
Vol.:(0123456789)

CCF Transactions on High Performance Computing (2024) 6:319–329
https://doi.org/10.1007/s42514-024-00181-3

REGULAR PAPER

oclCUB: an OpenCL parallel computing library for deep learning
operators

Changqing Shi1 · Yufei Sun1 · Yicheng Sui1 · Yuqiao Chen1 · Haotian Wang1 · Yuzhi Zhang1,2

Received: 6 October 2023 / Accepted: 5 January 2024 / Published online: 16 February 2024
© China Computer Federation (CCF) 2024

Abstract
Deep learning (DL) mainly uses various parallel computing libraries to optimize the speed of model training. The underly-
ing computations of the DL operators typically include essential functions such as reduction and prefix scan, the efficiency
of which can be greatly improved using parallel acceleration devices. However, the acceleration of these computations is
mainly supported by collective primitive libraries such as NVIDIA CUB and AMD hipCUB, which are only available on
vendor-specific hardware accelerators due to the highly segregated computational ecology between different vendors. To
address this issue, we propose an OpenCL parallel computing library called oclCUB that can run on different heterogene-
ous platforms. OclCUB abstracts the OpenCL execution environment, implements reusable common underlying computa-
tions of DL, and designs two types of interfaces targeting the operators' heterogeneous acceleration pattern, enabling users
to design and optimize DL operators efficiently. We evaluate the oclCUB on various hardware accelerators across Nvidia
Tesla V100s with OpenCL 1.2, AMD RADEON PRO V520 with OpenCL 2.0, MT-3000 with MOCL 3, and Kunpeng 920
with POCL 1.6. Our experiments show that the oclCUB-based operators achieve accurate computational results on various
platforms. The results also demonstrate that oclCUB is able to maintain a smaller, acceptable performance gap with CUB,
and comparable in performance to hipCUB.

Keywords Parallel computing · Deep learning · Heterogeneous computing · OpenCL · High Performance · Super Computer

1 Introduction

Deep learning (DL) is a complex task typically involving
multiple stages, which can be simplified and optimized using
DL frameworks. The DL frameworks integrate advanced
algorithms, famous models, and rich tool interfaces to help
users easily develop programs, allowing them to focus more
on the algorithm and application design. As DL technol-
ogy evolves, more and more application scenarios need to
address more complex problems, requiring more data and
finer model structures to improve model performance. As
the model structure becomes more complex and the data
size increases, the model training process becomes more
time-consuming. To achieve more efficient computation,

one approach of popular DL frameworks (Abadi et al.
2016; Paszke et al. 2019; Chen et al. 2015) is to implement
DL operators using high-performance computing libraries,
including cuDNN (Chetlur et al. 2014), cuBLAS (Cublas
2008), CUB (Merrill 2015), MIOpen (Khan et al. 2019), hip-
CUB (AMD ROCm 2019a, b), etc. These computing librar-
ies use Compute Unified Device Architecture (CUDA) (Kirk
2007) or Heterogeous-compute Interface for Portability
(HIP) (AMD ROCm 2019a, b) as the basis for heterogene-
ous programming, which means that popular DL frameworks
must rely on vendor-specific GPGPUs to accelerate compu-
tations, and can't use other vendors' hardware accelerators.

Among the aforementioned computing libraries, deep
neural network libraries and linear algebra libraries have
received sufficient attention and developed many versions
(Intel 2019; Nichols et al. 2019; Rupp et al. 2016; Cao
et al. 2014) that can support a wide range of computational
backends, while CUB and hipCUB are a class of comput-
ing libraries that are easily overlooked. In some of the
most popular DL frameworks, typical DL operators that
rely on CUB and hipCUB include Softmax, Embedding,

 * Yufei Sun
 yufei_sun@sina.com

1 College of Software, Nankai University, Tianjin 300450,
China

2 ITAI, Haihe Lab, Tianjin 300350, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-024-00181-3&domain=pdf
http://orcid.org/0009-0009-5732-2207
http://orcid.org/0000-0001-9763-7435

320 C. Shi et al.

Topk, Select, BiasAdd, Loss, Max, etc. These are all com-
mon operators in the underlying computations of DL mod-
els, and we should also pay attention to them.

