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Abstract
In this paper, estimation of unknown parameters of an inverted exponentiated Pareto 
distribution is considered under progressive Type-II censoring. Maximum likeli-
hood estimates are obtained from the expectation–maximization algorithm. We 
also compute the observed Fisher information matrix. In the sequel, asymptotic and 
bootstrap-p intervals are constructed. Bayes estimates are derived using the impor-
tance sampling procedure with respect to symmetric and asymmetric loss functions. 
Highest posterior density intervals of unknown parameters are constructed as well. 
The problem of one- and two-sample prediction is discussed in Bayesian framework. 
Optimal plans are obtained with respect to two information measure criteria. We 
assess the behavior of suggested estimation and prediction methods using a simula-
tion study. A real dataset is also analyzed for illustration purposes. Finally, we pre-
sent some concluding remarks.

Keywords  Expectation–maximization algorithm · Bootstrap interval · Importance 
sampling method · HPD interval · Bayes prediction · Optimal censoring

1  Introduction

In many reliability and life-testing experiments, one of the primary objectives is to 
establish a framework for an empirical analysis of various physical phenomena. The 
framework is often formulated on the basis of observations with a view of deriving 
predictive inference in a coherent manner. Traditionally, several practical fields of 
study require adequate inferential analysis of various lifetime data. In such investi-
gations, one of the important features is to identify the underlying distribution that 
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can adequately be used to describe the phenomenon under consideration. In the lit-
erature, several distributions with flexible shape characteristics have been proposed 
and studied in details. One may refer to Johnson et al. [14] for a review of interest-
ing applications of different distributions based on reliability data. Recently, Ghitany 
et al. [12] proposed and studied an inverse exponentiated class of distributions. The 
basic idea here stems from the exponentiated class of models with density function 
given by

where H(⋅) is an increasing function satisfying H(0) = 0 and H(∞) = ∞ . Also � and 
� denote model parameters. This class of distributions includes some known models 
like exponentiated exponential distribution, exponentiated Rayleigh distribution and 
exponentiated Pareto distribution. Several researchers have analyzed these distribu-
tions under constrained and unconstrained observations. The corresponding class of 
inverse exponentiated distributions has the density function of the type

This family of distributions includes some useful models from the literature. Among 
others, inverted exponentiated exponential distribution, inverted Burr X distribution 
and inverted exponentiated Pareto distribution belong to this class of distributions. 
Abouammoh and Alshingiti [1] considered estimation of unknown parameters and 
reliability function of a generalized inverted exponential distribution under the com-
plete sampling situation. Authors used maximum likelihood and least square estima-
tion methods to derive the desired estimates of unknown quantities. They analyzed 
different datasets and concluded that studied distribution can be used to model vari-
ous reliability data. Recently, Rastogi and Tripathi [27] derived different point and 
interval estimates of unknown parameters, reliability and hazard functions of an 
inverted Burr X distribution from classical and Bayesian viewpoints using progres-
sively censored data. Authors conducted a simulation study to compare proposed 
methods and also analyzed a real dataset for illustration purposes. The case 
H
(

1

x

)
= log(1 +

1

x
) in (2) corresponds to the inverted exponentiated Pareto (IEP) 

distribution. The corresponding probability density and cumulative distribution 
functions are given by, respectively,

(1)fY (y) = 𝛼𝛽 H�(y)
(
1 − e−𝛽H(y)

)𝛼−1
e−𝛽H(y), y > 0, 𝛼, 𝛽 > 0,

(2)fX(x) = 𝛼𝛽

H�
(

1

x

)

x2
e
−𝛽H

(
1

x

)(
1 − e

−𝛽H
(

1

x

))𝛼−1

, x > 0, 𝛼, 𝛽 > 0.

(3)fX(x) =𝛼 𝛽 x
𝛽−1(1 + x)−(𝛽+1)

[
1 −

(
1 + x

x

)−𝛽
]𝛼−1

, x > 0,

(4)FX(x) =1 −

[
1 −

(
1 + x

x

)−𝛽
]𝛼
, x > 0,



1 3

Journal of Statistical Theory and Practice (2019) 13:2	 Page 3 of 32  2

where 𝛼 > 0 and 𝛽 > 0 denote unknown parameters. The reliability function is given 
by

and the hazard function is of the form

In Fig.  1, we have displayed hazard function of the IEP distribution for some 
arbitrarily selected parameter values. Visual inspection suggests that hazard func-
tion decreases rapidly with time when both the shape parameters take values less 

R(t) =

[
1 −

(
1 + t

t

)−𝛽
]𝛼
, t > 0,

h(t) = 𝛼 𝛽 t𝛽−1(1 + t)−(𝛽+1)
[
1 −

(
1 + t

t

)−𝛽
]−1

, t > 0.
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Fig. 1   Hazard function for different values of � and �
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than one. It is also seen that the behavior can be non-monotone in nature. This sug-
gests that the IEP distribution may adequately fit datasets which indicate decreasing 
or non-monotone hazard behavior. Thus, potential applications of an IEP distribu-
tion include several fields of studies like mortality data analysis, working conditions 
of mechanical or electrical components, degradation experiments, fatigue failure. 
Thus, this distribution can have wide applications in reliability and lifetime studies, 
similar to some other common models like inverted exponential Rayleigh, exponen-
tiated moment exponential, generalized exponential, (see [24]). Not much work has 
been done on the family of distributions proposed by Ghitany et  al. [12]. In fact, 
authors derived maximum likelihood estimates of unknown model parameters under 
progressive censoring and analyzed a real dataset for illustration purposes. For the 
sake of completeness, we now briefly describe the progressive Type-II censoring. 
Suppose that a total of n test items is subjected to a life test and a progressively 
censored sample of size m (≤ n) is to be observed. This happens in m stages of 
the experiment using a prefixed censoring scheme 

(
r1,… , rm

)
 . At the time of the 

first failure X1 , the r1 number of live units is removed randomly from the experi-
ment. Similarly, at second failure X2 , the r2 number of live units is removed from 
the test. When mth failure occurs, the test stops and the remaining surviving units 
rm = n − m − r1 − r2 −⋯ − rm−1 are removed from the test. The complete sampling 
corresponds to the case r1 = r2 = … = rm−1 = rm = 0 . We refer to Balakrishnan and 
Aggarwala [3] and Balakrishnan and Cramer [6] for a detailed review of work done 
on progressive censoring. The literature on this censoring methodology is quite 
broad, and one may further refer to Huang and Wu [13], Singh et al. [29], Dey et al. 
[10], Rastogi et al. [26], Rastogi and Tripathi [27], Maurya et al. [20] and Asgharza-
deh [2] for some interesting applications of this censoring in reliability and lifetime 
analysis.

In this work, we study an inverted exponentiated Pareto distribution under pro-
gressive Type-II censoring. This distribution can be used to analyze lifetime data 
arising from various life-testing experiments such as clinical trials, industrial experi-
ments and mortality analysis. Among others, one may refer to Ghitany et  al. [12] 
for some useful applications of the IEP distribution in reliability experiments. 
Motivation of this paper is threefold. We first obtain point and interval estimates of 
unknown parameters of the IEP distribution using classical and Bayesian approaches 
when it is known that samples are progressively Type-II censored. In particular, we 
obtain maximum likelihood estimators (MLEs) of parameters and then derive Fisher 
information matrix of these estimates. In the sequel, asymptotic and bootstrap inter-
vals are constructed. For comparison purposes, we also compute Bayes estimates 
of parameters against symmetric and asymmetric loss functions assuming different 
prior distributions. The highest posterior density intervals of unknown parameters 
are obtained from the importance sampling procedure. The second aim of this paper 
is to obtain prediction estimates and prediction intervals of censored observation 
under the given censoring scheme. The problem of predicting censored observa-
tions arises quite naturally in many industrial and engineering applications. Finally, 
we establish optimal censoring plans with respect to different performance measure 
criteria. We have provided algorithm required for numerical computation of these 
optimal plans.



1 3

Journal of Statistical Theory and Practice (2019) 13:2	 Page 5 of 32  2

In Sect.  2, we discuss maximum likelihood estimation of unknown parameters 
and also compute Fisher information matrix. Asymptotic and bootstrap intervals are 
constructed as well. In Sect. 3, we derive Bayes estimates of parameters with respect 
to different loss functions and also obtain highest posterior density intervals. Predic-
tion of future observations is studied in Sect. 4 under one- and two-sample schemes. 
We establish optimal censoring schemes using two different criteria in Sect. 5. We 
conduct a simulation study and analyze a real dataset in Sect. 6. Finally, a conclu-
sion is given in Sect. 7.

