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Abstract
Computationally intensive applications embodied as workflows entail interdependent tasks that involve multifarious 
computation requirements and necessitate Heterogeneous Distributed Computing Systems (HDCS) to attain high performance. 
The scheduling of workflows on HDCS was demonstrated as an NP-Complete problem. In the current work, a new heuristic 
based Branch and Bound (BnB) technique namely Critical Path_finish Time First (CPTF) algorithm is proposed for workflow 
scheduling on HDCS to achieve the best solutions. The primary merits of CPTF algorithm are due to the bounding functions 
that are tight and of less complexity. The sharp bounding functions could precisely estimate the promise of each state and aid 
in pruning infeasible states. Thus, the search space size is reduced. The CPTF algorithm explores the most promising states 
in the search space and converges to the solution quickly. Therefore, high performance is achieved. The experimental results 
on random and scientific workflows reveal that CPTF algorithm could effectively exploit high potency of BnB technique in 
realizing better quality solutions against the widely referred heuristic scheduling algorithms. The results on the benchmark 
workflows show that CPTF algorithm has improved schedules for 89.36% of the cases.

Keywords  Workflow scheduling · Task scheduling · Heuristics · Heterogeneous distributed computing systems · Branch 
and bound technique · Makespan

1  Introduction

Multifaceted applications that include modelling, 
extensive simulations, and experiments to research high 
energy physics, chemical reactions and structural biology 
consisting interdependent tasks are manifested as workflows. 
The computational complexity and heterogeneity in the 
processing requirements of the tasks demand heterogeneous 
distributed computing systems (HDCS) for multifarious 
computation needs. HDCS is expeditiously evolving 
as a significant enabling technology in contemporary 
computing propelled for realizing high performance 
economically. HDCS involves a diverse set of processors 
with varying capabilities and performance characteristics. 
Moreover, communicating tasks and data movement among 

processors can result in high communication overhead. 
Efficient scheduling is essential to minimize this overhead 
to enhance system performance (Ahmad and Bashir 2020; 
Khojasteh Toussi et al. 2022; Kung et al. 2022; Sirisha 2023; 
Topcuoglu et al. 2002; Sirisha and Prasad 2022).

Gary and Johnson (1979) proved that scheduling 
workflows is a well-acknowledged NP-Complete problem 
and is  more challenging in HDCS due to the heterogeneity 
in the processors. Developing an effective approach for 
scheduling workflows on HDCS while minimizing the 
complexity is a challenging research problem. (Topcuoglu 
et al. 2002; Illavarasan and Thambidurai 2007). Workflow 
scheduling determines the sequence of execution of the tasks 
and decides the start time of each task on a processor. In the 
current work, a new Branch and Bound (BnB) technique 
based Critical Path_finish Time First (CPTF) algorithm 
is proposed for scheduling workflows. Generally, BnB 
technique is restricted to smaller problems. Nevertheless, 
emergence of HDCS has enabled BnB technique to handle 
large problems by efficiently exploring the parallelism of 
HDCS.
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Enumerative techniques like the BnB technique are 
usually used to solve combinatorial optimization problems 
and arrive at optimum solutions. This is an effective method 
because, in most circumstances, it can produce solutions 
rather quickly without thoroughly examining the search 
space. However, worst cases may lead to the degeneration 
of search to the exhaustive enumeration of all possible cases. 
Jonsson and Shin (1997) opined that BnB approach can 
typically handle NP-hard problems effectively in average 
cases, but the worst-case time complexity is still exponential.

Kasahara and Narita (1985) and Fujita (2011) employed 
BnB technique to optimize the workflow schedules. The 
study on the available literature on BnB emphasizes that 
designing of efficient bounding functions is essential to 
overcome the main difficulty of minimizing the turnaround 
time, otherwise it may explore large search space in the worst 
case. Vempaty et al. (1992); Zhang and Korf (1991) studied 
that tight bounding functions can accurately estimate the 
promise of each state that may lead to the potential reduction 
in the search space size. Tight bounds abet in eliminating 
the subtrees that indicate inferior solutions. However, more 
computation are required at each state in order to design 
tight bounds. Another important consideration is the 
complexity of finding the bounds for every state which has 
adverse effect on turnaround time. However, by selecting 
the globally optimal state in the search space, search for an 
optimal solution can be speeded up to possibly minimize 
search space (Zhang and Korf 1991). Selecting the most 
promising state in the search space can result in the 
convergence of a solution rapidly with fewer states being 
explored. The possibility of arriving at the optimal solution 
may be less, but there might a good chance of quickly 
reaching the solution state. Considering these aspects, a 
heuristic based BnB technique viz., Critical Path_finish 
Time First Algorithm (CPTF) algorithm is proposed. The 
premise of CPTF algorithm is that tight bounds with less 
complexity can alleviate search space size. Thus, reduces 
the turnaround time.

The chief contributions of this work are mentioned below.

•	 A heuristic based BnB technique is proposed to generate 
better schedules.

•	 Lower and upper bounds are devised to evaluate the 
potential of each state generated in the search space.

•	 The proposed lower and upper bounds are observed to be 
simple, tight, and less complex.

•	 Best first search technique is adopted to select the 
globally best states in the search space.

•	 Simulation experiments are conducted on random and 
scientific workflows to validate the proposed approach 
against the widely referred scheduling algorithms.

The remaining paper is organized as follows. In Sect. 2, 
workflow scheduling problem on HDCS is detailed with the 
required terminology. Sect. 3 elaborates BnB technique. The 
literature on current topic is studied in Sect. 4. The proposed 
CPTF algorithm is illustrated in Sect. 5. The performance 
analysis of CPTF algorithm is discussed in Sect. 6. Section 7 
summarizes the proposed work with an emphasis on the 
future scope.