However, CUB and hipCUB are based on proprietary
heterogeneous programming models CUDA and HIP that
can not run on other vendors' hardware accelerators. In
contrast, OpenCL (Stone et al. 2010) can solve this prob-
lem very well. OpenCL is a cross-platform, parallel pro-
gramming standard for heterogeneous systems. It provides
programming interfaces, hardware abstractions, and a lan-
guage for writing kernels. It targets a wide range of hard-
ware accelerators, allowing users to accelerate computa-
tions in various heterogeneous environments. OpenCL has
excellent portability and satisfactory performance, which
can be a good alternative to CUDA (Fang et al. 2011;
Komatsu et al. 2010).

In this paper, our main contributions can be summarised
as follows:

We propose an OpenCL parallel computing library
scheme that can be used in DL frameworks. By taking
advantage of the unified standard of OpenCL, our work
enables general hardware accelerators to accelerate the
relevant DL operators.

We maintain an abstraction of the OpenCL heterogene-
ous programming model in oclCUB, addressing common
problems when using OpenCL in large-scale projects.

We design two types of interfaces, one targeting the
host side and the other targeting the device side, to support
DL operators' heterogeneous programming flexibly. We
also implement multiple reusable kernel computations to
help users design and optimize DL operators.

We evaluate oclCUB on systems with different hard-
ware and drivers. The results verify that the oclCUB-based
operators compute correctly on various platforms. The
results also illustrate that oclCUB can maintain a smaller,
acceptable performance gap with CUB and is comparable
in performance to hipCUB.

The rest of this paper is organized as follows. Section 2
analyzes the relevant computing libraries and current back
ground. In Sect. 3, we present the research and imple-
mentation methodology of oclCUB. Section 4 presents the
application of oclCUB. In Sect. 5, we evaluate oclCUB
from several aspects. Section 6 concludes the work of this
paper and plans future research.

2 Background and related work

CUB and hipCUB are frequently used computing libraries
in frameworks, which implement common computations
in DL operators, including reduction, prefix scan, parallel
sort, etc. This section analyzes CUB, hipCUB, and other
similar computing libraries and indicates the motivation of
our work. The comparison of these computing libraries is
listed in Table 1.

CUB is an essential computing library that supports
reusable collective primitives for the CUDA programming
model. CUB is part of the CUDA computing ecosystem and
supports host-side and device-side programs. Although CUB
is widely used to accelerate DL operators, it is restricted to
Nvidia GPUs.

Corresponding to the CUB, AMD proposed hipCUB
based on the Radeon Open Computing platform (ROCm)
(AMD ROCm 2022a, 2022b). HipCUB is essentially an
upper-level encapsulation of rocPRIM (AMD ROCm 2022a,
2022b) or CUB. HipCUB uses rocPRIM as its computa-
tional backend on the ROCm platform, but can also use CUB
as an alternative backend by using the HIPify tool to port the
CUB project to the HIP layer.

Thrust (Bell and Hoberock 2012) is a C + + template
library proposed by Jared Hoberock et al., offering com-
mon algorithms and unique data structures. Thrust supports
several backend technologies, including CUDA, Open
Multi-Processing (OpenMP) (Dagum and Menon 1998)
and Intel® Threading Building Blocks (TBB) (Pheatt 2008),
but only supports acceleration based on NVIDIA GPUs and
Intel multi-core CPUs. While Thrust uses GPUs to perform
computational tasks, the interface it provides is primarily
invoked from the host side. Thrust is unsuitable for design-
ing complex algorithms when programming kernel functions
because it is not as flexible as CUB.

