
Vol.:(0123456789)

CCF Transactions on High Performance Computing
https://doi.org/10.1007/s42514-024-00192-0

REGULAR PAPER

CPTF–a new heuristic based branch and bound algorithm for workflow
scheduling in heterogeneous distributed computing systems

D. Sirisha1  · S. Sambhu Prasad1 

Received: 10 November 2023 / Accepted: 16 April 2024
© China Computer Federation (CCF) 2024

Abstract
Computationally intensive applications embodied as workflows entail interdependent tasks that involve multifarious
computation requirements and necessitate Heterogeneous Distributed Computing Systems (HDCS) to attain high performance.
The scheduling of workflows on HDCS was demonstrated as an NP-Complete problem. In the current work, a new heuristic
based Branch and Bound (BnB) technique namely Critical Path_finish Time First (CPTF) algorithm is proposed for workflow
scheduling on HDCS to achieve the best solutions. The primary merits of CPTF algorithm are due to the bounding functions
that are tight and of less complexity. The sharp bounding functions could precisely estimate the promise of each state and aid
in pruning infeasible states. Thus, the search space size is reduced. The CPTF algorithm explores the most promising states
in the search space and converges to the solution quickly. Therefore, high performance is achieved. The experimental results
on random and scientific workflows reveal that CPTF algorithm could effectively exploit high potency of BnB technique in
realizing better quality solutions against the widely referred heuristic scheduling algorithms. The results on the benchmark
workflows show that CPTF algorithm has improved schedules for 89.36% of the cases.

Keywords  Workflow scheduling · Task scheduling · Heuristics · Heterogeneous distributed computing systems · Branch
and bound technique · Makespan

1  Introduction

Multifaceted applications that include modelling,
extensive simulations, and experiments to research high
energy physics, chemical reactions and structural biology
consisting interdependent tasks are manifested as workflows.
The computational complexity and heterogeneity in the
processing requirements of the tasks demand heterogeneous
distributed computing systems (HDCS) for multifarious
computation needs. HDCS is expeditiously evolving
as a significant enabling technology in contemporary
computing propelled for realizing high performance
economically. HDCS involves a diverse set of processors
with varying capabilities and performance characteristics.
Moreover, communicating tasks and data movement among

processors can result in high communication overhead.
Efficient scheduling is essential to minimize this overhead
to enhance system performance (Ahmad and Bashir 2020;
Khojasteh Toussi et al. 2022; Kung et al. 2022; Sirisha 2023;
Topcuoglu et al. 2002; Sirisha and Prasad 2022).

Gary and Johnson (1979) proved that scheduling
workflows is a well-acknowledged NP-Complete problem
and is more challenging in HDCS due to the heterogeneity
in the processors. Developing an effective approach for
scheduling workflows on HDCS while minimizing the
complexity is a challenging research problem. (Topcuoglu
et al. 2002; Illavarasan and Thambidurai 2007). Workflow
scheduling determines the sequence of execution of the tasks
and decides the start time of each task on a processor. In the
current work, a new Branch and Bound (BnB) technique
based Critical Path_finish Time First (CPTF) algorithm
is proposed for scheduling workflows. Generally, BnB
technique is restricted to smaller problems. Nevertheless,
emergence of HDCS has enabled BnB technique to handle
large problems by efficiently exploring the parallelism of
HDCS.

 *	 D. Sirisha
	 sirishad998@gmail.com

	 S. Sambhu Prasad
	 drssp@gmail.com

1	 Nadimpalli Satyanarayana Raju Institute of Technology,
Sontyam, Visakhapatnam, Andhra Pradesh, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-024-00192-0&domain=pdf
http://orcid.org/0000-0003-1667-4715
http://orcid.org/0000-0003-1331-7376

	 D. Sirisha, S. S. Prasad

Enumerative techniques like the BnB technique are
usually used to solve combinatorial optimization problems
and arrive at optimum solutions. This is an effective method
because, in most circumstances, it can produce solutions
rather quickly without thoroughly examining the search
space. However, worst cases may lead to the degeneration
of search to the exhaustive enumeration of all possible cases.
Jonsson and Shin (1997) opined that BnB approach can
typically handle NP-hard problems effectively in average
cases, but the worst-case time complexity is still exponential.

Kasahara and Narita (1985) and Fujita (2011) employed
BnB technique to optimize the workflow schedules. The
study on the available literature on BnB emphasizes that
designing of efficient bounding functions is essential to
overcome the main difficulty of minimizing the turnaround
time, otherwise it may explore large search space in the worst
case. Vempaty et al. (1992); Zhang and Korf (1991) studied
that tight bounding functions can accurately estimate the
promise of each state that may lead to the potential reduction
in the search space size. Tight bounds abet in eliminating
the subtrees that indicate inferior solutions. However, more
computation are required at each state in order to design
tight bounds. Another important consideration is the
complexity of finding the bounds for every state which has
adverse effect on turnaround time. However, by selecting
the globally optimal state in the search space, search for an
optimal solution can be speeded up to possibly minimize
search space (Zhang and Korf 1991). Selecting the most
promising state in the search space can result in the
convergence of a solution rapidly with fewer states being
explored. The possibility of arriving at the optimal solution
may be less, but there might a good chance of quickly
reaching the solution state. Considering these aspects, a
heuristic based BnB technique viz., Critical Path_finish
Time First Algorithm (CPTF) algorithm is proposed. The
premise of CPTF algorithm is that tight bounds with less
complexity can alleviate search space size. Thus, reduces
the turnaround time.

The chief contributions of this work are mentioned below.

•	 A heuristic based BnB technique is proposed to generate
better schedules.

•	 Lower and upper bounds are devised to evaluate the
potential of each state generated in the search space.

•	 The proposed lower and upper bounds are observed to be
simple, tight, and less complex.

•	 Best first search technique is adopted to select the
globally best states in the search space.

•	 Simulation experiments are conducted on random and
scientific workflows to validate the proposed approach
against the widely referred scheduling algorithms.

The remaining paper is organized as follows. In Sect. 2,
workflow scheduling problem on HDCS is detailed with the
required terminology. Sect. 3 elaborates BnB technique. The
literature on current topic is studied in Sect. 4. The proposed
CPTF algorithm is illustrated in Sect. 5. The performance
analysis of CPTF algorithm is discussed in Sect. 6. Section 7
summarizes the proposed work with an emphasis on the
future scope.

2 � The workflow scheduling problem

The workflow scheduling system constitutes a workflow
model, an HDCS model, and a scheduling approach. The list
of variables along with the notations used with descriptions
are given in Table 1.

