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Abstract
Currently, most Deep Learning (DL) frameworks support only CUDA and ROCm environments, limiting their use to NVIDIA 
and AMD GPUs. Since current High-Performance Computing (HPC) usually uses different types of heterogeneous devices 
to accelerate computing, some HPCs cannot utilize heterogeneous devices for computing based on the DL frameworks. To 
address this problem, we introduce OpenCL-PyTorch, a PyTorch extension based on OpenCL. This extension enables the 
deployment of DL models on a broader range of OpenCL devices, encompassing CPUs, GPUs, and other accelerators. A 
standout feature of OpenCL-PyTorch is our novel unified OpenCL device and memory management approach, which signifi-
cantly enhances performance. We rigorously evaluated OpenCL-PyTorch with various DL models, confirming its accuracy 
and effectiveness. The validation of the management approach further underscores the importance of our unified device and 
memory management in optimizing operator performance.
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1 Introduction

Deep learning (DL) frameworks like PyTorch (Paszke et al. 
2019), TensorFlow (Abadi et al. 2016), MXNet (Chen et al. 
2015), and Caffe2 are indispensable tools for constructing 
DL models. They provide building blocks for designing, 
training, and validating DL models through a high-level 
programming interface. Using these frameworks, develop-
ers can efficiently define a DL model’s structure, configure 
the optimizer, and process raw data for training and deploy-
ment (Pouyanfar et al. 2018). As DL models have evolved 
in recent years, becoming deeper and encompassing more 
parameters, there has been a proportional surge in computa-
tional power requirements. To address this, DL frameworks 
have integrated support for heterogeneous parallel program-
ming, leveraging the robust computational capabilities of 
devices such as GPUs (Nguyen et al. 2019).

However, as shown in Table 1, the types of programming 
models they support are limited. Only a few manufactur-
ers’ devices can be utilized for computation. In recent years, 
with the development of computing devices such as graph-
ics processing unit (GPU), field-programmable gate array 
(FPGA), digital signal processor (DSP), and application-
specific integrated circuit (ASIC), some heterogeneous 
devices from other manufacturers can also provide excellent 
computing power and can be used for the computation of DL 
models (Reuther et al. 2020, 2021). Some HPC machines 
usually use these heterogeneous devices to accelerate cal-
culations. If these heterogeneous devices can be supported 
in DL frameworks, it will help to use HPC machines to train 
DL models. Therefore, the heterogeneous programming 
models supported natively by the DL frameworks must be 
extended. Utilizing multiple types of devices by supporting 
a common programming model is feasible. In this way, DL 
frameworks can fully use the computing power of different 
types of devices.

As an open and portable heterogeneous programming 
standard, OpenCL can code based on a unified API and 
run on different heterogeneous computing devices, which 
has high versatility and strong portability. It creates a 
hardware-independent software development environment 
that supports different levels of parallelism and can be effi-
ciently mapped to single or multi-device homogeneous or 
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heterogeneous systems consisting of CPUs, GPUs, FPGAs, 
and other devices. Adding support for OpenCL in the DL 
framework is an effective way to use the computing power 
of various types of devices. PyTorch strives to make writing 
models, data loaders, and optimizers as easy and productive 
as possible (Paszke et al. 2019). Thus, it is widely used in 
scientific research. Adding support for OpenCL in PyTorch 
is valuable so that various computing devices can be used to 
train and deploy DL models.

Therefore, in this paper, we implement OpenCL-PyTorch, 
an OpenCL extension of PyTorch, and propose a unified 
OpenCL management method for performance improve-
ment. The main contributions of this paper are as follows: 

1. We implemented OpenCL-PyTorch, an OpenCL-based 
extension of PyTorch, which could utilize multi-manu-
factured devices and support commonly used DL mod-
els. This implementation is extensible, and developers 
can add new operators based on the usage of different 
models.

2. We proposed a novel unified OpenCL device and 
memory management method, which has been used in 
OpenCL-PyTorch. OpenCL-PyTorch could implicitly 
manage OpenCL device and memory, avoiding unneces-
sary memory copying and creation overhead. Based on 
experiments, we demonstrate that the unified OpenCL 
management method improves performance signifi-
cantly.

3. Based on the development process of OpenCL-PyTorch, 
we summarize some experience of developing OpenCL 
operators for specific DL models, including the relation-
ship between common operators and OpenCL functions 
and the experience of using OpenCL-based acceleration 
libraries.

To evaluate the correctness of OpenCL-PyTorch we imple-
mented, we have trained some typical DL models with it 
and compared them with the models trained with native 
PyTorch. The experiment results prove that the OpenCL-
PyTorch can correctly train and deploy the DL models. To 
verify the effectiveness of the unified OpenCL manage-
ment method, we selected some commonly used operators 
to compare the performance with or without the manage-
ment. The experiment results prove that the unified OpenCL 

management method proposed in this paper improves per-
formance significantly.

The remainder of this paper is organized as follows: In 
Sect. 2, we introduce the heterogeneous programming mod-
els, related works, and challenges. In Sect. 3, we elaborate 
on OpenCL-PyTorch’s framework. In Sect. 4, we introduce 
the experience of OpenCL-PyTorch’s development. Later 
in Sect. 5, we depict our experimental setup and results and 
conclude our paper in Sect. 6.

