
Vol.:(0123456789)

CCF Transactions on High Performance Computing (2024) 6:287–300
https://doi.org/10.1007/s42514-024-00186-y

REGULAR PAPER

Opencl‑pytorch: an OpenCL‑based extension of PyTorch

Yicheng Sui1 · Yufei Sun1,2 · Changqing Shi1 · Haotian Wang1 · Zhiqiang Zhang2 · Jiahao Wang1 · Yuzhi Zhang1,2

Received: 24 October 2023 / Accepted: 11 March 2024 / Published online: 8 April 2024
© China Computer Federation (CCF) 2024

Abstract
Currently, most Deep Learning (DL) frameworks support only CUDA and ROCm environments, limiting their use to NVIDIA
and AMD GPUs. Since current High-Performance Computing (HPC) usually uses different types of heterogeneous devices
to accelerate computing, some HPCs cannot utilize heterogeneous devices for computing based on the DL frameworks. To
address this problem, we introduce OpenCL-PyTorch, a PyTorch extension based on OpenCL. This extension enables the
deployment of DL models on a broader range of OpenCL devices, encompassing CPUs, GPUs, and other accelerators. A
standout feature of OpenCL-PyTorch is our novel unified OpenCL device and memory management approach, which signifi-
cantly enhances performance. We rigorously evaluated OpenCL-PyTorch with various DL models, confirming its accuracy
and effectiveness. The validation of the management approach further underscores the importance of our unified device and
memory management in optimizing operator performance.

Keywords Deep learning · Framework · PyTorch · OpenCL

1 Introduction

Deep learning (DL) frameworks like PyTorch (Paszke et al.
2019), TensorFlow (Abadi et al. 2016), MXNet (Chen et al.
2015), and Caffe2 are indispensable tools for constructing
DL models. They provide building blocks for designing,
training, and validating DL models through a high-level
programming interface. Using these frameworks, develop-
ers can efficiently define a DL model’s structure, configure
the optimizer, and process raw data for training and deploy-
ment (Pouyanfar et al. 2018). As DL models have evolved
in recent years, becoming deeper and encompassing more
parameters, there has been a proportional surge in computa-
tional power requirements. To address this, DL frameworks
have integrated support for heterogeneous parallel program-
ming, leveraging the robust computational capabilities of
devices such as GPUs (Nguyen et al. 2019).

However, as shown in Table 1, the types of programming
models they support are limited. Only a few manufactur-
ers’ devices can be utilized for computation. In recent years,
with the development of computing devices such as graph-
ics processing unit (GPU), field-programmable gate array
(FPGA), digital signal processor (DSP), and application-
specific integrated circuit (ASIC), some heterogeneous
devices from other manufacturers can also provide excellent
computing power and can be used for the computation of DL
models (Reuther et al. 2020, 2021). Some HPC machines
usually use these heterogeneous devices to accelerate cal-
culations. If these heterogeneous devices can be supported
in DL frameworks, it will help to use HPC machines to train
DL models. Therefore, the heterogeneous programming
models supported natively by the DL frameworks must be
extended. Utilizing multiple types of devices by supporting
a common programming model is feasible. In this way, DL
frameworks can fully use the computing power of different
types of devices.

As an open and portable heterogeneous programming
standard, OpenCL can code based on a unified API and
run on different heterogeneous computing devices, which
has high versatility and strong portability. It creates a
hardware-independent software development environment
that supports different levels of parallelism and can be effi-
ciently mapped to single or multi-device homogeneous or

 * Yufei Sun
 yufei_sun@sina.com

 Yicheng Sui
 suiyicheng@mail.nankai.edu.cn

1 College of Software, Nankai University, Hongda 300457,
Tianjin, China

2 Haihe Lab of ITAI, Hi-Tech Area 300480, Tianjin, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-024-00186-y&domain=pdf

288 Y. Sui et al.

heterogeneous systems consisting of CPUs, GPUs, FPGAs,
and other devices. Adding support for OpenCL in the DL
framework is an effective way to use the computing power
of various types of devices. PyTorch strives to make writing
models, data loaders, and optimizers as easy and productive
as possible (Paszke et al. 2019). Thus, it is widely used in
scientific research. Adding support for OpenCL in PyTorch
is valuable so that various computing devices can be used to
train and deploy DL models.

Therefore, in this paper, we implement OpenCL-PyTorch,
an OpenCL extension of PyTorch, and propose a unified
OpenCL management method for performance improve-
ment. The main contributions of this paper are as follows:

1. We implemented OpenCL-PyTorch, an OpenCL-based
extension of PyTorch, which could utilize multi-manu-
factured devices and support commonly used DL mod-
els. This implementation is extensible, and developers
can add new operators based on the usage of different
models.

2. We proposed a novel unified OpenCL device and
memory management method, which has been used in
OpenCL-PyTorch. OpenCL-PyTorch could implicitly
manage OpenCL device and memory, avoiding unneces-
sary memory copying and creation overhead. Based on
experiments, we demonstrate that the unified OpenCL
management method improves performance signifi-
cantly.

3. Based on the development process of OpenCL-PyTorch,
we summarize some experience of developing OpenCL
operators for specific DL models, including the relation-
ship between common operators and OpenCL functions
and the experience of using OpenCL-based acceleration
libraries.

To evaluate the correctness of OpenCL-PyTorch we imple-
mented, we have trained some typical DL models with it
and compared them with the models trained with native
PyTorch. The experiment results prove that the OpenCL-
PyTorch can correctly train and deploy the DL models. To
verify the effectiveness of the unified OpenCL manage-
ment method, we selected some commonly used operators
to compare the performance with or without the manage-
ment. The experiment results prove that the unified OpenCL

management method proposed in this paper improves per-
formance significantly.

The remainder of this paper is organized as follows: In
Sect. 2, we introduce the heterogeneous programming mod-
els, related works, and challenges. In Sect. 3, we elaborate
on OpenCL-PyTorch’s framework. In Sect. 4, we introduce
the experience of OpenCL-PyTorch’s development. Later
in Sect. 5, we depict our experimental setup and results and
conclude our paper in Sect. 6.

2 Background and challenges

2.1 Native support for heterogeneous
programming models

DL frameworks make a performance profit from using some
specialized devices present in accelerated computing envi-
ronments. The current mainstream solution has been to use
GPUs as general-purpose processors. Nowadays, popular
alternatives to GPUs include FPGA and other dedicated
devices for DL acceleration offered by some IT companies
(Nguyen et al. 2019). To utilize these devices, DL frame-
works usually provide native support for some heterogene-
ous programming models.

