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Abstract
Deep learning (DL) mainly uses various parallel computing libraries to optimize the speed of model training. The underly-
ing computations of the DL operators typically include essential functions such as reduction and prefix scan, the efficiency 
of which can be greatly improved using parallel acceleration devices. However, the acceleration of these computations is 
mainly supported by collective primitive libraries such as NVIDIA CUB and AMD hipCUB, which are only available on 
vendor-specific hardware accelerators due to the highly segregated computational ecology between different vendors. To 
address this issue, we propose an OpenCL parallel computing library called oclCUB that can run on different heterogene-
ous platforms. OclCUB abstracts the OpenCL execution environment, implements reusable common underlying computa-
tions of DL, and designs two types of interfaces targeting the operators' heterogeneous acceleration pattern, enabling users 
to design and optimize DL operators efficiently. We evaluate the oclCUB on various hardware accelerators across Nvidia 
Tesla V100s with OpenCL 1.2, AMD RADEON PRO V520 with OpenCL 2.0, MT-3000 with MOCL 3, and Kunpeng 920 
with POCL 1.6. Our experiments show that the oclCUB-based operators achieve accurate computational results on various 
platforms. The results also demonstrate that oclCUB is able to maintain a smaller, acceptable performance gap with CUB, 
and comparable in performance to hipCUB.
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1  Introduction

Deep learning (DL) is a complex task typically involving 
multiple stages, which can be simplified and optimized using 
DL frameworks. The DL frameworks integrate advanced 
algorithms, famous models, and rich tool interfaces to help 
users easily develop programs, allowing them to focus more 
on the algorithm and application design. As DL technol-
ogy evolves, more and more application scenarios need to 
address more complex problems, requiring more data and 
finer model structures to improve model performance. As 
the model structure becomes more complex and the data 
size increases, the model training process becomes more 
time-consuming. To achieve more efficient computation, 

one approach of popular DL frameworks (Abadi et  al. 
2016; Paszke et al. 2019; Chen et al. 2015) is to implement 
DL operators using high-performance computing libraries, 
including cuDNN (Chetlur et al. 2014), cuBLAS (Cublas 
2008), CUB (Merrill 2015), MIOpen (Khan et al. 2019), hip-
CUB (AMD ROCm 2019a, b), etc. These computing librar-
ies use Compute Unified Device Architecture (CUDA) (Kirk 
2007) or Heterogeous-compute Interface for Portability 
(HIP) (AMD ROCm 2019a, b) as the basis for heterogene-
ous programming, which means that popular DL frameworks 
must rely on vendor-specific GPGPUs to accelerate compu-
tations, and can't use other vendors' hardware accelerators.

Among the aforementioned computing libraries, deep 
neural network libraries and linear algebra libraries have 
received sufficient attention and developed many versions 
(Intel 2019; Nichols et al. 2019; Rupp et al. 2016; Cao 
et al. 2014) that can support a wide range of computational 
backends, while CUB and hipCUB are a class of comput-
ing libraries that are easily overlooked. In some of the 
most popular DL frameworks, typical DL operators that 
rely on CUB and hipCUB include Softmax, Embedding, 
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Topk, Select, BiasAdd, Loss, Max, etc. These are all com-
mon operators in the underlying computations of DL mod-
els, and we should also pay attention to them.

However, CUB and hipCUB are based on proprietary 
heterogeneous programming models CUDA and HIP that 
can not run on other vendors' hardware accelerators. In 
contrast, OpenCL (Stone et al. 2010) can solve this prob-
lem very well. OpenCL is a cross-platform, parallel pro-
gramming standard for heterogeneous systems. It provides 
programming interfaces, hardware abstractions, and a lan-
guage for writing kernels. It targets a wide range of hard-
ware accelerators, allowing users to accelerate computa-
tions in various heterogeneous environments. OpenCL has 
excellent portability and satisfactory performance, which 
can be a good alternative to CUDA (Fang et al. 2011; 
Komatsu et al. 2010).

In this paper, our main contributions can be summarised 
as follows:

We propose an OpenCL parallel computing library 
scheme that can be used in DL frameworks. By taking 
advantage of the unified standard of OpenCL, our work 
enables general hardware accelerators to accelerate the 
relevant DL operators.

We maintain an abstraction of the OpenCL heterogene-
ous programming model in oclCUB, addressing common 
problems when using OpenCL in large-scale projects.