2.1 � Workflow model

Basically, workflow W signifies a weighted Directed Acyclic
Graph (DAG), W =  < T, E > where T indicates a set ti ∈ T,
1 ≤ i ≤ n tasks and E is a set ei,j ∈ E of e directed edges
between tasks ti and tj, ti, tj ∈ T. Each edge ei,j between tasks
ti and tj, i ≠ j, enforces dependency constraint among them,
consequently tj can start its execution once its predecessor
ti is completed. An n × n matrix D denotes the dataflow
time i.e., the time required to transfer data between the
tasks, where each element in the matrix di,j indicates the
dataflow between the tasks ti and tj. A task is recognized as
ready when its dependency constraints are satisfied. A task
without any immediate predecessor is identified as a start
task indicated as tstart, whereas a task without any immediate
successor is a sink task denoted as tsink. Usually, a workflow
consists of a pair of start and sink tasks. In cases, when
workflow comprises of numerous start and sink tasks, then
these tasks are connected to pseudo start task and sink task
having zero processing time with pseudo edges having zero
dataflow times so that schedule length remains unaffected.
For each task ti, its immediate predecessor and successor are
designated as pred(ti) and succ(ti), respectively. The actual
finish time (AFT) of sink task of the workflow is defined as
the schedule length, or makespan. Figure 1 depicts a sample
workflow with six tasks.

2.2 � HCDCS model

The HDCS model consists of a set pk ∈ P of m processors,
1 ≤ k ≤ m. HDCS model is assumed as fully connected
where interprocessor communications are performed
without contention. It is supposed that computations and
dataflows between the tasks are executed concurrently.
Besides, task executions are not preemptive. The processing

CPTF–a new heuristic based branch and bound algorithm for workflow scheduling in heterogeneous…

time of n tasks on m processors is represented by a n × m
processing time matrix C, where each element wi,k represents
the estimated processing time of a task ti on processor pk,
1 ≤ i ≤ n, 1 ≤ k ≤ m. Table 2 presents the processing time of
six tasks of the workflow shown in Fig. 1 on two processors
p1 and p2 respectively.

Beforehand, each workflow task is labelled with a
positive integer which signifies its average processing time.
The following equation is used to calculate the average
processing time ( w

i
 ) of a task ti on m processors.

wi,k is the processing time of a task ti on processor pk.
Similarly, all edges are labelled with non-negative weight
indicating dataflow time di,j between tasks ti and tj.

Earliest start time (EST) and earliest finish time (EFT) are
the two most important criteria essential to define a workflow
scheduling problem. EST (ti, pk) and EFT (ti, pk) indicate

(1)wi =

m
∑

k=1

wi,k∕m

the EST and EFT of task ti on processor pk respectively.
EST (tstart, pk) is 0 for tstart. The EST for the remaining tasks
is calculated using ready time of task ti, represented as
ready_time(ti), and available time of processor pk, denoted
as avail_time(pk), (Kwok and Ahmad 1999). The EST (ti, pk)
is computed as follows.

where ready_time(ti) is the earliest time at which processor
pk has received all the data required to execute the task ti,
and avail_time(pk) is the earliest time at which processor pk
is available to execute task ti. ready_time(ti) is computed as
follows.

where th is a set of immediate predecessors of task ti,
designated as pred(ti), AFT(th) is the actual finish time

(2)EST
(

ti, pk
)

= max
{

ready_time
(

ti
)

, avail_time
(

pk
)}

(3)ready_time
(

ti
)

= max
th∈pred(ti)

{

AFT
(

th
)

+ dh,i
}

Table 1   List of notations Notation/variable Definition

T Set of tasks in the workflow
n Number of tasks in a workflow
ti ith task in the workflow
tstart Start task of the workflow
tsink Sink task of the workflow
wi,k Processing time of task ti on processor pk

E Set of edges in the workflow
e Number of edges in the workflow
ei,j Directed edge connecting the tasks ti and tj
di,j Dataflow time between the tasks ti and tj
P Set of heterogeneous processors on HDCS
m Number of processors on HDCS
pk kth processor on HDCS
succ(ti) Set of immediate successors of task ti
pred(ti) Set of immediate predecessors of task ti
EST(ti,pk) Earliest start time of task ti on processor pk

EFT(ti,pk) Earliest finish time of task ti on processor pk

AFT(ti) Actual finish time of task ti
ready_time(ti) Time at which the task ti is ready for execution
avail_time(pk) Time at which the processor pk is available to execute the next task
CPl Length of the critical path (CP) in a workflow
CPmin Sum of the minimum processing time of each task on CP
S State selection operator
B Branching operator
BO Bounding function
Pr Pruning rule
LB(Ni) Lower Bound (LB) of the state Ni

UB(Ni) Upper Bound (UB) of the state Ni

UBbest Least UB among all the states explored in the search space

	 D. Sirisha, S. S. Prasad

(AFT) of the task th, and dh,i is the dataflow time from
the task th to task ti. The EFT(ti, pk) is computed as follows.

where wi,k is the processing time of task ti on processor pk
and EST(ti, pk) is already defined in Eq. 2. The makespan of
the workflow, often known as the schedule length, is defined
as AFT of tsink.

(4)EFT
(

ti, pk
)

= EST
(

ti, pk
)

+ wi,k

Definition 1 (Critical path)  The critical path (CP) of the
workflow is the lengthiest path from start task to the sink
task. The length of the CP is computed as the sum of the
average processing times of the tasks on CP and dataflow
times between the tasks on CP and denoted as CPl.

Definition 2 (Minimum CP)  It is computed by the sum of the
minimum processing times of the tasks on CP and denoted
by CPmin.

Definition 3 (Partial schedule)  The tasks T′ ⊂ T are assigned
to processors constitute a partial schedule. A task that is
assigned to a processor is listed in the partial schedule.

3 � Branch and bound technique

Branch and Bound (BnB) is an algorithm design approach
usually used to address combinatorial optimization
problems. Generally, BnB is employed for solving NP-hard
problems to obtain optimal solutions (Kasahara and Narita
1985). BnB is an implicit enumeration method that builds
a tree-based search space. Scheduling workflows on HDCS
using BnB technique is devised as search procedure in the
search space which considers all potential combinations
of task-to-processor mappings. The representation of the
search space is a tree with a collection of nodes, where each
node denotes a state and edges between the nodes shows a
legitimate move between states.

Each state in the search space denotes the assignment
of a task to a processor. The start state of the search space
indicates a void schedule and the next level of states emerge
by assigning the start task to m processors. The search space
consists of l levels, 1 ≤ l ≤ n. At each level, a task is assigned
to all processors. And at a level l, lth task is being taken into
consideration for mapping while (l− 1) tasks are already
scheduled. The intermediary states signify the partial
schedules and leaf states indicate a possible solution where
a ti is mapped to a processor pj.

BnB technique works primarily in two main procedures,
viz., branching and bounding. The branching method
divides a problem into small sub-problems which are
represented as states in the search space. Bounding method
determines the lower and upper bounds on the solution
for each sub-problem. In a process known as pruning, the
entire sub-problem can be eliminated when bounds on a
sub-problem reveal that it only includes inferior solutions.