However, the support should be more comprehensive.
Only a few programming models corresponding to the main-
stream manufacturer can be supported by DL frameworks.
We list the support of some mainstream DL frameworks
for heterogeneous programming models in Table 1. Among
them, CUDA and HIP are programming models provided
by NVIDIA and AMD, respectively, which can utilize the
GPU device of the corresponding manufacturer to perform
efficient parallel computing. They are suitable for the charac-
teristics of high parallelism of some operators in deep neural
networks. SYCL (Keryell et al. 2015) is a free high-level
abstract programming model that can utilize some manu-
facturers’ FPGAs. It is based on different heterogeneous
programming models, such as OpenCL. However, the types
of heterogeneous programming models supported are also
limited. If using OpenCL as the underlying implementation
of SYCL, you need to provide additional extensions in the
implementation of OpenCL, thus further limiting the use
of SYCL.

In summary, due to the limited support of the DL frame-
work for the programming model, manufacturer-neutral
devices cannot be supported. Even though some hardware
from other manufacturers has a massively parallel architec-
ture suitable for accelerating matrix-based operators, these
devices cannot be used for DL model computations due to
the lack of programming model support. Moreover, OpenCL
can provide compatibility across heterogeneous hard-
ware from any vendor. Therefore, when the deep learning

Table 1 Heterogeneous programming models in DL frameworks

TensorFlow PyTorch MXNet

CUDA ✓ ✓ ✓

HIP ✓ ✓ ✓

SYCL ✓ ✗ ✗
OpenCL ✗ ✗ ✗

289Opencl-pytorch: an OpenCL-based extension of PyTorch

framework can support OpenCL, it can use a manufacturer-
neutral device.

2.2 Related work

Some existing studies have proposed methods for supporting
OpenCL in DL frameworks.

OpenCL Caffe: The Caffe framework (Jia et al. 2014) was
initially written and developed in C++ and CUDA. OpenCL
Caffe (Gu et al. 2016) targets in transforming the popular
CUDA based framework caffe into OpenCL backend. The
CUDA layer is responsible for optimizing the allocation and
use of hardware resources, such as task scheduling between
CPU and GPU, memory management, and task transmission.
OpenCL Caffe migrates the three layers of the C++ machine
learning interface, Wrapper, and GPU Kernel layer by layer.
At the same time, it also analyzes performance bottlenecks
through various analysis tools and proposes corresponding
optimization techniques. Among them, according to the
characteristics of OpenCL runtime compilation, it caches
the compiled program, avoiding the overhead caused by
repeated program compiling.

OpenCL-darknet: Darknet (Redmon 2013–2016) is a DL-
based target detection framework known for its fast speed
and simple structure, but it can only be based on NVIDIA
GPU accelerated computing. In order to make Darknet avail-
able for general-purpose accelerator hardware, OpenCL-
Darknet (Koo et al. 2021) converts CUDA-based Darknet
to Darknet supporting OpenCL backend, and achieves per-
formance similar to the original CUDA version. OpenCL-
Darknet converts basic arithmetic functions, matrix multi-
plication and other operators into the OpenCL backend to
minimize unnecessary data transmission between the host
and device.

cltorch: cltorch is an OpenCL backend for the Torch scien-
tific computing framework (Ronan et al. 2017), offering a
high-performance matrix library that leverages GPU com-
putational power. It includes features like standard opera-
tion support, profiling tools, point tensors to reduce pipe-
line stalls, custom user kernels, and compatibility with other
libraries. However, cltorch cannot be applied to PyTorch
because it is specifically designed for the Torch framework,
which has a different architecture and API than PyTorch.
PyTorch uses a different backend and is not compatible with
the Torch-specific implementations and extensions provided
by cltorch.

pytorch-dlprim: Pytorch_dlprim (Beilis 2023b), an
OpenCL backend for PyTorch based on DLPrimitives
(Beilis 2023a), facilitates the training of specific vision

networks, such as AlexNet and ResNet, on OpenCL-com-
patible devices. This implementation has successfully vali-
dated these networks’ forward and backward propagation,
benchmarking against CPU performance for accuracy. It’s
important to note that this repository represents an early
version, focusing on establishing foundational functional-
ity and initial testing, and thus have limitations in terms of
comprehensive functionality and optimized performance.

While previous efforts have converted the Caffe and
Darknet frameworks to OpenCL, these adaptations were
limited to kernel functions and overlooked crucial aspects
like device abstraction. Moreover, while Cltorch provides
an OpenCL extension for the Torch framework, it cannot be
directly applied to PyTorch. Despite sharing similar design
philosophies, Torch and PyTorch diverge significantly in
code implementation and architectural design, rendering
Cltorch incompatible with PyTorch. In contrast, Pytorch-
dlprim focuses primarily on implementing specific visual
networks. Our work, however, goes beyond these previous
endeavors. We aim to fully extend PyTorch with OpenCL
support, encompassing the implementation of OpenCL
kernel functions and the comprehensive management
of OpenCL devices and memory. This holistic approach
addresses the gaps in existing adaptations and aligns with
our goal of a complete OpenCL extension for the PyTorch
framework.

2.3 Challenge

To add the extension for the OpenCL programming model in
the PyTorch framework, we faced the following challenges:

1. PyTorch has a huge amount of code and complex hier-
archical relationships. We need to find the native opera-
tor implementation function from the source code of
PyTorch and implement the corresponding calculation
function based on OpenCL. This makes us face sig-
nificant challenges when implementing OpenCL-based
operators.

2. The existing methods do not provide a unified OpenCL
management. DL frameworks do not support OpenCL
devices and memory. On the one hand, users can only
use a single specific OpenCL device and not specify
different OpenCL devices. On the other hand, repeated
memory copying and creation are performed during
execution, resulting in a large amount of unnecessary
overhead and additional memory usage.

3. A large number of operators are usually provided in the
DL framework, but the existing methods do not sum-
marize the implementation of these operators. There-
fore, when using OpenCL to develop these operators, we
are faced with a huge development workload, and some

290 Y. Sui et al.

OpenCL device-side codes cannot be reused, increasing
the development difficulty.

3 Methodology

In this section, we will elaborate on the architecture of
OpenCL-PyTorch addressing the first challenge and the
unified OpenCL management method addressing the sec-
ond challenge. Moreover, we will detail the OpenCL-based
operator development method, which is the most important
work in implementing OpenCL-PyTorch.

3.1 Overall architecture

As an optimized tensor library, PyTorch has a large amount
of source code with complex hierarchical relationships. Dif-
ferent modules correspond to different levels and functions.
However, we only need to modify or extend some modules
to support OpenCL in PyTorch. To reduce the coupling
between the OpenCL extension and PyTorch, we designed
the OpenCL-PyTorch architecture based on the adapter
design pattern (McDonough and McDonough 2017) through
the analysis of the PyTorch source code. This adapter archi-
tecture addresses the first challenge. Figure 1 shows the
architecture of OpenCL-PyTorch. The OpenCL extension
we implemented acts as a PyTorch adapter, which adapts the
OpenCL kernel function library to the PyTorch framework
at the operator layer.