2 � Maximum Likelihood Estimation

In this section, we derive maximum likelihood estimators of unknown parameters � 
and � of the IEP distribution as defined in (3). We derive these estimates based on 
a progressive Type-II censored sample X =

(
X1∶m∶n,… ,Xm∶m∶n

)
 obtained under a 

prescribed censoring scheme r =
(
r1,… , rm

)
 . The likelihood function of � and � is 

given by (see [3])

where �(x) =
(

1+x

x

)
 . The corresponding log-likelihood function is of the following 

form

The respective maximum likelihood estimates 𝛼̂ and 𝛽  of parameters � and � can be 
obtained by solving following likelihood equations:

and

From (7) and (8), we obtain

(5)L(�, �) ∝ �m�m
m∏
i=1

x
�−1

i∶m∶n

(
1 + xi∶m∶n

)−(�+1)[
1 −

(
�(xi∶m∶n)

)−�]�(ri+1)−1

(6)

log L(�, �) ∝ m log � + m log � + (� − 1)

m∑
i=1

log xi∶m∶n − (� + 1)

m∑
i=1

log
(
1 + xi∶m∶n

)

+

m∑
i=1

(
�
(
ri + 1

)
− 1

)
log

[
1 −

(
�
(
xi∶m∶n

))−�]
.

(7)
� log L

��
=

m

�
+

m∑
i=1

(ri + 1) log
[
1 −

(
�(xi∶m∶n)

)−�]
= 0,

(8)

� log L

��
=

m

�
−

m∑
i=1

log
(
�(xi∶m∶n)

)
+

m∑
i=1

(�(ri + 1) − 1)

(
�(xi∶m∶n)

)−�
log

(
�(xi∶m∶n)

)
[
1 −

(
�(xi∶m∶n)

)−�] = 0.
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and 𝛽  can be obtained by solving nonlinear equation G(�) = � , where

Since the equation G(�) = � cannot be solved analytically, some numerical tech-
nique such as Newton–Raphson method can be employed to obtain the MLE 𝛽  of 
� . Subsequently, the corresponding estimate of � can be computed. In the next sec-
tion, we suggest to use the expectation–maximization (EM) algorithm for comput-
ing MLEs of unknown parameters.

2.1 � EM Algorithm

The expectation–maximization algorithm is a powerful numerical tool for deriving 
maximum likelihood estimates of parameters in situations where data are censored in 
nature. This method was originally discussed by Dempster et al. [9] in the literature. 
The method as such is very general and commonly used in various estimation prob-
lems. At each iteration of this algorithm, we need to implement two steps, namely 
the expectation-step and the maximization-step. The maximization-step maxi-
mizes the likelihood function under consideration which is updated by the expec-
tation-step during iteration. In sequel and for further consideration, we assume that 
X =

(
X1,… ,Xm

)
 and Z =

(
Z1,… , Zm

)
 denote observed and censored data, respec-

tively, where Zi represents a 1 × ri vector with Zi =
(
Zi1,… , Ziri

)
, i = 1, 2,… ,m . 

The complete dataset is now given as W = (X, Z) . The log-likelihood function of this 
complete data is then obtained as

𝛼̂(𝛽) = −
m

∑m

i=1
(ri + 1) log

�
1 −

�
𝜓
�
xi∶m∶n

��−𝛽� ,

G(�) =

�
1

m

m�
i=1

log
�
�
�
xi∶m∶n

��
+

∑m

i=1
(ri + 1)

(�(xi∶m∶n))
−�

log (�(xi∶m∶n))�
1−(�(xi∶m∶n))

−�
�

∑m

i=1
(ri + 1) log

�
1 −

�
�
�
xi∶m∶n

��−��

+
1

m

m�
i=1

�
�
�
xi∶m∶n

��−�
log

�
�
�
xi∶m∶n

��
�
1 −

�
�
�
xi∶m∶n

��−��
�−1

.

(9)

log Lc(�, �) = n log � + n log � + (� − 1)

m∑
i=1

log xi∶m∶n − (� + 1)

m∑
i=1

log
(
1 + xi∶m∶n

)

+ (� − 1)

m∑
i=1

log
[
1 −

(
�
(
xi∶m∶n

))−�]
+ (� − 1)

m∑
i=1

ri∑
k=1

logZik

− (� + 1)

m∑
i=1

ri∑
k=1

log
(
1 + Zik

)
+ (� − 1)

m∑
i=1

ri∑
k=1

log
[
1 −

(
�(Zik)

)−�]
.
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In E-step, we take the expectation of this function with respect to the distribution of 
Zi conditional on Xi = xi which turns out to be

We have computed required expectations of Eq. (10) in Appendix  1. In M-step, 
the maximization of (10) is performed with respect to � and � . Suppose (�(k), �(k)) 
denotes the base estimate of (�, �) . Then, the corresponding updated estimate 
(�(k+1), �(k+1)) is computed by maximizing the equation

where A(xj, �(k), �(k)) , B(xj, �(k), �(k)) and C(xj, �(k), �(k)) are obtained in Appendix 1. 
We next apply the method as discussed in Pradhan and Kundu [24] to first obtain the 
estimate �(k+1) . We solve the following fixed point-type equation

where

and

(10)

Ls(𝛼, 𝛽) = n log 𝛼 + n log 𝛽 + (𝛽 − 1)

m∑
i=1

log xi∶m∶n − (𝛽 + 1)

m∑
i=1

log
(
1 + xi∶m∶n

)

+ (𝛼 − 1)

m∑
i=1

log
[
1 −

(
𝜓(xi∶m∶n)

)−𝛽]
+ (𝛽 − 1)

m∑
i=1

ri∑
k=1

E
(
log Zik|Zik > xi

)

− (𝛽 + 1)

m∑
i=1

ri∑
k=1

E
(
log(1 + Zik) ∣ Zik > xi

)

+ (𝛼 − 1)

m∑
i=1

ri∑
k=1

E
(
log

[
1 −

(
𝜓
(
Zik

))−𝛽]
∣ Zik > xi

)
.

(11)

g(�, �) = n log � + n log � + (� − 1)

m∑
i=1

log xi∶m∶n − (� + 1)

m∑
i=1

log(1 + xi∶m∶n)

+ (� − 1)

m∑
i=1

log
[
1 −

(
�(xi∶m∶n)

)−�]
+ (� − 1)

m∑
j=1

rj A(xj, �
(k), �(k))

− (� + 1)

m∑
j=1

rj B(xj, �
(k), �(k)) + (� − 1)

m∑
j=1

rj C(xj, �
(k), �(k)),

(12)h(�) = �

h(𝛽) =

⎡⎢⎢⎢⎣

(𝛼̂(𝛽)−1)

n

∑m

i=1

�
𝜓
�
xi∶m∶n

��−𝛽
log

�
𝜓(xi∶m∶n)

�
�
1 −

�
𝜓(xi∶m∶n)

�−𝛽� +
1

n

m�
i=1

log
�
𝜓(xi∶m∶n)

�
−

Ã

n
+

B̃

n

⎤⎥⎥⎥⎦

−1

,

(13)
𝛼̂(𝛽) = −

n
∑m

i=1

�
1 −

�
𝜓(xi∶m∶n)

�−𝛽�
+ C̃

,
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with Ã =
∑m

j=1
rj A

�
xj, 𝛼

(k), 𝛽(k)
�
,        B̃ =

∑m

j=1
rj B

�
xj, 𝛼

(k), 𝛽(k)
�
 and C̃ =

∑m

j=1
rj C(

xj, �
(k)
, �(k)

)
 . Note that using the updated estimate of � we can derive the corre-

sponding updated estimate �(k+1) of � as 𝛼(k+1) = 𝛼̂
(
𝛽(k+1)

)
 . This iterative process 

is repeated till the desired convergence is achieved. In the next section, we obtain 
Fisher information matrix.