(5)makespan = AFT
(

tsink
)

Fig. 1   An example workflow

Table 2   Processing time matrix Task p1 p2

t1 2 3
t2 8 5
t3 9 13
t4 4 6
t5 4 3
t6 2 3

CPTF–a new heuristic based branch and bound algorithm for workflow scheduling in heterogeneous…

The competence of BnB technique is due to the alternating
branching and bounding methods. Moreover, pruning
the sub-problem at earlier stages of the search space results
in significant progress. As the search space progresses,
generated states are placed in either of the lists mentioned
below.

•	 LIVE list—states that are created and are not evaluated;
their children are not yet generated.

•	 CLOSE list—states which are earlier investigated, and
all their child nodes are created.

Kohler and Steiglitz (1974) represented the problem
using four-tuple < S, B, BO, Pr >, where S is state selection
operator, B is branching operator, BO is bounding function,
and Pr is pruning rule. Initially, operator S selects a state
from LIVE list for exploration. Generally, selected state is
explored by either of the techniques Breadth First Search
(BFS), Depth First Search (DFS), Best First Search (BeFS),
Heuristics. B operator divides a problem into smaller sub-
problems and the chosen state is branched to produce new
states in the search space. For a state Ni, new states are
generated for each unique mapping of a task to processor.
The newly created states are added to the list of LIVE states.
The states are expanded until there are no states in LIVE
list. Subsequently, BO function is applied to each new
state Ni to compute Lower Bound (LB) and Upper Bound
(UB), denoted as LB(Ni) and UB(Ni) respectively. Lastly, Pr
operator is used to estimate every state Ni using the bounds
and the state Ni is pruned from the LIVE list if found as
unpromising. For applying Pr rule, lowest UB value across
all created states is identified as the best UB value globally
and is signified as UBbest. If LB(Ni) > UBbest for state Ni, then
the state Ni may be pruned from the LIVE list. Until LIVE
list is empty, four operators are sequentially applied to each
state. A state is chosen from LIVE list in each iteration of
the BnB approach using one of the methods. To probe the
sub-problems, B rules are carried out on a chosen state. BO
operator computes LB(Ni) and UB(Ni) for state Ni. The new
state Ni is discarded if the Pr operator determines that it has
an inferior solution.

BnB technique relies upon the accuracy of bounding
functions in assessing the promise of each state. Tighter
bounds facilitate efficient exploration of the search space
rather than exhaustive enumeration of mn permutations,
m and n are number of processors and tasks respectively,
which results in exponential time. By narrowing the
search space, better efficacies of the BnB strategy can be
examined in order to get around this bottleneck and boost
the performance.

4 � Related work

As the workflow scheduling is a grand challenging problem,
several BnB schemes are available in the literature focusing
on improving the complexity of bounding functions.
Kasahara and Narita (1985) proposed Depth First with
Implicit Heuristic Search (DF/IHS) algorithm. The authors
employed DFS in combination with heuristic namely
Critical Path/Most Important Successors First (CP/MISF).
This strategy explores the search space based on the priority
computed by CP/MISF heuristic. The lower bound is
calculated by the ratio of the sum of the processing time
of unscheduled tasks to the number of processors, and CP/
MISF heuristic is used to determine the upper bound which
required O(n2) for each state. The authors claimed that DF/
IHS algorithm generated near-optimal schedules. The main
shortcoming of the algorithm are that simple workflows with
unit/uniform tasks processing times are considered and the
dataflow times among the tasks are ignored which account
for major bottlenecks thus limit the performance of large-
scale workflows execution. While CPTF algorithm considers
heterogeneity in the processing times and the dataflow times
while scheduling the tasks.

Kumar Jain and Rajaraman 1994) observed in their
study that upper bound plays pivotal role in estimating the
schedule length of the workflow and hence introduced upper
bounds which aimed at refining lower bounds founded by
Fernandez and Bussell (1973). However, workflows with
unit/uniform tasks were considered and dataflow times
were ignored while computing lower and upper bounds.
In contrast, CPTF algorithm takes into account the wide
range of processing times of the tasks besides dataflow times
among the tasks.

The parameterized BnB approach proposed by Jonson
and Shin (1997) included another constraint on the
interdependent tasks i.e., deadlines. The authors realized the
significance of critical path for workflow scheduling and
used this for computing lower bounds. For computing upper
bounds, authors considered deadlines of tasks and employed
Earliest Deadline First algorithm (Jonsson and Shin 1997).
The search space was explored in the DFS method. The
authors findings were crucial and reported that critical path
based lower bounds were tighter and had impact on BnB
technique.

Fujita (2011) coupled DFS strategy and Highest Level
First Estimated Time (HLFET) (Adam et al. 1974) heuristic
to determine sequence of exploring the states. Author has
focused on improvising lower bounds devised by Fernandez
and Bussell (1973). However, lower bounds resulted in
quadratic time complexity. Upper bound was derived
employing HLFET heuristic which required O(n2) time.

	 D. Sirisha, S. S. Prasad

The authors claimed that even though the bounds required
high time but improved the solutions. The primary flaw
in this technique is that LB functions take O(n2) time for
each iteration whereas UB functions take O(n2) time. For
experimentations, two sets of workflows were considered,
one ignored dataflows while the other considered uniform
dataflow times among the tasks. However, both cases had
impact on the performance. Moreover, DFS technique was
used, which is a blind search strategy that doesn't look
into the search space based on each state's promise. This
approach is not practical because the bounds have a high
computational complexity. In contrast, CPTF algorithm
takes O(n + e) time for computing lower and upper bound
for each state and explores search space in the Best First
Search fashion that chooses the best state in the search space.
As a result, converges swiftly on the solution without much
expanding the search space.

Sirisha (2023) studied the significance of bounds for
gauging the promise of a state in the search tree. The author
proposed Critical Path/Earliest Finish Time (CP/EFT)
algorithm which is a heuristic based BnB approach. The
remaining Critical Path length of the tasks or otherwise
Earliest Finish Time of the tasks was considered for
computing the bounds. The computation of the bounds
required O(n + e) and O((n + e) m + n log n), where n, e are
the number of tasks and edges in the workflow and m is
the number of processors. The authors concluded that the
bounds were effective in identifying the promise of each
state. In contrast, CPTF algorithm computes upper and lower
bounds for each state in O(n + e) time.

The study on the literature reveals that the most of
the available BnB strategies are devised considering
simple workflows which ignore dataflows. Moreover, the
complexity of evaluating each state in the search space is
computationally expensive. Therefore, the available BnB
techniques are not pertinent to the workflows with heavy
processing times and dataflows. Hence, a new BnB based
CPTF algorithm is proposed in the current work. The
proposed algorithm considers dataflows while scheduling.
Also, the devised bounds are of less complexity.

5 � The proposed CPTF algorithm

The CPTF algorithm aims at minimzing turnaround time by
curtail the size of the search space. The bounds for each state
are calculated while the search space is being explored. The
schedule is examined at all potential lengths, and pruning
is used to eliminate the inferior states. Initially, the state
having lowest lower bound (LB) is chosen for expansion.