2 � The workflow scheduling problem

The workflow scheduling system constitutes a workflow 
model, an HDCS model, and a scheduling approach. The list 
of variables along with the notations used with descriptions 
are given in Table 1.

2.1 � Workflow model

Basically, workflow W signifies a weighted Directed Acyclic 
Graph (DAG), W =  < T, E > where T indicates a set ti ∈ T, 
1 ≤ i ≤ n tasks and E is a set ei,j ∈ E of e directed edges 
between tasks ti and tj, ti, tj ∈ T. Each edge ei,j between tasks 
ti and tj, i ≠ j, enforces dependency constraint among them, 
consequently tj can start its execution once its predecessor 
ti is completed. An n × n matrix D denotes the dataflow 
time i.e., the time required to transfer data between the 
tasks, where each element in the matrix di,j indicates the 
dataflow between the tasks ti and tj. A task is recognized as 
ready when its dependency constraints are satisfied. A task 
without any immediate predecessor is identified as a start 
task indicated as tstart, whereas a task without any immediate 
successor is a sink task denoted as tsink. Usually, a workflow 
consists of a pair of start and sink tasks. In cases, when 
workflow comprises of numerous start and sink tasks, then 
these tasks are connected to pseudo start task and sink task 
having zero processing time with pseudo edges having zero 
dataflow times so that schedule length remains unaffected. 
For each task ti, its immediate predecessor and successor are 
designated as pred(ti) and succ(ti), respectively. The actual 
finish time (AFT) of sink task of the workflow is defined as 
the schedule length, or makespan. Figure 1 depicts a sample 
workflow with six tasks.

2.2 � HCDCS model

The HDCS model consists of a set pk ∈ P of m processors, 
1 ≤ k ≤ m. HDCS model is assumed as fully connected 
where interprocessor communications are performed 
without contention. It is supposed that computations and 
dataflows between the tasks are executed concurrently. 
Besides, task executions are not preemptive. The processing 
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time of n tasks on m processors is represented by a n × m 
processing time matrix C, where each element wi,k represents 
the estimated processing time of a task ti on processor pk, 
1 ≤ i ≤ n, 1 ≤ k ≤ m. Table 2 presents the processing time of 
six tasks of the workflow shown in Fig. 1 on two processors 
p1 and p2 respectively.

Beforehand, each workflow task is labelled with a 
positive integer which signifies its average processing time. 
The following equation is used to calculate the average 
processing time ( w

i
 ) of a task ti on m processors.

wi,k is the processing time of a task ti on processor pk. 
Similarly, all edges are labelled with non-negative weight 
indicating dataflow time di,j between tasks ti and tj.

Earliest start time (EST) and earliest finish time (EFT) are 
the two most important criteria essential to define a workflow 
scheduling problem. EST (ti, pk) and EFT (ti, pk) indicate 

(1)wi =

m
∑

k=1

wi,k∕m

the EST and EFT of task ti on processor pk respectively. 
EST (tstart, pk) is 0 for tstart. The EST for the remaining tasks 
is calculated using ready time of task ti, represented as 
ready_time(ti), and available time of processor pk, denoted 
as avail_time(pk), (Kwok and Ahmad 1999). The EST (ti, pk) 
is computed as follows.

where ready_time(ti) is the earliest time at which processor 
pk has received all the data required to execute the task ti, 
and avail_time(pk) is the earliest time at which processor pk 
is available to execute task ti. ready_time(ti) is computed as 
follows.

where th is a set of immediate predecessors of task ti, 
designated as pred(ti), AFT(th) is the actual finish time 

(2)EST
(

ti, pk
)

= max
{

ready_time
(

ti
)

, avail_time
(

pk
)}

(3)ready_time
(

ti
)

= max
th∈pred(ti)

{

AFT
(

th
)

+ dh,i
}

Table 1   List of notations Notation/variable Definition

T Set of tasks in the workflow
n Number of tasks in a workflow
ti ith task in the workflow
tstart Start task of the workflow
tsink Sink task of the workflow
wi,k Processing time of task ti on processor pk

E Set of edges in the workflow
e Number of edges in the workflow
ei,j Directed edge connecting the tasks ti and tj
di,j Dataflow time between the tasks ti and tj
P Set of heterogeneous processors on HDCS
m Number of processors on HDCS
pk kth processor on HDCS
succ(ti) Set of immediate successors of task ti
pred(ti) Set of immediate predecessors of task ti
EST(ti,pk) Earliest start time of task ti on processor pk

EFT(ti,pk) Earliest finish time of task ti on processor pk

AFT(ti) Actual finish time of task ti
ready_time(ti) Time at which the task ti is ready for execution
avail_time(pk) Time at which the processor pk is available to execute the next task
CPl Length of the critical path (CP) in a workflow
CPmin Sum of the minimum processing time of each task on CP
S State selection operator
B Branching operator
BO Bounding function
Pr Pruning rule
LB(Ni) Lower Bound (LB) of the state Ni

UB(Ni) Upper Bound (UB) of the state Ni

UBbest Least UB among all the states explored in the search space
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(AFT) of the task th, and dh,i is the dataflow time from 
the task th to task ti. The EFT(ti, pk) is computed as follows.

where wi,k is the processing time of task ti on processor pk 
and EST(ti, pk) is already defined in Eq. 2. The makespan of 
the workflow, often known as the schedule length, is defined 
as AFT of tsink.

(4)EFT
(

ti, pk
)

= EST
(

ti, pk
)

+ wi,k

Definition 1 (Critical path)  The critical path (CP) of the 
workflow is the lengthiest path from start task to the sink 
task. The length of the CP is computed as the sum of the 
average processing times of the tasks on CP and dataflow 
times between the tasks on CP and denoted as CPl.

Definition 2 (Minimum CP)  It is computed by the sum of the 
minimum processing times of the tasks on CP and denoted 
by CPmin.