2.2 � Fisher Information Matrix

In this section, we compute the asymptotic variance–covariance matrix of MLEs of 
unknown parameters which we further use to construct asymptotic confidence inter-
vals. We make use of the Louis [19] method (see also [31]) to compute the observed 
Fisher information matrix. According to this method

Now using notations � = (�, �) , X = observed data, W = complete data, IW (�) = 
complete information, IX(�) = observed information and IW∣X(�) = missing informa-
tion, we find that we have

The complete information is now given by

For the missing information, note that the Fisher information in a single observation 
censored at jth failure time xj is given by

and so the total missing information turns out to be

We have computed the element of both the matrices IW (�) and IW∣X(�) in Appen-
dix 2. Accordingly, the Fisher information matrix can be computed from Eq. (14). 
The asymptotic variance–covariance matrix of 𝛼̂ and 𝛽  is then obtained as 

[
IX(�)

]−1. 
Next proceeding in a manner similar to Kohansal [16], we are able to observe that 
asymptotic distribution of (𝛼̂, 𝛽) bivariate normal, that is, [
(𝛼̂ − 𝛼), (𝛽 − 𝛽)

]T D
�������→ N

(
0, I−1(𝛼, 𝛽)

)
 where I−1(�, �) denotes the variance–covari-

ance matrix. The symmetric 100(1 − �)% asymptotic confidence interval of the 

Observed information = Complete information −Missing information.

(14)IX(�) = IW (�) − IW∣X(�).

(15)IW (�) = −E
[�2Lc(W;�)

��2

]
.

I
(j)

W∣X
(�) = EZj∣Xj

[�2 log fZj(zj ∣ Xj, �)

��2

]
,

(16)IW∣X(�) =

m∑
j=1

rjI
j

W∣X
(�).
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parameters � and � is now obtained as 𝜃̂ ± z 𝜉

2

√
Var(𝜃̂) where z �

2

 denotes the upper 

�

2
 th percentile of the standard normal distribution.

In the next section, we obtain Bayes estimates of unknown parameters.

3 � Bayes Estimation

In this section, we derive Bayes estimators of unknown parameters � and � of the 
IEP distribution against different symmetric and asymmetric loss functions. In gen-
eral, squared error loss function is taken into consideration to compute Bayes esti-
mates of unknown parameters. In this case, overestimation and underestimation are 
equally penalized. However, in reliability and life-testing experiments overestima-
tion is often considered more serious than underestimation. In this regard, different 
asymmetric loss functions such as linex and entropy are introduced in the literature. 
We compute Bayes estimates of unknown parameters of the IEP distribution using 
squared error, linex and entropy loss functions. The squared error loss is defined as

where 𝜇̂ denotes an estimate of the unknown parameter � . The corresponding Bayes 
estimator 𝜇̂s of � is then obtained as the posterior mean of � . The linex loss function 
is given by

where h is the loss parameter. Following Zellner [33], we observe that underesti-
mation is more serious for the case h is negative and overestimation is more seri-
ous when h is positive. In this case, the Bayes estimator of � is obtained as 
𝜇̂L = −

1

h
log

(
E𝜇

(
e−h𝜇 ∣ X

))
 . Finally, we define the entropy loss function as

In this case, Bayes estimator of � is obtained as 𝜇̂E = E𝜇(𝜇
−𝜔 ∣ X)

1

𝜔 . Let 
X =

(
X1∶m∶n,… ,Xm∶m∶n

)
 denote a progressive Type-II censored sample taken from 

the distribution as defined in (3) using the censoring scheme 
(
r1,… , rm

)
 . It is rel-

atively difficult to construct a bivariate prior distribution for (�, �) when both the 
parameters of IEP distribution are unknown. So, we have assumed that � and � are a 
priori distributed as independent gamma G(a, b) and G(c, d) distributions. Such kind 
of prior distribution is quite flexible in nature and includes noninformative case as 
well. One may refer to Sinha [28] and Kundu and Pradhan [18] for further details in 
this regard. The joint prior distribution is given by

Ls(𝜇, 𝜇̂) = (𝜇̂ − 𝜇)2,

Ll(𝜇, 𝜇̂) = eh(𝜇̂−𝜇) − h(𝜇̂ − 𝜇) − 1, h ≠ 0,

Le(𝜇, 𝜇̂) =

(
𝜇̂

𝜇

)𝜔

− 𝜔 log

(
𝜇̂

𝜇

)
− 1, 𝜔 ≠ 0.

(17)
𝜋(𝛼, 𝛽) ∝ 𝛼a−1e−b𝛼𝛽c−1e−d𝛽 𝛼 > 0, 𝛽 > 0, a > 0, b > 0, c > 0, d > 0,
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and the corresponding posterior distribution is obtained as

Bayes estimators of both the unknown parameters can be obtained using this poste-
rior distribution. We note that these estimators appear as the ratio of two integrals 
which are difficult to simplify analytically. To overcome this situation, we propose to 
use the importance sampling technique which is discussed next.

3.1 � Importance Sampling Method

In this section, we use the importance sampling technique to compute Bayes estimators 
of unknown parameters � and � under different loss functions. The posterior distribu-
tion of � and � given data is of the form

where

The following steps are required for computation purposes. 

Step 1:	� Generate �1 from G�(., .),   �1 from G�∣�(., .).
Step 2:	� Repeat Step 1, M times to obtain 

(
�1, �1

)
,… ,

(
�M , �M

)
.

Step 3:	� Now, Bayes estimates of u(�, �) under Ls, Ll and Le losses are given by, 
respectively,

(18)

�(�, � ∣ x) ∝
�m+a−1�m+c−1

k
e−b�e−d�

m∏
i=1

x
�−1

i∶m∶n

(
1 + xi∶m∶n

)−(�+1)[
1 −

(
�(xi∶m∶n)

)−�]�(ri+1)−1
.

�(�, � ∣ X = x) ∝ G�∣�

(
m + a, b −

m∑
i=1

(ri + 1) log
[
1 −

(
�(xi∶m∶n)

)−�]
)

× G�

(
m + c, d +

m∑
i=1

log
(
�(xi∶m∶n)

))
K(�, �),

K(�, �) =

�
b −

m�
i=1

�
ri + 1

�
log

�
1 −

�
�
�
xi∶m∶n

��−��
�−(m+a)

e
−
∑m

i=1
log

�
1−(�(xi∶m∶n))

−�
�
.

ûBS =

∑M

i=1
u
�
𝛼i, 𝛽i

�
K
�
𝛼i, 𝛽i

�
∑M

i=1
K
�
𝛼i, 𝛽i

� ,

ûBL = −
1

h
log

�∑M

i=1
e−hu(𝛼i,𝛽i) K

�
𝛼i, 𝛽i

�
∑M

i=1
K
�
𝛼i, 𝛽i

�
�
, and

ûBE =

�∑M

i=1
u(𝛼i, 𝛽i)

−𝜔 K(𝛼i, 𝛽i)∑M

i=1
K(𝛼i, 𝛽i)

�−
1

𝜔

.
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We further construct HPD intervals of unknown parameters using samples gener-
ated from the importance sampling procedure. We have applied the method of Chen 
and Shao [8] for this purpose. Performance of point and interval estimates proposed 
in this section is discussed via numerical comparisons.

4 � Prediction of Future Observations

In this section, we derive prediction estimates of future observations and also construct 
corresponding prediction intervals. The problem of predicting future observations 
arises quite naturally in reliability and lifetime analysis and one may refer to Huang and 
Wu [13], Kayal et al. [15] for some recent applications. Here, we obtain Bayes predic-
tors with respect to gamma prior distributions under one- and two-sample frameworks.

4.1 � One‑Sample Prediction

Suppose that n test units following an IEP distribution are subjected to a life test and a 
progressive censored sample x =

(
x1∶m∶n,… , xm∶m∶n

)
 is observed under a prescribed 

censoring scheme 
(
r1,… , rm

)
 . Recall that at jth failure xj the rj number of live test units 

is removed from the experiment. Now, let yjk denote lifetime of kth censored unit where 
j = 1,… ,m and k = 1,… , rj . The density of yjk conditional on observed data is given 
by (see [23])

Note that a priori predictive survival function is given by

where    ∫ ∞

t
f1(yjk ∣ x, �, �)dyjk = k

�
rj

k

�∑k−1

i=0

�
k−1

i

�
(−1)k−1−i(1 − F(xj))

i−rj (1−F(t))
rj−i

rj−i
, 

and ∫ ∞

xj
f1(yjk ∣ x, �, �)dyjk = k

�
rj

k

�∑k−1

i=0

�
k−1

i

�
(−1)k−1−i

1

rj−i
.

