (E(YZ))
E(Yo)E(Y) — (E(Y2)) E(Y2) = 2E(Y)E(Y2) + (E(Ye,)) |

= (I,SL) ®

which yields (4.1). Indeed, by Theorem 2.4, an easy calculation shows that

3 2
(EQVE(Y) — (B )))E(Y,) = —L(2a+ o2),

2 2

455

(2a + 0 2,
5 4.5)

o
T (a + 0'1)

3N 2 \3\2
E(YHEY) — (E(Y))" = 7

E(Y) = 2E(Y)E(Y2) + (E(Y)' =
2

ao
E(Y2) - (E(Y, )) 2b;.

Now we turn to prove (4.2). Slutsky’s lemma, (4.1) and (4.5) yield

aIfSE a T
E;élz ® [(szj - EiT)(El,TEiT - E%,T)_E 2: ] bI{‘:E 2
-~ LT
ﬂLSE g
- &];‘SE a
_E 212 l(ElzT—ElT)(EmEsT_EzT) 20 ]ﬁ iniZE Z
LT ﬂLSE i
SEY) L ® [([E(Y2 ) = (B )PEXEY) = (E(Y2))72 0
E(Y,)

Qa+o2)a 2a+o‘
Zb -
2a+6 2b(a+o‘12)
2 2

(7] 6111

x N, 0,8 ®

c
=N,(0,8) as T — oo,

@ Springer



18 Page 180f 25 Journal of Statistical Theory and Practice (2019) 13:18

where L_?[.’T = % /07 YS" ds, TeR,,, i=1,2,3, and, applying the identities
A®B)T=A"T @B, (A ®B)(C ®D) = (AC) ® (BD), and using (4.5),

m

_ 1 < [(tE(W)—(tE(Y WIDEVOEXE) = (E(Y2)) 7% 0 ])
E(Y,) E(Y,)

(2a+6l )a 2a+o’l
o’lzb 0']2

2a+o]  2b(a+o})
2 2

1 oya

(, ® [([E(YH—([E(Y WOPUEYQE(Y) = (E(V2)2) 7% 50 ])
E(Ye)

X|S®

[

— (I,SL) ® ([([E(YZ)—([E(Y IEYDEY) — (E(Y )7 0

[E(Y ) E(Y )]

(2a+0']2)a 2a+¢>']2

o’fb o’f
2a+17]2 2b(a+o’f)
2 2

1 opa

N [([E(Yi,) — (B )PEYEX) - E¥2)Y)77 -1 >
0 E(Y,)

[ep

2ata}  2b(ata]) ||

(2a+c?)a 2a+o; 1
_bsg [ml<2a+o—2> : 0] e [o—l(zaw%)z

ST
—_
[EE—

SR

0'12 D'lzd

=SQ®I,.
Thus we obtain (4.2). O

Next, we formulate a corollary of Theorem 4.2 presenting separately the asymp-
totic behavior of the LSE of (a, b) based on continuous-time observations (Y,), 7},
T > 0. We call the attention that Overbeck and Rydén [27, Theorem 3.6] already
derived this asymptotic behavior (for more details on the role of the initial distri-
bution, see the Introduction); however, the covariance matrix of the limit normal
distribution in their Theorem 3.6 is somewhat complicated. It turns out that it can
be written in a much simpler form by making a simple reparametrization of the SDE
(1) in Overbeck and Rydén [27], estimating —b instead of b (with the notations of
Overbeck and Rydén [27]), i.e., considering the SDE (1.1) and estimating b (with
our notations).

Corollary 4.3 If a,b,0, € R, ,, and P(Y, € R,,) = 1, then the LSE of (a, b) given

in (3.4) based on continuous-time observations (¥,),jo.r;, T > 0, is strongly consist-

ent and asymptotically normal, i.e., (aL5F, bLSE)

—>(a b)asT — oo, and

2, 2
Tl &IfSE a N ¢ GT‘ Ja 2a + 612 T
2|~ —> as T — oo.
beSE 2 2a+ 62 2b(a+0?)
1 a
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5 Numerical lllustrations

In this section, first, we demonstrate some methods for the simulation of the Hes-
ton model (1.1), and then we illustrate Theorem 4.1 and convergence (4.1) in Theo-
rem 4.2 using generated sample paths of the Heston model (1.1). We will consider
a subcritical Heston model (1.1) (i.e., b € R,,) with a known non-random initial
value (yg,xp) € R,, X R. Note that in this case, the augmented filtration (7,),ep,
corresponding to (W,, B),cr, and the initial value (y;,xy) € R, X R, in fact, does
not depend on (y,, x,). We recall five simulation methods which differ from each
other in how the CIR process in the Heston model (1.1) is simulated.