2  Background and challenges

2.1  Native support for heterogeneous 
programming models

DL frameworks make a performance profit from using some 
specialized devices present in accelerated computing envi-
ronments. The current mainstream solution has been to use 
GPUs as general-purpose processors. Nowadays, popular 
alternatives to GPUs include FPGA and other dedicated 
devices for DL acceleration offered by some IT companies 
(Nguyen et al. 2019). To utilize these devices, DL frame-
works usually provide native support for some heterogene-
ous programming models.

However, the support should be more comprehensive. 
Only a few programming models corresponding to the main-
stream manufacturer can be supported by DL frameworks. 
We list the support of some mainstream DL frameworks 
for heterogeneous programming models in Table 1. Among 
them, CUDA and HIP are programming models provided 
by NVIDIA and AMD, respectively, which can utilize the 
GPU device of the corresponding manufacturer to perform 
efficient parallel computing. They are suitable for the charac-
teristics of high parallelism of some operators in deep neural 
networks. SYCL (Keryell et al. 2015) is a free high-level 
abstract programming model that can utilize some manu-
facturers’ FPGAs. It is based on different heterogeneous 
programming models, such as OpenCL. However, the types 
of heterogeneous programming models supported are also 
limited. If using OpenCL as the underlying implementation 
of SYCL, you need to provide additional extensions in the 
implementation of OpenCL, thus further limiting the use 
of SYCL.

In summary, due to the limited support of the DL frame-
work for the programming model, manufacturer-neutral 
devices cannot be supported. Even though some hardware 
from other manufacturers has a massively parallel architec-
ture suitable for accelerating matrix-based operators, these 
devices cannot be used for DL model computations due to 
the lack of programming model support. Moreover, OpenCL 
can provide compatibility across heterogeneous hard-
ware from any vendor. Therefore, when the deep learning 

Table 1  Heterogeneous programming models in DL frameworks

TensorFlow PyTorch MXNet

CUDA ✓ ✓ ✓

HIP ✓ ✓ ✓

SYCL ✓ ✗ ✗
OpenCL ✗ ✗ ✗



289Opencl-pytorch: an OpenCL-based extension of PyTorch  

framework can support OpenCL, it can use a manufacturer-
neutral device.

2.2  Related work

Some existing studies have proposed methods for supporting 
OpenCL in DL frameworks.

OpenCL Caffe: The Caffe framework (Jia et al. 2014) was 
initially written and developed in C++ and CUDA. OpenCL 
Caffe (Gu et al. 2016) targets in transforming the popular 
CUDA based framework caffe into OpenCL backend. The 
CUDA layer is responsible for optimizing the allocation and 
use of hardware resources, such as task scheduling between 
CPU and GPU, memory management, and task transmission. 
OpenCL Caffe migrates the three layers of the C++ machine 
learning interface, Wrapper, and GPU Kernel layer by layer. 
At the same time, it also analyzes performance bottlenecks 
through various analysis tools and proposes corresponding 
optimization techniques. Among them, according to the 
characteristics of OpenCL runtime compilation, it caches 
the compiled program, avoiding the overhead caused by 
repeated program compiling.

OpenCL-darknet: Darknet (Redmon 2013–2016) is a DL-
based target detection framework known for its fast speed 
and simple structure, but it can only be based on NVIDIA 
GPU accelerated computing. In order to make Darknet avail-
able for general-purpose accelerator hardware, OpenCL-
Darknet (Koo et al. 2021) converts CUDA-based Darknet 
to Darknet supporting OpenCL backend, and achieves per-
formance similar to the original CUDA version. OpenCL-
Darknet converts basic arithmetic functions, matrix multi-
plication and other operators into the OpenCL backend to 
minimize unnecessary data transmission between the host 
and device.

cltorch: cltorch is an OpenCL backend for the Torch scien-
tific computing framework (Ronan et al. 2017), offering a 
high-performance matrix library that leverages GPU com-
putational power. It includes features like standard opera-
tion support, profiling tools, point tensors to reduce pipe-
line stalls, custom user kernels, and compatibility with other 
libraries. However, cltorch cannot be applied to PyTorch 
because it is specifically designed for the Torch framework, 
which has a different architecture and API than PyTorch. 
PyTorch uses a different backend and is not compatible with 
the Torch-specific implementations and extensions provided 
by cltorch.

pytorch-dlprim: Pytorch_dlprim (Beilis 2023b), an 
OpenCL backend for PyTorch based on DLPrimitives 
(Beilis 2023a), facilitates the training of specific vision 

networks, such as AlexNet and ResNet, on OpenCL-com-
patible devices. This implementation has successfully vali-
dated these networks’ forward and backward propagation, 
benchmarking against CPU performance for accuracy. It’s 
important to note that this repository represents an early 
version, focusing on establishing foundational functional-
ity and initial testing, and thus have limitations in terms of 
comprehensive functionality and optimized performance.

While previous efforts have converted the Caffe and 
Darknet frameworks to OpenCL, these adaptations were 
limited to kernel functions and overlooked crucial aspects 
like device abstraction. Moreover, while Cltorch provides 
an OpenCL extension for the Torch framework, it cannot be 
directly applied to PyTorch. Despite sharing similar design 
philosophies, Torch and PyTorch diverge significantly in 
code implementation and architectural design, rendering 
Cltorch incompatible with PyTorch. In contrast, Pytorch-
dlprim focuses primarily on implementing specific visual 
networks. Our work, however, goes beyond these previous 
endeavors. We aim to fully extend PyTorch with OpenCL 
support, encompassing the implementation of OpenCL 
kernel functions and the comprehensive management 
of OpenCL devices and memory. This holistic approach 
addresses the gaps in existing adaptations and aligns with 
our goal of a complete OpenCL extension for the PyTorch 
framework.