As a consequence, posterior predictive density and posterior predictive survival 
functions are obtained as

(19)

f1
(
yjk ∣ x, 𝛼, 𝛽

)
= k

(
rj

k

)(
F
(
yjk

)
− F(xj)

)k−1(
1 − F(yjk)

)rj−kf (yjk)(
1 − F(xj)

)rj , yjk > xj.

R1(t ∣ x, 𝛼, 𝛽) =
P(yjk > t ∣ x, 𝛼, 𝛽)

P(yjk > xj ∣ x, 𝛼, 𝛽)
=

∫ ∞

t
f1(yjk ∣ x, 𝛼, 𝛽)dyjk

∫ ∞

xj
f1(yjk ∣ x, 𝛼, 𝛽)dyjk

,

f ∗
1
(yjk ∣ x) =∫

∞

0 ∫
∞

0

f1(yjk ∣ x, �, �)�(�, � ∣ x)d�d�

R∗
1
(t ∣ x) =∫

∞

0 ∫
∞

0

R1(t ∣ x, �, �)�(�, � ∣ x)d�d�.



	 Journal of Statistical Theory and Practice (2019) 13:2

1 3

2  Page 12 of 32

Thus, the Bayes predictor of the censored observation yjk can be computed as

where  I1(�, �) = ∫ ∞

xj
yjkf1(yjk ∣ x) dyjk.

We use importance samples 
{
(�i, �i);i = 1,… ,M

}
 to simplify the integral (20). The 

corresponding predictive estimate is given by

The HPD prediction interval (L1,U1) of censored observation yjk is obtained by solv-
ing the following equations simultaneously:

Further, the corresponding 100(1 − �)% equal-tail prediction interval (L1,U1) can be 
constructed by simultaneously solving the following nonlinear equations:

Two-sample prediction is discussed next.

4.2 � Two‑Sample Prediction

In this section, we discuss two-sample prediction problem. We obtain prediction esti-
mates and prediction intervals of future observable under progressive Type-II censor-
ing. Let x =

(
x1∶m∶n,… , xm∶m∶n

)
 denote a base sample obtained using the censoring 

scheme 
(
r1,… , rm

)
 . Further, let T1 < ⋯ < Tl be the lifetimes of a future sample of 

size l which is taken from an IEP distribution and is independent of the base sample. 
We wish to predict the qth observation (1 ≤ q ≤ l) of future sample on the basis of 
observed progressive Type-II censored data (see [11]). The density function of a qth 
order statistic is given by

(20)
ŷjk =∫

∞

xj

yjkf
∗
1
(yjk ∣ x) dyjk

=∫
∞

0 ∫
∞

0

I1(𝛼, 𝛽)𝜋(𝛼, 𝛽 ∣ x)d𝛼d𝛽,

(21)ŷjk =

∑M

i=1
I1(𝛼i, 𝛽i)K(𝛼i, 𝛽i)∑M

i=1
K(𝛼i, 𝛽i)

.

(22)∫
U1

L1

f⋆
1
(yjk|x)dyjk = (1 − 𝜉) and f⋆

1
(L1|x) = f⋆

1
(U1|x).

(23)R∗
1
(L1 ∣ x) =

�

2
and R∗

1
(U1 ∣ x) = 1 −

�

2
.

(24)f2(tq ∣ 𝛼, 𝛽) =
l!

(q − 1)!(l − q)!

[
F(tq)

]q−1[
1 − F(tq)

]l−q
f (tq ∣ 𝛼, 𝛽), tq > 0.
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As earlier, the two-sample posterior predictive density and the posterior predictive 
distribution function are, respectively, obtained as

The two-sample Bayes predictive estimate of the qth future observation is now given 
by

where  I2(�, �) = ∫ ∞

0
tq f

(
tq ∣ x

)
dtq.

Observe that (25) cannot be simplified as the corresponding posterior distribution 
is analytically intractable. So, we use importance samples 

{
(�i, �i);i = 1,… ,M

}
 to 

simplify the corresponding posterior expectation. The prediction estimate of future 
observable tq is then obtained as

The 100(1 − �)% HPD predictive interval of qth future observation is given by (
L2,U2

)
 where L2 and U2 satisfy the following equations:

Also, the 100(1 − �)% equal-tail predictive interval (L2, U2) can be obtained by solv-
ing the following equations:

In the next section, optimal censoring is discussed.

5 � Optimal Censoring

In previous sections, we discussed problems of estimation and prediction for the IEP 
distribution based on progressive Type-II censored samples obtained using prefixed 
censoring schemes. In many situations, it is of interest to establish optimal plans from 

f ∗
2
(tq ∣ x) =∫

∞

0 ∫
∞

0

f2(tq ∣ x, �, �)�(�, � ∣ x)d�d�,

F∗
2
(t ∣ x) =∫

∞

0 ∫
∞

0

F2(t ∣ x, �, �)�(�, � ∣ x)d�d�.

(25)t̂q = ∫
∞

0 ∫
∞

0

I2(𝛼, 𝛽)𝜋(𝛼, 𝛽 ∣ x)d𝛼d𝛽

(26)t̂q =

∑M

i=1
I2
�
𝛼i, 𝛽i

�
K
�
𝛼i, 𝛽i

�
∑M

i=1
K
�
𝛼i, 𝛽i

� .

(27)∫
U2

L2

f⋆
2

(
tq ∣ x

)
dtq = (1 − 𝜉) and f⋆

2

(
L2 ∣ x

)
= f⋆

2

(
U2 ∣ x

)
.

(28)F∗
2

(
L2 ∣ x

)
=
�

2
and F∗

2

(
U2 ∣ x

)
= 1 −

�

2
.
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a class of prescribed censoring schemes; that is, for a given parent sample of size n and 
a progressive Type-II censored sample of size m, an experimenter requires to select a 
censoring scheme ri, i = 1,… ,m, which provides maximum information on unknown 
parameters of interest. The problem of establishing optimal plans has received some 
attention in the literature, among others, one may refer to Ng et al. [22], Kundu [17], 
Pradhan and Kundu [24] for some interesting results on this topic. Here, we make use 
of two criteria, namely Fisher information and entropy measure for establishing desired 
optimum plans.

5.1 � Fisher Information Criterion

In this case, our objective is to minimize the trace of a variance–covariance matrix with 
respect to progressive Type-II censored data. The Fisher information matrix, for the 
vector parameter � , is given by

Equivalently, we have (see [7, 34])

where h�(x) denotes hazard function, �

��
log h�(x) is the vector given as (

�

��1
log h�1(x),… ,

�

��p
log h�p(x)

)
 with � = (�1,… , �p) and ⟨b⟩ is defined as a matrix 

b b′ , for b ∈ ℝ
p . Also fi∶m∶n(x, �) is the density function of Xi∶m∶n where (see [4]))

We further note that �i = m − i + 1 +
∑m

k=i
rk , �i−1 =

∏i

k=1
�k, 1 ≤ i ≤ m and 

ak,i =
∏i

j = 1

j ≠ k

1

�j−�k
, 1 ≤ k ≤ i ≤ m . Elements of the Fisher information matrix I(�) 

are obtained in Appendix 3. Thus, the asymptotic variance–covariance matrix finally 

I(�) = −E

[
�2log L(�)

�� ���

]
.

(29)I(�) = ∫
∞

0

⟨
�

��
log h�(x)

⟩ m∑
i=1

fi∶m∶n(x, �) dx,

fi∶m∶n(x, �) = �i−1

i∑
k=1

ak,i
(
1 − FX(x, �)

)�k−1fX(x, �)

= �i−1

i∑
k=1

ak,i
[
1 − (�(x))−�

]�(�k−1)
��x�−1(1 + x)−(�+1)

[
1 − (�(x))−�

]�−1

= �i−1

i∑
k=1

ak,i
(
��x�−1(1 + x)−(�+1)

)[
1 − (�(x))−�

](��k−1)
.
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turns out to be I−1(𝜃̂) . We wish to minimize the trace of this variance–covariance 
matrix. The optimum solutions and corresponding optimum censoring schemes are 
presented in Table 5. We have used the partitions package in R software for deter-
mining optimal schemes. We first generated all feasible solutions, and then we made 
use of the complete search technique to obtain optimum scheme among all possible 
solutions.