Specifically, the region inside the dotted line shows the
modules of the native PyTorch. The region outside the

dotted line is OpenCL-PyTorch, which supports OpenCL
by an extension. From a view of module hierarchy, PyTorch
mainly has three parts: frontend, engine, and operators.
The frontend provides a series of Pythonic interfaces, which
can parse the user’s code, including DL model architecture,
optimizer, scheduler, data loader, etc. The graph engine
generates a dataflow graph based on the user-defined DL
model architecture and gradually calls operators to com-
pute according to the order in the dataflow graph. Operators
are the functions that respond to computation, take data as
input, and return results. In PyTorch, they perform all core
computing functions. Among these three parts, the Pythonic
frontend and graph engine have nothing to do with the pro-
gramming model that executes the computation; only the
operator execution process is related to the programming
model. OpenCL can be used for computation as long as
OpenCL-based operators are implemented. We designed an
OpenCL-based operator module at the operator level as an
adapter. It utilizes the OpenCL kernel library for computa-
tion and offers the same interfaces for PyTorch. This way,
users do not need to modify their codes explicitly to use
OpenCL.

3.2 Unified OpenCL device and memory
management

To efficiently utilize OpenCL for computation, it is neces-
sary to optimize the execution process of OpenCL opera-
tors. As shown in Fig. 2, PyTorch provides implicit memory
and device management to perform computation efficiently,
which is usually used during the execution of operators. It
is necessary to manage memory and devices similarly, as

Users’Code

PyTorch APIPython Library

Frontend

NativeImplement

CPU Operator

Engine

Graph Engine

CUDA Operator

NativePyTorch

OpenCL Operator

OperatorLibrary

OpenCL
Kernel

OpenCL
Abstraction

KernelLibrary

OpenCL
Library

Fig. 1 The overall architecture of OpenCL-PyTorch

Engine

User-Defined Models

Operators

CUDA Operators OpenCL Operators

Dynamic Computing Graph

CPU Operators

Implicit management

CUDA Device OpenCL DeviceCPU Device

CUDA Memory OpenCL MemoryCPU Memory

Fig. 2 Implicit management in PyTorch

291Opencl-pytorch: an OpenCL-based extension of PyTorch

mentioned in Sect. 2.3. To address the second challenge,
we propose a unified OpenCL device and memory manage-
ment method based on analyzing the operator execution pro-
cess and the characteristics of the OpenCL programming
model. In this section, we will introduce the two parts of the
method: OpenCL memory management based on PyTorch
tensor mapping and OpenCL device management based on
PyTorch device type support.

3.2.1 OpenCL device management

The execution of OpenCL device-side functions needs an
initialized OpenCL device. Some existing methods for
OpenCL device storage based on singletons are proposed to
avoid repeated initialization. They can store the initialized
OpenCL device in a singleton, ensuring it can only be initial-
ized once. However, they do not support OpenCL devices
in the DL frameworks. Therefore, they cannot use multiple
devices simultaneously when multiple OpenCL devices can
be used. Users can only use a specific OpenCL device set
in the source code, cannot specify OpenCL devices on the
frontend, and cannot utilize multiple OpenCL devices. Users
should not be aware of the details of the device implementa-
tion. They need to use OpenCL devices for computation as
efficiently as possible with CUDA devices, which requires
full support for OpenCL device types in the PyTorch frame-
work and implicit management of these devices. Therefore,
it is necessary to manage OpenCL devices in PyTorch.

To manage OpenCL devices in PyTorch, we proposed a
OpenCL device management method with two parts:

1. Device Type Support: PyTorch need to support OpenCL
device types so users can use OpenCL devices like
CUDA.

2. Device Information Storage: PyTorch need to store
OpenCL device-related information implicitly to avoid
repeated overhead.

Device Type Support: Based on the analysis of the code
of PyTorch, we found that device type support and object
management are implemented separately in PyTorch. It does
not impose requirements on the implementation of device
type. Switching different branches takes the device type as
the judgment condition only. Figure 3 shows the process of
calling the operator implementation function according to
the device type in the execution of the matrix multiplication
operator. The mm operator could call different functions to
correspond to different device types. Among them, “mm_
cpu” and “mm_cuda” are natively developed functions, and
“mm_opencl” is a function we developed based on OpenCL.
PyTorch will automatically choose the appropriate function
when calling the operator.

To support the OpenCL device type, we need to add an
OpenCL branch to each switch that selects the execution
path based on the device type so that the corresponding
function can be called when the OpenCL device is used
for computation. From a view of the source code, PyTorch
switches branches in backend based on Dispatch Key and
supports the device in frontend based on Device Type. For
different device types, PyTorch will create different Dispatch
Key collections in the context, which are used for switching
to different branches. Corresponding to the Device Type,
PyTorch provides an enumeration object to save the infor-
mation of supported device types. In contrast, the Dispatch
Key is implicitly stored in the context. It is automatically
modified according during the execution, while Device Type
is explicitly stored in Tensor properties and specified by the
user. They correspond to frontend and backend, respectively,
and cooperate to switch branches. Although PyTorch does
not natively support OpenCL, it retains enumeration values
for the device type of OpenCL. We map the OpenCL device
to the unmapped Dispatch Key reserved by PyTorch to sup-
port the OpenCL device type.

This way, we can add support for OpenCL devices in
PyTorch. Users can specify OpenCL devices on the front
end just like using CUDA devices by adding the Device
Type of OpenCL. Correspondingly, during the execution in
the backend, PyTorch will automatically select the operator
function corresponding to OpenCL according to the Dis-
patch Key mapping the Device Type of OpenCL.

Device Information Storage: To manage OpenCL
devices, we designed an OpenCL device manager, which
stores OpenCL device information and provides an inter-
face to get OpenCL device objects based on the device
name. Similar to the existing device storage method
based on the singleton, we also use a singleton method
to initialize it. That is, it can be only initialized once in
the entire lifecycle of the PyTorch process. All available
device objects are stored, which is also initialized only
once. This way, users can use all the OpenCL devices in
one process and do not need to be initialized repeatedly,

mm(MatMul)
Operator

Device
Type?

mm_cpu
Function

mm_cuda
Function

mm_opencl
Function

CPU

CUDA

OpenCL

Fig. 3 Device type support of PyTorch

292 Y. Sui et al.

avoiding unnecessary performance overhead. The device
manager acts as a singleton object that can be used dur-
ing the execution of all OpenCL operators. It provides
an interface for obtaining OpenCL device objects. In this
way, the user can specify the device to be used on the front
end, and PyTorch can obtain the specified OpenCL device
object according to the index of the specific device on the
back end to perform calculations.