CUB and hipCUB can't run on devices from other
vendors. Other computing libraries like Thrust have spe-
cial interfaces and data structures that are difficult to use
effectively in DL frameworks. Users have limited options
for accelerating their DL operators. Therefore, it is critical
to implement a parallel computing library for the relevant
computations that satisfy the following conditions: (1) The
library should integrate well with DL frameworks and not
be limited to vendor-specific hardware accelerators. (2) The

Table 1 The comparison of the
relevant computing libraries

Items CUB hipCUB Thrust oclCUB

Portability and Generality × × × ✔
High Performance Compared to CPU Calculations ✔ ✔ ✔ ✔
Supports Reusable Kernel Computations ✔ ✔ ✔ ✔
Provides Both Host-side and Device-side Interfaces ✔ ✔ ✔ ✔

321oclCUB: an OpenCL parallel computing library for deep learning operators

library should provide host-side and device-side interfaces
to support DL operators more efficiently, while library-based
operators should perform better than CPU-only operators.
(3) The library should implement reusable kernel computa-
tions and maintain excellent extensibility to facilitate sub-
sequent research in other areas.

3 Research and implementation

3.1 Overview of oclCUB

OclCUB is an OpenCL-based computing library that works
on a wide range of hardware accelerators, including GPGPU,
FPGA, DSP, etc. OclCUB supports users in designing and
optimizing DL operators efficiently in frameworks.

OclCUB follows a modular and hierarchical design,
which is convenient for later extensions and optimizations.
Figure 1 shows the architecture of oclCUB. We abstract four
layers in oclCUB: the OpenCL device layer, the kernel com-
putation layer, the mapping layer, and the interface layer.

The OpenCL device layer is the basis for oclCUB to
perform computations. This layer corresponds to various
hardware accelerators, which are managed by the OpenCL
platform APIs.

The kernel computation layer is decoupled from other
modules, enabling better reuse of these computations.
Writing and debugging kernel is a challenging and time-
consuming task. To provide flexible interfaces and improve
programming efficiency, we implement kernel codes related
to parallel algorithms and abstract them as a kernel computa-
tion layer.

The mapping layer manages two types of interfaces
according to two mechanisms. The implementation of opera-
tors in DL frameworks is generally heterogeneous, requiring
host and device collaboration for computation. To this end,

we abstract a mapping layer between the kernel computation
layer and the interface layer, providing interfaces for the host
and device sides, respectively.

The interface layer contains a series of interfaces pro-
vided by oclCUB. These interfaces have two types corre-
sponding to the two types of processing mechanisms in the
mapping layer, one targeting host-side programs and the
other targeting device-side programs.

The above describes the architecture of oclCUB. Next,
we will analyze the common problems when using OpenCL
in large-scale projects and present some specific designs to
address corresponding challenges.

3.2 Abstracting the computing model

The APIs provided by OpenCL are com plex and not suit-
able for direct use in large-scale projects. From extensive
practical experience, we observe the following problems:
(1) The complex execution environment in OpenCL needs
to be initialized before each computation. In computation-
ally intensive scenarios, redundant initialization makes
the application less efficient. (2) Excellent compatibility
and portability make OpenCL more advantageous, but it
requires more optimization and management for general
hardware accelerators. Especially in the compilation stage
of OpenCL kernel functions, the OpenCL runtime dynami-
cally compiles the device-side codes into binary results at
each computation. But in intensive computing, repetitive
compilation comes with excessive performance loss. While
some hardware vendors provide relevant ways to eliminate
this impact, the implementation and principle are incompat-
ible between different hardware vendors, making it difficult
to apply across devices.

For better execution of oclCUB in DL frameworks, we
abstract the core OpenCL computing model and form it into
a computing management module in the mapping layer that
provides the necessary OpenCL execution environment and
assists in implementing interface invocation.

The computing management module is a standardized
set of abstractions for encapsulating and managing the
OpenCL computing model. The coxputing management
module consists of three core classes: the Manager class,
the KernelManager class, and the MemManager class.
The Manager class is the computing management module
manager, responsible for collaborating with other core
classes. We design the Manager class using the singleton
pattern, initializing the OpenCL execution environment
only once in a complete DL program to avoid redundant
overhead. We design the MemManager class to receive
device-side data and convert it to an OpenCL memory
object which is the parameter needed for kernel com-
putations. The MemManager class clears these memory
objects according to whether the program has finished.