In what follows, let %, k € {1, ..., N}, be independent standard normally distrib-
uted random variables with some N € N, and put ¢, := k%], ke {0,1,...,N}, with
someT €R,,.

Higham and Mao [15] introduced the Absolute Value Euler (AVE) method

N) (N) N (N)
Y =7+ @- Y - )+ oIV I = e ke {1, N),

with Y(()N) =y, for the approximation of the CIR process, where a,b,0;, € R, . This
scheme does not preserve non-negativity of the CIR process.
The Truncated Euler (TE) scheme uses the discretization

+(a- Y[(kNl))(tk—tk_1)+01\/max(Yt(:Yl),0) T — i Mo ke({l,...,N},

with Y(()N) =Yy,, where a,b,0, € R, ,, for approximation of the CIR process Y, see,
e.g., Deelstra and Delbaen [10]. This scheme does not preserve non-negativity of the
CIR process.

The Symmetrized Euler (SE) method gives an approximation of the CIR process
Y via the recursion

Y4 ( bY(N))(tk—tk D+ o\ YN =1,

Y(N ) Y(N )

Y™ — )

I

kell,.. N},

with Y(()N) =Yy, Where a,b,0; € R, see, Diop [12] or Berkaoui et al. [7] (where the
method is analyzed for more general SDEs including so-called alpha-root processes
as well with diffusion coefficient \"/; with « € (1, 2] instead of \/)_c). This scheme
gives a non-negative approximation of the CIR process Y.

The followmg two methods do not dlrectly simulate the CIR process Y, but its
square root Z = \/_),GR If a> -, then P(Y, € R,,, Vt€R,) =1, and,
by Itd’s formula

2
a °\1 b 0
dz, = ——— |= dt + —dw,, teR,.
! ((2 8>Zt 2’) +
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The Drift Explicit Square Root Euler (DESRE) method (see, e.g., Kloeden and
Platen [23, Section 10.2] or Hutzenthaler et al. [19, equation (4)] for general SDEs)
simulates Z by

2
OO (O G %\ 1 b ,m)
Z’k ZtA 1 <<§_§>Z(N) 2 ’k1>(tk_tk D
T

[0}
+ 51\/:,( — o m.  ke{l,..,N},

with Z(N) /Yo, Where a > 2 and b,o, € R_,. Here note that IP’(Z(N) 0)=

ke {l,...,N}, since Z() is absolutely continuous. Transformmg back, i.e.,
Y(N) (Z(N))2 k € {0, 1, ...,N}, gives a non-negative approximation of the CIR
process Y

The Drift Implicit Square Root Euler (DISRE) method (see, Alfonsi [1] or Dere-
ich et al. [11]) simulates Z by

2
N) _ SN a %\ 1 b ,w)
Z, =7+ <<§_§>W_§ >(fk—tk 0,
I

(o3
+ ?H/rk — 1 s ke{l,...,N},

2
with Z(()N) = 4/yy, Where a > % and b,0, € R_,. This recursion has a unique posi-
tive solution given by

2 2
N) | © (N) 61 — _ % _
S _ Z,) + 2=t (sz ey b1 Mg a=4 )G 1)

+ +
g 2+ b(t, — t_y) 2+ b(tk - t,(_l))2 2+ b(t, — t,_y)

for k € {1,...,N} with Z( ) = \/_ Transforming again back, i.e., Y(N) (Z(N))2,
ke {0,1,.. N }, gives a strlctly positive approximation of the CIR process Y.

We mention that there exist so-called exact simulation methods for the CIR
process, see, e.g., Alfonsi [2, Section 3.1]. In our simulations, we will use the SE,
DESRE and DISRE methods for approximating the CIR process which preserve
non-negativity of the CIR process.

The second coordinate process X of the Heston process (1.1) will be approxi-
mated via the usual Euler-Maruyama scheme given by

XV = XM 4 (@ = YN — 1) + o\ YN =1 (om + V1= 024
;.1

for k € {1,...,N} with X = x), where a,§ €R, 6, € R, 0 € (1, 1), and ¢,
ke {1,...,N}, be independent standard normally distributed random variables

independent of 77, k € {1, ..., N}. Note that in (5.1) the factor 4/ Yt(i]]) appears, which
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is well-defined in case of the CIR process Y is approximated by the SE, DESRE or
DISRE methods, that we will consider.