Figure 4 shows a use case of the device manager. When
a function needs to obtain the device, it can map the cor-
responding device according to the index. Device Manager
has an initialization function called only once to initialize
all OpenCL device objects and stores them in a Device
Manager object. For example, when calling the “mm_
opencl” function, it can obtain a specific OpenCL device
by the device name stored in Tensor properties from the
Device Manager for computation. If it is the first opera-
tor called in this PyTorch process, Device Manager will
call the initialize function to initialize all OpenCL device
objects.

3.2.2 OpenCL memory management

Data exchange is often the main factor affecting perfor-
mance. Memory copying will cause a lot of overhead in
the computation of DL model that frequently calls operator
executions. As shown in Fig. 5, we compared the operator
execution process with and without memory management.
The tensor cannot be stored on the OpenCL device without
memory management. Before the computation based on
OpenCL, the OpenCL device must copy the tensors’ data
stored on the CPU to the OpenCL device. After the calcu-
lation, it must copy the data stored on the OpenCL device
to the CPU side and assign it to the tensor corresponding
to the output. Then it will release the useless memory. On
the one hand, such an execution process increases unnec-
essary performance overhead (such as memory allocation,
memory release, and memory copy). It makes the operator
execution process more complicated. On the other hand, it
also increases overall memory usage. The same data must be
stored simultaneously on the CPU and the OpenCL device
sides, reducing memory space utilization efficiency.

Correspondingly, as shown in the lower part of Fig. 5,
when the tensor can be stored on the OpenCL device and
flow in the dataflow graph, the operator execution process
becomes much more straightforward. Therefore, to imple-
ment OpenCL memory management in the PyTorch frame-
work, we need to bind the OpenCL device-side memory to
PyTorch tensor so that the underlying OpenCL device-side
memory can be managed through the Tensor management
mechanism in the PyTorch framework.

To manage OpenCL memory within the PyTorch frame-
work, enabling a tensor to store device-side memory in
OpenCL is crucial. We began by analyzing the implemen-
tation of a tensor in PyTorch, which comprises two primary
components: properties and data storage. The property sec-
tion holds information like tensor shape, storage device, and

Device Manager

Get Device

OpenCL Device

OpenCL Device

OpenCL Device

mm_opencl Map Device

Function

Initialize

Fig. 4 Device manager use case

Input Tensor
(CPU)

Input Data
(CPU)

Input Data
(OpenCL)

Output Data
(OpenCL)

Output Data
(CPU)

Output Tensor
(CPU)

Input Tensor
(OpenCL)

Input Data
(OpenCL)

Output Data
(OpenCL)

Output Tensor
(OpenCL)

Operator Execution

Operator Execution

With Memory Managemen

Without Memory Management

t

Fig. 5 Comparison of memory management

293Opencl-pytorch: an OpenCL-based extension of PyTorch

memory access step size, all vital during operator execution.
The data component typically corresponds to a continuous
memory address on the host or device. When executing
OpenCL or CUDA kernel functions, the computing device
interacts with these memory addresses for reading or writ-
ing data.

We can set the corresponding OpenCL device in the
tensor properties based on device management. However,
it is not enough. The tensor’s most essential data storage
part must be transferred to the OpenCL device. As shown
in Fig. 6, the solid line represents PyTorch’s device stor-
age method natively supported. The host-side or CUDA
device-side memory address is stored in the tensor for use
in the computation process. Similarly, we must also store
the OpenCL device-side memory address in the tensor. Spe-
cifically, when tensors are created on an OpenCL device,
memory needs to be allocated on the OpenCL device. Then,
PyTorch can use this memory address to initialize the Stor-
age object and use this object to initialize the tensor. This
address will be stored in the tensor, and when PyTorch needs
to read data, the OpenCL device-side memory address can
be obtained from the storage property of the tensor.

Moreover, PyTorch provides tensor lifecycle manage-
ment. When some tensors are not used, they will be automat-
ically destroyed by PyTorch. We bind the OpenCL device-
side memory to the tensor. The lifecycle of the PyTorch
tensor and OpenCL device-side memory are synchronized.
The lifecycle management of OpenCL memory can be real-
ized based on that of the tensor. When a Tensor is created,
it will allocate memory on the OpenCL device side; when
a Tensor is destroyed, it will release the memory on the
OpenCL device side at the same time. In this way, through
the method mentioned above, the device-side memory on
OpenCL can be automatically allocated and released accord-
ing to the lifecycle of the tensor. More importantly, tensors
stored on OpenCL devices can flow in the dataflow graph,
reducing the overhead caused by unnecessary memory
copies.

3.3 Operator development

Besides the unified OpenCL management method mentioned
above, operator development based on OpenCL is critical
to implement OpenCL-PyTorch. First, we will develop the
functions for computation based on the OpenCL program-
ming model. As mentioned in Sect. 3.2.1, PyTorch chooses
the appropriate function based on the Dispatch Key when
calling an operator. Then, we must bind the functions to the
Dispatch Key corresponding to OpenCL to use these operators
for computation.

As for the development of the device-side functions, we can
develop OpenCL kernel functions. Some researchers (Mar-
tinez et al. 2011; Harvey and De Fabritiis 2011) proposed
CUDA-to-OpenCL source-to-source translator. However,
these translators cannot be directly applied to the translation
of kernel functions in DL framework. On the one hand, due
to the differences in programming languages between CUDA
and OpenCL, these translators cannot translate codes with
C++ characteristics, such as templates and classes used in
CUDA kernel functions. On the other hand, the performance
and availability of these automatically converted OpenCL
kernel functions on different devices cannot be guaranteed,
and we cannot optimize their performance easily. Therefore,
we manually develop the OpenCL kernel function code. The
method of developing kernel functions based on OpenCL is
prevalent, and this is not our innovation, so we will not repeat
it here. Finally, we developed over a hundred OpenCL ker-
nel functions, which support different data types based on the
compilation options.

TORCH LIBRARY IMPL(aten ,
PrivateUse1 , m) {
m. impl (‘ ‘ aten : :mm’ ’ ,&mm opencl) ;

}

After developing OpenCL kernel functions, we bind them
to the Dispatch Key corresponding to OpenCL. For example,
the code above shows how to bind a function to a Dispatch
Key. “PrivateUse1” is used as the Dispatch Key correspond-
ing to OpenCL. The corresponding operator is “aten::mm”,
and the function’s name is “mm_opencl”. This way, when the
mm operator is called, and the specified device is OpenCL,
the mm_opencl function we developed will be called.