Mapping layer

Interface layer

OpenCL device layer

Kernel computation layer

Encapsulation

module

Host side Device side

Computing

management

module

Scheduling

module

Fig. 1 Architecture of oclCUB

322 C. Shi et al.

The KernelManager class handles the preparation of the
OpenCL kernel before execution, including setting param-
eters, building program, etc. When building a program for
the first time, we use a high-performance C + + container
to cache the compilation results. Subsequently, identical
kernels can use the compilation results directly, avoiding
the overhead of repeated compilation. Figure 2 illustrates
the computing management module.

3.3 Designing two types of programming interfaces

The operators in DL frameworks are typically in hetero-
geneous mode, including data processing on the host side
and high-speed computation on the device side. On the
host side, much data processing does not require writing
additional kernel functions, which can be accelerated by
reusable kernel computations. So we design two types
of interfaces separately, which are more in line with the
mechanism of heterogeneous acceleration.

The mapping layer's scheduling and encapsulation
modules provide the host and device interfaces, respec-
tively. Based on the computing management module, we
implement the host-side interface invocation process in
the scheduling module, including interface definitions,
thread organization deployment, data processing, and
kernel code scheduling. In the encapsulation module, we
encapsulate complex kernel codes into reusable device
functions, allowing kernel computations to be reused in
the design of high-level kernels. We design the interface
invocation to be procedure-oriented, effectively reducing
programming difficulty and providing better compatibil-
ity with higher versions of OpenCL. Figure 3 illustrates
the design scheme of the interface, targeting both host-
side and kernel functions.

3.4 Reusable kernel computations

The kernel computation is part of oclCUB that performs the
actual computations. We decouple the kernel computation
layer from other modules, allowing kernels implementing
DL operators can be reused and recompiled. So oclCUB's
kernel computations have become more scalable, making
it easier to add new computing interfaces. Reusability is
reflected in the kernel computations' availability in multiple
host-side and kernel functions, as shown in Fig. 3.

Previous research has provided an in-depth analysis of
parallel algorithms for related computations, such as (Martín
et al. 2012; Adinets and Merrill 2022), etc. These works pro-
vide a practical guide for writing kernel codes in oclCUB.
However, different programming models have distinctive
characteristics. With portability and compatibility in mind,
the implementation based on OpenCL is still complex and
challenging.

We observe that the scheduling hardware of the OpenCL
acceleration devices assigns tasks to individual kernels on
a workgroup basis after the program starts. A key prob-
lem arising from this mechanism is that synchronizing
data across multiple workgroups becomes difficult. Most

Singleton Init

Platform

Device

Context

Queue

Launch

Device-side

data 1

Device-side

data 2

Device-side

data n

cl::Buffer 1 cl::Buffer 2 cl::Buffer n

...

...

...Arg 1 Arg 2 Arg n

Kernel
Program

container

MemManger

KernelMangerManger

Computing

Clear

Fig. 2 The computing management module

InclusiveSum BlockReduceshfl_down_sync

RadixSort Unique ...

Dev func1Scheduling

KernelHost Function

Dev func n...

Fig. 3 The interface scheme with reusable kernel computations

323oclCUB: an OpenCL parallel computing library for deep learning operators

acceleration devices also do not provide synchronization
between workgroups. To this end, we adopt the strategy
of algorithm splitting in implementing some parallel algo-
rithms. That is, the specific implementation of an algorithm
is appropriately split into multiple kernel functions while
ensuring the overall idea of the algorithm. This strategy can
effectively reduce data dependency. The computing manage-
ment module can significantly reduce redundant time con-
sumption when launching multiple kernel functions.

4 Application

In this section, we describe the compilation of oclCUB and
how to use different types of interfaces in the DL operators.

4.1 The compilation of oclCUB and associated
programs

Heterogeneous programs are based on the heterogeneous
system consisting of CPU processors and hardware accel-
erators, which are compiled differently than homogeneous
programs. Heterogeneous programs are written by heteroge-
neous programming models, and there is also a significant
difference between the different programming models when
compiling applications. CUDA is a single-source program-
ming model whose compiler can simultaneously compile
host-side and device-side codes. However, OpenCL is a
multi-source programming model, and we should consider
the features when compiling.