2.3  Challenge

To add the extension for the OpenCL programming model in 
the PyTorch framework, we faced the following challenges: 

1. PyTorch has a huge amount of code and complex hier-
archical relationships. We need to find the native opera-
tor implementation function from the source code of 
PyTorch and implement the corresponding calculation 
function based on OpenCL. This makes us face sig-
nificant challenges when implementing OpenCL-based 
operators.

2. The existing methods do not provide a unified OpenCL 
management. DL frameworks do not support OpenCL 
devices and memory. On the one hand, users can only 
use a single specific OpenCL device and not specify 
different OpenCL devices. On the other hand, repeated 
memory copying and creation are performed during 
execution, resulting in a large amount of unnecessary 
overhead and additional memory usage.

3. A large number of operators are usually provided in the 
DL framework, but the existing methods do not sum-
marize the implementation of these operators. There-
fore, when using OpenCL to develop these operators, we 
are faced with a huge development workload, and some 
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OpenCL device-side codes cannot be reused, increasing 
the development difficulty.

3  Methodology

In this section, we will elaborate on the architecture of 
OpenCL-PyTorch addressing the first challenge and the 
unified OpenCL management method addressing the sec-
ond challenge. Moreover, we will detail the OpenCL-based 
operator development method, which is the most important 
work in implementing OpenCL-PyTorch.

3.1  Overall architecture

As an optimized tensor library, PyTorch has a large amount 
of source code with complex hierarchical relationships. Dif-
ferent modules correspond to different levels and functions. 
However, we only need to modify or extend some modules 
to support OpenCL in PyTorch. To reduce the coupling 
between the OpenCL extension and PyTorch, we designed 
the OpenCL-PyTorch architecture based on the adapter 
design pattern (McDonough and McDonough 2017) through 
the analysis of the PyTorch source code. This adapter archi-
tecture addresses the first challenge. Figure 1 shows the 
architecture of OpenCL-PyTorch. The OpenCL extension 
we implemented acts as a PyTorch adapter, which adapts the 
OpenCL kernel function library to the PyTorch framework 
at the operator layer.

Specifically, the region inside the dotted line shows the 
modules of the native PyTorch. The region outside the 

dotted line is OpenCL-PyTorch, which supports OpenCL 
by an extension. From a view of module hierarchy, PyTorch 
mainly has three parts: frontend, engine, and operators. 
The frontend provides a series of Pythonic interfaces, which 
can parse the user’s code, including DL model architecture, 
optimizer, scheduler, data loader, etc. The graph engine 
generates a dataflow graph based on the user-defined DL 
model architecture and gradually calls operators to com-
pute according to the order in the dataflow graph. Operators 
are the functions that respond to computation, take data as 
input, and return results. In PyTorch, they perform all core 
computing functions. Among these three parts, the Pythonic 
frontend and graph engine have nothing to do with the pro-
gramming model that executes the computation; only the 
operator execution process is related to the programming 
model. OpenCL can be used for computation as long as 
OpenCL-based operators are implemented. We designed an 
OpenCL-based operator module at the operator level as an 
adapter. It utilizes the OpenCL kernel library for computa-
tion and offers the same interfaces for PyTorch. This way, 
users do not need to modify their codes explicitly to use 
OpenCL.

3.2  Unified OpenCL device and memory 
management

To efficiently utilize OpenCL for computation, it is neces-
sary to optimize the execution process of OpenCL opera-
tors. As shown in Fig. 2, PyTorch provides implicit memory 
and device management to perform computation efficiently, 
which is usually used during the execution of operators. It 
is necessary to manage memory and devices similarly, as 
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CPU Operator
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Fig. 1  The overall architecture of OpenCL-PyTorch
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mentioned in Sect. 2.3. To address the second challenge, 
we propose a unified OpenCL device and memory manage-
ment method based on analyzing the operator execution pro-
cess and the characteristics of the OpenCL programming 
model. In this section, we will introduce the two parts of the 
method: OpenCL memory management based on PyTorch 
tensor mapping and OpenCL device management based on 
PyTorch device type support.

3.2.1  OpenCL device management

The execution of OpenCL device-side functions needs an 
initialized OpenCL device. Some existing methods for 
OpenCL device storage based on singletons are proposed to 
avoid repeated initialization. They can store the initialized 
OpenCL device in a singleton, ensuring it can only be initial-
ized once. However, they do not support OpenCL devices 
in the DL frameworks. Therefore, they cannot use multiple 
devices simultaneously when multiple OpenCL devices can 
be used. Users can only use a specific OpenCL device set 
in the source code, cannot specify OpenCL devices on the 
frontend, and cannot utilize multiple OpenCL devices. Users 
should not be aware of the details of the device implementa-
tion. They need to use OpenCL devices for computation as 
efficiently as possible with CUDA devices, which requires 
full support for OpenCL device types in the PyTorch frame-
work and implicit management of these devices. Therefore, 
it is necessary to manage OpenCL devices in PyTorch.