Greedy heuristics are devised for computing the bounds
which abet in narrow downing the search space to smaller
portion (Kwok and Ahmad 2005).

The CPTF algorithm is described using four operators.
The S operator is first used to choose a state Ni from
LIVE list in order to explore the search space. CPTF
algorithm employs Best First Search (BeFS) technique that
is certain to explore the globally best states (Zhang and
Korf 1991) i.e., state with least LB. When more than one
state in the LIVE list possesses least LB then tie-breaking
is resolved using upper bound (UB) i.e., a state with least
UB is selected. And if more than one state possesses least
LB and UB, then the issue is resolved randomly. The best
state chosen from LIVE list is labeled as best state (BS).
Successively, branching operator B is used to branch the BS
and produce its child nodes.

The LIVE list is updated with each new state Ns. A
goal state is a leaf state where n tasks in the workflow are
assigned to the processors. The promise of each state is then
determined by computing bounds for every new state Ns.
For each state Ns, bounding function computes LB(Ns) and
UB(Ns) which signify best-case and worst-case makespan
of the workflow from the state Ns respectively. In idealistic
situations, LB value for each state is the best feasible
solution.

The proposed CPTF algorithm adopts critical path (CP)-
based heuristic to compute the bounding functions. The
search for a solution can be successfully directed by the
heuristic estimate. The LB(Ns) and UB(Ns) for each state Ns
are computed as follows.

Theorem 1  The lower bound on the estimate of the makespan
at the state Ns in the state space tree is given by

wi,k is processing time of task ti on processor k, k is a set
of m processors, Tu is set of unscheduled tasks of workflow
and ti belongs to the set of unscheduled tasks on CP, i.e.,
actual makespan of remaining tasks is at least the sum of
the processing times of unscheduled tasks on CP on best
processor for tasks i.e., CPmin.

Any state Ns in the state space for finding the minimal
length makespan of a given workflow W =  < T, E > is given
by Ns =  < Tp, Tu, F(Ns) > . Tp is a set of tasks < t1, t2, … th > in
the partial schedule which are already scheduled and Tu is a
set of unscheduled tasks of the workflow. G(Ns) is the actual
length of the schedule of Tp which is given by max{AFT(th)},
th belongs to Tp. LB(H(Ns)) is the estimate on the makespan

(6)LB
(

Ns

)

=
∑

ti∈Tuandti∈CP, 1≤k≤m

(

min
{

wi,k

})

CPTF–a new heuristic based branch and bound algorithm for workflow scheduling in heterogeneous…

at Ns (minimum length of schedule of remaining tasks, Tu).
LB(F(Ns)) = G(Ns) + LB(H(Ns)).

Proof  CP is the length of the longest path in the workflow
stretching from the start task and ending at the sink task
that includes at most one task at each level. The sequential
bottlenecks between the CP tasks compel these tasks to be
executed in a sequence. The sum of the best processing time
of the tasks on the CP is at least the completion time of any
other path in the workflow.

In situations when the tasks at level l are chosen for
executing several tasks in parallel, but does not include CP
task at that level, the remaining schedule length will still be
the sum of the minimum processing time of the unscheduled
CP tasks. The minimum amount of time still remaining from
any task until the completion of the workflow is the best
processing time of the CP tasks that are yet to be executed.
Hence, for any number of tasks that are explored at this
level, this will remain the minimum time still required to
complete the workflow. Moreover, the execution of the
non-CP tasks in the next levels will further delay the tasks
on the CP stretching its length. Thus, the sum of the partial
schedule length and best processing time of the unscheduled
tasks on CP shall remain the lower bound on the schedule
length on any path. The lower bound for a state is updated
accordingly.

Theorem 2  The upper bound on the estimate of the
makespan at state Ns in the state space tree is given by

w
i
 is average processing time of task ti and di,j is dataflow

time between task ti and its successor tj, Tu is a set of
unscheduled tasks of the workflow, and ti and tj belong to
a set of unscheduled tasks on the CP i.e., actual schedule
length of remaining tasks is at most the summation of
average processing times of unscheduled tasks on CP and
dataflow times between the tasks on the CP.

Any state Ns in the state space for finding the maximal
length makespan of a given workflow W = < T, E > is given
by Ns = < Tp, Tu, F(Ns) >. Tp is a partial schedule which
includes a set of tasks <t1, t2, … th> already scheduled and
Tu is a set of unscheduled tasks of the workflow. G(Ns) is
the actual length of the schedule of Tp which is given by
max{AFT(th)}, th belongs to Tp. UB(H(Ns)) is the estimate
on the makespan at Ns (maximum length of schedule of
remaining tasks, Tu). UB(F(Ns)) = G(Ns) + UB(H(Ns)).

(7)UB
(

Ns

)

=
∑

ti,tj∈Tuandti,tj∈CP

wi + di,j

Proof  CP is the longest path in the workflow and its length is
computed by the sum of the average processing time of the
tasks on CP and average dataflow times between the tasks
on CP. Being the longest path, the constrained sequential
execution time of the tasks on CP is at most the length of any
other path of the worflow. Hence, the length of CP reflects
the maximal time required to complete the execution of the
workflow. Given a state where {t1, …, th} ∈ Tp i.e., the tasks
are already scheduled, the choice of the next state shall
be based on remaining length of the CP. Among the tasks
ready to execute, when all tasks are ready for execution are
non-CP tasks then optimal choice would be the task with
least remaining CP length. Any optimal schedule of the
workflow cannot exceed the schedule length thus generated.
Given a state Ns where a partial schedule {t1,…,th} tasks are
already scheduled. The length of the makespan is given by

By calculating the maximum schedule length of Tu, an
upper bound can be found. It is observed that the length of
any schedule involving Tu cannot exceed the remaining CP
length. The duration of the makespan is constrained because
the CP tasks include one task at each level. In other words,
any ready task that is delayed on the CP will at a minimum
result in corresponding increase in the makespan. Therefore,
a greedy strategy for allocating processors to a list of ready
tasks must prioritize CP tasks first, followed by tasks with
shortest remaining CP length. This greedy method yields a
schedule that has a makespan that can never be surpassed
by an optimal schedule for the remaining tasks. Hence the
length of the remaining CP imposes an upper bound on the
schedule. Thus, the upper bound on state Ns is the sum of
the actual schedule length of Tp i.e., G(Ns) and the length
of the remaining CP from the tasks Tu i.e., UB(H(Ns)). The
makespan of workflow from any state Ns always lies between
LB(Ns) and UB(Ns).

Lastly, Pr operator compares LB computed for every new
state Ns with UBbest and prunes the state if LB(Ns) > UBbest.
Tight bounds aid in pruning considerable search space
leading to lessening the search space size.