We design two types of interfaces, one targeting the 
host side and the other targeting the device side, to support 
DL operators' heterogeneous programming flexibly. We 
also implement multiple reusable kernel computations to 
help users design and optimize DL operators.

We evaluate oclCUB on systems with different hard-
ware and drivers. The results verify that the oclCUB-based 
operators compute correctly on various platforms. The 
results also illustrate that oclCUB can maintain a smaller, 
acceptable performance gap with CUB and is comparable 
in performance to hipCUB.

The rest of this paper is organized as follows. Section 2 
analyzes the relevant computing libraries and current back 
ground. In Sect. 3, we present the research and imple-
mentation methodology of oclCUB. Section 4 presents the 
application of oclCUB. In Sect. 5, we evaluate oclCUB 
from several aspects. Section 6 concludes the work of this 
paper and plans future research.

2 � Background and related work

CUB and hipCUB are frequently used computing libraries 
in frameworks, which implement common computations 
in DL operators, including reduction, prefix scan, parallel 
sort, etc. This section analyzes CUB, hipCUB, and other 
similar computing libraries and indicates the motivation of 
our work. The comparison of these computing libraries is 
listed in Table 1.

CUB is an essential computing library that supports 
reusable collective primitives for the CUDA programming 
model. CUB is part of the CUDA computing ecosystem and 
supports host-side and device-side programs. Although CUB 
is widely used to accelerate DL operators, it is restricted to 
Nvidia GPUs.

Corresponding to the CUB, AMD proposed hipCUB 
based on the Radeon Open Computing platform (ROCm) 
(AMD ROCm 2022a, 2022b). HipCUB is essentially an 
upper-level encapsulation of rocPRIM (AMD ROCm 2022a, 
2022b) or CUB. HipCUB uses rocPRIM as its computa-
tional backend on the ROCm platform, but can also use CUB 
as an alternative backend by using the HIPify tool to port the 
CUB project to the HIP layer.

Thrust (Bell and Hoberock 2012) is a C +  + template 
library proposed by Jared Hoberock et al., offering com-
mon algorithms and unique data structures. Thrust supports 
several backend technologies, including CUDA, Open 
Multi-Processing (OpenMP) (Dagum and Menon 1998) 
and Intel® Threading Building Blocks (TBB) (Pheatt 2008), 
but only supports acceleration based on NVIDIA GPUs and 
Intel multi-core CPUs. While Thrust uses GPUs to perform 
computational tasks, the interface it provides is primarily 
invoked from the host side. Thrust is unsuitable for design-
ing complex algorithms when programming kernel functions 
because it is not as flexible as CUB.

CUB and hipCUB can't run on devices from other 
vendors. Other computing libraries like Thrust have spe-
cial interfaces and data structures that are difficult to use 
effectively in DL frameworks. Users have limited options 
for accelerating their DL operators. Therefore, it is critical 
to implement a parallel computing library for the relevant 
computations that satisfy the following conditions: (1) The 
library should integrate well with DL frameworks and not 
be limited to vendor-specific hardware accelerators. (2) The 

Table 1   The comparison of the 
relevant computing libraries

Items CUB hipCUB Thrust oclCUB

Portability and Generality × × × ✔
High Performance Compared to CPU Calculations ✔ ✔ ✔ ✔
Supports Reusable Kernel Computations ✔ ✔ ✔ ✔
Provides Both Host-side and Device-side Interfaces ✔ ✔ ✔ ✔
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library should provide host-side and device-side interfaces 
to support DL operators more efficiently, while library-based 
operators should perform better than CPU-only operators. 
(3) The library should implement reusable kernel computa-
tions and maintain excellent extensibility to facilitate sub-
sequent research in other areas.

3 � Research and implementation

3.1 � Overview of oclCUB

OclCUB is an OpenCL-based computing library that works 
on a wide range of hardware accelerators, including GPGPU, 
FPGA, DSP, etc. OclCUB supports users in designing and 
optimizing DL operators efficiently in frameworks.

OclCUB follows a modular and hierarchical design, 
which is convenient for later extensions and optimizations. 
Figure 1 shows the architecture of oclCUB. We abstract four 
layers in oclCUB: the OpenCL device layer, the kernel com-
putation layer, the mapping layer, and the interface layer.

The OpenCL device layer is the basis for oclCUB to 
perform computations. This layer corresponds to various 
hardware accelerators, which are managed by the OpenCL 
platform APIs.