To manage OpenCL devices in PyTorch, we proposed a 
OpenCL device management method with two parts: 

1. Device Type Support: PyTorch need to support OpenCL 
device types so users can use OpenCL devices like 
CUDA.

2. Device Information Storage: PyTorch need to store 
OpenCL device-related information implicitly to avoid 
repeated overhead.

Device Type Support: Based on the analysis of the code 
of PyTorch, we found that device type support and object 
management are implemented separately in PyTorch. It does 
not impose requirements on the implementation of device 
type. Switching different branches takes the device type as 
the judgment condition only. Figure 3 shows the process of 
calling the operator implementation function according to 
the device type in the execution of the matrix multiplication 
operator. The mm operator could call different functions to 
correspond to different device types. Among them, “mm_
cpu” and “mm_cuda” are natively developed functions, and 
“mm_opencl” is a function we developed based on OpenCL. 
PyTorch will automatically choose the appropriate function 
when calling the operator.

To support the OpenCL device type, we need to add an 
OpenCL branch to each switch that selects the execution 
path based on the device type so that the corresponding 
function can be called when the OpenCL device is used 
for computation. From a view of the source code, PyTorch 
switches branches in backend based on Dispatch Key and 
supports the device in frontend based on Device Type. For 
different device types, PyTorch will create different Dispatch 
Key collections in the context, which are used for switching 
to different branches. Corresponding to the Device Type, 
PyTorch provides an enumeration object to save the infor-
mation of supported device types. In contrast, the Dispatch 
Key is implicitly stored in the context. It is automatically 
modified according during the execution, while Device Type 
is explicitly stored in Tensor properties and specified by the 
user. They correspond to frontend and backend, respectively, 
and cooperate to switch branches. Although PyTorch does 
not natively support OpenCL, it retains enumeration values 
for the device type of OpenCL. We map the OpenCL device 
to the unmapped Dispatch Key reserved by PyTorch to sup-
port the OpenCL device type.

This way, we can add support for OpenCL devices in 
PyTorch. Users can specify OpenCL devices on the front 
end just like using CUDA devices by adding the Device 
Type of OpenCL. Correspondingly, during the execution in 
the backend, PyTorch will automatically select the operator 
function corresponding to OpenCL according to the Dis-
patch Key mapping the Device Type of OpenCL.

Device Information Storage: To manage OpenCL 
devices, we designed an OpenCL device manager, which 
stores OpenCL device information and provides an inter-
face to get OpenCL device objects based on the device 
name. Similar to the existing device storage method 
based on the singleton, we also use a singleton method 
to initialize it. That is, it can be only initialized once in 
the entire lifecycle of the PyTorch process. All available 
device objects are stored, which is also initialized only 
once. This way, users can use all the OpenCL devices in 
one process and do not need to be initialized repeatedly, 

mm(MatMul)
Operator

Device 
Type?

mm_cpu
Function

mm_cuda
Function

mm_opencl
Function

CPU

CUDA

OpenCL

Fig. 3  Device type support of PyTorch
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avoiding unnecessary performance overhead. The device 
manager acts as a singleton object that can be used dur-
ing the execution of all OpenCL operators. It provides 
an interface for obtaining OpenCL device objects. In this 
way, the user can specify the device to be used on the front 
end, and PyTorch can obtain the specified OpenCL device 
object according to the index of the specific device on the 
back end to perform calculations.

Figure 4 shows a use case of the device manager. When 
a function needs to obtain the device, it can map the cor-
responding device according to the index. Device Manager 
has an initialization function called only once to initialize 
all OpenCL device objects and stores them in a Device 
Manager object. For example, when calling the “mm_
opencl” function, it can obtain a specific OpenCL device 
by the device name stored in Tensor properties from the 
Device Manager for computation. If it is the first opera-
tor called in this PyTorch process, Device Manager will 
call the initialize function to initialize all OpenCL device 
objects.

3.2.2  OpenCL memory management

Data exchange is often the main factor affecting perfor-
mance. Memory copying will cause a lot of overhead in 
the computation of DL model that frequently calls operator 
executions. As shown in Fig. 5, we compared the operator 
execution process with and without memory management. 
The tensor cannot be stored on the OpenCL device without 
memory management. Before the computation based on 
OpenCL, the OpenCL device must copy the tensors’ data 
stored on the CPU to the OpenCL device. After the calcu-
lation, it must copy the data stored on the OpenCL device 
to the CPU side and assign it to the tensor corresponding 
to the output. Then it will release the useless memory. On 
the one hand, such an execution process increases unnec-
essary performance overhead (such as memory allocation, 
memory release, and memory copy). It makes the operator 
execution process more complicated. On the other hand, it 
also increases overall memory usage. The same data must be 
stored simultaneously on the CPU and the OpenCL device 
sides, reducing memory space utilization efficiency.

Correspondingly, as shown in the lower part of Fig. 5, 
when the tensor can be stored on the OpenCL device and 
flow in the dataflow graph, the operator execution process 
becomes much more straightforward. Therefore, to imple-
ment OpenCL memory management in the PyTorch frame-
work, we need to bind the OpenCL device-side memory to 
PyTorch tensor so that the underlying OpenCL device-side 
memory can be managed through the Tensor management 
mechanism in the PyTorch framework.

To manage OpenCL memory within the PyTorch frame-
work, enabling a tensor to store device-side memory in 
OpenCL is crucial. We began by analyzing the implemen-
tation of a tensor in PyTorch, which comprises two primary 
components: properties and data storage. The property sec-
tion holds information like tensor shape, storage device, and 
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memory access step size, all vital during operator execution. 
The data component typically corresponds to a continuous 
memory address on the host or device. When executing 
OpenCL or CUDA kernel functions, the computing device 
interacts with these memory addresses for reading or writ-
ing data.