We compile oclCUB using the CMake tool, a process that
requires few dependencies (OpenCL, G + + , Python), and
oclCUB can be compiled on a wide range of devices and
systems. We let oclCUB first compile the host-side source
codes while processing the kernels into the string parameters
the OpenCL compilation interface needs. The device-side
kernels are compiled at program runtime, and we cache the
results in a high-performance C + + container. Figure 4 illus-
trates these processes.

4.2 Utilizing the programming interfaces

The operator is the basic computing unit in DL frameworks.
The application of computing libraries in DL frameworks
generally revolves around implementing operators. For ocl-
CUB, there are three elements for designing and optimizing
an operator in DL frameworks: the execution environment
provided by the computing management module, two types

of interfaces provided by the mapping layer, and the kernel
programming language of OpenCL. Next, we demonstrate
with a simple example.

Listing 1 The use of computing manage-ment module,
host-side interface and kernel execution

In Listing 1, we include two header files in lines 1–2.
One is the header file for the computing management mod-
ule; the other is the header file that defines the correspond-
ing host-side interface. Lines 6–14 show the usage of the
singleton-based computing management module, lines
15–17 execute an OpenCL kernel that uses a device-side
interface, and lines 18–19 call a host-side interface. One
thing to note is that using oclCUB requires linking the
oclCUB dynamic link library in DL frameworks.

R
u
n

tim
e

...

Source n.o

Source 1.o Kernel 1

...

Kernel n

oclCUB.so Program container

Application

Fig. 4 The compilation of oclCUB

324 C. Shi et al.

Listing 2 The use of device-side interface in OpenCL
kernel

We show the usage of a device-side interface in Listing
2. Calling a device-side interface only requires including the
corresponding header file in the OpenCL kernel. The first
line is a header file containing the device-side interfaces, and
line 6 is an invocation of the device-side interface.

5 Evaluations

In this section, a series of experiments are designed to evalu-
ate the portability of oclCUB, the operator accuracy, the
gains of the computing management module, and the opera-
tor performance.

5.1 Experimental subject and environment

Our experiments revolve around operators. In the subse-
quent experiments, we select six operators from PyTorch and
TensorFlow frameworks that rely on CUB for acceleration.
Then we perform a corresponding implementation of these
operators based on oclCUB. We use CPU-based operators
as benchmarks and oclCUB-based operators as experimen-
tal subjects to evaluate the portability and correctness of
oclCUB. Subsequently, we use CUB-based operators and
hipCUB-based operators as benchmarks, and oclCUB-based
operators as experimental subjects to evaluate the perfor-
mance of oclCUB.

We compose four experimental environments using dif-
ferent vendors' devices and drivers (Zhang et al. 2018; Lu
et al. 2022; Jääskeläinen et al. 2015). Table 2 illustrates
the specific information of the three environments. We use

four environments to verify the portability and correctness
of oclCUB. Environment 1 ensures that CUB and oclCUB
utilize the same acceleration device and thread resources.
Environment 4 ensures that hipCUB and oclCUB utilize the
same acceleration device and thread resources. Therefore,
we use Environment 1 and Environment 4 for conducting
performance evaluation experiments.

5.2 Portability and accuracy

A key point of oclCUB is its portability, which we will
verify by testing the six operators mentioned above in three
different environments. At the same time, we will also test
the computational accuracy of the oclCUB-based operators.

We take the same random data as input and run these
operators in three environments. We use the computational
results of the CPU-based operators as a benchmark and then
calculate the relative errors of the oclCUB-based operators.
In most functions of the DL frameworks, we observe that
the default relative error for determining data equality is
1e-5. So we set the standard of accuracy based on this value:
errors less than or equal to 1e-5 is considered correct, and
errors greater than 1e-5 is considered incorrect. For integer
types, we consider it correct only if the computation results
are exactly the same. The input data volume is set to 2^20.
The experimental data types include 32-bit integer, 64-bit
integer, 32-bit floating point, and 64-bit floating point.

Table 3 illustrates the test results of these operators in
three environments. The oclCUB-based operators behave
consistently in different data types. According to the stand-
ard we set, all operators pass the test in three experimental
environments. The error magnitude 1e-5 is within an accept-
able range in DL applications, verifying oclCUB's portabil-
ity and accuracy.