4 Development experience

Here we introduce some development experience of
OpenCL-PyTorch. First, we classify commonly used oper-
ators based on the implementation according to our experi-
ence in the development process. Then we introduce some

CPU Memory CUDA Memory OpenCL Memory

Data Storage

Tensor

Property

Fig. 6 The structure of tensor in PyTorch

294 Y. Sui et al.

acceleration libraries used in PyTorch and the experience
of developing some common operators based on OpenCL
acceleration libraries.

4.1 Commonly‑used OpenCL functions

Table 2 shows the correspondence between operators com-
monly used in DL models and OpenCL kernel functions.
We selected three commonly used functions: Reduction,
GEMM, and Element-Wise. Reduction is commonly used
in data-parallel programming, which reduces a vector of
data to a single value (Jin and Finkel 2018). The func-
tions related to reduction are usually used as a part of an
operator, such as the summation part in “Softmax”. These
operators are widely used in DL models and usually have
a significant computational overhead. It is necessary to
implement OpenCL-based reduction functions efficiently
and in parallel. GEMM corresponds to the widely used
matrix multiplication operator, which implements the
matrix multiplication computation and is usually called
by other operators, such as the GEMM-based convolu-
tion operator. After converting an image into a column-
wise matrix, the GEMM function will be called. Besides,
GEMM is also used in matrix multiplication operators
directly, which is used to compose the linear layer in a DL
model. GEMM is one of the most important operators in
the OpenCL-based DL framework and usually accounts for
the most significant computation overhead in a DL model.
Element-wise functions refer to performing element-by-
element operators on the data of one or more vectors. They
are widely used in element-wise operators, such as adding
or subtracting the corresponding elements in two or more
tensors, calculating the maximum value, etc. Besides, they
are also used in some activation functions, such as Relu,
Sigmoid, etc.

4.2 OpenCL acceleration libraries

With the introduction of some typical DL models (such
as CNN (Li et al. 2021), RNN (Tarwani and Edem 2017),
Transformer (Kalyan et al. 2021), etc.), the main structures
of deep neural network (DNN) have primarily converged,
and a small number of operators occupy most of the compu-
tational overhead. For example, the convolution and pooling
operators in the CNN usually take most of the computational
overhead. In the Transformers model, the matrix multiplica-
tion operator consumes most of the computational overhead
(Park et al. 2020). Therefore, optimizing these commonly
used operators based on existing high-performance libraries
can significantly improve the computational efficiency of DL
models. As mentioned in section 2, to optimize DNN opera-
tors and matrix computing operators, PyTorch integrates the
CUDA-based DNN library cuDNN and Basic Linear Alge-
bra Subprograms (BLAS) library cuBLAS, respectively,
which significantly improves the computing performance
based on CUDA.

Therefore, to improve computing performance based on
OpenCL, we also use the DNN library and BLAS library.
We integrated the CLBlast (Nugteren 2018) and MIOpen
(Khan et al. 2019) libraries to accelerate matrix multiplica-
tion and DNN-related operators.

5 Evaluation

5.1 Experiment design

5.1.1 Experimental setup

In this section, we aim to compare OpenCL-PyTorch and
CUDA-PyTorch under identical hardware conditions, focusing
on assessing the computational efficiency and correctness of
OpenCL-PyTorch. We also conduct ablation studies to dem-
onstrate the impact of our unified memory and device manage-
ment approach on computational efficiency. Our experiments
utilize PyTorch version 1.10, with CUDA-PyTorch installed
and OpenCL-PyTorch deployed on the server. We chose
NVIDIA GPUs for the experiments, leveraging their ability to
support both CUDA and OpenCL environments. The detailed
experimental settings are shown in Table 3.

5.1.2 Deep learning models for evaluation

In our experiments, we select four widely-used deep learning
models from PyTorch’s examples1 for experimentation. The

Table 2 Correspondence of some important OpenCL functions and
operators

Function Operator for Example

Reduction Softmax, LogSoftmax
Normalize
Sum, Maximum, Minimum

GEMM Matrix Multiplication
Batch Matrix Multiplication
LSTM
Convolution

Element-Wise Add, Sub, Multiplication, Division
Activation(Relu, Glu, Sigmoid, etc.)

1 PyTorch Examples: https://github.com/pytorch/examples.

295Opencl-pytorch: an OpenCL-based extension of PyTorch

chosen models, which we detail in Table 4, include Convolu-
tional Neural Networks (CNN), Long Short-Term Memory
networks (LSTM), and Variational Autoencoders (VAE),
each distinct in network layer structure, dataflow graph,
operator types, and data scale. This variety is pivotal for
assessing our OpenCL-PyTorch’s ability to accurately train
and test DNN models. For instance, the CNNs test convolu-
tion and pooling layers, while the LSTMs focus on LSTM
layers, ensuring a thorough validation of the diverse opera-
tors used in OpenCL-PyTorch.

5.1.3 Evaluation metrics

As previously mentioned, with the addition of the OpenCL
extension in PyTorch, the usage of OpenCL-PyTorch and
CUDA-PyTorch is nearly identical, requiring only a modifi-
cation in the device name. Therefore, in terms of correctness
evaluation, we assess OpenCL-PyTorch from two aspects:
operator and model training.

Specifically, for operators, we utilize OpenCL-PyTorch
and CUDA-PyTorch to execute the same operators on the
same data and then compare their results. If the results are
sufficiently close, accounting for computational errors due
to different programming models, we consider the OpenCL-
PyTorch computation correct. For model training, we
evaluate the correctness of OpenCL-PyTorch and CUDA-
PyTorch by analyzing the loss reduction process when train-
ing the same models and by comparing the performance of

the trained models on test datasets using both versions of
PyTorch.

As for the models’ performance, different models serve
varied application scenarios and thus require distinct evalu-
ation metrics. Accuracy is a primary indicator for classifica-
tion tasks, as exemplified by the VGG16 network designed
for classification, where Accuracy aptly reflects its perfor-
mance. On the other hand, PSNR (Peak Signal-to-Noise
Ratio) is crucial for super-resolution models. It quantifies the
quality difference between original and processed images,
making it an ideal metric for assessing these models’ image
and video resolution enhancement capabilities. By using
PSNR, we can precisely measure the effectiveness of super-
resolution models in improving image clarity and detail.