5.1 � Illustration of CPTF algorithm

The search space generated by CPTF algorithm for the
workflow given in Fig. 1 is illustrated in Fig. 2. The search
space is generated from the initial state N1 depicting empty
schedule {}. Initially, state N1 is placed in LIVE list. UB(N1)
is computed using Eq. 9 for state N1 is 25.5. A global variable
UBbest records least UB amongst all the expanded states.
UBbest is initialized to UB(N1) i.e., 25.5. Currently, task t1

(8)G
(

Ns

)

+ Schedule length of Tu

	 D. Sirisha, S. S. Prasad

in the workflow is ready. In the search space, two new states
N2 and N3 are generated from the state N1 by assigning task
t1 to p1 and task t1 to p2 processors respectively. The state
N1 is put in the CLOSE list as it is explored. States N2 and
N3 are added to LIVE list and their bounds are computed.
The (LB(N2), UB(N2)) are (10, 23) and (LB(N3), UB(N3)) are
(15, 28).The UBbest is updated to 23. The CPTF algorithm
chooses N2 with minimum LB from the LIVE list. The state N2
indicates the mapping of task t1 to processor p1. Once task t1
is scheduled, tasks t2, t3, and t4 become ready and each task is
mapped to p1 and p2 processors which leads to the generation
of six states viz., N4, N5, N6, N7, N8, and N9 from the state N2.
The (LB, UB) computed for N4, N5, N6, N7, N8, and N9 states

are (14, 24), (11, 21), (11, 24), (16, 29), (14, 27), and (19, 32)
respectively. The UBbest is updated to 21. The state N5 with
least LB is selected. From the state N5, four new states N10,
N11, N12, and N13 are generated by mapping the currently ready
tasks t3 and t4 to p1 and p2 processors. The CPTF algorithm
progresses in this approach to expand the search space. At
each stage, algorithm picks the lowest LB state, branches it
and adds new states to LIVE list. Subsequently computes the
bounds for the new states. The UB of new states is compared
with UBbest if found that UB of the new state is less than
UBbest then it updates UBbest with UB of the new state and
prunes all the states having LB greater than UBbest. The CPTF
algorithm terminates at the state N22, as all tasks are mapped

Fig. 2   Enumeration of search space by CPTF algorithm for the workflow given in Fig. 1

CPTF–a new heuristic based branch and bound algorithm for workflow scheduling in heterogeneous…

to processors and UB of N22 state is the optimal solution. The
search space is explored in the sequence N1, N2, N5, N10,
N17, N18, N20, and N22. The states N3, N7, N9, N11, N13, N15,
N16, N19, N21, and N23 are pruned from the search space. In
Fig. 2, ti → pk at each state indicates the assignment of task ti
to pk processor, 1 ≤ i ≤ n, 1 ≤ k ≤ m. The CPTF algorithm is
presented in Algorithm 1.
Algorithm 1   CPTF algorithm (T, E, P, D)

5.2 � Time complexity analysis of CPTF algorithm

Time complexity of CPTF algorithm is majorly based on the
time required for computing LB and UB for each state in the
search space. LB and UB for each state requires O(n + e) time
for examining n tasks and e edges on the CP.

6 � Results and discussions

The CPTF algorithm is evaluated by simulation
experiments conducted using a benchmark of random
and scientific workflows. The results of CPTF algorithm
is studied against best available heuristic scheduling

algorithms, viz., critical path/earliest finish time first
(CP/EFT) algorithm (Sirisha 2023), global highest_
degree task first (GHTF) algorithm (Sirisha and prasad
2022), improved predict priority task scheduling (IPPTS)
algorithm (Djigal et al. 2021), heterogeneous earliest
finish time (HEFT) (Topcuoglu et al. 2002), performance
effective task scheduling (PETS) (Illavarasan and
Thambidurai 2007) and critical path on processor (CPOP)
(Topcuoglu et al. 2002) algorithms. Experimentations
are implemented on Windows 10 Computer with
configuration Intel(R) Core i7-10870H processor,
2.20 GHz, 8 GB RAM in Java programming.

The workflows are generated using the parameters viz.

•	 Workflow size (n) signifies the number of tasks in a
workflow.

•	 Dataflow to processing time ratio (DPR) is the ratio of
average dataflow time to average processing time of
the workflow. Computation-intensive workflows can be
produced for DPR ≤ 1, where computations dominate
dataflows in the workflows. Workflows with heavily
data dependent tasks are produced for DPR > 1.

•	 Shape parameter (α) defines the shape of the workflow,
i.e., the number of levels l and tasks k at each level.
The formulas √n/α and √n × α are used to calculate
the values of l and k, respectively. When α < 1, longer
workflows with less parallelism are generated while
for α ≥ 1, shorter and broader workflows with higher
parallelism are produced.

•	 Heterogeneity factor (β) refers to the variation in the
processing times of the tasks in a workflow. High β
values signify substantial deviation in the processing
times of tasks whilst low values show minor variation.
The processing time of task ti on processor pk,
represented as wi,k is randomly selected from the
following range:

where w is the average processing time of a workflow.

The following metrics are used to analyze the
performance of the scheduling algorithms [1], [3], [5].

	 i.	 Normalized makespan. Makespan is a key metric
used to assess a scheduling approach. It is crucial to
normalize the makespan to its lower bound, which is
described as the Normalized Makespan (NM) because
a significant number of workflows with various
characteristics are generated. NM is computed as
follows.

(9)w × (1 − �∕2) ≤ wi,k ≤ w × (1 + �∕2)

	 D. Sirisha, S. S. Prasad

		  The denominator CPmin is calculated as given in
definition 2. NM of a workflow is always greater than
1 since CPmin is considered as the lower bound of the
makespan. The scheduling algorithm that produces the
least NM is considered to be more efficient.

	 ii.	 Speedup is defined as the ratio of the sequential
processing time (sequential makespan) of the
workflow to the parallel processing time on m
processors (makespan) and is calculated as following.

		  The numerator, sequential makespan is calculated
by assigning all the tasks to a single processor that
minimizes the overall processing time. Typically, it
is better to use a scheduling strategy that results in a
higher speedup.

	 iii.	 Efficiency is characterized as the ratio of speedup
to the m processors used to execute a workflow.
Efficiency typically varies from 0 to 1. A scheduling
strategy is considered more efficient if its efficiency
is closer to 1. The scheduling algorithm's efficiency is
calculated using the formula below.

iv. Running time of the algorithm is the amount of
time taken by the algorithm to generate an output
schedule for the workflow.

6.1 � Performance analysis on random workflows

The random workflows for experimentations are generated
according to the parameters detailed in Topcuoglu et al.
(2002), Illavarasan and Thambidurai (2007). The wide-
ranging parameter values used for experimentations are
given in Table 3. The combinations of these characteristics
result in a collection of 42,240 workflows with various
topologies. The number of processors (m) considered are
4, 8, 16, and 32.