The kernel computation layer is decoupled from other 
modules, enabling better reuse of these computations. 
Writing and debugging kernel is a challenging and time-
consuming task. To provide flexible interfaces and improve 
programming efficiency, we implement kernel codes related 
to parallel algorithms and abstract them as a kernel computa-
tion layer.

The mapping layer manages two types of interfaces 
according to two mechanisms. The implementation of opera-
tors in DL frameworks is generally heterogeneous, requiring 
host and device collaboration for computation. To this end, 

we abstract a mapping layer between the kernel computation 
layer and the interface layer, providing interfaces for the host 
and device sides, respectively.

The interface layer contains a series of interfaces pro-
vided by oclCUB. These interfaces have two types corre-
sponding to the two types of processing mechanisms in the 
mapping layer, one targeting host-side programs and the 
other targeting device-side programs.

The above describes the architecture of oclCUB. Next, 
we will analyze the common problems when using OpenCL 
in large-scale projects and present some specific designs to 
address corresponding challenges.

3.2 � Abstracting the computing model

The APIs provided by OpenCL are com plex and not suit-
able for direct use in large-scale projects. From extensive 
practical experience, we observe the following problems: 
(1) The complex execution environment in OpenCL needs 
to be initialized before each computation. In computation-
ally intensive scenarios, redundant initialization makes 
the application less efficient. (2) Excellent compatibility 
and portability make OpenCL more advantageous, but it 
requires more optimization and management for general 
hardware accelerators. Especially in the compilation stage 
of OpenCL kernel functions, the OpenCL runtime dynami-
cally compiles the device-side codes into binary results at 
each computation. But in intensive computing, repetitive 
compilation comes with excessive performance loss. While 
some hardware vendors provide relevant ways to eliminate 
this impact, the implementation and principle are incompat-
ible between different hardware vendors, making it difficult 
to apply across devices.

For better execution of oclCUB in DL frameworks, we 
abstract the core OpenCL computing model and form it into 
a computing management module in the mapping layer that 
provides the necessary OpenCL execution environment and 
assists in implementing interface invocation.

The computing management module is a standardized 
set of abstractions for encapsulating and managing the 
OpenCL computing model. The coxputing management 
module consists of three core classes: the Manager class, 
the KernelManager class, and the MemManager class. 
The Manager class is the computing management module 
manager, responsible for collaborating with other core 
classes. We design the Manager class using the singleton 
pattern, initializing the OpenCL execution environment 
only once in a complete DL program to avoid redundant 
overhead. We design the MemManager class to receive 
device-side data and convert it to an OpenCL memory 
object which is the parameter needed for kernel com-
putations. The MemManager class clears these memory 
objects according to whether the program has finished. 

Mapping layer

Interface layer

OpenCL device layer

Kernel computation layer

Encapsulation 

module

Host side Device side

Computing 

management 

module

Scheduling 

module

Fig. 1   Architecture of oclCUB
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The KernelManager class handles the preparation of the 
OpenCL kernel before execution, including setting param-
eters, building program, etc. When building a program for 
the first time, we use a high-performance C +  + container 
to cache the compilation results. Subsequently, identical 
kernels can use the compilation results directly, avoiding 
the overhead of repeated compilation. Figure 2 illustrates 
the computing management module.

3.3 � Designing two types of programming interfaces

The operators in DL frameworks are typically in hetero-
geneous mode, including data processing on the host side 
and high-speed computation on the device side. On the 
host side, much data processing does not require writing 
additional kernel functions, which can be accelerated by 
reusable kernel computations. So we design two types 
of interfaces separately, which are more in line with the 
mechanism of heterogeneous acceleration.

The mapping layer's scheduling and encapsulation 
modules provide the host and device interfaces, respec-
tively. Based on the computing management module, we 
implement the host-side interface invocation process in 
the scheduling module, including interface definitions, 
thread organization deployment, data processing, and 
kernel code scheduling. In the encapsulation module, we 
encapsulate complex kernel codes into reusable device 
functions, allowing kernel computations to be reused in 
the design of high-level kernels. We design the interface 
invocation to be procedure-oriented, effectively reducing 
programming difficulty and providing better compatibil-
ity with higher versions of OpenCL. Figure 3 illustrates 
the design scheme of the interface, targeting both host-
side and kernel functions.

3.4 � Reusable kernel computations

The kernel computation is part of oclCUB that performs the 
actual computations. We decouple the kernel computation 
layer from other modules, allowing kernels implementing 
DL operators can be reused and recompiled. So oclCUB's 
kernel computations have become more scalable, making 
it easier to add new computing interfaces. Reusability is 
reflected in the kernel computations' availability in multiple 
host-side and kernel functions, as shown in Fig. 3.