Similarly, to compare computational efficiency, we use
OpenCL-PyTorch and CUDA-PyTorch to execute the same
set of operators and training models. We then evaluate
OpenCL-PyTorch’s efficiency by precisely measuring and
comparing their execution times, detailing specific perfor-
mance metrics such as throughput and latency to ensure a
comprehensive and fair assessment of the computational
efficiency. Then, to verify the effectiveness of our unified
memory and device management approach, we evaluate the
computational efficiency based on the computation time of
operators.

5.2 Evaluation of the correctness

In our correctness verification, we initiated by evaluating
the precision of individual operators in OpenCL-PyTorch.
Following this, we further assessed the training correctness
by examining both the trend of loss reduction and the perfor-
mance metrics of models on the test dataset. These compre-
hensive evaluations, focusing on detailed aspects of operator
and training process, collectively validate the computational
correctness of our OpenCL-PyTorch implementation.

5.2.1 Evaluation on operators

To validate the accuracy of operators within OpenCL-
PyTorch, we compare their output against CUDA-PyTorch
using specific built-in functions in PyTorch. Specially, we

Table 3 Experiment settings

Name Specification

CPU Intel(R) Xeon(R) Gold 5218
CPU@2.30GHz

RAM 187GB DDR4 2933 MT/s
GPU NVIDIA Tesla V100S
NVIDIA
CUDA Toolkit

CUDA–10.2

OpenCL CUDA 10.2 OpenCL 1.2
PyTorch 1.10

Table 4 Deep learning projects for evaluation

Name Main
Architecture

Description

Image classification CNN Training of VGG (Simonyan and Zisserman 2014) on the Cifar10 dataset
(Krizhevsky and Hinton 2009).

Time series prediction LSTM A toy example that uses LSTM (Yu et al. 2019) to learn Sine waves.
Auto-encoding
variational bayes

VAE An improved implementation of the paper “Auto-Encoding Variational Bayes
(Kingma and Welling 2013)”.

Super resolution CNN An example that uses the efficient sub-pixel convolution layer. Shi et al. (2016)

296 Y. Sui et al.

employed the torch.testing.assert_close method of PyTorch
evaluates the closeness of two tensors by considering rela-
tive and absolute tolerances. It mandates that their differ-
ence must not exceed the combined threshold, determined
by adding the absolute error threshold to the product of the
relative error threshold and the compared value. In PyTorch,
these thresholds are set explicitly at 1.3e− 6 for relative error
and 1e-5 for absolute error, providing a stringent yet prac-
tical criterion for numerical comparison in computational
operations.

As listed in Table 5, our experiment involved ten dif-
ferent operators, and the findings indicate that OpenCL-
PyTorch’s results closely align with the expected outcomes.
This consistency across all tested operators substantiates the
correctness of OpenCL-PyTorch’s operators. The operators
we have chosen for evaluation represent a broad spectrum
of functionalities, each finding its use in diverse models.
By successfully implementing and verifying these varied
operators in OpenCL-PyTorch, we demonstrate the feasibil-
ity of our approach and reinforce the assurance of operator
correctness within the framework.

5.2.2 Evaluation on model training

First, we tracked and compared the loss reduction while
training the Time Sequence Prediction and VAE models
with both OpenCL-PyTorch and CUDA-PyTorch. The com-
parative results, as depicted in Fig. 7, indicate a synchronous
loss reduction pattern across them, with each training step
showing closely matched results.

Following the training phase, we tested the models to
evaluate the performance of those trained with OpenCL-
PyTorch. These tests, based on specific performance met-
rics, were designed to rigorously assess the fidelity of the
models, ensuring that training with OpenCL-PyTorch yields
results that meet established standards of model correctness.
Table 6 shows that models trained through OpenCL-PyTorch
and CUDA-PyTorch have similar performance.

It is important to note that, we employed identical ran-
dom number seeds for training the model with OpenCL-
PyTorch and the CUDA-PyTorch. Nonetheless, inherent
disparities in computation between OpenCL and CUDA
can lead to slight result variations, which, over time, might
slightly affect the outcomes. This accounts for the perfor-
mance differences observed between OpenCL-PyTorch and
the CUDA-PyTorch. However, considering the loss reduc-
tion trend and the trained model’s performance, training
with OpenCL-PyTorch yields results comparable to the

Table 5 Operator correctness

Operator Correctness

Abs ✓

EmbeddingBag ✓

AdaptativeMaxPool2d ✓

AdaptativeAvgPool2d ✓

Softmax ✓

GridSampler2d ✓

GroupNormal ✓

Trace ✓

Dropout ✓

(a) Time Sequence Prediction

(b) VAE

Fig. 7 The losses during the training

Table 6 Model performance comparison

Model Indicator OpenCL CUDA

VAE Loss 105.6090 105.4507
Time sequence
prediction

Loss 6.4e–6 7.8e–6

VGG16 Accuracy (%) 52.57 50.80
Super resolution PSNR(dB) 24.5237 24.3924

297Opencl-pytorch: an OpenCL-based extension of PyTorch

CUDA-PyTorch. This similarity confirms the correctness
of OpenCL-PyTorch’s training process.

5.3 Evaluation of computational efficiency

Our computational efficiency evaluation compared OpenCL-
PyTorch with CUDA-PyTorch regarding operator calcula-
tion and overall model training times.

Based on ten selected operators, Table 7 reveals that
OpenCL-PyTorch’s single-operator execution time is gener-
ally about two or three times longer than CUDA-PyTorch’s.
This trend extends to model training times, where OpenCL-
PyTorch consistently underperforms compared to CUDA-
PyTorch. As illustrated in Table 8, the training times for
OpenCL-PyTorch are consistently higher than those for
CUDA-PyTorch. The training performance disparity
between OpenCL-PyTorch and CUDA-PyTorch exhibits
notable variation among various models. This variation is
attributed to the diverse set of operators invoked during the
training process of each model, where the performance dis-
parity between these operators is not uniform. For instance,
for the VGG16 model, the training times of OpenCL-
PyTorch and CUDA-PyTorch are closely matched, owing to
the similar performance of the convolution-related operators
in both OpenCL and CUDA implementations. However, for
Time Sequence Prediction, OpenCL-PyTorch’s training time
is over five times that of CUDA-PyTorch, due to the signifi-
cant performance differences in the operators utilized during
the model’s training process. In summary, the discrepancies

in model training efficiency are generally caused by the effi-
ciency variations of the operators involved.