(10)NM =
Makespan

CPmin

(11)Speedup =
Sequential makespan

Makespan

(12)Efficiency =
Speedup

m

In the first experiment, the impact of workflow size (n)
on average NM and speedup of the scheduling algorithms is
analysed, corresponding graphs are depicted in Fig. 3a and
b respectively. The workflow sizes range from 40 to 500,
increasing by 10 till 100 and then by 100 between each. The
graph's points are all plotted using average data from 3840
experiments. The graphs show an upward trend in the data.
It is clear from Fig. 3a that, as n increases from 40 to 80,
average NM rises gradually, and as n increases from 80 to
100, the increase is stable. For workflow sizes greater than
100, a linear increase in average NM is noticed. Trivial
variations in average NM for workflow sizes below 100 is
noticed. Moreover, substantial deviation in average NM is
observed for workflow sizes greater than 100. The average
NM of CPTF algorithm is better than CP/EFT, GHTF,
IPPTS, HEFT, PETS, and CPOP algorithms (in percent) by
3.95, 12.57, 15.04, 21.27, 27.92, and 33.5 respectively.

The average speedup for varied workflow sizes is shown
in Fig. 3b. The graph's data trend seems to be growing
as the size of the workflow. The graph shows that CPTF
algorithm's average speedup was better than CP/EFT, GHTF,
IPPTS, HEFT, PETS, and CPOP algorithms and noted as
2.43, 5.05, 7.57, 8.89, 10.27, and 13.7 respectively.

The following experiment examines the dataflow to
processing time ratio (DPR) and shape parameter (α). The
average NM is displayed on the graph in Fig. 3c in relation
to DPR values ranging from 0.1 to 10. The graph's points are
drawn from 5280 experiments. For DPR ≤ 1, performance of
all the scheduling algorithms differed marginally. However,
when DPR > 1, a considerable variation in the average NM
is evident. Higher DPR values i.e., > 1 signify that dataflow
overheads dominate task processing times, which increased
the NM of scheduling algorithms. When DPR ≤ 1, CPTF
algorithm outperformed CP/EFT, GHTF, IPPTS, HEFT,
PETS, and CPOP algorithms (in percent) by 1.96, 5.19,
11.33, 13.91, 16.26, and 29.46 respectively. For data
intensive workflows having DPR > 1, GHTF algorithm is
better than CPTF, CP/EFT, IPPTS, HEFT, PETS, and CPOP
algorithms (in percent) by 6.79, 8.96, 7.54, 11.28, 16.5,
and 27.51 respectively. In this regard, CPTF algorithm is
observed to be performing next to GHTF algorithm. Overall,
GHTF algorithms’ performance improved by 3.03, 5.10,
6.99, 10.32, 14.58, and 26.08 respectively against CPTF,
CP/EFT, IPPTS, HEFT, PETS, and CPOP algorithms. This

Table 3   Characteristics of
random workflows

Parameter Values

n 40 50 60 70 80 90 100 200 300 400 500
DPR 0.1 0.5 0.75 1.0 2.0 5.0 7.5 10.0
α 0.25 0.5 0.75 1.0 1.25 1.5
β 0.1 0.25 0.5 0.75 1.0
w 40 60 80 100

CPTF–a new heuristic based branch and bound algorithm for workflow scheduling in heterogeneous…

experimentation reveals that CPTF algorithm has effectively
shortened the makespan for data intensive workflows.

The graph's points are drawn from 5280 experiments.
For DPR ≤ 1, performance of all the scheduling

algorithms differed marginally. However, when DPR > 1,
a considerable variation in the average NM is evident.
Higher DPR values i.e., > 1 signify that dataflow overheads
dominate task processing times, which increased the NM

Fig. 3   Performance of scheduling algorithms on random workflows

	 D. Sirisha, S. S. Prasad

of scheduling algorithms. When DPR ≤ 1, CPTF algorithm
outperformed CP/EFT, GHTF, IPPTS, HEFT, PETS,
and CPOP algorithms (in percent) by 1.96, 5.19, 11.33,
13.91, 16.26, and 29.46 respectively. For data intensive
workflows having DPR > 1, GHTF algorithm is better
than CPTF, CP/EFT, IPPTS, HEFT, PETS, and CPOP
algorithms (in percent) by 6.79, 8.96, 7.54, 11.28, 16.5,
and 27.51 respectively. In this regard, CPTF algorithm
is observed to be performing next to GHTF algorithm.
Overall, GHTF algorithms’ performance improved by
3.03, 5.10, 6.99, 10.32, 14.58, and 26.08 respectively
against CPTF, CP/EFT, IPPTS, HEFT, PETS, and CPOP
algorithms. This experimentation reveals that CPTF
algorithm has effectively shortened the makespan for data
intensive workflows.

The shape parameter (α) is a vital metric that manifests
the proficiency of a scheduling algorithm in exploiting the
parallelism of a workflow. The graph shown in Fig. 3d shows
the influence of shape parameter on average NM. The range
of α values taken into account for experiments is 0.25 to
1.5, with 0.25 increments between each value. The 7040
experiments are used to get each data point on the graph.
According to the graph, the average NM climbed linearly up
to α value of 0.75, after which a constant increase was seen.
Additionally, it is clear from the graph that, until α value
0.75, there is only a minor difference in the average NM,
which steadily grew as α values climbed. The performance
improvement of CPTF algorithm against CP/EFT, GHTF,
IPPTS, HEFT, PETS, and CPOP algorithms is noted
as (in percent) by 2.54, 5.06, 6.26, 8.2, 13.06, and 20.98
respectively. Exploration of better workflow parallelization
is what has led to an improvement in the CPTF algorithm's
performance for shape parameters.

The next experiment examines the scheduling algorithms'
average efficiency with respect to number of processors (m),
depicted in the graph in Fig. 3e. With each successive rise
in power of 2, number of processors increased from 4 to 32.
Data from 10,560 experiments were used to plot each point
on the graph. The graph reveals that average efficiency of
scheduling algorithms declined with increase in processors.

From experimental results, average efficiency of CPTF
algorithm has improved compared with CP/EFT, GHTF,
IPPTS, HEFT, PETS, and CPOP algorithms (in percent)
by 3.61, 6.56, 9.14, 12.49, 22.725, 28.13 respectively. It is
concluded that efficiency of scheduling algorithms declined
as processors increased.

The following experiment compares the CPTF algorithm's
average running time against various heuristic scheduling
approaches for varying workflow sizes, presented in Fig. 3f.
It is observed that CPTF algorithm is 23.41 percent faster
running time than the CP/EFT algorithm. However, GHTF
algorithm has surpassed all other algorithms 86.25, 106.44,

10.18, 18.78, 41.33, 62.20 percent against CPTF, CP/EFT,
IPPTS, HEFT, PETS, and CPOP algorithms respectively.