Previous research has provided an in-depth analysis of 
parallel algorithms for related computations, such as (Martín 
et al. 2012; Adinets and Merrill 2022), etc. These works pro-
vide a practical guide for writing kernel codes in oclCUB. 
However, different programming models have distinctive 
characteristics. With portability and compatibility in mind, 
the implementation based on OpenCL is still complex and 
challenging.

We observe that the scheduling hardware of the OpenCL 
acceleration devices assigns tasks to individual kernels on 
a workgroup basis after the program starts. A key prob-
lem arising from this mechanism is that synchronizing 
data across multiple workgroups becomes difficult. Most 
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acceleration devices also do not provide synchronization 
between workgroups. To this end, we adopt the strategy 
of algorithm splitting in implementing some parallel algo-
rithms. That is, the specific implementation of an algorithm 
is appropriately split into multiple kernel functions while 
ensuring the overall idea of the algorithm. This strategy can 
effectively reduce data dependency. The computing manage-
ment module can significantly reduce redundant time con-
sumption when launching multiple kernel functions.

4 � Application

In this section, we describe the compilation of oclCUB and 
how to use different types of interfaces in the DL operators.

4.1 � The compilation of oclCUB and associated 
programs

Heterogeneous programs are based on the heterogeneous 
system consisting of CPU processors and hardware accel-
erators, which are compiled differently than homogeneous 
programs. Heterogeneous programs are written by heteroge-
neous programming models, and there is also a significant 
difference between the different programming models when 
compiling applications. CUDA is a single-source program-
ming model whose compiler can simultaneously compile 
host-side and device-side codes. However, OpenCL is a 
multi-source programming model, and we should consider 
the features when compiling.

We compile oclCUB using the CMake tool, a process that 
requires few dependencies (OpenCL, G +  + , Python), and 
oclCUB can be compiled on a wide range of devices and 
systems. We let oclCUB first compile the host-side source 
codes while processing the kernels into the string parameters 
the OpenCL compilation interface needs. The device-side 
kernels are compiled at program runtime, and we cache the 
results in a high-performance C +  + container. Figure 4 illus-
trates these processes.

4.2 � Utilizing the programming interfaces

The operator is the basic computing unit in DL frameworks. 
The application of computing libraries in DL frameworks 
generally revolves around implementing operators. For ocl-
CUB, there are three elements for designing and optimizing 
an operator in DL frameworks: the execution environment 
provided by the computing management module, two types 

of interfaces provided by the mapping layer, and the kernel 
programming language of OpenCL. Next, we demonstrate 
with a simple example.

Listing 1   The use of computing manage-ment module, 
host-side interface and kernel execution 

In Listing 1, we include two header files in lines 1–2. 
One is the header file for the computing management mod-
ule; the other is the header file that defines the correspond-
ing host-side interface. Lines 6–14 show the usage of the 
singleton-based computing management module, lines 
15–17 execute an OpenCL kernel that uses a device-side 
interface, and lines 18–19 call a host-side interface. One 
thing to note is that using oclCUB requires linking the 
oclCUB dynamic link library in DL frameworks.

R
u
n

tim
e

...

Source n.o

Source 1.o Kernel 1

...

Kernel n

oclCUB.so Program container

Application

Fig. 4   The compilation of oclCUB
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Listing 2   The use of device-side interface in OpenCL 
kernel

We show the usage of a device-side interface in Listing 
2. Calling a device-side interface only requires including the 
corresponding header file in the OpenCL kernel. The first 
line is a header file containing the device-side interfaces, and 
line 6 is an invocation of the device-side interface.

5 � Evaluations

In this section, a series of experiments are designed to evalu-
ate the portability of oclCUB, the operator accuracy, the 
gains of the computing management module, and the opera-
tor performance.

5.1 � Experimental subject and environment

Our experiments revolve around operators. In the subse-
quent experiments, we select six operators from PyTorch and 
TensorFlow frameworks that rely on CUB for acceleration. 
Then we perform a corresponding implementation of these 
operators based on oclCUB. We use CPU-based operators 
as benchmarks and oclCUB-based operators as experimen-
tal subjects to evaluate the portability and correctness of 
oclCUB. Subsequently, we use CUB-based operators and 
hipCUB-based operators as benchmarks, and oclCUB-based 
operators as experimental subjects to evaluate the perfor-
mance of oclCUB.