Definition 3 (Partial schedule)  The tasks T′ ⊂ T are assigned 
to processors constitute a partial schedule. A task that is 
assigned to a processor is listed in the partial schedule.

3 � Branch and bound technique

Branch and Bound (BnB) is an algorithm design approach 
usually used to address combinatorial optimization 
problems. Generally, BnB is employed for solving NP-hard 
problems to obtain optimal solutions (Kasahara and Narita 
1985). BnB is an implicit enumeration method that builds 
a tree-based search space. Scheduling workflows on HDCS 
using BnB technique is devised as search procedure in the 
search space which considers all potential combinations 
of task-to-processor mappings. The representation of the 
search space is a tree with a collection of nodes, where each 
node denotes a state and edges between the nodes shows a 
legitimate move between states.

Each state in the search space denotes the assignment 
of a task to a processor. The start state of the search space 
indicates a void schedule and the next level of states emerge 
by assigning the start task to m processors. The search space 
consists of l levels, 1 ≤ l ≤ n. At each level, a task is assigned 
to all processors. And at a level l, lth task is being taken into 
consideration for mapping while (l− 1) tasks are already 
scheduled. The intermediary states signify the partial 
schedules and leaf states indicate a possible solution where 
a ti is mapped to a processor pj.

BnB technique works primarily in two main procedures, 
viz., branching and bounding. The branching method 
divides a problem into small sub-problems which are 
represented as states in the search space. Bounding method 
determines the lower and upper bounds on the solution 
for each sub-problem. In a process known as pruning, the 
entire sub-problem can be eliminated when bounds on a 
sub-problem reveal that it only includes inferior solutions. 

(5)makespan = AFT
(

tsink
)

Fig. 1   An example workflow

Table 2   Processing time matrix Task p1 p2

t1 2 3
t2 8 5
t3 9 13
t4 4 6
t5 4 3
t6 2 3
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The competence of BnB technique is due to the alternating 
branching and bounding methods. Moreover, pruning 
the sub-problem at earlier stages of the search space results 
in significant progress. As the search space progresses, 
generated states are placed in either of the lists mentioned 
below.

•	 LIVE list—states that are created and are not evaluated; 
their children are not yet generated.

•	 CLOSE list—states which are earlier investigated, and 
all their child nodes are created.

Kohler and Steiglitz (1974) represented the problem 
using four-tuple < S, B, BO, Pr >, where S is state selection 
operator, B is branching operator, BO is bounding function, 
and Pr is pruning rule. Initially, operator S selects a state 
from LIVE list for exploration. Generally, selected state is 
explored by either of the techniques Breadth First Search 
(BFS), Depth First Search (DFS), Best First Search (BeFS), 
Heuristics. B operator divides a problem into smaller sub-
problems and the chosen state is branched to produce new 
states in the search space. For a state Ni, new states are 
generated for each unique mapping of a task to processor. 
The newly created states are added to the list of LIVE states. 
The states are expanded until there are no states in LIVE 
list. Subsequently, BO function is applied to each new 
state Ni to compute Lower Bound (LB) and Upper Bound 
(UB), denoted as LB(Ni) and UB(Ni) respectively. Lastly, Pr 
operator is used to estimate every state Ni using the bounds 
and the state Ni is pruned from the LIVE list if found as 
unpromising. For applying Pr rule, lowest UB value across 
all created states is identified as the best UB value globally 
and is signified as UBbest. If LB(Ni) > UBbest for state Ni, then 
the state Ni may be pruned from the LIVE list. Until LIVE 
list is empty, four operators are sequentially applied to each 
state. A state is chosen from LIVE list in each iteration of 
the BnB approach using one of the methods. To probe the 
sub-problems, B rules are carried out on a chosen state. BO 
operator computes LB(Ni) and UB(Ni) for state Ni. The new 
state Ni is discarded if the Pr operator determines that it has 
an inferior solution.

BnB technique relies upon the accuracy of bounding 
functions in assessing the promise of each state. Tighter 
bounds facilitate efficient exploration of the search space 
rather than exhaustive enumeration of mn permutations, 
m and n are number of processors and tasks respectively, 
which results in exponential time. By narrowing the 
search space, better efficacies of the BnB strategy can be 
examined in order to get around this bottleneck and boost 
the performance.

4 � Related work

As the workflow scheduling is a grand challenging problem, 
several BnB schemes are available in the literature focusing 
on improving the complexity of bounding functions. 
Kasahara and Narita (1985) proposed Depth First with 
Implicit Heuristic Search (DF/IHS) algorithm. The authors 
employed DFS in combination with heuristic namely 
Critical Path/Most Important Successors First (CP/MISF). 
This strategy explores the search space based on the priority 
computed by CP/MISF heuristic. The lower bound is 
calculated by the ratio of the sum of the processing time 
of unscheduled tasks to the number of processors, and CP/
MISF heuristic is used to determine the upper bound which 
required O(n2) for each state. The authors claimed that DF/
IHS algorithm generated near-optimal schedules. The main 
shortcoming of the algorithm are that simple workflows with 
unit/uniform tasks processing times are considered and the 
dataflow times among the tasks are ignored which account 
for major bottlenecks thus limit the performance of large-
scale workflows execution. While CPTF algorithm considers 
heterogeneity in the processing times and the dataflow times 
while scheduling the tasks.

Kumar Jain and Rajaraman 1994) observed in their 
study that upper bound plays pivotal role in estimating the 
schedule length of the workflow and hence introduced upper 
bounds which aimed at refining lower bounds founded by 
Fernandez and Bussell (1973). However, workflows with 
unit/uniform tasks were considered and dataflow times 
were ignored while computing lower and upper bounds. 
In contrast, CPTF algorithm takes into account the wide 
range of processing times of the tasks besides dataflow times 
among the tasks.