5.3 Gains of computing management module

In Sect. 3, we present the oclCUB's architecture and the
design of specific modules. The interfaces design and reus-
able kernel computations have been demonstrated in Sect. 4.
Here we will test the gains from the computing management
module.

The computing management module optimizes the appli-
cation efficiency of OpenCL in large-scale projects. It is

Table 2 The experimental environments. "*" means that the parameter is not existing in this environment

Parameters CPU Clock OpenCL Driver Accelerator Host Compiler

Environment1 Intel Xeon Gold 5218 2.30 GHz OpenCL 1.2 Tesla V100s GCC 7.5.0
Environment2 FT-2000 2.60 GHz MOCL 3 MT-3000 GCC 9.3.0
Environment3 Kunpeng 920 2.60 GHz POCL 1.6 * GCC 7.3.0
Environment4 AMD EPYC 7R32 2.80 GHz OpenCL 2.0 RADEON PRO V520 GCC 9.4.0

325oclCUB: an OpenCL parallel computing library for deep learning operators

reflected in the two most time-consuming stages, the ini-
tialization of the execution environment and the program's
building. We use the biasadd operator as an example and
test it with the 2^20 data volume. DL generally has a large
number of repeated computations, so we call an operator
multiple times and accumulate the total time elapsed for
each stage.

The gains are shown in Figs. 5 and 6. The horizontal axis
represents the number of operator cumulative executions,
and the vertical axis represents this stage's accumulative
total elapsed time. As the number of operator executions
increases, both the initialization of the execution environ-
ment and the program's building, the unoptimized elapsed
time shows an exponential increase due to the repeated
overhead, while the optimized elapsed time is always kept

at a low level. The results show that the gains of the com-
puting management module for these two stages are highly
significant.

6 Performance of oclCUB‑based operators

Another key point in evaluating oclCUB is the performance
of the oclCUB-based operators. The original intention of
oclCUB is to enable general hardware accelerators to accel-
erate DL operators. This means that when the hardware
accelerator has strong parallel computing capabilities, the
performance of the oclCUB-based operators should achieve
comparatively good expected results.

Table 3 The accuracy of the
oclCUB-based operators. "✔"
stands for correct. "*" means
that the operator's input does
not support this data type

Data Type max nllloss scatter softmax biasadd sum

int32(Environment1) ✔ * ✔ * ✔ ✔
int32(Environment2) ✔ * ✔ * ✔ ✔
int32(Environment3) ✔ * ✔ * ✔ ✔
int32(Environment4) ✔ * ✔ * ✔ ✔
int64(Environment1) ✔ * ✔ * ✔ ✔
int64(Environment2) ✔ * ✔ * ✔ ✔
int64(Environment3) ✔ * ✔ * ✔ ✔
int64(Environment4) ✔ * ✔ * ✔ ✔
float32(Environment1) ✔ ✔ ✔ ✔ ✔ ✔
float32(Environment2) ✔ ✔ ✔ ✔ ✔ ✔
float32(Environment3) ✔ ✔ ✔ ✔ ✔ ✔
float32(Environment4) ✔ ✔ ✔ ✔ ✔ ✔
float64(Environment1) ✔ ✔ ✔ ✔ ✔ ✔
float64(Environment2) ✔ ✔ ✔ ✔ ✔ ✔
float64(Environment3) ✔ ✔ ✔ ✔ ✔ ✔
float64(Environment4) ✔ ✔ ✔ ✔ ✔ ✔

Fig. 5 The gains of computing management module in initializing the
execution environment

Fig. 6 The gains of computing management module in building the
program

326 C. Shi et al.

The oclCUB-based operators and CUB-based operators
are run in Environment 1, using the same random data as
input with float32 data type. The data volume of the input is
incremental from 2^18 to 2^25. To eliminate the influence
of other factors, we let operators execute multiple times and
record the elapsed time each time. Then we average these
data and evaluate the performance based on this value. For
the convenience of presenting the results, we divide the

execution time of the oclCUB-based operators by the exe-
cution time of the CUB-based or hipCUB-based operators,
then take the logarithm of this result.