We compose four experimental environments using dif-
ferent vendors' devices and drivers (Zhang et al. 2018; Lu 
et al. 2022; Jääskeläinen et al. 2015). Table 2 illustrates 
the specific information of the three environments. We use 

four environments to verify the portability and correctness 
of oclCUB. Environment 1 ensures that CUB and oclCUB 
utilize the same acceleration device and thread resources. 
Environment 4 ensures that hipCUB and oclCUB utilize the 
same acceleration device and thread resources. Therefore, 
we use Environment 1 and Environment 4 for conducting 
performance evaluation experiments.

5.2 � Portability and accuracy

A key point of oclCUB is its portability, which we will 
verify by testing the six operators mentioned above in three 
different environments. At the same time, we will also test 
the computational accuracy of the oclCUB-based operators.

We take the same random data as input and run these 
operators in three environments. We use the computational 
results of the CPU-based operators as a benchmark and then 
calculate the relative errors of the oclCUB-based operators. 
In most functions of the DL frameworks, we observe that 
the default relative error for determining data equality is 
1e-5. So we set the standard of accuracy based on this value: 
errors less than or equal to 1e-5 is considered correct, and 
errors greater than 1e-5 is considered incorrect. For integer 
types, we consider it correct only if the computation results 
are exactly the same. The input data volume is set to 2^20. 
The experimental data types include 32-bit integer, 64-bit 
integer, 32-bit floating point, and 64-bit floating point.

Table 3 illustrates the test results of these operators in 
three environments. The oclCUB-based operators behave 
consistently in different data types. According to the stand-
ard we set, all operators pass the test in three experimental 
environments. The error magnitude 1e-5 is within an accept-
able range in DL applications, verifying oclCUB's portabil-
ity and accuracy.

5.3 � Gains of computing management module

In Sect. 3, we present the oclCUB's architecture and the 
design of specific modules. The interfaces design and reus-
able kernel computations have been demonstrated in Sect. 4. 
Here we will test the gains from the computing management 
module.

The computing management module optimizes the appli-
cation efficiency of OpenCL in large-scale projects. It is 

Table 2   The experimental environments. "*" means that the parameter is not existing in this environment

Parameters CPU Clock OpenCL Driver Accelerator Host Compiler

Environment1 Intel Xeon Gold 5218 2.30 GHz OpenCL 1.2 Tesla V100s GCC 7.5.0
Environment2 FT-2000 2.60 GHz MOCL 3 MT-3000 GCC 9.3.0
Environment3 Kunpeng 920 2.60 GHz POCL 1.6 * GCC 7.3.0
Environment4 AMD EPYC 7R32 2.80 GHz OpenCL 2.0 RADEON PRO V520 GCC 9.4.0
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reflected in the two most time-consuming stages, the ini-
tialization of the execution environment and the program's 
building. We use the biasadd operator as an example and 
test it with the 2^20 data volume. DL generally has a large 
number of repeated computations, so we call an operator 
multiple times and accumulate the total time elapsed for 
each stage.

The gains are shown in Figs. 5 and 6. The horizontal axis 
represents the number of operator cumulative executions, 
and the vertical axis represents this stage's accumulative 
total elapsed time. As the number of operator executions 
increases, both the initialization of the execution environ-
ment and the program's building, the unoptimized elapsed 
time shows an exponential increase due to the repeated 
overhead, while the optimized elapsed time is always kept 

at a low level. The results show that the gains of the com-
puting management module for these two stages are highly 
significant.

6 � Performance of oclCUB‑based operators

Another key point in evaluating oclCUB is the performance 
of the oclCUB-based operators. The original intention of 
oclCUB is to enable general hardware accelerators to accel-
erate DL operators. This means that when the hardware 
accelerator has strong parallel computing capabilities, the 
performance of the oclCUB-based operators should achieve 
comparatively good expected results.