We can set the corresponding OpenCL device in the 
tensor properties based on device management. However, 
it is not enough. The tensor’s most essential data storage 
part must be transferred to the OpenCL device. As shown 
in Fig. 6, the solid line represents PyTorch’s device stor-
age method natively supported. The host-side or CUDA 
device-side memory address is stored in the tensor for use 
in the computation process. Similarly, we must also store 
the OpenCL device-side memory address in the tensor. Spe-
cifically, when tensors are created on an OpenCL device, 
memory needs to be allocated on the OpenCL device. Then, 
PyTorch can use this memory address to initialize the Stor-
age object and use this object to initialize the tensor. This 
address will be stored in the tensor, and when PyTorch needs 
to read data, the OpenCL device-side memory address can 
be obtained from the storage property of the tensor.

Moreover, PyTorch provides tensor lifecycle manage-
ment. When some tensors are not used, they will be automat-
ically destroyed by PyTorch. We bind the OpenCL device-
side memory to the tensor. The lifecycle of the PyTorch 
tensor and OpenCL device-side memory are synchronized. 
The lifecycle management of OpenCL memory can be real-
ized based on that of the tensor. When a Tensor is created, 
it will allocate memory on the OpenCL device side; when 
a Tensor is destroyed, it will release the memory on the 
OpenCL device side at the same time. In this way, through 
the method mentioned above, the device-side memory on 
OpenCL can be automatically allocated and released accord-
ing to the lifecycle of the tensor. More importantly, tensors 
stored on OpenCL devices can flow in the dataflow graph, 
reducing the overhead caused by unnecessary memory 
copies.

3.3  Operator development

Besides the unified OpenCL management method mentioned 
above, operator development based on OpenCL is critical 
to implement OpenCL-PyTorch. First, we will develop the 
functions for computation based on the OpenCL program-
ming model. As mentioned in Sect. 3.2.1, PyTorch chooses 
the appropriate function based on the Dispatch Key when 
calling an operator. Then, we must bind the functions to the 
Dispatch Key corresponding to OpenCL to use these operators 
for computation.

As for the development of the device-side functions, we can 
develop OpenCL kernel functions. Some researchers (Mar-
tinez et al. 2011; Harvey and De Fabritiis 2011) proposed 
CUDA-to-OpenCL source-to-source translator. However, 
these translators cannot be directly applied to the translation 
of kernel functions in DL framework. On the one hand, due 
to the differences in programming languages between CUDA 
and OpenCL, these translators cannot translate codes with 
C++ characteristics, such as templates and classes used in 
CUDA kernel functions. On the other hand, the performance 
and availability of these automatically converted OpenCL 
kernel functions on different devices cannot be guaranteed, 
and we cannot optimize their performance easily. Therefore, 
we manually develop the OpenCL kernel function code. The 
method of developing kernel functions based on OpenCL is 
prevalent, and this is not our innovation, so we will not repeat 
it here. Finally, we developed over a hundred OpenCL ker-
nel functions, which support different data types based on the 
compilation options.

TORCH LIBRARY IMPL( aten ,
PrivateUse1 , m) {
m. impl ( ‘ ‘ aten : :mm’ ’ ,&mm opencl ) ;

}

After developing OpenCL kernel functions, we bind them 
to the Dispatch Key corresponding to OpenCL. For example, 
the code above shows how to bind a function to a Dispatch 
Key. “PrivateUse1” is used as the Dispatch Key correspond-
ing to OpenCL. The corresponding operator is “aten::mm”, 
and the function’s name is “mm_opencl”. This way, when the 
mm operator is called, and the specified device is OpenCL, 
the mm_opencl function we developed will be called.

4  Development experience

Here we introduce some development experience of 
OpenCL-PyTorch. First, we classify commonly used oper-
ators based on the implementation according to our experi-
ence in the development process. Then we introduce some 

CPU Memory CUDA Memory OpenCL Memory

Data Storage

Tensor

Property

Fig. 6  The structure of tensor in PyTorch
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acceleration libraries used in PyTorch and the experience 
of developing some common operators based on OpenCL 
acceleration libraries.

4.1  Commonly‑used OpenCL functions

Table 2 shows the correspondence between operators com-
monly used in DL models and OpenCL kernel functions. 
We selected three commonly used functions: Reduction, 
GEMM, and Element-Wise. Reduction is commonly used 
in data-parallel programming, which reduces a vector of 
data to a single value (Jin and Finkel 2018). The func-
tions related to reduction are usually used as a part of an 
operator, such as the summation part in “Softmax”. These 
operators are widely used in DL models and usually have 
a significant computational overhead. It is necessary to 
implement OpenCL-based reduction functions efficiently 
and in parallel. GEMM corresponds to the widely used 
matrix multiplication operator, which implements the 
matrix multiplication computation and is usually called 
by other operators, such as the GEMM-based convolu-
tion operator. After converting an image into a column-
wise matrix, the GEMM function will be called. Besides, 
GEMM is also used in matrix multiplication operators 
directly, which is used to compose the linear layer in a DL 
model. GEMM is one of the most important operators in 
the OpenCL-based DL framework and usually accounts for 
the most significant computation overhead in a DL model. 
Element-wise functions refer to performing element-by-
element operators on the data of one or more vectors. They 
are widely used in element-wise operators, such as adding 
or subtracting the corresponding elements in two or more 
tensors, calculating the maximum value, etc. Besides, they 
are also used in some activation functions, such as Relu, 
Sigmoid, etc.