Figure 7 shows the performance of operators based on CUB
and oclCUB. The horizontal axis represents operators at dif-
ferent data scales. The vertical axis represents the evaluation
metric. When the evaluation metric is less than 0, it indicates
that the performance of oclCUB-based operators is better

Fig. 7 Comparison of the performance between the oclCUB-based operators and the CUB-based operators

327oclCUB: an OpenCL parallel computing library for deep learning operators

than CUB-based operators. Conversely, when the evaluation
metric is greater than 0, it suggests that the performance of
CUB-based operators is superior to oclCUB-based operators.
In most cases, the performance of oclCUB-based operators is
lower than CUB-based operators. However, there are also a
small number of cases that the performance of oclCUBbase
operators is slightly better than CUB-based operators. Over-
all, with the evaluation metric ranging between – 0.3 and 1,
this implies that the performance difference between oclCUB
and CUB is not significant. Additionally, operators in different
frameworks exhibit similar performance. Attributable to the
exclusive optimizations within the CUDA ecosystem, CUB is
able to maximize its performance. In such millisecond-level

computations, it is acceptable and expected that oclCUB main-
tains a smaller performance gap with CUB.

Figure 8 shows the performance comparison between ocl-
CUB and hipCUB. Overall, the evaluation metrics range from
– 0.4 to 0.3, indicating that the performance of oclCUB-based
operators is slightly better than that of hipCUB-based opera-
tors. Only in cases of large data scales does the performance
of hipCUB-based operators surpass that of oclCUB-based
operators. As the data scale increases, the performance gap
between the two tends to decrease, but the difference remains
consistently small. Although the AMD RADEON PRO
V520 supports ROCm and HIP for executing deep learn-
ing tasks, hipCUB does not receive extensive optimization
on this device. In this scenario, oclCUB is able to achieve

Fig. 8 Comparison of the performance between the oclCUB-based operators and the hipCUB-based operators

328 C. Shi et al.

performance comparable to hipCUB, and even slightly better.
In summary, although the portability of oclCUB may slightly
weaken its exclusive optimization for specific devices, oclCUB
still achieves relatively high efficiency in performing compu-
tational tasks.

7 Conclusion

In this paper, we propose and implement a scheme for the
OpenCL computing library with relevant essential functions.
This computing library is designed to accelerate DL opera-
tors using general hardware accelerators. We maintain an
abstraction of the OpenCL execution environment in ocl-
CUB to enable effective integration with DL frameworks.
We design two types of interfaces to support DL operators
in heterogeneous acceleration mode better. We implement a
range of reusable kernel computations based on OpenCL to
help users design and optimize DL operators. In our evalu-
ation experiment, we demonstrate that oclCUB possesses a
good portability, and its architectural design yields signifi-
cant gains. The experimental results also indicate that the
performance of oclCUB has a small, acceptable gap com-
pared to CUB and is comparable in performance to hipCUB.
In future work, we will consider expanding the computa-
tional content of the computing library, running it efficiently
in DL models, and further validate performance portability
on outstanding devices.

Acknowledgements This research is supported by National Key
R&D Program of China grant 2021YFB0300104, as well as by
Tianjin Research Innovation Project for Postgraduate Students grant
2022BKY023.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

Abadi, M., et al.: Tensorflow: Large-scale machine learning on het-
erogeneous distributed systems. arXiv preprint arXiv: 1603.
04467 (2016)

Adinets, A., Merrill, D.: Onesweep: a faster least significant digit radix
sort for GPUs. arXiv preprint arXiv: 2206. 01784 (2022)

AMD ROCm: A thin wrapper library on top of rocPRIM or CUB.
https:// github. com/ ROCmS oftwa rePla tform/ hipCUB (2019a)

AMD ROCm: A C++ Runtime API and Kernel Language. https://
github. com/ ROCm- Devel oper- Tools/ HIP (2019b)

AMD ROCm: AMD ROCm Platform Documentation. https:// rocmd
ocs. amd. com/ (2022a)

AMD ROCm. A header-only library providing HIP parallel primitives.
https:// github. com/ ROCmS oftwa rePla tform/ rocPR IM (2022b)