Based on the efficiency evaluation regarding operator cal-
culation and overall model training times, we can observe
a discrepancy in the computational efficiency of OpenCL-
PyTorch and CUDA-PyTorch. The observed performance
discrepancy between OpenCL-PyTorch and CUDA-PyTorch
can be attributed to differences in inherent design and opti-
mization capabilities. CUDA is NVIDIA’s proprietary
computing platform and programming model, which has
been meticulously optimized for NVIDIA GPUs, offer-
ing advanced features like direct support for Tensor Cores.
OpenCL is a framework for writing programs that execute
across heterogeneous platforms and offers a more versatile
solution. This broad compatibility ensures that applications
written in OpenCL can run on diverse devices without being
tied to a specific vendor’s ecosystem. However, this versatil-
ity means that the performance of OpenCL applications may
reach a different peak performance than CUDA on NVIDIA
GPUs, primarily due to the lack of specific hardware opti-
mizations and the generic nature of OpenCL that aims to
accommodate a wide variety of computing devices. The
generic approach of OpenCL must cater to a wide range of
computing devices, making it challenging to optimize for
any single type of hardware as effectively as CUDA does
for NVIDIA GPUs. Despite these performance differences,
OpenCL remains a valuable tool for developers seeking to
write portable code that can leverage the computing power
of various platforms, highlighting the trade-off between peak
performance and broad hardware compatibility.

5.4 Evaluation of the management method

In our study, we conducted ablation experiments with six
randomly chosen operators to assess the effectiveness of
the unified device and memory management approach for
OpenCL in OpenCL-PyTorch. In OpenCL-PyTorch, the
integration of a unified OpenCL device and memory man-
agement system allows direct mapping of DL framework
tensor storage to OpenCL memory, significantly reducing
the memory copying overhead between CPU and OpenCL
devices. To evaluate the benefits of this unified approach, we
designed a specific ablation study. In this study, we removed
the unified OpenCL management system from OpenCL-
PyTorch, instead mapping tensor storage to the CPU mem-
ory. This meant that operators, even when utilizing OpenCL
for computations, relied on tensors stored on the CPU side.
This modification allowed us to compare the computation
performance under different input storage scenarios. The
“OpenCL-PyTorch w/o management” in Fig. 5 illustrates
this comparison.

Figure 8 illustrates the efficacy of the unified memory
and device management implemented in OpenCL-PyTorch.

Table 7 Operator calculation time for comparison (microseconds)

Operator OpenCL CUDA

Abs 42.23 15.86
EmbeddingBag 132.2 37.44
AdaptativeMaxPool2d 41.03 15.68
AdaptativeAvgPool2d 73.84 23.60
Softmax 38.77 16.52
GridSampler2d 265.3 12.69
GroupNormal 77.91 22.62
Trace 104.2 13.27
Dropout 176.8 14.33

Table 8 Model training time for comparison (seconds)

Model OpenCL CUDA

VAE 136.03 69.95
Time sequence prediction 1072.48 203.01
VGG16 661.05 524.59
Super resolution 129.73 36.87

298 Y. Sui et al.

Our proposed unified management approach effectively
eliminates unnecessary data copying during operator com-
putations, as illustrated by the “No Copy” segment in red
in the graph. In contrast, the computation times observed
without this optimization, shown in blue as “With Copy”,
are markedly higher. The horizontal axis represents the
data volume handled by the operators (ranging from 221 to
2
26). As data volume increases, the difference in computa-

tion time becomes more pronounced. Notably, for operators
like “abs”, “avgpool2d”, and “softmax”, we observe a dra-
matic reduction in execution time by over 94%. Similarly,
“renorm” and “cross” operators saw their invocation times
decrease by over 80%, and the “scan” operator experienced
a reduction of more than 40%. These results demonstrate
that the time cost of data copying far exceeds the time cost
of computations. This apparent contrast validates the signifi-
cant efficiency enhancements achieved through our unified
management method.

6 Conclusion

In this paper, we implement OpenCL-PyTorch, an OpenCL-
based extension of PyTorch, it can utilize manufacturer-
neutral OpenCL devices for the computation of DL models.
Moreover, we propose a unified OpenCL device and memory
management method based on our analysis of the OpenCL
operator, which exhibits a nice performance improvement.
Experiments using some typical DL models and randomly

selected operators have demonstrated the correctness of
OpenCL-PyTorch and the effectiveness of our proposed
unified OpenCL management method. We take the first step
to implement an OpenCL-based extension of PyTorch. In
the future, we will optimize the performance and verify the
correctness of OpenCL-PyTorch in more DL models.

Acknowledgements This research is supported by National Key R &D
Program of China grant 2021YFB0300104.

Data availability This paper proposed an extension of PyTorch and the
optimization solutions therein. In this paper, we did not explicitly use
a dataset, so no data needs to be publicly available.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no Conflict of interest.

References

Abadi, M., Barham, P., Chen, J., et al.: {TensorFlow} : a system for
{Large-Scale} machine learning. In: 12th USENIX symposium
on operating systems design and implementation (OSDI 16), pp
265–283 (2016)

Beilis, A.: dlprimitives: Deep learning primitives and mini-framework
for opencl (2023a). https:// github. com/ artyom- beilis/ dlpri mitiv es

Beilis, A.: pytorch_dlprim: Dlprimitives/opencl out of tree backend for
pytorch (2023b). https:// github. com/ artyom- beilis/ pytor ch_ dlprim

Chen, T., Li, M., Li, Y., et al.: Mxnet: a flexible and efficient machine
learning library for heterogeneous distributed systems (2015).
arXiv preprint arXiv: 1512. 01274

(a) abs (b) avgpool2d (c) cross

(d) renorm (e) scan (f) softmax

Fig. 8 The comparison of with or without unified OpenCL management

https://github.com/artyom-beilis/dlprimitives
https://github.com/artyom-beilis/pytorch_dlprim
http://arxiv.org/abs/1512.01274

299Opencl-pytorch: an OpenCL-based extension of PyTorch

Gu, J., Liu, Y., Gao, Y., et al.: Opencl caffe: accelerating and enabling
a cross platform machine learning framework. In: Proceedings of
the 4th International Workshop on OpenCL, pp 1–5 (2016)

Harvey, M.J., De Fabritiis, G.: Swan: a tool for porting cuda programs
to opencl. Comput. Phys. Commun. 182(4), 1093–1099 (2011)

Jia, Y., Shelhamer, E., Donahue, J., et al.: Caffe: Convolutional archi-
tecture for fast feature embedding. In: Proceedings of the 22nd
ACM international conference on Multimedia, pp 675–678 (2014)

Jin, Z., Finkel, H.: Optimizing an atomics-based reduction kernel on
opencl fpga platform. In: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), IEEE,
pp 532–539 (2018)

Kalyan, K.S., Rajasekharan, A., Sangeetha, S.: Ammus: A survey of
transformer-based pretrained models in natural language process-
ing (2021). arXiv preprint arXiv: 2108. 05542

Keryell, R., Reyes, R., Howes, L.: Khronos sycl for opencl: a tutorial.
In: Proceedings of the 3rd International Workshop on OpenCL,
pp 1–1 (2015)