We also mention that there exist exact simulation methods for the Heston process
(1.1), see, e.g., Broadie and Kaya [8] or Alfonsi [2 Section 4.2.6].

We will approximate the estimator (aLSF, bLSE arsE, ELSE) given in (3.4) and
(3.5) using the generated sample paths of (¥, X). For this, we need to simulate, for a

large time T € R ,, the random variables

T T T T
Yr, Xpdig :=/0 Y,ds, L7 :=/0 Y2ds, Iy 7 :=/0 Y,dY, I, ; :=/0 Y, dX,.

We can easily approximate the /; 7, i € {1,2, 3,4}, respectively, by

N N

. ™) _T o) . (N)\2 M)y2
Ii\jT T Z Y’A l(t]‘ - tkfl) - N sz Y’k 1’ IZZT - ;(Yu 1) (tk - tkfl) - Z(Ytk 1

i
. (N) (y/(N) (N) N . (N) 3 (V) (N)
: Z OO UIED SO NI A Z r - x().

’kl tkl Ty

Hence, we can approximate a-°F, bLSE alSE, and E‘T‘SE by

o N N W) N N
P (Y; _yo)l -1, S0 . (Y =yoly, =TI,
T * TIN (I T)2 s . TI;V (I T)2 s
(N) N N N (N) N
™ .= Xp " =Xy = Liplyy W) L _ X7 - xO)Il,T - Tl
T * 9 T .—
= 7

We point out that a(N) b(N) A(N) and ﬂT are well-defined, since

2
N N
T? 1
N N \2 _ (N) (N)
TI2,T - (II,T) - ﬁ 2 <Yfk - ]T] Z Yfkl) 20,

k=1 k=1

and
1 N
N N \2 _ N) _ (N)
T, -, =0 < Y _NZYW ke{l,..,N}
‘=1
— YO = y®™ = =y ™,
1 N-1

Consequently, using that Y;IN) is absolutely continuous together with the law of total
P N N \2 -
probability, we havg P(T[;,T - (ILT) e R,)=1
For the numerical implementation, we take y,=0.2, x,=0.1, a=0.4,
b=03,a=0.1 =0.15 06, =04, 6, =0.3, 0=0.2, T = 3000, and N = 30000
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0'2 . . .
(consequently, t, —#,_; = 0.1, k € {1,...,N}). Note that a > -+ with this choice of
parameters. We simulate 10,000 independent trajectories of (Y, X;) and the normal-

! P N A . . .
ized error T2 (a%F — a, bLSF — b, alSF — a, /?'T“SE — p). Table 1 contains the empiri-

cal mean of Y. ;N) and %X(TN), based on 10,000 independent trajectories of (¥, X;), and

the (theoretical) limit lim, ,  E(Y,) = % and lim,_, t'E(X,) = a — /’;—“, respectively

(following from Proposition 2.2), using the schemes SE, DESRE and DISRE for
simulating the CIR process.

Henceforth, we will use the above choice of parameters except that 7 = 5000 and
N = 50,000 (yielding#, —#,_; = 0.1, k€ {1,...,N}).

In Table 2, we calculate the expected bias ([E(@T‘SE —0)), the Li-norm of error
([E|§%SE —6)) and the L,-norm of error (([E(é\;SE - 0)) ]/2), where 0 € {a,b,a, p},
using the scheme DISRE for simulating the CIR process.

In Table 3, we give the relative errors (§(TN) —6)/0, where 6 € {a,b,a, f}, for
T = 5000 using the scheme DISRE for simulating the CIR process.

In fig. 1, we illustrate the limit law of each coordinate of the LSE
(aLSE, bLSE, GLSE, //R}SE) given in (4.1). To do so, we plot the obtained density his-
tograms of each of its coordinates based on 10,000 independently generated trajec-
tories using the scheme DISRE for simulating the CIR process, we also plotted the
density functions of the corresponding normal limit distributions in red.With the
above choice of parameters, as a consequence of (4.1), we have

L
T3 (@5SE - a)— N(o, ;—;(Za + 0'12)) —N(©0,128) asT — oo,

~ L
T3 (BLE — b)— N(o, 2y 0'12)) =N(0,0.84) asT — oo,
a

a0'2
T%(a;SE - (x)—£> N(o, b—é(Za + 0'12)> =N(0,072) asT — oo,
[e2
1
« r 2bo2
T%(ﬁEE -pH— N <0, —22(a + a§)> = N(0,0.4725) asT — .

aal

In case of the parameters a and b, one can see a bias in Fig. 1, which, in our opinion,
may be related with the different speeds of weak convergence for the LSE of (a, b)
and that of (a, f), and with the bad performance of the applied discretization scheme
for Y.