4.2  OpenCL acceleration libraries

With the introduction of some typical DL models (such 
as CNN (Li et al. 2021), RNN (Tarwani and Edem 2017), 
Transformer (Kalyan et al. 2021), etc.), the main structures 
of deep neural network (DNN) have primarily converged, 
and a small number of operators occupy most of the compu-
tational overhead. For example, the convolution and pooling 
operators in the CNN usually take most of the computational 
overhead. In the Transformers model, the matrix multiplica-
tion operator consumes most of the computational overhead 
(Park et al. 2020). Therefore, optimizing these commonly 
used operators based on existing high-performance libraries 
can significantly improve the computational efficiency of DL 
models. As mentioned in section 2, to optimize DNN opera-
tors and matrix computing operators, PyTorch integrates the 
CUDA-based DNN library cuDNN and Basic Linear Alge-
bra Subprograms (BLAS) library cuBLAS, respectively, 
which significantly improves the computing performance 
based on CUDA.

Therefore, to improve computing performance based on 
OpenCL, we also use the DNN library and BLAS library. 
We integrated the CLBlast (Nugteren 2018) and MIOpen 
(Khan et al. 2019) libraries to accelerate matrix multiplica-
tion and DNN-related operators.

5  Evaluation

5.1  Experiment design

5.1.1  Experimental setup

In this section, we aim to compare OpenCL-PyTorch and 
CUDA-PyTorch under identical hardware conditions, focusing 
on assessing the computational efficiency and correctness of 
OpenCL-PyTorch. We also conduct ablation studies to dem-
onstrate the impact of our unified memory and device manage-
ment approach on computational efficiency. Our experiments 
utilize PyTorch version 1.10, with CUDA-PyTorch installed 
and OpenCL-PyTorch deployed on the server. We chose 
NVIDIA GPUs for the experiments, leveraging their ability to 
support both CUDA and OpenCL environments. The detailed 
experimental settings are shown in Table 3.

5.1.2  Deep learning models for evaluation

In our experiments, we select four widely-used deep learning 
models from PyTorch’s examples1 for experimentation. The 

Table 2  Correspondence of some important OpenCL functions and 
operators

Function Operator for Example

Reduction Softmax, LogSoftmax
Normalize
Sum, Maximum, Minimum

GEMM Matrix Multiplication
Batch Matrix Multiplication
LSTM
Convolution

Element-Wise Add, Sub, Multiplication, Division
Activation(Relu, Glu, Sigmoid, etc.)

1 PyTorch Examples: https://github.com/pytorch/examples.
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chosen models, which we detail in Table 4, include Convolu-
tional Neural Networks (CNN), Long Short-Term Memory 
networks (LSTM), and Variational Autoencoders (VAE), 
each distinct in network layer structure, dataflow graph, 
operator types, and data scale. This variety is pivotal for 
assessing our OpenCL-PyTorch’s ability to accurately train 
and test DNN models. For instance, the CNNs test convolu-
tion and pooling layers, while the LSTMs focus on LSTM 
layers, ensuring a thorough validation of the diverse opera-
tors used in OpenCL-PyTorch.

5.1.3  Evaluation metrics

As previously mentioned, with the addition of the OpenCL 
extension in PyTorch, the usage of OpenCL-PyTorch and 
CUDA-PyTorch is nearly identical, requiring only a modifi-
cation in the device name. Therefore, in terms of correctness 
evaluation, we assess OpenCL-PyTorch from two aspects: 
operator and model training.

Specifically, for operators, we utilize OpenCL-PyTorch 
and CUDA-PyTorch to execute the same operators on the 
same data and then compare their results. If the results are 
sufficiently close, accounting for computational errors due 
to different programming models, we consider the OpenCL-
PyTorch computation correct. For model training, we 
evaluate the correctness of OpenCL-PyTorch and CUDA-
PyTorch by analyzing the loss reduction process when train-
ing the same models and by comparing the performance of 

the trained models on test datasets using both versions of 
PyTorch.

As for the models’ performance, different models serve 
varied application scenarios and thus require distinct evalu-
ation metrics. Accuracy is a primary indicator for classifica-
tion tasks, as exemplified by the VGG16 network designed 
for classification, where Accuracy aptly reflects its perfor-
mance. On the other hand, PSNR (Peak Signal-to-Noise 
Ratio) is crucial for super-resolution models. It quantifies the 
quality difference between original and processed images, 
making it an ideal metric for assessing these models’ image 
and video resolution enhancement capabilities. By using 
PSNR, we can precisely measure the effectiveness of super-
resolution models in improving image clarity and detail.

Similarly, to compare computational efficiency, we use 
OpenCL-PyTorch and CUDA-PyTorch to execute the same 
set of operators and training models. We then evaluate 
OpenCL-PyTorch’s efficiency by precisely measuring and 
comparing their execution times, detailing specific perfor-
mance metrics such as throughput and latency to ensure a 
comprehensive and fair assessment of the computational 
efficiency. Then, to verify the effectiveness of our unified 
memory and device management approach, we evaluate the 
computational efficiency based on the computation time of 
operators.