Khan, J., Fultz, P., Tamazov, A., et al.: Miopen: An open source library
for deep learning primitives (2019). arXiv preprint arXiv: 1910.
00078

Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013).
arXiv preprint arXiv: 1312. 6114

Koo, Y., Kim, S., Yg, H.: Opencl-darknet: implementation and optimi-
zation of opencl-based deep learning object detection framework.
World Wide Web 24, 1299–1319 (2021)

Krizhevsky, A., Hinton, G.: Learning multiple layers of features from
tiny images. Handb. Syst. Autoim. Dis. 1(4) (2009)

Li, Z., Liu, F., Yang, W., et al.: A survey of convolutional neural net-
works: analysis, applications, and prospects. IEEE Trans. Neural
Netw. Learn. Syst. (2021)

Martinez, G., Gardner, M., Feng, Wc.: Cu2cl: A cuda-to-opencl trans-
lator for multi-and many-core architectures. In: 2011 IEEE 17th
International Conference on Parallel and Distributed Systems,
IEEE, pp 300–307 (2011)

McDonough, J.E., McDonough, J.E.: Adapter design pattern. In: A
Practical Approach, Object-Oriented Design with ABAP, pp.
191–205 (2017)

Nguyen, G., Dlugolinsky, S., Bobák, M., et al.: Machine learning and
deep learning frameworks and libraries for large-scale data min-
ing: a survey. Artif. Intell. Rev. 52, 77–124 (2019)

Nugteren, C.: Clblast: a tuned opencl blas library. In: Proceedings of
the International Workshop on OpenCL. Association for Comput-
ing Machinery, New York, NY, USA, IWOCL ’18 (2018). https://
doi. org/ 10. 1145/ 32049 19. 32049 24

Park, J., Yoon, H., Ahn, D., et al.: Optimus: optimized matrix multipli-
cation structure for transformer neural network accelerator. Proc.
Mach. Learn. Syst. 2, 363–378 (2020)

Paszke, A., Gross, S., Massa, F., et al.: Pytorch: an imperative style,
high-performance deep learning library. Adv. Neural Inform. Pro-
cess. Syst. 32 (2019)

Pouyanfar, S., Sadiq, S., Yan, Y., et al.: A survey on deep learning:
algorithms, techniques, and applications. ACM Comput. Surv.
51(5) (2018).https:// doi. org/ 10. 1145/ 32341 50

Redmon, J.: Darknet: open source neural networks in c (2013–2016).
http:// pjred die. com/ darkn et/

Reuther, A., Michaleas, P., Jones, M., et al.: Survey of machine learning
accelerators. In: 2020 IEEE High Performance Extreme Comput-
ing Conference (HPEC), pp 1–1 (2020). https:// doi. org/ 10. 1109/
HPEC4 3674. 2020. 92861 49

Reuther, A., Michaleas, P., Jones, M., et al.: Ai accelerator survey
and trends. In: 2021 IEEE High Performance Extreme Comput-
ing Conference (HPEC), pp 1–9 (2021). https:// doi. org/ 10. 1109/
HPEC4 9654. 2021. 96228 67

Ronan, C., Clement, F., Koray, K., et al.: Torch: a scientific computing
framework for luajit. In: A Scientific Computing Framework for
Luajit, Torch (2017)

Shi, W., Caballero, J., Huszár, F., et al.: Real-time single image and
video super-resolution using an efficient sub-pixel convolutional
neural network (2016). arXiv: 1609. 05158

Simonyan, K., Zisserman, A.: Very deep convolutional networks for
large-scale image recognition (2014). arXiv preprint arXiv: 1409.
1556

Tarwani, K.M., Edem, S.: Survey on recurrent neural network in
natural language processing. Int. J. Eng. Trends Technol. 48(6),
301–304 (2017)

Yu, Y., Si, X., Hu, C., et al.: A review of recurrent neural networks:
Lstm cells and network architectures. Neural Computat. 31(7),
1235–1270 (2019)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Yicheng Sui is a Ph.D. student in
the College of Software at Nan-
kai University. His research
interests include artificial intel-
ligence and deep learning.

Yufei Sun is a professor at the
College of Software, Nankai
University. Her research interests
include heterogeneous comput-
ing and artificial intelligence.

http://arxiv.org/abs/2108.05542
http://arxiv.org/abs/1910.00078
http://arxiv.org/abs/1910.00078
http://arxiv.org/abs/1312.6114
https://doi.org/10.1145/3204919.3204924
https://doi.org/10.1145/3204919.3204924
https://doi.org/10.1145/3234150
http://pjreddie.com/darknet/
https://doi.org/10.1109/HPEC43674.2020.9286149
https://doi.org/10.1109/HPEC43674.2020.9286149
https://doi.org/10.1109/HPEC49654.2021.9622867
https://doi.org/10.1109/HPEC49654.2021.9622867
http://arxiv.org/abs/1609.05158
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

300 Y. Sui et al.

Changqing Shi is a Ph.D. student
in the College of Software at
 Nankai University. His research
interests include high-performance
computing, machine learning, and
computer architecture.

Haotian Wang is a Ph.D. student
in the College of Software at
Nankai University. His research
interests include natural lan-
guage processing and deep
learning.

Zhiqiang Zhang is a graduate
student in the College of Soft-
ware at Nankai University. His
research interests include hetero-
geneous computing and artificial
intelligence.

Jiahao Wang is an M.S. student
in the College of Software at
Nankai University. His research
interests include artificial intel-
ligence and high-performance
computing.

Yuzhi Zhang is the chair professor
and the dean of the College of
Software at Nankai University.
His research interests focus on
artificial intelligence, etc.

	Opencl-pytorch: an OpenCL-based extension of PyTorch
	Abstract
	1 Introduction
	2 Background and challenges
	2.1 Native support for heterogeneous programming models
	2.2 Related work
	2.3 Challenge

	3 Methodology
	3.1 Overall architecture
	3.2 Unified OpenCL device and memory management
	3.2.1 OpenCL device management
	3.2.2 OpenCL memory management

	3.3 Operator development

	4 Development experience
	4.1 Commonly-used OpenCL functions
	4.2 OpenCL acceleration libraries

	5 Evaluation
	5.1 Experiment design
	5.1.1 Experimental setup
	5.1.2 Deep learning models for evaluation
	5.1.3 Evaluation metrics

	5.2 Evaluation of the correctness
	5.2.1 Evaluation on operators
	5.2.2 Evaluation on model training

	5.3 Evaluation of computational efficiency
	5.4 Evaluation of the management method

	6 Conclusion
	Acknowledgements
	References