The parameterized BnB approach proposed by Jonson 
and Shin (1997) included another constraint on the 
interdependent tasks i.e., deadlines. The authors realized the 
significance of critical path for workflow scheduling and 
used this for computing lower bounds. For computing upper 
bounds, authors considered deadlines of tasks and employed 
Earliest Deadline First algorithm (Jonsson and Shin 1997). 
The search space was explored in the DFS method. The 
authors findings were crucial and reported that critical path 
based lower bounds were tighter and had impact on BnB 
technique.

Fujita (2011) coupled DFS strategy and Highest Level 
First Estimated Time (HLFET) (Adam et al. 1974) heuristic 
to determine sequence of exploring the states. Author has 
focused on improvising lower bounds devised by Fernandez 
and Bussell (1973). However, lower bounds resulted in 
quadratic time complexity. Upper bound was derived 
employing HLFET heuristic which required O(n2) time. 
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The authors claimed that even though the bounds required 
high time but improved the solutions. The primary flaw 
in this technique is that LB functions take O(n2) time for 
each iteration whereas UB functions take O(n2) time. For 
experimentations, two sets of workflows were considered, 
one ignored dataflows while the other considered uniform 
dataflow times among the tasks. However, both cases had 
impact on the performance. Moreover, DFS technique was 
used, which is a blind search strategy that doesn't look 
into the search space based on each state's promise. This 
approach is not practical because the bounds have a high 
computational complexity. In contrast, CPTF algorithm 
takes O(n + e) time for computing lower and upper bound 
for each state and explores search space in the Best First 
Search fashion that chooses the best state in the search space. 
As a result, converges swiftly on the solution without much 
expanding the search space.

Sirisha (2023) studied the significance of bounds for 
gauging the promise of a state in the search tree. The author 
proposed Critical Path/Earliest Finish Time (CP/EFT) 
algorithm which is a heuristic based BnB approach. The 
remaining Critical Path length of the tasks or otherwise 
Earliest Finish Time of the tasks was considered for 
computing the bounds. The computation of the bounds 
required O(n + e) and O((n + e) m + n log n), where n, e are 
the number of tasks and edges in the workflow and m is 
the number of processors. The authors concluded that the 
bounds were effective in identifying the promise of each 
state. In contrast, CPTF algorithm computes upper and lower 
bounds for each state in O(n + e) time.

The study on the literature reveals that the most of 
the available BnB strategies are devised considering 
simple workflows which ignore dataflows. Moreover, the 
complexity of evaluating each state in the search space is 
computationally expensive. Therefore, the available BnB 
techniques are not pertinent to the workflows with heavy 
processing times and dataflows. Hence, a new BnB based 
CPTF algorithm is proposed in the current work. The 
proposed algorithm considers dataflows while scheduling. 
Also, the devised bounds are of less complexity.

5 � The proposed CPTF algorithm

The CPTF algorithm aims at minimzing turnaround time by 
curtail the size of the search space. The bounds for each state 
are calculated while the search space is being explored. The 
schedule is examined at all potential lengths, and pruning 
is used to eliminate the inferior states. Initially, the state 
having lowest lower bound (LB) is chosen for expansion. 

Greedy heuristics are devised for computing the bounds 
which abet in narrow downing the search space to smaller 
portion (Kwok and Ahmad 2005).

The CPTF algorithm is described using four operators. 
The S operator is first used to choose a state Ni from 
LIVE list in order to explore the search space. CPTF 
algorithm employs Best First Search (BeFS) technique that 
is certain to explore the globally best states (Zhang and 
Korf 1991) i.e., state with least LB. When more than one 
state in the LIVE list possesses least LB then tie-breaking 
is resolved using upper bound (UB) i.e., a state with least 
UB is selected. And if more than one state possesses least 
LB and UB, then the issue is resolved randomly. The best 
state chosen from LIVE list is labeled as best state (BS). 
Successively, branching operator B is used to branch the BS 
and produce its child nodes.

The LIVE  list  is  updated with  each new  state Ns. A 
goal state is a leaf state where n tasks in the workflow are 
assigned to the processors. The promise of each state is then 
determined by computing bounds for every new state Ns. 
For each state Ns, bounding function computes LB(Ns) and 
UB(Ns) which signify best-case and worst-case makespan 
of the workflow from the state Ns respectively. In idealistic 
situations, LB value for each state is the best feasible 
solution.

The proposed CPTF algorithm adopts critical path (CP)-
based heuristic to compute the bounding functions. The 
search for a solution can be successfully directed by the 
heuristic estimate. The LB(Ns) and UB(Ns) for each state Ns 
are computed as follows.

Theorem 1  The lower bound on the estimate of the makespan 
at the state Ns in the state space tree is given by

wi,k is processing time of task ti on processor k, k is a set 
of m processors, Tu is set of unscheduled tasks of workflow 
and ti belongs to the set of unscheduled tasks on CP, i.e., 
actual makespan of remaining tasks is at least the sum of 
the processing times of unscheduled tasks on CP on best 
processor for tasks i.e., CPmin.

Any state Ns in the state space for finding the minimal 
length makespan of a given workflow W =  < T, E > is given 
by Ns =  < Tp, Tu, F(Ns) > . Tp is a set of tasks < t1, t2, … th > in 
the partial schedule which are already scheduled and Tu is a 
set of unscheduled tasks of the workflow. G(Ns) is the actual 
length of the schedule of Tp which is given by max{AFT(th)}, 
th belongs to Tp. LB(H(Ns)) is the estimate on the makespan 

(6)LB
(

Ns

)

=
∑

ti∈Tuandti∈CP, 1≤k≤m

(

min
{

wi,k

})
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at Ns (minimum length of schedule of remaining tasks, Tu). 
LB(F(Ns)) = G(Ns) + LB(H(Ns)).