5.2  Evaluation of the correctness

In our correctness verification, we initiated by evaluating 
the precision of individual operators in OpenCL-PyTorch. 
Following this, we further assessed the training correctness 
by examining both the trend of loss reduction and the perfor-
mance metrics of models on the test dataset. These compre-
hensive evaluations, focusing on detailed aspects of operator 
and training process, collectively validate the computational 
correctness of our OpenCL-PyTorch implementation.

5.2.1  Evaluation on operators

To validate the accuracy of operators within OpenCL-
PyTorch, we compare their output against CUDA-PyTorch 
using specific built-in functions in PyTorch. Specially, we 

Table 3  Experiment settings

Name Specification

CPU Intel(R) Xeon(R) Gold 5218
CPU@2.30GHz

RAM 187GB DDR4 2933 MT/s
GPU NVIDIA Tesla V100S
NVIDIA
CUDA Toolkit

CUDA–10.2

OpenCL CUDA 10.2 OpenCL 1.2
PyTorch 1.10

Table 4  Deep learning projects for evaluation

Name Main
Architecture

Description

Image classification CNN Training of VGG (Simonyan and Zisserman 2014) on the Cifar10 dataset 
(Krizhevsky and Hinton 2009).

Time series prediction LSTM A toy example that uses LSTM (Yu et al. 2019) to learn Sine waves.
Auto-encoding
variational bayes

VAE An improved implementation of the paper “Auto-Encoding Variational Bayes 
(Kingma and Welling 2013)”.

Super resolution  CNN An example that uses the efficient sub-pixel convolution layer. Shi et al. (2016)
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employed the torch.testing.assert_close method of PyTorch 
evaluates the closeness of two tensors by considering rela-
tive and absolute tolerances. It mandates that their differ-
ence must not exceed the combined threshold, determined 
by adding the absolute error threshold to the product of the 
relative error threshold and the compared value. In PyTorch, 
these thresholds are set explicitly at 1.3e− 6 for relative error 
and 1e-5 for absolute error, providing a stringent yet prac-
tical criterion for numerical comparison in computational 
operations.

As listed in Table 5, our experiment involved ten dif-
ferent operators, and the findings indicate that OpenCL-
PyTorch’s results closely align with the expected outcomes. 
This consistency across all tested operators substantiates the 
correctness of OpenCL-PyTorch’s operators. The operators 
we have chosen for evaluation represent a broad spectrum 
of functionalities, each finding its use in diverse models. 
By successfully implementing and verifying these varied 
operators in OpenCL-PyTorch, we demonstrate the feasibil-
ity of our approach and reinforce the assurance of operator 
correctness within the framework.

5.2.2  Evaluation on model training

First, we tracked and compared the loss reduction while 
training the Time Sequence Prediction and VAE models 
with both OpenCL-PyTorch and CUDA-PyTorch. The com-
parative results, as depicted in Fig. 7, indicate a synchronous 
loss reduction pattern across them, with each training step 
showing closely matched results.

Following the training phase, we tested the models to 
evaluate the performance of those trained with OpenCL-
PyTorch. These tests, based on specific performance met-
rics, were designed to rigorously assess the fidelity of the 
models, ensuring that training with OpenCL-PyTorch yields 
results that meet established standards of model correctness. 
Table 6 shows that models trained through OpenCL-PyTorch 
and CUDA-PyTorch have similar performance.

It is important to note that, we employed identical ran-
dom number seeds for training the model with OpenCL-
PyTorch and the CUDA-PyTorch. Nonetheless, inherent 
disparities in computation between OpenCL and CUDA 
can lead to slight result variations, which, over time, might 
slightly affect the outcomes. This accounts for the perfor-
mance differences observed between OpenCL-PyTorch and 
the CUDA-PyTorch. However, considering the loss reduc-
tion trend and the trained model’s performance, training 
with OpenCL-PyTorch yields results comparable to the 

Table 5  Operator correctness

Operator Correctness

Abs ✓

EmbeddingBag ✓

AdaptativeMaxPool2d ✓

AdaptativeAvgPool2d ✓

Softmax ✓

GridSampler2d ✓

GroupNormal ✓

Trace ✓

Dropout ✓

(a) Time Sequence Prediction

(b) VAE

Fig. 7  The losses during the training

Table 6  Model performance comparison

Model Indicator OpenCL CUDA

VAE Loss 105.6090 105.4507
Time sequence
prediction

Loss 6.4e–6 7.8e–6

VGG16 Accuracy (%) 52.57 50.80
Super resolution PSNR(dB) 24.5237 24.3924
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CUDA-PyTorch. This similarity confirms the correctness 
of OpenCL-PyTorch’s training process.

5.3  Evaluation of computational efficiency

Our computational efficiency evaluation compared OpenCL-
PyTorch with CUDA-PyTorch regarding operator calcula-
tion and overall model training times.