The following steps are required to implement the complete search algorithm:

•	 Assign values of n and m.
•	 Compute k =

(
n−1

m−1

)
.

•	 Generate all possible combinations of the censoring scheme ��
r1,… , rm

�
∣
∑m

i=1
ri = n − m

�
 using the partitions package in R statistical soft-

ware.
•	 Compute trace of the variance–covariance matrix for all k using the correspond-

ing censoring scheme as given in the previous step.
•	 The minimum trace of the variance–covariance matrix corresponds to the opti-

mum censoring scheme.

5.2 � Entropy Measure

Now, we establish optimal plans based on entropy measure. Shannon [30] intro-
duced joint differential entropy as information measure. It measures the uncertainty 
present in a data. In this case, one of the primary objectives is to optimize uncer-
tainty in the system and select the plan which provides reasonably efficient estimates 
of unknown parameters. One may also refer to Balakrishnan et al. [5] in this regard. 
The entropy function under progressive Type-II censoring is given by

where

Here, we consider both maximum and minimum entropy plans. Note that maxi-
mum entropy criterion under progressive Type-II censoring measures the maximum 
uncertainty present in a data and such optimal plans carry important information 
about the model under consideration. Plans based on minimum entropy can also be 
used to derive better estimates for unknown quantities of interest. We have solved 
the corresponding optimization problem using the complete search technique. In 
Table  5, we have presented minimum and maximum entropy values along with 

(30)Hmin∣max = − logC + m − ∫
∞

0

m∑
i=1

fi∶m∶n(x, �) log h�(x)dx,

C = n(n − r1 − 1)(n − (r1 + r2) − 2)…

(
n −

m−1∑
i=1

ri − (m − 1)

)
.
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optimum plans. We obtained desired results for the objective function defined in 
(30) using the previous algorithm.

Remark   We would like to mention that in this work we have computed the opti-
mum censoring scheme from all possible choices R =

�
(r1,… , rm) ∣

∑m

i=1
ri = n − m

�
 

by solving integer programming problem. We have considered moderate choices of 
n, m and used a complete enumeration search technique to determine the optimum 
scheme. Pradhan and Kundu [24] suggested that for given n and m the number of 
sampling schemes is although finite but this number can be quite large as a total of (
n − 1

m − 1

)
 possible censoring schemes is available. For example, if n = 20 and 

m = 10 then total number of possible sampling schemes is 92,378. So far one does 
not have any efficient algorithm to search the optimal schemes from all possible pro-
gressive censoring schemes. Because of computational limitations, it is practically 
infeasible to apply enumeration search technique for relatively large values of n and 
m. In such cases, one can use meta heuristic algorithm to find near-optimum solu-
tions within a reasonable time period. Optimum censoring schemes can be estab-
lished by prefixing n and m values as well. However, in practice n and m both may 
vary. Therefore, finding optimum schemes (n,m, (r1,… , rm)) from the meta heuristic 
algorithm may turn out to be a useful approach.

6 � Simulation Study and Data Analysis

In this section, we assess the behavior of proposed methods using a Monte Carlo 
simulation study. A real dataset is also analyzed for illustration purposes.

6.1 � Simulation Study

We compare the performance of suggested methods of estimation and predic-
tion based on a simulation study under the assumption that samples are progres-
sive Type-II censored. The comparison between different estimates is made on 
the basis of bias and mean square error (MSE) values using 5000 replications. 
These estimates are computed for different combinations of sample size (n, m) 
and censoring schemes. The true values of parameters are arbitrarily taken as 
� = 1.5 and � = 1 . The maximum likelihood estimates of unknown parameters of 
the prescribed model are numerically computed using the expectation–maximiza-
tion algorithm. We mention that all simulations are performed on the statistical 
software R and we have used nleqslv, rootSolve and partitions packages for differ-
ent computation purposes. We compute Bayes estimates of unknown parameters 
against gamma prior distributions with respect to squared error, linex and entropy 
loss functions. We use importance sampling procedure for computing Bayes esti-
mates and in process, the vector hyperparameter (a, b, c, d) is considered as (15, 
10, 6, 6). Selection of hyperparameters against a prior distribution can sometimes 
be made on the basis a priori data. Let M number of such samples be available 
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from the model under consideration with MLEs (𝛼j, 𝛽j) where j = 1,… ,M . Then, 
hyperparameters can be estimated on equating mean and variance of these MLEs 
with the corresponding prior mean and prior variance. For example, consider a 
prior distribution �(�) ∝ �z1−1e−z2� where z1 and z2 denote hyperparameters. We 
can estimate these unknowns from equations

We have estimated hyperparameters based on one thousand past data. In Table 1, we 
present MLEs of unknown parameters of � and � along with MSE values for differ-
ent sampling situations. Bayes estimates of � and � are also given in this table. Note 
that 𝛼̃BS and 𝛽BS represent respective Bayes estimates of parameters � and � when the 
loss function is squared error. Similar notations are used for the other two loss func-
tions. We mention that these estimates, under linex and entropy losses, are computed 
for different h and � values like − 0.25, 0.5 and 1. For each scheme, the first two 
values denote estimate and corresponding MSE for the parameter � . The last two 
values represent similar estimates for the parameter � . Tabulated estimates indicate 
that MLEs of both the unknown parameters compete quite good with correspond-
ing Bayes estimates as far as bias and mean square errors are concerned. However, 
Bayes estimates seem to be more efficient than their counterpart MLEs. In particu-
lar, squared error Bayes estimates of � and � perform better than respective MLEs. 
In case estimation is carried out under linex loss function, the choice − 0.25 of the 
corresponding loss parameter h produces better estimates for both the unknown 
parameters. Similar observations hold true for the entropy loss function. Proposed 
estimation methods tend to produce more efficient estimates with the increase in 
effective sample size. In Table 2, we present asymptotic confidence intervals (ACI), 
bootstrap intervals and HPD intervals of both the unknown parameters � and � for 
different censoring schemes under 95% confidence level. In fact, we provide average 
interval length (AIL) and corresponding coverage probabilities (CPs) for each inter-
val estimate. Bootstrap-p and asymptotic intervals compete quite good with each 
other. Overall, the highest posterior density intervals perform better than the other 
two intervals as far as average interval length is concerned. All the tabulated inter-
vals provide good coverage probabilities, and in general, they remain quite close to 
the nominal level. In Table 3, we present one-sample prediction estimates along with 
equal-tail (EQT) and HPD prediction intervals of observations censored at different 
stages of the experiment. We have derived prediction estimates and corresponding 
intervals for the first four observations which are censored at different stages of the 
test. In general, equal-tail prediction intervals are wider compared to correspond-
ing HPD intervals. This holds for all the presented censoring schemes. The corre-
sponding two-sample predictive estimates and prediction intervals of the first four 
observable are presented in Table 4 where future sample size is 5. We observed a 
similar pattern in this case as well. Here also, we predict lifetimes upto the first four 
units. A similar conclusion can be drawn from these tables as well. Finally, optimum 

1

M

M∑
j=1

𝛿j =
z1

z2
, and

1

M − 1

M∑
j=1

(
𝛿j −

1

M

M∑
i=1

𝛿i

)2

=
z1

z2
2
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censoring plans and optimum values are given in Table 5 for different combinations 
of (n, m,  r) under two different optimal criteria. From this table, we observe that 
trace of the variance–covariance matrix and the entropy decrease with an increase in 
values of n and m, as expected.