Table 3   The accuracy of the 
oclCUB-based operators. "✔" 
stands for correct. "*" means 
that the operator's input does 
not support this data type

Data Type max nllloss scatter softmax biasadd sum

int32(Environment1) ✔ * ✔ * ✔ ✔
int32(Environment2) ✔ * ✔ * ✔ ✔
int32(Environment3) ✔ * ✔ * ✔ ✔
int32(Environment4) ✔ * ✔ * ✔ ✔
int64(Environment1) ✔ * ✔ * ✔ ✔
int64(Environment2) ✔ * ✔ * ✔ ✔
int64(Environment3) ✔ * ✔ * ✔ ✔
int64(Environment4) ✔ * ✔ * ✔ ✔
float32(Environment1) ✔ ✔ ✔ ✔ ✔ ✔
float32(Environment2) ✔ ✔ ✔ ✔ ✔ ✔
float32(Environment3) ✔ ✔ ✔ ✔ ✔ ✔
float32(Environment4) ✔ ✔ ✔ ✔ ✔ ✔
float64(Environment1) ✔ ✔ ✔ ✔ ✔ ✔
float64(Environment2) ✔ ✔ ✔ ✔ ✔ ✔
float64(Environment3) ✔ ✔ ✔ ✔ ✔ ✔
float64(Environment4) ✔ ✔ ✔ ✔ ✔ ✔

Fig. 5   The gains of computing management module in initializing the 
execution environment

Fig. 6   The gains of computing management module in building the 
program
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The oclCUB-based operators and CUB-based operators 
are run in Environment 1, using the same random data as 
input with float32 data type. The data volume of the input is 
incremental from 2^18 to 2^25. To eliminate the influence 
of other factors, we let operators execute multiple times and 
record the elapsed time each time. Then we average these 
data and evaluate the performance based on this value. For 
the convenience of presenting the results, we divide the 

execution time of the oclCUB-based operators by the exe-
cution time of the CUB-based or hipCUB-based operators, 
then take the logarithm of this result.

Figure 7 shows the performance of operators based on CUB 
and oclCUB. The horizontal axis represents operators at dif-
ferent data scales. The vertical axis represents the evaluation 
metric. When the evaluation metric is less than 0, it indicates 
that the performance of oclCUB-based operators is better 

Fig. 7   Comparison of the performance between the oclCUB-based operators and the CUB-based operators
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than CUB-based operators. Conversely, when the evaluation 
metric is greater than 0, it suggests that the performance of 
CUB-based operators is superior to oclCUB-based operators. 
In most cases, the performance of oclCUB-based operators is 
lower than CUB-based operators. However, there are also a 
small number of cases that the performance of oclCUBbase 
operators is slightly better than CUB-based operators. Over-
all, with the evaluation metric ranging between – 0.3 and 1, 
this implies that the performance difference between oclCUB 
and CUB is not significant. Additionally, operators in different 
frameworks exhibit similar performance. Attributable to the 
exclusive optimizations within the CUDA ecosystem, CUB is 
able to maximize its performance. In such millisecond-level 

computations, it is acceptable and expected that oclCUB main-
tains a smaller performance gap with CUB.

Figure 8 shows the performance comparison between ocl-
CUB and hipCUB. Overall, the evaluation metrics range from 
– 0.4 to 0.3, indicating that the performance of oclCUB-based 
operators is slightly better than that of hipCUB-based opera-
tors. Only in cases of large data scales does the performance 
of hipCUB-based operators surpass that of oclCUB-based 
operators. As the data scale increases, the performance gap 
between the two tends to decrease, but the difference remains 
consistently small. Although the AMD RADEON PRO 
V520 supports ROCm and HIP for executing deep learn-
ing tasks, hipCUB does not receive extensive optimization 
on this device. In this scenario, oclCUB is able to achieve 

Fig. 8   Comparison of the performance between the oclCUB-based operators and the hipCUB-based operators
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performance comparable to hipCUB, and even slightly better. 
In summary, although the portability of oclCUB may slightly 
weaken its exclusive optimization for specific devices, oclCUB 
still achieves relatively high efficiency in performing compu-
tational tasks.

7 � Conclusion

In this paper, we propose and implement a scheme for the 
OpenCL computing library with relevant essential functions. 
This computing library is designed to accelerate DL opera-
tors using general hardware accelerators. We maintain an 
abstraction of the OpenCL execution environment in ocl-
CUB to enable effective integration with DL frameworks. 
We design two types of interfaces to support DL operators 
in heterogeneous acceleration mode better. We implement a 
range of reusable kernel computations based on OpenCL to 
help users design and optimize DL operators. In our evalu-
ation experiment, we demonstrate that oclCUB possesses a 
good portability, and its architectural design yields signifi-
cant gains. The experimental results also indicate that the 
performance of oclCUB has a small, acceptable gap com-
pared to CUB and is comparable in performance to hipCUB. 
In future work, we will consider expanding the computa-
tional content of the computing library, running it efficiently 
in DL models, and further validate performance portability 
on outstanding devices.
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