The following experiment demonstrates the effectiveness
of bounding functions devised, shown in Fig. 4. It can be
observed from Fig. 4 that the number of states generated and
pruned have increased as the workflow size increased. The
CPTF algorithm could prune 45.38 percent of the generated
states.

6.2 � Performance analysis on scientific workflows

Scientific applications comprise of a sequence of stages
involving enormous complex computations having
dependencies. Scientific applications structures are
characterized as scientific workflows. For experimentation,
four different real-world scientific workflows well
illustrated by Juve et al. (2013) are published by Pegasus
project are used. Two workflows are compute intensive
workflows viz., LIGO (Abramovici et al. 1992) and
Epigenomics (USC Epigenome Center 2019), and other
two workflows viz., Cybershake (Graves et al. 2011), and
Montage (Berriman et al. 2006) are data intensive.

LIGO is an application in the field of physics used for
detecting gravitational waves. Epigenomics workflows are
used for automation of numerous operations in genome
sequence processing. Cybershake application identifies
Earthquake Rupture Forecast (ERF) within 200 km of area
of interest. Montage is an astronomical application used
as image mosaic engine. The structure of the scientific
workflows are depicted in Fig. 5.

The parameters required for generating scientific
workflows randomly are DPR, heterogeneity factor (β),
average processing time ( w ). The shape parameter (α) is
not required as the structure of the scientific workflows
is known. Experiments are conducted using 4, 8, 12, 16,
and 32 number of processors (m). LIGO and Epigenomics
workflows are computation intensive generated with
the parameters given in Table 4. While Cybershake and

Fig. 4   Number of states generated and pruned by CPTF algorithm
with respect to workflow sizes for random workflows

CPTF–a new heuristic based branch and bound algorithm for workflow scheduling in heterogeneous…

Montage are data intensive workflows generated with
parameters mentioned in Table 5.

Figure 6 displays the effectiveness of scheduling
strategies for scientific workflows. Based on the findings
of the experiments, for LIGO workflows CPTF algorithm
surpassed CP/EFT, GHTF, IPPTS, HEFT, PETS, and CPOP
algorithms (in percent) by (2.79, 5.76, 10.05, 13.07, 18.41,
22.39), shown in Fig. 6a, for Epigenomics workflows by
(4.43, 8.37, 11.79, 15.68, 22.2, 27.56) depicted in Fig. 6b,
Cybershake workflows by (3.2, 6.84, 9, 13.4, 19.68, 22.75)
presented in Fig. 6c. However for Montage workflows that
are highly data intensive, GHTF algorithm outperformed
CPTF, CP/EFT, IPPTS, HEFT, PETS, and CPOP algorithms
(in percent) by (2.85, 5.64, 8.46, 11.71, 15.88, 28.12)
respectively, shown in Fig. 6d.

Fig. 5   Scientific workflows, a LIGO b epigenomics c cybershake d montage. Courtesy Juve et al. (2013), https://​pegas​us.​isi.​edu/​workf​low_​galle​
ry/

Table 4   LIGO and epigenomics workflow characteristic

Parameter Values

DPR 0.1 0.25 0.5 0.75 1.0
β 0.1 0.25 0.5 0.75 1
w 100 150 200 250

Table 5   Cybershake and montage workflows characteristic

Parameter Values

DPR 1 2 5 7 10
β 0.1 0.25 0.5 0.75 1
w 20 30 40 50

https://pegasus.isi.edu/workflow_gallery/
https://pegasus.isi.edu/workflow_gallery/

	 D. Sirisha, S. S. Prasad

7 � Conclusions

In the current work, the CPTF algorithm, a novel heuristic-
based BnB technique for scheduling workflows is proposed
to produce optimal schedules. CPTF algorithm primarily
emphasizes on reducing the turnaround time by sinking
search space size. Keeping this aim in view, CPTF
algorithm works on devising tight bounds to prune the
sub-trees with inferior solutions. The search process is
steered by the heuristics and solutions are shrinked to
smaller search space size. Thus, limiting the solution
searching resulted in generating reduced search space.

Therefore, less states are explored thus quickly
converges to the solution. The bounds formulated for
estimating the goodness of each state are tight, less
complicated, and less complex. The computation of LB
and UB for each state required O(n + e) time, where n and
e are number of tasks and number of edges in workflow.

The efficiency of the CPTF algorithm has been
demonstrated through experiments using random and
scientific workflows. The experimental findings lead to
the conclusion that the devised bounds are effective and
CPTF algorithm pruned 45.38 percent of the generated
states. Moreover, CPTF algorithm showed improvement
in average NM for workflow sizes larger than 100 tasks by
8.5 to 19 percent and produced best schedules for 89.36
percent of the cases. The results of the scientific workflows

Fig. 6   Performance of scheduling algorithms on scientific workflows

CPTF–a new heuristic based branch and bound algorithm for workflow scheduling in heterogeneous…

reveal that CPTF algorithm is also feasible for computation
and data-intensive scientific application workflows viz.,
LIGO, Epigenomics, Cybershake, and Montage, As a
future extension to this work, a proposal to include another
constraint among the tasks i.e., deadlines can be considered
and also to extend the proposed algorithm to dynamic
scenarios.

Data availability  The data that support the findings of this study are
available from the corresponding author, D. Sirisha, upon reasonable
request.

Declarations 

Conflict of interest  The authors declare that they have no conflicts of
interest.

References

Abramovici, M., Althouse, W.E., Drever, R.W., Gursel, Y., Kawamura,
S., Raab, F.J., Shoemaker, D., Sievers, L., Spero, R.E., Thorne,
K.S.: LIGO the laser interferometer gravitational-wave
observatory. Science 256(5055), 325–333 (1992)

Adam, T.L., Chandy, K.M., Dickson, J.: A comparison of list
scheduling for parallel processing system. Commun. ACM 17(12),
685–690 (1974). https://​doi.​org/​10.​1145/​361604.​361619

Ahmad, W., Alam, B.: An efficient list scheduling algorithm with task
duplication for scientific big data workflow in heterogeneous
computing environments. Concurr. Comput. Pract. Exp. (2020).
https://​doi.​org/​10.​1002/​cpe.​5987

Berriman, G., Laity, A., Good, J., Jacob, J., Katz, D., Deelman, E.,
Singh, G., Su, M., Prince, T.: Montage: the architecture and
scientific applications of a national virtual observatory service
for computing astronomical image mosaics. In: Proceedings of
Earth Sciences Technology Conference (2006)

Djigal, H., Feng, J., Lu, J., Ge, J.: IPPTS: an efficient algorithm for
scientific workflow scheduling in heterogeneous computing
systems. IEEE Trans. Parallel Distrib. Syst. 32(05), 1057–1071
(2021). https://​doi.​org/​10.​1109/​TPDS.​2020.​30418​29

Fernandez, E.B., Bussell, B.: Bounds on the number of processors and
time for multiprocessor optimal schedules. IEEE Trans. Comput.
22(8), 745–751 (1973). https://​doi.​org/​10.​1109/​TC.​1973.​50091​53