Table 2   Confidence intervals of � and � for different choices of n, m 

(n, m) Scheme � �

AIL AIL AIL AIL AIL AIL

CP CP CP CP CP CP

ACI Bootstrap HPD ACI Bootstrap HPD

(20,8) (12, 0∗7) 2.5223 3.7968 1.2657 1.0999 1.4752 0.8442
(0.981) (0.883) (0.983) (0.885) (0.878) (0.982)

(0∗7, 12) 3.1308 3.9444 1.0486 1.3249 1.8136 0.5774
(0.991) (0.842) (0.956) (0.981) (0.853) (0.914)

(20,12) (8, 0∗11) 2.3002 3.3643 1.2574 1.0784 1.2892 0.7898
(0.973) (0.835) (0.988) (0.949) (0.917) (0.972)

(0∗11, 8) 2.5415 3.6999 1.0701 1.1509 1.5299 0.5695
(0.945) (0.836) (0.991) (0.972) (0.847) (0.946)

(20,12) (0⋆8, 4∗2, 0⋆2) 2.4912 3.6616 1.1457 1.1259 1.4742 0.5756
(0.988) (0.906) (0.971) (0.968) (0.819) (0.889)

(25,10) (3, 1∗2, 3, 0∗4, 1, 6) 2.5457 3.8818 1.0701 1.0993 1.6053 0.5695
(0.991) (0.832) (0.931) (0.958) (0.829) (0.888)

(25,12) (13, 0∗11) 2.0703 3.4332 1.2405 0.9616 1.2728 0.7355
(0.971) (0.848) (0.964) (0.908) (0.889) (0.958)

(0∗11, 13) 2.4535 3.9651 0.9112 1.1003 1.6652 0.4402
(0.992) (0.865) (0.927) (0.967) (0.889) (0.858)

(25,15) (10, 0∗14) 1.9571 3.1219 1.2049 0.9635 1.2368 0.7576
(0.978) (0.889) (0.993) (0.948) (0.924) (0.992)

(0∗14, 10) 2.2297 3.4993 0.9505 1.0320 1.3131 0.4754
(0.987) (0.976) (0.879) (0.845) (0.819) (0.848)

(30,12) (18, 0∗11) 1.9695 3.3356 1.1931 0.9058 1.2384 0.7174
(0.986) (0.848) (0.979) (0.978) (0.827) (0.972)

(0∗11, 18) 2.4737 3.7409 0.7765 1.0839 1.3891 0.3555
(0.992) (0.887) (0.918) (0.983) (0.856) (0.897)

(30,18) (12, 0∗17) 1.7811 2.8732 1.1525 0.8886 1.1411 0.6834
(0.963) (0.908) (0.946) (0.936) (0.958) (0.978)

(0∗17, 12) 1.9743 3.4790 0.7987 0.9273 1.2144 0.4038
(0.984) (0.856) (0.941) (0.957) (0.846) (0.849)

(20,8) (0∗23, 5, 0) 1.7781 2.6981 0.9487 0.8817 1.0508 0.5069
(0.968) (0.878) (0.932) (0.965) (0.919) (0.904)
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Table 3   Prediction estimates and prediction intervals in one-sample case

(n, m) Scheme j k Bayes EQT interval/AIL HPD interval/AIL

(20,8) (12, 0⋆7) 1 1 0.1026 (0.0359, 0.3117)/0.2758 –
2 0.1760 (0.0472, 0.5185)/0.4713 (0.0469, 0.5033)/0.4564
3 0.2648 (0.0632, 0.6967)/0.6335 (0.0408, 0.5803)/0.5395
4 0.3667 (0.0839, 0.9549)/0.8710 (0.0514, 0.7988)/0.7474

(0⋆7, 12) 8 1 0.5631 (0.3835, 0.7250)/0.3415 –
2 0.6948 (0.4561, 1.0201)/0.5640 (0.4259, 0.8978)/0.4718
3 0.8034 (0.4218, 1.2601)/0.8383 (0.3878, 1.1065)/0.7187
4 1.0072 (0.5105, 1.7615)/1.2510 (0.4668, 1.5348)/1.0680

(20,12) (8, 0⋆11) 1 1 0.1314 (0.0339, 0.4958)/0.4618 –
2 0.2713 (0.0581, 0.8514)/0.7933 (0.0477, 0.6970)/0.6493
3 0.4319 (0.0966, 1.3178)/1.2212 (0.0535, 1.0784)/1.0249
4 0.6747 (0.1371, 2.0249)/1.8878 (0.0653, 1.6325)/1.5672

(0⋆11, 8) 12 1 1.2039 (0.9198, 1.7138)/0.7940 –
2 1.4011 (0.8697, 2.2151)/1.3454 (0.8196, 1.9182)/1.0986
3 1.7844 (1.0047, 3.3091)/2.3044 (0.9189, 2.8357)/1.9168
4 2.0643 (0.9877, 4.2805)/3.2928 (0.8757, 3.5896)/2.7139

(20, 12) (0⋆8, 4∗2, 0⋆2) 9 1 0.8804 (0.5167, 1.9892)/1.4725 –
2 1.5204 (0.5453, 4.1366)/3.5913 (0.4958, 3.1932)/2.6974
3 3.1378 (0.7093, 5.8097)/5.1004 (0.5154, 4.5974)/4.0820

(25,10) (3, 1∗2, 3, 0⋆4, 1, 6) 10 1 1.0949 (0.7666, 1.7857)/1.0191 –
2 1.5332 (0.8025, 2.9019)/2.0994 (0.7626, 2.4267)/1.6641
3 1.9635 (0.8874, 4.5465)/3.6591 (0.7711, 3.6774)/2.9063
4 3.0884 (0.9803, 7.8813)/6.9010 (0.7813, 6.0549)/5.2736

(25, 12) (13, 0⋆11) 1 1 0.0869 (0.0263, 0.2742)/0.2479 –
2 0.1541 (0.0399, 0.4562)/0.4163 (0.0321, 0.3828)/0.3507
3 0.2359 (0.0544, 0.6208)/0.5664 (0.0336, 0.5224)/0.4888
4 0.3271 (0.0857, 0.8461)/0.7604 (0.0530, 0.7159)/0.6629

(0⋆11, 13) 12 1 0.7357 (0.5068, 0.8394)/0.3326 –
2 0.3326 (0.5441, 1.1024)/0.5583 (0.5271, 0.9903)/0.4632
3 1.0811 (0.6607, 1.6621)/1.0014 (0.6228, 1.4057)/0.7829
4 1.1365 (0.5779, 1.7153)/1.1374 (0.5479, 1.5227)/0.9748

(25, 15) (10, 0⋆14) 1 1 0.0998 (0.0226, 0.3376)/0.3150 –
2 0.1977 (0.0406, 0.5997)/0.5591 (0.0307, 0.5000)/0.4693
3 0.3199 (0.0648, 0.8644)/0.7996 (0.0357, 0.7178)/0.6821
4 0.4571 (0.1065, 1.2597)/1.1532 (0.0582, 1.0510)/0.9918

(0⋆14, 10) 15 1 1.1417 (0.8852, 1.4772)/0.5920
2 1.2991 (0.8260, 1.7695)/0.9435 (0.7906 1.5682)/0.7776
3 1.4736 (0.9266, 2.4883)/1.5617 (0.8651, 2.1890)/1.3239
4 1.8699 (0.9316, 2.9281)/1.9965 (0.8395, 2.5369)/1.6974
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6.2 � Real Data Analysis

In this section, we present analysis of a real dataset to illustrate prediction and estima-
tion methods discussed in preceding sections. The dataset describes failure times of 84 
aircraft windshield as discussed in Murthy et al. [21] (see also [25]). The failure times 
of these aircraft windshields are listed below as
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Table 3   (continued)

(n, m) Scheme j k Bayes EQT interval/AIL HPD interval/AIL

(30, 12) (18, 0⋆11) 1 1 0.0634 (0.0227, 0.2042)/0.1814 –
2 0.1160 (0.0295, 0.3186)/0.2891 (0.0260, 0.2703)/0.2443
3 0.1601 (0.0423, 0.4322)/0.3899 (0.0278, 0.3677)/0.3399
4 0.2255 (0.0688, 0.6020)/0.5332 (0.0455, 0.5182)/0.4727

(0⋆11, 18) 12 1 0.6148 (0.4306, 0.6660)/0.2354 –
2 0.7189 (0.4052, 0.7848)/0.3796 (0.4014, 0.7164)/0.3150
3 0.7879 (0.4202, 0.9183)/0.4981 (0.3988, 0.8332)/0.4344
4 0.8313 (0.4454, 1.1082)/0.6628 (0.4207, 1.0074)/0.5867

(30, 18) (12, 0⋆17) 1 1 0.0869 (0.0212, 0.2945)/0.2733 –
2 0.1622 (0.0367, 0.4954)/0.4587 (0.0260, 0.4129)/0.3869
3 0.2533 (0.0550, 0.6717)/0.6167 (0.0316, 0.5636)/0.5320
4 0.3620 (0.0779, 0.8978)/0.8198 (0.0429, 0.7579)/0.7150