Based on ten selected operators, Table 7 reveals that 
OpenCL-PyTorch’s single-operator execution time is gener-
ally about two or three times longer than CUDA-PyTorch’s. 
This trend extends to model training times, where OpenCL-
PyTorch consistently underperforms compared to CUDA-
PyTorch. As illustrated in Table 8, the training times for 
OpenCL-PyTorch are consistently higher than those for 
CUDA-PyTorch. The training performance disparity 
between OpenCL-PyTorch and CUDA-PyTorch exhibits 
notable variation among various models. This variation is 
attributed to the diverse set of operators invoked during the 
training process of each model, where the performance dis-
parity between these operators is not uniform. For instance, 
for the VGG16 model, the training times of OpenCL-
PyTorch and CUDA-PyTorch are closely matched, owing to 
the similar performance of the convolution-related operators 
in both OpenCL and CUDA implementations. However, for 
Time Sequence Prediction, OpenCL-PyTorch’s training time 
is over five times that of CUDA-PyTorch, due to the signifi-
cant performance differences in the operators utilized during 
the model’s training process. In summary, the discrepancies 

in model training efficiency are generally caused by the effi-
ciency variations of the operators involved.

Based on the efficiency evaluation regarding operator cal-
culation and overall model training times, we can observe 
a discrepancy in the computational efficiency of OpenCL-
PyTorch and CUDA-PyTorch. The observed performance 
discrepancy between OpenCL-PyTorch and CUDA-PyTorch 
can be attributed to differences in inherent design and opti-
mization capabilities. CUDA is NVIDIA’s proprietary 
computing platform and programming model, which has 
been meticulously optimized for NVIDIA GPUs, offer-
ing advanced features like direct support for Tensor Cores. 
OpenCL is a framework for writing programs that execute 
across heterogeneous platforms and offers a more versatile 
solution. This broad compatibility ensures that applications 
written in OpenCL can run on diverse devices without being 
tied to a specific vendor’s ecosystem. However, this versatil-
ity means that the performance of OpenCL applications may 
reach a different peak performance than CUDA on NVIDIA 
GPUs, primarily due to the lack of specific hardware opti-
mizations and the generic nature of OpenCL that aims to 
accommodate a wide variety of computing devices. The 
generic approach of OpenCL must cater to a wide range of 
computing devices, making it challenging to optimize for 
any single type of hardware as effectively as CUDA does 
for NVIDIA GPUs. Despite these performance differences, 
OpenCL remains a valuable tool for developers seeking to 
write portable code that can leverage the computing power 
of various platforms, highlighting the trade-off between peak 
performance and broad hardware compatibility.

5.4  Evaluation of the management method

In our study, we conducted ablation experiments with six 
randomly chosen operators to assess the effectiveness of 
the unified device and memory management approach for 
OpenCL in OpenCL-PyTorch. In OpenCL-PyTorch, the 
integration of a unified OpenCL device and memory man-
agement system allows direct mapping of DL framework 
tensor storage to OpenCL memory, significantly reducing 
the memory copying overhead between CPU and OpenCL 
devices. To evaluate the benefits of this unified approach, we 
designed a specific ablation study. In this study, we removed 
the unified OpenCL management system from OpenCL-
PyTorch, instead mapping tensor storage to the CPU mem-
ory. This meant that operators, even when utilizing OpenCL 
for computations, relied on tensors stored on the CPU side. 
This modification allowed us to compare the computation 
performance under different input storage scenarios. The 
“OpenCL-PyTorch w/o management” in Fig. 5 illustrates 
this comparison.

Figure 8 illustrates the efficacy of the unified memory 
and device management implemented in OpenCL-PyTorch. 

Table 7  Operator calculation time for comparison (microseconds)

Operator OpenCL CUDA

Abs 42.23 15.86
EmbeddingBag 132.2 37.44
AdaptativeMaxPool2d 41.03 15.68
AdaptativeAvgPool2d 73.84 23.60
Softmax 38.77 16.52
GridSampler2d 265.3 12.69
GroupNormal 77.91 22.62
Trace 104.2 13.27
Dropout 176.8 14.33

Table 8  Model training time for comparison (seconds)

Model OpenCL CUDA

VAE 136.03 69.95
Time sequence prediction 1072.48 203.01
VGG16 661.05 524.59
Super resolution 129.73 36.87
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Our proposed unified management approach effectively 
eliminates unnecessary data copying during operator com-
putations, as illustrated by the “No Copy” segment in red 
in the graph. In contrast, the computation times observed 
without this optimization, shown in blue as “With Copy”, 
are markedly higher. The horizontal axis represents the 
data volume handled by the operators (ranging from 221 to 
2
26 ). As data volume increases, the difference in computa-

tion time becomes more pronounced. Notably, for operators 
like “abs”, “avgpool2d”, and “softmax”, we observe a dra-
matic reduction in execution time by over 94%. Similarly, 
“renorm” and “cross” operators saw their invocation times 
decrease by over 80%, and the “scan” operator experienced 
a reduction of more than 40%. These results demonstrate 
that the time cost of data copying far exceeds the time cost 
of computations. This apparent contrast validates the signifi-
cant efficiency enhancements achieved through our unified 
management method.

6  Conclusion

In this paper, we implement OpenCL-PyTorch, an OpenCL-
based extension of PyTorch, it can utilize manufacturer-
neutral OpenCL devices for the computation of DL models. 
Moreover, we propose a unified OpenCL device and memory 
management method based on our analysis of the OpenCL 
operator, which exhibits a nice performance improvement. 
Experiments using some typical DL models and randomly 

selected operators have demonstrated the correctness of 
OpenCL-PyTorch and the effectiveness of our proposed 
unified OpenCL management method. We take the first step 
to implement an OpenCL-based extension of PyTorch. In 
the future, we will optimize the performance and verify the 
correctness of OpenCL-PyTorch in more DL models.
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