Fujita, S.: A branch-and-bound algorithm for solving the multiprocessor
scheduling problem with improved lower bounding techniques.
IEEE Trans. Comput. 60(7), 1006–1016 (2011). https://​doi.​org/​
10.​1109/​TC.​2010.​120

Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Co. San
Francisco, CA (1979)

Graves, R., Jordan, T.H., Callaghan, S., Deelman, E., Field, E.,
Juve, G., Kesselman, C., Maechling, P., Mehta, G., Milner, K.:
Cybershake: a physics-based seismic hazard model for Southern
California. Pure Appl. Geophys. 168(3–4), 367–381 (2011)

Illavarasan, E., Thambidurai, P.: Low complexity performance
effective task scheduling algorithm for heterogeneous computing
environments. J. Comput. Sci. 3(2), 94–103 (2007). https://​doi.​
org/​10.​1109/​71.​993206

Jonsson, J., Shin, K.G.: A parameterized branch-and-bound strategy
for scheduling precedence-constrained tasks on a multiprocessor
system. In: Proceedings of the 1997 International Conference on

Parallel Processing, Bloomington, IL, 158–165 (1997). https://​
doi.​org/​10.​1109/​ICPP.​1997.​622580

Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi,
K.: Characterizing and profiling scientific workflows. Future
Gener. Comput. Syst. 29(3), 682–692 (2013)

Kasahara, H., Narita, S.: Practical multiprocessor scheduling
algorithms for efficient parallel processing. IEEE Trans. Comput.
33(11), 1023–1029 (1985). https://​doi.​org/​10.​1109/​TC.​1984.​
16763​76

Kelefouras, V., Djemame, K.: Workflow simulation and multi-threading
aware task scheduling for heterogeneous computing. J. Parallel
Distrib. Comput. 168, 17–32 (2022). https://​doi.​org/​10.​1016/j.​
jpdc.​2022.​05.​011

Khojasteh Toussi, G., Naghibzadeh, M., Abrishami, S., et al.:
EDQWS: an enhanced divide and conquer algorithm for workflow
scheduling in cloud. J. Cloud Comp. (2022). https://​doi.​org/​10.​
1186/​s13677-​022-​00284-8

Kohler, W.H., Steiglitz, K.: Characterization and theoretical
comparison of branch-and-bound algorithms for permutation
problems. J. ACM 21(1), 140–156 (1974). https://​doi.​org/​10.​
1145/​321796.​321808

Kumar Jain, K., Rajaraman, V.: Lower and upper bounds on time for
multiprocessor optimal schedules. IEEE Trans. Parallel Distrib.
Syst. 5(8), 879–886 (1994). https://​doi.​org/​10.​1109/​71.​298216

Kung, H.-L., Yang, S.-J., Huang, K.-C.: An improved Monte Carlo Tree
Search approach to workflow scheduling. Connect. Sci. 34(1),
1221–1251 (2022). https://​doi.​org/​10.​1080/​09540​091.​2022.​20522​
65

Kwok, Y., Ahmad, I.: Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Comput. Surv.
31(4), 406–471 (1999). https://​doi.​org/​10.​1145/​344588.​344618

Kwok, Y., Ahmad, I.: On multiprocessor task scheduling using efficient
state space search approaches. J. Parallel Distrib. Comput. 65,
1515–1532 (2005). https://​doi.​org/​10.​1016/j.​jpdc.​2005.​05.​028

Sirisha, D.: Complexity versus quality: a trade-off for scheduling
workflows in heterogeneous computing environments. J.
Super Comput. 79, 924–946 (2023). https://​doi.​org/​10.​1007/​
s11227-​022-​04687-x

Sirisha, D., Prasad, S.S.: MPEFT: a makespan minimizing heuristic
scheduling algorithm for workflows in heterogeneous computing
systems. CCF Trans. HPC. (2022). https://​doi.​org/​10.​1007/​
s42514-​022-​00116-w

Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance effective and low
complexity task scheduling for heterogeneous computing. IEEE
Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002). https://​doi.​
org/​10.​1109/​71.​993206

USC Epigenome Center. http://​epige​nome.​usc.​edu (2019). Accessed
18 Nov 2020

Vempaty, N.R., Kumar, V., Korf, R.E.: Depth first vs best first search.
In: Proceedings of the 9th National Conference on AI, AAAI-92,
San Jose, CA University, 545–550 (1992)

Zhang, W., Korf, R.E.: An average case analysis of branch and bound
with applications: summary of results. In: Proceedings of the 10th
National Conference on AI, AAAI-91, CA University; 434–440
(1991)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1145/361604.361619
https://doi.org/10.1002/cpe.5987
https://doi.org/10.1109/TPDS.2020.3041829
https://doi.org/10.1109/TC.1973.5009153
https://doi.org/10.1109/TC.2010.120
https://doi.org/10.1109/TC.2010.120
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/ICPP.1997.622580
https://doi.org/10.1109/ICPP.1997.622580
https://doi.org/10.1109/TC.1984.1676376
https://doi.org/10.1109/TC.1984.1676376
https://doi.org/10.1016/j.jpdc.2022.05.011
https://doi.org/10.1016/j.jpdc.2022.05.011
https://doi.org/10.1186/s13677-022-00284-8
https://doi.org/10.1186/s13677-022-00284-8
https://doi.org/10.1145/321796.321808
https://doi.org/10.1145/321796.321808
https://doi.org/10.1109/71.298216
https://doi.org/10.1080/09540091.2022.2052265
https://doi.org/10.1080/09540091.2022.2052265
https://doi.org/10.1145/344588.344618
https://doi.org/10.1016/j.jpdc.2005.05.028
https://doi.org/10.1007/s11227-022-04687-x
https://doi.org/10.1007/s11227-022-04687-x
https://doi.org/10.1007/s42514-022-00116-w
https://doi.org/10.1007/s42514-022-00116-w
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/71.993206
http://epigenome.usc.edu

	 D. Sirisha, S. S. Prasad

D. Sirisha  is a Senior member IEEE and Professor of CSE Department.
Her research interests include task scheduling approaches in
heterogeneous environments, high performance computing algorithms,
artificial intelligence, and machine learning.

S. Sambhu Prasad  is a Professor of Mechanical Department. His
interests included job shop scheduling, supply-chain management.

	CPTF–a new heuristic based branch and bound algorithm for workflow scheduling in heterogeneous distributed computing systems
	Abstract
	1 Introduction
	2 The workflow scheduling problem
	2.1 Workflow model
	2.2 HCDCS model

	3 Branch and bound technique
	4 Related work
	5 The proposed CPTF algorithm
	5.1 Illustration of CPTF algorithm
	5.2 Time complexity analysis of CPTF algorithm

	6 Results and discussions
	6.1 Performance analysis on random workflows
	6.2 Performance analysis on scientific workflows

	7 Conclusions
	References