Proof  CP is the length of the longest path in the workflow 
stretching from the start task and ending at the sink task 
that includes at most one task at each level. The sequential 
bottlenecks between the CP tasks compel these tasks to be 
executed in a sequence. The sum of the best processing time 
of the tasks on the CP is at least the completion time of any 
other path in the workflow.

In situations when the tasks at level l are chosen for 
executing several tasks in parallel, but does not include CP 
task at that level, the remaining schedule length will still be 
the sum of the minimum processing time of the unscheduled 
CP tasks. The minimum amount of time still remaining from 
any task until the completion of the workflow is the best 
processing time of the CP tasks that are yet to be executed. 
Hence, for any number of tasks that are explored at this 
level, this will remain the minimum time still required to 
complete the workflow. Moreover, the execution of the 
non-CP tasks in the next levels will further delay the tasks 
on the CP stretching its length. Thus, the sum of the partial 
schedule length and best processing time of the unscheduled 
tasks on CP shall remain the lower bound on the schedule 
length on any path. The lower bound for a state is updated 
accordingly.

Theorem  2  The upper bound on the estimate of the 
makespan at state Ns in the state space tree is given by

w
i
 is average processing time of task ti and di,j is dataflow 

time between task ti and its successor tj, Tu is a set of 
unscheduled tasks of the workflow, and ti and tj belong to 
a set of unscheduled tasks on the CP i.e., actual schedule 
length of remaining tasks is at most the summation of 
average processing times of unscheduled tasks on CP and 
dataflow times between the tasks on the CP.

Any state Ns in the state space for finding the maximal 
length makespan of a given workflow W = < T, E > is given 
by Ns = < Tp, Tu, F(Ns) >. Tp is a partial schedule which 
includes a set of tasks <t1, t2, … th> already scheduled and 
Tu is a set of unscheduled tasks of the workflow. G(Ns) is 
the actual length of the schedule of Tp which is given by 
max{AFT(th)}, th belongs to Tp. UB(H(Ns)) is the estimate 
on the makespan at Ns (maximum length of schedule of 
remaining tasks, Tu). UB(F(Ns)) = G(Ns) + UB(H(Ns)).

(7)UB
(

Ns

)

=
∑

ti,tj∈Tuandti,tj∈CP

wi + di,j

Proof  CP is the longest path in the workflow and its length is 
computed by the sum of the average processing time of the 
tasks on CP and average dataflow times between the tasks 
on CP. Being the longest path, the constrained sequential 
execution time of the tasks on CP is at most the length of any 
other path of the worflow. Hence, the length of CP reflects 
the maximal time required to complete the execution of the 
workflow. Given a state where {t1, …, th} ∈ Tp i.e., the tasks 
are already scheduled, the choice of the next state shall 
be based on remaining length of the CP. Among the tasks 
ready to execute, when all tasks are ready for execution are 
non-CP tasks then optimal choice would be the task with 
least remaining CP length. Any optimal schedule of the 
workflow cannot exceed the schedule length thus generated. 
Given a state Ns where a partial schedule {t1,…,th} tasks are 
already scheduled. The length of the makespan is given by

By calculating the maximum schedule length of Tu, an 
upper bound can be found. It is observed that the length of 
any schedule involving Tu cannot exceed the remaining CP 
length. The duration of the makespan is constrained because 
the CP tasks include one task at each level. In other words, 
any ready task that is delayed on the CP will at a minimum 
result in corresponding increase in the makespan. Therefore, 
a greedy strategy for allocating processors to a list of ready 
tasks must prioritize CP tasks first, followed by tasks with 
shortest remaining CP length. This greedy method yields a 
schedule that has a makespan that can never be surpassed 
by an optimal schedule for the remaining tasks. Hence the 
length of the remaining CP imposes an upper bound on the 
schedule. Thus, the upper bound on state Ns is the sum of 
the actual schedule length of Tp i.e., G(Ns) and the length 
of the remaining CP from the tasks Tu i.e., UB(H(Ns)). The 
makespan of workflow from any state Ns always lies between 
LB(Ns) and UB(Ns).

Lastly, Pr operator compares LB computed for every new 
state Ns with UBbest and prunes the state if LB(Ns) > UBbest. 
Tight bounds aid in pruning considerable search space 
leading to lessening the search space size.

5.1 � Illustration of CPTF algorithm

The search space generated by CPTF algorithm for the 
workflow given in Fig. 1 is illustrated in Fig. 2. The search 
space is generated from the initial state N1 depicting empty 
schedule {}. Initially, state N1 is placed in LIVE list. UB(N1) 
is computed using Eq. 9 for state N1 is 25.5. A global variable 
UBbest records least UB amongst all the expanded states. 
UBbest is initialized to UB(N1) i.e., 25.5. Currently, task t1 

(8)G
(

Ns

)

+ Schedule length of Tu
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in the workflow is ready. In the search space, two new states 
N2 and N3 are generated from the state N1 by assigning task 
t1 to p1 and task t1 to p2 processors respectively. The state 
N1 is put in the CLOSE list as it is explored. States N2 and 
N3 are added to LIVE list and their bounds are computed. 
The (LB(N2), UB(N2)) are (10, 23) and (LB(N3), UB(N3)) are 
(15, 28).The UBbest is updated to 23. The CPTF algorithm 
chooses N2 with minimum LB from the LIVE list. The state N2 
indicates the mapping of task t1 to processor p1. Once task t1 
is scheduled, tasks t2, t3, and t4 become ready and each task is 
mapped to p1 and p2 processors which leads to the generation 
of six states viz., N4, N5, N6, N7, N8, and N9 from the state N2. 
The (LB, UB) computed for N4, N5, N6, N7, N8, and N9 states 

are (14, 24), (11, 21), (11, 24), (16, 29), (14, 27), and (19, 32) 
respectively. The UBbest is updated to 21. The state N5 with 
least LB is selected. From the state N5, four new states N10, 
N11, N12, and N13 are generated by mapping the currently ready 
tasks t3 and t4 to p1 and p2 processors. The CPTF algorithm 
progresses in this approach to expand the search space. At 
each stage, algorithm picks the lowest LB state, branches it 
and adds new states to LIVE list. Subsequently computes the 
bounds for the new states. The UB of new states is compared 
with UBbest if found that UB of the new state is less than 
UBbest then it updates UBbest with UB of the new state and 
prunes all the states having LB greater than UBbest. The CPTF 
algorithm terminates at the state N22, as all tasks are mapped 