Table 4 contains the skewness and excess kurtosis of T% (§(TN) —0), where
0 € {a,b,a, p}, using the scheme DISRE for simulating the CIR process. This con-
firms our results in (4.1) as well.

Using the Anderson—Darling and Jarque—Bera tests, we test whether each of the

! Py AN A . .
coordinates of T2 (@5°F — a, bLSF — b, aLSF — a, //E}SE — B) follows a normal distribu-

tion or not for 7 = 5000. In Table 5 we give the test values and (in parenthesis) the
p-values of the Anderson-Darling and Jarque—Bera tests using the scheme DISRE
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Table 1 Empirical mean of Y;N) (first row) and %X(TN) (second row)

Empirical mean of Y;N ) and Yl_X(TN) SE DESRE DISRE
lim E(Y,) = 4 _ 13333 1.321025 1.325539 1.331852
=00 b
fim 1 E(X) = « — ﬁ_ba —_01 —0.09978663 —0.100054 —0.09941841
=0
Table2 Expected bias, L;- and Errors Expected bias Li-norm of error ~ L,-norm of error
L,-norm of error using DISRE
scheme a -0.01089369  0.0153848 0.0190123
b —0.007639168 0.01189344 0.01474495
a 0.0001779072  0.00957648 0.0120646
p 0.0001402452  0.007776999 0.009771835
Table 3 Relative errors using Relative errors T = 5000
DISRE scheme
(3<TNJ —a)/a —0.02723421
@(TN) —b)/b —0.02546389
(a(TN) —a)/a 0.001779072
0.0009349683

B -p/p

Density histogram of normalized error of ‘a’

Density histogram of normalized error of 'b*
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Fig. 1 In the first line from left to right, the density histograms of the normalized errors of T'/2(@

normalized error of 'beta’

a® _ g

and T/ Z(E(N) — b), in the second line from left to right, the density histograms of the normalized errors
of TV Z(Q(T —a)and T/ Z(ﬁ(TN) — f). In each case, the red line denotes the density function of the corre-

sponding normal limit distribution
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Table 4 Skewness and excess kurtosis using the scheme DISRE for simulating the CIR process

Skewqess and excess T%(&(TN) —a) T%(/l;gv) —b) T3 (A(N) ) T3 (E(TN) -8
kurtosis

Skewness 0.04915124 0.04544189 —0.02317407 —0.01399869
Excess kurtosis 0.07666643 0.05226811 0.09994108 0.07877347

Table5 Test of normality in case of y, =02, x, =0.1, a=04, b=03, a =0.1,  =0.15, 6, =04,
0, =0.3, 0=0.2, T =5000, and N = 50,000 generating 10,000 independent sample paths using the
scheme DISRE for simulating the CIR process

Test of normality T3 (A(N) @) Tg(g(TM s T3 (A<N> @) Tg( ﬁ(TN) P

Anderson-Darling ~ 0.34486 (0.4857%)  0.62481 (0.1037%)  0.34078 (0.4962%)  0.35232 (0.467*)
Jarque-Bera 6.5162 (0.03846)  4.6077 (0.09987%)  5.1089 (0.07774")  2.9528 (0.2285%

for simulating the CIR process (the * after a p-value denotes that the p-value in ques-
tion is greater than any reasonable significance level). It turns out that, with this
choice of parameters, at any reasonable signiﬁcance level the Anderson—Darling

test accepts that T3 (@LSE — @), T3 (BLSE - b), T2 (ALSE — ), and T2 (ALSE — B) follow
normal laws. The Jarque—Bera test also accepts that 72 (@LSE b), Tz (ALSE a), and

T3 (ﬁ}SE — p) follow normal laws, but rejects that T3 (@45E — a) follows a normal law.

All in all, our numerical illustrations are more or less in accordance with our the-
oretical results in (4.1). Finally, we note that we used the open source software R for
making the simulations.
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