(0⋆17, 12) 18 1 1.1493 (0.8262, 1.2960)/0.4698 –
2 1.3109 (0.8322, 1.5755)/0.7433 (0.8031, 1.4225)/0.6194
3 1.4903 (0.9261, 2.0745)/1.1484 (0.8776, 1.8721)/0.9945
4 1.7576 (0.9710, 2.5976)/1.6266 (0.9198, 2.3154)/1.3956

(30, 25)  (0⋆23, 5, 0) 24 1 2.5330 (1.9263, 3.9763)/2.0500 –
2 3.5826 (2.0957, 6.7640)/4.6683 (2.0028, 5.6504)/3.6476
3 4.2017 (1.9820, 9.8435)/7.8615 (1.7501, 7.8812)/6.1311
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Table 4   Prediction estimates and prediction intervals in two-sample case

(n, m) Scheme q Bayes EQT interval/AIL HPD interval/AIL

(20, 8) (12, 0⋆7) 1 0.0977 (0.0015, 0.4295)/0.4280 –
2 0.2074 (0.0222, 0.8849)/0.8627 (0.0004, 0.8534)/0.8530
3 0.3901 (0.0477, 1.2856)/1.2379 (0.0077, 1.0870)/1.0793
4 0.6033 (0.0879, 1.8380)/1.7501 (0.0229, 1.4823)/1.4594

(0⋆7, 12) 1 0.1022 (0.0017, 0.3731)/0.3714 –
2 0.2173 (0.0187, 0.7534)/0.7347 (0.0010, 0.7132)/0.7122
3 0.4195 (0.0417, 1.1464)/1.1047 (0.0066, 0.9477)/0.9411
4 0.6873 (0.0985, 1.9352)/1.8367 (0.0287, 1.5462)/1.5175

(20,12) (8, 0⋆11) 1 0.0946 (0.0021, 0.4505)/0.4484 –
2 0.2121 (0.0141, 0.7341)/0.7200 (0.0001, 0.7173)/0.7172
3 0.3953 (0.0428, 1.2303)/1.1875 (0.0059, 1.0298)/1.0239
4 0.6395 (0.1027, 2.0201)/1.9174 (0.0285, 1.6330)/1.6045

(0⋆11, 8) 1 0.0994 (0.0015, 0.3903)/0.3888 –
2 0.2329 (0.0153, 0.7069)/0.6916 (0.0034, 0.6672)/0.6638
3 0.3987 (0.0478, 1.1588)/1.1110 (0.0093, 0.9732)/0.9639
4 0.6361 (0.0969, 1.7916)/1.6947 (0.0305, 1.4444)/1.4139

(20,12) (0⋆8, 4∗2, 0⋆2) 1 0.0996 (0.0014, 0.4101)/0.4087 –
2 0.2183 (0.0170, 0.7245)/0.7075 (0.0005, 0.6931)/0.6926
3 0.4232 (0.0474, 1.2684)/1.2210 (0.0093, 0.9454)/0.9361
4 0.6462 (0.0997, 1.8240)/1.7243 (0.0315, 1.4684)/1.4369

(25,10) (3, 1∗2, 3, 0⋆4, 1, 6) 1 0.0997 (0.0016, 0.3742)/0.3726 –
2 0.2308 (0.0173, 0.7256)/0.7083 (0.0009, 0.6804)/0.6795
3 0.4029 (0.0472, 1.1503)/1.1031 (0.0090, 0.9450)/0.9360
4 0.6462 (0.0997, 1.8240)/1.7243 (0.0315, 1.4684)/1.4369

(25,12) (13, 0⋆11) 1 0.0919 (0.0018, 0.4058)/0.4030 –
2 0.2078 (0.0170, 0.7147)/0.6977 (0.0011, 0.6671)/0.6650
3 0.3879 (0.0505, 1.2221)/1.1716 (0.0099, 1.0176)/1.0077
4 0.6032 (0.0935, 1.8171)/1.7236 (0.0266, 1.4667)/1.4401

(0⋆11, 13) 1 0.1039 (0.0015, 0.3855)/0.3840 –
2 0.2159 (0.0216, 0.6979)/0.6763 (0.0024, 0.6367)/0.6343
3 0.4189 (0.0380, 1.0472)/1.0092 (0.0059, 0.8520)/0.8461
4 0.6756 (0.0932, 1.7570)/1.6638 (0.0297, 1.4158)/1.3861

(25,15) (10, 0⋆14) 1 0.0949 (0.0017, 0.4163)/0.4146 –
2 0.2285 (0.0181, 0.8173)/0.7992 (0.0006, 0.7600)/0.7594
3 0.3890 (0.0507, 1.2287)/1.1780 (0.0098, 1.0237)/1.0139
4 0.5876 (0.0928, 1.7207)/1.6279 (0.0278, 1.3990)/1.3712

(0⋆14, 10) 1 0.0988 (0.0013, 0.3493)/0.3480 –
2 0.2167 (0.0236, 0.7672)/0.7436 (0.0020, 0.6813)/0.6793
3 0.3932 (0.0438, 1.0530)/1.0092 (0.0091, 0.8774)/0.8683
4 0.6805 (0.1033, 1.9071)/1.8038 (0.0333, 1.5292)/1.4959
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Table 4   (continued)

(n, m) Scheme q Bayes EQT interval/AIL HPD interval/AIL

(30,12) (18, 0⋆11) 1 0.1614 (0.0025, 0.7018)/0.6993 –
2 0.4361 (0.0269, 1.5513)/1.5244 (0.0004, 1.4765)/1.4761
3 0.8445 (0.1050, 2.2105)/2.1055 (0.0167, 2.0608)/2.0441
4 1.9575 (0.2260, 3.8600)/3.6340 (0.0443, 3.5487)/3.5044

(0⋆11, 18) 1 0.1889 (0.0022, 0.6640)/0.6618 –
2 0.4644 (0.0293, 1.4966)/1.4673 (0.0016, 1.3625)/1.3609
3 1.0663 (0.0790, 3.2296)/3.1506 (0.0099, 2.4622)/2.4523
4 1.1465 (0.1942, 3.7957)/ 3.6015 (0.0656, 2.9199)/2.8543

(30,18) (12, 0⋆17) 1 0.0947 (0.0021, 0.4213)/0.4192 –
2 0.2216 (0.0242, 0.8590)/0.8348 (0.0014, 0.7409)/0.7395
3 0.3961 (0.0558, 1.2561)/1.2003 (0.0123, 1.0358)/1.0235
4 0.6149 (0.1009, 1.8287)/1.7278 (0.0317, 1.4838)/1.4521

(0⋆17, 12) 1 0.1051 (0.0014, 0.3678)/0.3664 –
2 0.2411 (0.0144, 0.6709)/0.6565 (0.0006, 0.6265)/0.6259
3 0.4223 (0.0479, 1.1408)/1.0929 (0.0102, 0.9224)/0.9122
4 0.6545 (0.1035, 1.7986)/1.6951 (0.0368, 1.4442)/1.4074

(30,25) (0⋆23, 5, 0) 1 0.0989 (0.0015, 0.3905)/0.3890 –
2 0.2275 (0.0175, 0.7036)/0.6861 (0.0007, 0.6530)/0.6523
3 0.3865 (0.0546, 1.1430)/1.0884 (0.0132, 0.9323)/0.9191

Table 5   Optimal censoring schemes

Fisher information criteria Entropy plan criteria

n m (r, Imin) (r,Hmin) (r,Hmax)

15 5 (0, 10, 0⋆3), 0.0666 (0⋆4, 10),−7.1913 (10, 0⋆4),−0.2825

10 (0⋆2, 5, 0⋆7), 0.0244 (0⋆9, 5),−12.5082 (5, 0⋆9),−4.9063

20 5 (0, 15, 0⋆3), 0.0568 (0⋆4, 15),−8.8517 (15, 0⋆4),−0.5892

10 (0⋆2, 10, 0⋆7), 0.0205 (0⋆9, 10),−16.6465 (10, 0⋆9),−5.2129

25 5 (0, 20, 0⋆3), 0.0503 (0⋆4, 20),−10.0984 (20, 0⋆4),−0.8274

10 (0⋆2, 15, 0⋆7), 0.0179 (0⋆9, 15),−19.5347 (15, 0⋆9),−5.4511

30 5 (0, 25, 0⋆3), 0.0457 (0⋆4, 25),−11.0975 (25, 0⋆4),−1.0221

10 (0⋆2, 20, 0⋆7), 0.0161 (0⋆4, 25),−21.7655 (20, 0⋆9),−5.6459
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and corresponding observed data for different censoring schemes are reported in 
Table 6.