Fig. 2   Enumeration of search space by CPTF algorithm for the workflow given in Fig. 1
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to processors and UB of N22 state is the optimal solution. The 
search space is explored in the sequence N1, N2, N5, N10, 
N17, N18, N20, and N22. The states N3, N7, N9, N11, N13, N15, 
N16, N19, N21, and N23 are pruned from the search space. In 
Fig. 2, ti → pk at each state indicates the assignment of task ti 
to pk processor, 1 ≤ i ≤ n, 1 ≤ k ≤ m. The CPTF algorithm is 
presented in Algorithm 1. 
Algorithm 1   CPTF algorithm (T, E, P, D)

5.2 � Time complexity analysis of CPTF algorithm

Time complexity of CPTF algorithm is majorly based on the 
time required for computing LB and UB for each state in the 
search space. LB and UB for each state requires O(n + e) time 
for examining n tasks and e edges on the CP.

6 � Results and discussions

The CPTF algorithm is evaluated by simulation 
experiments conducted using a benchmark of random 
and scientific workflows. The results of CPTF algorithm 
is studied against best available heuristic scheduling 

algorithms, viz., critical path/earliest finish time first 
(CP/EFT) algorithm (Sirisha 2023), global highest_
degree task first (GHTF) algorithm (Sirisha and prasad 
2022), improved predict priority task scheduling (IPPTS) 
algorithm (Djigal et  al. 2021), heterogeneous earliest 
finish time (HEFT) (Topcuoglu et al. 2002), performance 
effective task scheduling (PETS) (Illavarasan and 
Thambidurai 2007) and critical path on processor (CPOP) 
(Topcuoglu et al. 2002) algorithms. Experimentations 
are implemented on Windows 10 Computer with 
configuration Intel(R) Core i7-10870H processor, 
2.20 GHz, 8 GB RAM in Java programming.

The workflows are generated using the parameters viz.

•	 Workflow size (n) signifies the number of tasks in a 
workflow.

•	 Dataflow to processing time ratio (DPR) is the ratio of 
average dataflow time to average processing time of 
the workflow. Computation-intensive workflows can be 
produced for DPR ≤ 1, where computations dominate 
dataflows in the workflows. Workflows with heavily 
data dependent tasks are produced for DPR > 1.

•	 Shape parameter (α) defines the shape of the workflow, 
i.e., the number of levels l and tasks k at each level. 
The formulas √n/α and √n × α are used to calculate 
the values of l and k, respectively. When α < 1, longer 
workflows with less parallelism are generated while 
for α ≥ 1, shorter and broader workflows with higher 
parallelism are produced.

•	 Heterogeneity factor (β) refers to the variation in the 
processing times of the tasks in a workflow. High β 
values signify substantial deviation in the processing 
times of tasks whilst low values show minor variation. 
The processing time of task ti on processor pk, 
represented as wi,k is randomly selected from the 
following range:

where w is the average processing time of a workflow.

The following metrics are used to analyze the 
performance of the scheduling algorithms [1], [3], [5].

	 i.	 Normalized makespan. Makespan is a key metric 
used to assess a scheduling approach. It is crucial to 
normalize the makespan to its lower bound, which is 
described as the Normalized Makespan (NM) because 
a significant number of workflows with various 
characteristics are generated. NM is computed as 
follows.

(9)w × (1 − �∕2) ≤ wi,k ≤ w × (1 + �∕2)
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		    The denominator CPmin is calculated as given in 
definition 2. NM of a workflow is always greater than 
1 since CPmin is considered as the lower bound of the 
makespan. The scheduling algorithm that produces the 
least NM is considered to be more efficient.

	 ii.	 Speedup is defined as the ratio of the sequential 
processing time (sequential makespan) of the 
workflow to the parallel processing time on m 
processors (makespan) and is calculated as following.

		    The numerator, sequential makespan is calculated 
by assigning all the tasks to a single processor that 
minimizes the overall processing time. Typically, it 
is better to use a scheduling strategy that results in a 
higher speedup.

	 iii.	 Efficiency is characterized as the ratio of speedup 
to the m processors used to execute a workflow. 
Efficiency typically varies from 0 to 1. A scheduling 
strategy is considered more efficient if its efficiency 
is closer to 1. The scheduling algorithm's efficiency is 
calculated using the formula below.

iv. Running time of the algorithm is the amount of 
time taken by the algorithm to generate an output 
schedule for the workflow.

6.1 � Performance analysis on random workflows

The random workflows for experimentations are generated 
according to the parameters detailed in Topcuoglu et al. 
(2002), Illavarasan and Thambidurai (2007). The wide- 
ranging parameter values used for experimentations are 
given in Table 3. The combinations of these characteristics 
result in a collection of 42,240 workflows with various 
topologies. The number of processors (m) considered are 
4, 8, 16, and 32.

(10)NM =
Makespan

CPmin

(11)Speedup =
Sequential makespan

Makespan

(12)Efficiency =
Speedup

m

In the first experiment, the impact of workflow size (n) 
on average NM and speedup of the scheduling algorithms is 
analysed, corresponding graphs are depicted in Fig. 3a and 
b respectively. The workflow sizes range from 40 to 500, 
increasing by 10 till 100 and then by 100 between each. The 
graph's points are all plotted using average data from 3840 
experiments. The graphs show an upward trend in the data. 
It is clear from Fig. 3a that, as n increases from 40 to 80, 
average NM rises gradually, and as n increases from 80 to 
100, the increase is stable. For workflow sizes greater than 
100, a linear increase in average NM is noticed. Trivial 
variations in average NM for workflow sizes below 100 is 
noticed. Moreover, substantial deviation in average NM is 
observed for workflow sizes greater than 100. The average 
NM of CPTF algorithm is better than CP/EFT, GHTF, 
IPPTS, HEFT, PETS, and CPOP algorithms (in percent) by 
3.95, 12.57, 15.04, 21.27, 27.92, and 33.5 respectively.

The average speedup for varied workflow sizes is shown 
in Fig. 3b. The graph's data trend seems to be growing 
as the size of the workflow. The graph shows that CPTF 
algorithm's average speedup was better than CP/EFT, GHTF, 
IPPTS, HEFT, PETS, and CPOP algorithms and noted as 
2.43, 5.05, 7.57, 8.89, 10.27, and 13.7 respectively.

The following experiment examines the dataflow to 
processing time ratio (DPR) and shape parameter (α). The 
average NM is displayed on the graph in Fig. 3c in relation 
to DPR values ranging from 0.1 to 10. The graph's points are 
drawn from 5280 experiments. For DPR ≤ 1, performance of 
all the scheduling algorithms differed marginally. However, 
when DPR > 1, a considerable variation in the average NM 
is evident. Higher DPR values i.e., > 1 signify that dataflow 
overheads dominate task processing times, which increased 
the NM of scheduling algorithms. When DPR ≤ 1, CPTF 
algorithm outperformed CP/EFT, GHTF, IPPTS, HEFT, 
PETS, and CPOP algorithms (in percent) by 1.96, 5.19, 
11.33, 13.91, 16.26, and 29.46 respectively. For data 
intensive workflows having DPR > 1, GHTF algorithm is 
better than CPTF, CP/EFT, IPPTS, HEFT, PETS, and CPOP 
algorithms (in percent) by 6.79, 8.96, 7.54, 11.28, 16.5, 
and 27.51 respectively. In this regard, CPTF algorithm is 
observed to be performing next to GHTF algorithm. Overall, 
GHTF algorithms’ performance improved by 3.03, 5.10, 
6.99, 10.32, 14.58, and 26.08 respectively against CPTF, 
CP/EFT, IPPTS, HEFT, PETS, and CPOP algorithms. This 

Table 3   Characteristics of 
random workflows

Parameter Values

n 40 50 60 70 80 90 100 200 300 400 500
DPR 0.1 0.5 0.75 1.0 2.0 5.0 7.5 10.0
α 0.25 0.5 0.75 1.0 1.25 1.5
β 0.1 0.25 0.5 0.75 1.0
w 40 60 80 100
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experimentation reveals that CPTF algorithm has effectively 
shortened the makespan for data intensive workflows.

The graph's points are drawn from 5280 experiments. 
For DPR ≤ 1, performance of all the scheduling 

algorithms differed marginally. However, when DPR > 1, 
a considerable variation in the average NM is evident. 
Higher DPR values i.e., > 1 signify that dataflow overheads 
dominate task processing times, which increased the NM 

Fig. 3   Performance of scheduling algorithms on random workflows
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of scheduling algorithms. When DPR ≤ 1, CPTF algorithm 
outperformed CP/EFT, GHTF, IPPTS, HEFT, PETS, 
and CPOP algorithms (in percent) by 1.96, 5.19, 11.33, 
13.91, 16.26, and 29.46 respectively. For data intensive 
workflows having DPR > 1, GHTF algorithm is better 
than CPTF, CP/EFT, IPPTS, HEFT, PETS, and CPOP 
algorithms (in percent) by 6.79, 8.96, 7.54, 11.28, 16.5, 
and 27.51 respectively. In this regard, CPTF algorithm 
is observed to be performing next to GHTF algorithm. 
Overall, GHTF algorithms’ performance improved by 
3.03, 5.10, 6.99, 10.32, 14.58, and 26.08 respectively 
against CPTF, CP/EFT, IPPTS, HEFT, PETS, and CPOP 
algorithms. This experimentation reveals that CPTF 
algorithm has effectively shortened the makespan for data 
intensive workflows.

The shape parameter (α) is a vital metric that manifests 
the proficiency of a scheduling algorithm in exploiting the 
parallelism of a workflow. The graph shown in Fig. 3d shows 
the influence of shape parameter on average NM. The range 
of α values taken into account for experiments is 0.25 to 
1.5, with 0.25 increments between each value. The 7040 
experiments are used to get each data point on the graph. 
According to the graph, the average NM climbed linearly up 
to α value of 0.75, after which a constant increase was seen. 
Additionally, it is clear from the graph that, until α value 
0.75, there is only a minor difference in the average NM, 
which steadily grew as α values climbed. The performance 
improvement of CPTF algorithm against CP/EFT, GHTF, 
IPPTS, HEFT, PETS, and CPOP algorithms is noted 
as (in percent) by 2.54, 5.06, 6.26, 8.2, 13.06, and 20.98 
respectively. Exploration of better workflow parallelization 
is what has led to an improvement in the CPTF algorithm's 
performance for shape parameters.

The next experiment examines the scheduling algorithms' 
average efficiency with respect to number of processors (m), 
depicted in the graph in Fig. 3e. With each successive rise 
in power of 2, number of processors increased from 4 to 32. 
Data from 10,560 experiments were used to plot each point 
on the graph. The graph reveals that average efficiency of 
scheduling algorithms declined with increase in processors.

From experimental results, average efficiency of CPTF 
algorithm has improved compared with CP/EFT, GHTF, 
IPPTS, HEFT, PETS, and CPOP algorithms (in percent) 
by 3.61, 6.56, 9.14, 12.49, 22.725, 28.13 respectively. It is 
concluded that efficiency of scheduling algorithms declined 
as processors increased.