Before we make any inference on the basis of this dataset, we first verify whether 
an inverted exponentiated Pareto (IEP) distribution can be used to fit this dataset. 
For comparison purpose, we also fit generalized inverted exponentiated exponen-
tial (GIE) distribution and inverted exponentiated Rayleigh (IER) distributions. In 
Table 7, we present maximum likelihood estimates of all model parameters along 

Table 6   Progressively censored data

(n, m) Scheme Observed dataset

(84, 40) (3, 10, 0∗35, 25, 2, 4) 0.040, 0.943, 1.568, 1.615, 1.619, 1.652, 1.652, 1.757, 1.866, 1.876,
1.899, 1.911, 1.912, 1.914, 1.981, 2.010, 2.038, 2.085, 2.089, 2.097,
2.135, 2.154, 2.190, 2.194, 2.223, 2.224, 2.229, 2.300, 2.324, 2.385,
2.481, 2.610, 2.625, 2.632, 2.646, 2.661, 2.688, 2.823, 4.278, 4.449.

(44, 0∗39) 0.040, 2.625, 2.632, 2.646, 2.661, 2.688, 2.823, 2.890, 2.902, 2.934,
2.962, 2.964, 3.000, 3.103, 3.114, 3.117, 3.166, 3.344, 3.376, 3.443,
3.467, 3.478, 3.578, 3.595, 3.699, 3.779, 3.924, 4.035, 4.121, 4.167,
4.240, 4.255, 4.278, 4.305, 4.376, 4.449, 4.485, 4.570, 4.602, 4.663.

(0∗39, 44) 0.040, 0.301, 0.309, 0.557, 0.943, 1.070, 1.124, 1.248, 1.281, 1.281,
1.303, 1.432, 1.480, 1.505, 1.506, 1.568, 1.615, 1.619, 1.652, 1.652,
1.757, 1.866, 1.876, 1.899, 1.911, 1.912, 1.914, 1.981, 2.010, 2.038,
2.085, 2.089, 2.097, 2.135, 2.154, 2.190, 2.194, 2.223, 2.224, 2.229.

Table 7   Goodness of fit for real data

Distribution MLE NLC AIC AICc BIC

IEP 𝛼̂ = 7.1127 , 𝛽 = 6.3547 293.930 297.930 298.078 302.792

GIE 𝛼̂ = 1.2541 , 𝛽 = 1.4429 397.046 401.046 401.194 405.908

IER 𝛼̂ = 0.1894 , 𝛽 = 0.0257 491.305 495.305 495.453 500.167

Table 8   MLEs and Bayes estimates for real data

(n, m) Scheme 𝛼̂ 𝛼̃BS 𝛼̃BL 𝛼̃BE

𝛽 𝛽BS 𝛽BL 𝛽BE

h = −0.25h = 0.5 h = 1.0 w = −0.25w = 0.5 w = 1.0

(84,40) (3, 10, 0⋆35, 25, 2, 4) 1.4074 1.4595 1.4671 1.0766 1.1292 1.4419 1.0664 1.1141
3.4406 3.2571 3.2627 2.957 3.01593 3.2514 2.9538 3.0209

(44, 0∗39) 1.6793 2.3584 2.3719 2.4276 3.4531 2.3405 2.4182 3.4793
3.1314 4.2545 4.2646 4.7171 4.9703 4.2467 4.7158 4.9869

(0∗39, 44) 1.2878 0.9481 0.9515 1.0483 1.0749 0.9379 1.04516 1.0597
2.8105 2.3984 2.4029 2.7648 2.3859 2.3923 2.7622 2.3877
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with estimated values of negative log-likelihood criterion (NLC), Akaike’s infor-
mation criterion (AIC), corrected Akaike’s information criterion (AICc), Bayesian 
information criterion (BIC). From this table, we observe that the inverted exponenti-
ated Pareto distribution fits this dataset reasonably good compared to the other com-
peting models. So, we derive point and interval estimates based on this dataset for 
different censoring schemes. In Table 8, we have presented maximum likelihood and 
Bayes estimates of unknown parameters. Bayes estimates are computed with respect 
to a noninformative prior distribution when loss parameters take values − 0.25, 0.5 
and 1. It is seen that tabulated estimates of both the parameters remain reasonably 
close to each other. The corresponding asymptotic, bootstrap-p and noninformative 
HPD intervals are constructed for both the unknown parameters in Table 9 under 
different censoring schemes. One-sample prediction estimates of the first two obser-
vations censored at different stages are presented in Table 10 along with correspond-
ing equal-tail and noninformative HPD intervals. It is seen that prediction intervals 
tend to become wider for higher ordered future observable. In Table 11, we present 
two-sample prediction estimates and corresponding prediction intervals for the first 
two observations when future sample is of size 5.

7 � Conclusion

In this paper, we have considered point and interval estimation of unknown param-
eters of the IEP distribution under the assumption that samples are progressively 
Type-II censored. We observed that maximum likelihood estimates of parameters 

Table 10   One-sample predictive estimates for real data

(n, m) Scheme j k Bayes EQT interval HPD interval

(84, 40) (3, 10, 0⋆35, 25, 2, 4) 1 1 0.3719 (0.2474, 6.2868) (0.0577, 4.7762)
2 0.9965 (0.9197, 10.8232) (0.4103, 8.5739)

(44, 0⋆39) 1 1 0.4284 (0.2007, 0.9878) (0.1696, 0.9411)
2 0.6043 (0.3223, 1.0807) (0.2938, 1.0396)

(0⋆39, 44) 40 1 3.1556 (2.2312, 5.5550) (2.1545, 3.4522)
2 3.3668 (2.2517, 7.0737) (2.2321, 4.7283)

Table 11   Two-sample predictive estimates for real data

(n, m) Scheme q Bayes EQT interval HPD interval

(84, 40) (3, 10, 0⋆35, 25, 2, 4) 1 0.9507 (0.0531, 0.5649) (0.0279, 0.5125)
2 1.2183 (0.1317, 0.6582) (0.1104, 0.6255)

(44, 0⋆39) 1 0.6752 (0.1635, 0.7167) (0.1476, 0.6958)
2 0.9141 (0.2737, 0.8547) (0.2576, 0.8340)

(0⋆39, 44) 1 0.8618 (0.0369, 0.3732) (0.0209, 0.3430)
2 1.1628 (0.1239, 0.5603) (0.1069, 0.5351)
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cannot be obtained analytically, and so we applied the EM algorithm to compute 
these estimates. We further obtained Bayes estimates of parameters under differ-
ent loss functions using the importance sampling procedure. Asymptotic and HPD 
intervals of IEP parameters are also constructed. Another aim of this work is to 
derive prediction estimates and prediction intervals of censored observations in one- 
and two-sample situations. We compared performance of different methods using 
Monte Carlo simulations and observed that Bayes method gives better estimates of 
unknown parameters provided proper prior information on unknown parameters is 
available. An illustrative example is also discussed in support of the proposed meth-
ods. An interesting problem can be to estimate unknown parameters of IEP distribu-
tion using the modified censored moment method under progressive Type-II censor-
ing, as suggested by an anonymous reviewer. Wang et al. [32] have discussed this 
procedure for the two-parameter Birnbaum–Saunders distribution. Till now, we have 
not succeeded in finding such estimates for our problem. We would like to work on 
this in near future. We have also used two different optimality criteria for comparing 
various censoring schemes. We could report results on optimal plans for reasonably 
moderate values of n and m using the complete search algorithm technique. It is of 
interest to determine optimal plans for effectively large sample sizes as well. To the 
best of our knowledge, metaheuristic algorithms can be a potential method for such 
cases. More work is required in this direction as well.
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and

where c = xi.

Appendix 2

We provide elements of matrices IW (�) and IW∣X(�) . Let aij(�, �) denote (i, j)th, 
i, j = 1, 2, element of IW (�) . Then, we have

and

Next, we have
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