The following experiment compares the CPTF algorithm's 
average running time against various heuristic scheduling 
approaches for varying workflow sizes, presented in Fig. 3f. 
It is observed that CPTF algorithm is 23.41 percent faster 
running time than the CP/EFT algorithm. However, GHTF 
algorithm has surpassed all other algorithms 86.25, 106.44, 

10.18, 18.78, 41.33, 62.20 percent against CPTF, CP/EFT, 
IPPTS, HEFT, PETS, and CPOP algorithms respectively.

The following experiment demonstrates the effectiveness 
of bounding functions devised, shown in Fig. 4. It can be 
observed from Fig. 4 that the number of states generated and 
pruned have increased as the workflow size increased. The 
CPTF algorithm could prune 45.38 percent of the generated 
states.

6.2 � Performance analysis on scientific workflows

Scientific applications comprise of a sequence of stages 
involving enormous complex computations having 
dependencies. Scientific applications structures are 
characterized as scientific workflows. For experimentation, 
four different real-world scientific workflows well 
illustrated by Juve et al. (2013) are published by Pegasus 
project are used. Two workflows are compute intensive 
workflows viz., LIGO (Abramovici et  al. 1992) and 
Epigenomics (USC Epigenome Center 2019), and other 
two workflows viz., Cybershake (Graves et al. 2011), and 
Montage (Berriman et al. 2006) are data intensive.

LIGO is an application in the field of physics used for 
detecting gravitational waves. Epigenomics workflows are 
used for automation of numerous operations in genome 
sequence processing. Cybershake application identifies 
Earthquake Rupture Forecast (ERF) within 200 km of area 
of interest. Montage is an astronomical application used 
as image mosaic engine. The structure of the scientific 
workflows are depicted in Fig. 5.

The parameters required for generating scientific 
workflows randomly are DPR, heterogeneity factor (β), 
average processing time ( w ). The shape parameter (α) is 
not required as the structure of the scientific workflows 
is known. Experiments are conducted using 4, 8, 12, 16, 
and 32 number of processors (m). LIGO and Epigenomics 
workflows are computation intensive generated with 
the parameters given in Table 4. While Cybershake and 

Fig. 4   Number of states generated and pruned by CPTF algorithm 
with respect to workflow sizes for random workflows
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Montage are data intensive workflows generated with 
parameters mentioned in Table 5.

Figure  6 displays the effectiveness of scheduling 
strategies for scientific workflows. Based on the findings 
of the experiments, for LIGO workflows CPTF algorithm 
surpassed CP/EFT, GHTF, IPPTS, HEFT, PETS, and CPOP 
algorithms (in percent) by (2.79, 5.76, 10.05, 13.07, 18.41, 
22.39), shown in Fig. 6a, for Epigenomics workflows by 
(4.43, 8.37, 11.79, 15.68, 22.2, 27.56) depicted in Fig. 6b, 
Cybershake workflows by (3.2, 6.84, 9, 13.4, 19.68, 22.75) 
presented in Fig. 6c. However for Montage workflows that 
are highly data intensive, GHTF algorithm outperformed 
CPTF, CP/EFT, IPPTS, HEFT, PETS, and CPOP algorithms 
(in percent) by (2.85, 5.64, 8.46, 11.71, 15.88, 28.12) 
respectively, shown in Fig. 6d.

Fig. 5   Scientific workflows, a LIGO b epigenomics c cybershake d montage. Courtesy Juve et al. (2013), https://​pegas​us.​isi.​edu/​workf​low_​galle​
ry/

Table 4   LIGO and epigenomics workflow characteristic

Parameter Values

DPR 0.1 0.25 0.5 0.75 1.0
β 0.1 0.25 0.5 0.75 1
w 100 150 200 250

Table 5   Cybershake and montage workflows characteristic

Parameter Values

DPR 1 2 5 7 10
β 0.1 0.25 0.5 0.75 1
w 20 30 40 50

https://pegasus.isi.edu/workflow_gallery/
https://pegasus.isi.edu/workflow_gallery/
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7 � Conclusions

In the current work, the CPTF algorithm, a novel heuristic-
based BnB technique for scheduling workflows is proposed 
to produce optimal schedules. CPTF algorithm primarily 
emphasizes on reducing the turnaround time by sinking 
search space size. Keeping this aim in view, CPTF 
algorithm works on devising tight bounds to prune the 
sub-trees with inferior solutions. The search process is 
steered by the heuristics and solutions are shrinked to 
smaller search space size. Thus, limiting the solution 
searching resulted in generating reduced search space.

Therefore, less states are explored thus quickly 
converges to the solution. The bounds formulated for 
estimating the goodness of each state are tight, less 
complicated, and less complex. The computation of LB 
and UB for each state required O(n + e) time, where n and 
e are number of tasks and number of edges in workflow.

The efficiency of the CPTF algorithm has been 
demonstrated through experiments using random and 
scientific workflows. The experimental findings lead to 
the conclusion that the devised bounds are effective and 
CPTF algorithm pruned 45.38 percent of the generated 
states. Moreover, CPTF algorithm showed improvement 
in average NM for workflow sizes larger than 100 tasks by 
8.5 to 19 percent and produced best schedules for 89.36 
percent of the cases. The results of the scientific workflows 

Fig. 6   Performance of scheduling algorithms on scientific workflows
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reveal that CPTF algorithm is also feasible for computation 
and data-intensive scientific application workflows viz., 
LIGO, Epigenomics, Cybershake, and Montage, As a 
future extension to this work, a proposal to include another 
constraint among the tasks i.e., deadlines can be considered 
and also to extend the proposed algorithm to dynamic 
scenarios.

Data availability  The data that support the findings of this study are 
available from the corresponding author, D. Sirisha, upon reasonable 
request.
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