Bell, N., Hoberock, J.: “Thrust: A Productivity-Oriented Library for
CUDA.” GPU Computing Gems, Jade, pp. 359–371. Morgan
Kaufmann (2012)

Cao, C., et al.: clMAGMA: high performance dense linear algebra
with OpenCL. In: Proceedings of the International Workshop on
OpenCL 2013 & 2014 (2014)

Chen, T., et al.: Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems. arXiv preprint arXiv: 1512.
01274 (2015)

Chetlur, S., et al. cudnn: Efficient primitives for deep learning. arXiv
preprint arXiv: 1410. 0759 (2014)

Cublas, N.C.: Library. NVIDIA Corporation, Santa Clara (2008)
Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-

memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55
(1998)

Fang, J., Varbanescu, A.L., Sips, H.: A comprehensive performance
comparison of CUDA and OpenCL. In: 2011 International Con-
ference on Parallel Processing. IEEE (2011)

Intel: oneAPI Deep Neural Network Library. https:// github. com/
oneapi- src/ oneDNN (2019)

Jääskeläinen, P., de La Lama, C.S., Schnetter, E., et al.: pocl: A
performance-portable OpenCL implementation. Int. J. Parallel
Prog. 43, 752–785 (2015)

Khan, J., et al.: Miopen: an open source library for deep learning
primitives. arXiv preprint arXiv: 1910. 00078 (2019)

Kirk, D.: NVIDIA CUDA software and GPU parallel computing
architecture. In: ISMM. Vol. 7 (2007)

Komatsu, K., et al.: Evaluating performance and portability of OpenCL
programs. In: The Fifth International Workshop on Automatic
Performance Tuning. Vol. 66 (2010)

Lu, K., Wang, Y., Guo, Y., et al.: MT-3000: a heterogeneous multi-
zone processor for HPC. CCF Trans. High Perform. Comput. 4(2),
150–164 (2022)

Martín, P.J., Ayuso, L.F., Torres, R., et al.: Algorithmic strategies for
optimizing the parallel reduction primitive in CUDA. In: 2012
International Conference on High Performance Computing &
Simulation (HPCS). IEEE, pp. 511–519 (2012)

Merrill, D. CUB v1. 5.3: CUDA Unbound, a library of warp-wide,
blockwide, and device-wide GPU parallel primitives. NVIDIA
Res. (2015)

Nichols, D., et al.: MagmaDNN: accelerated deep learning using
MAGMA. In: Proceedings of the Practice and Experience in
Advanced Research Computing on Rise of the Machines (learn-
ing) (2019)

Paszke, A., et al.: Pytorch: an imperative style, high-performance
deep learning library. In: Advances in Neural Information Pro-
cessing Systems 32 (2019)

Pheatt, C.: Intel® threading building blocks. J. Comput. Sci. Coll.
23(4), 298–298 (2008)

Rupp, K., et al.: ViennaCL–-linear algebra library for multi-and many-
core architectures. SIAM J. Sci. Comput. 38(5), S412–S439
(2016)

Stone, J.E., Gohara, D., Shi, G.: OpenCL: A parallel programming
standard for heterogeneous computing systems. Comput. Sci. Eng.
12(3), 66 (2010)

Zhang, P., Fang, J., Yang, C., et al.: Mocl: an efficient OpenCL imple-
mentation for the matrix-2000 architecture. In: Proceedings of
the 15th ACM International Conference on Computing Frontiers,
pp. 26–35 (2018)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/2206.01784
https://github.com/ROCmSoftwarePlatform/hipCUB
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://rocmdocs.amd.com/
https://rocmdocs.amd.com/
https://github.com/ROCmSoftwarePlatform/rocPRIM
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1410.0759
https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN
http://arxiv.org/abs/1910.00078

329oclCUB: an OpenCL parallel computing library for deep learning operators

Changqing Shi is a phD student
in College of Software at Nankai
University. His research interests
include high performance com-
puting, machine learning and
computer architecture.

Yufei Sun is the professor at Col-
lege of Software, Nankai Univer-
sity. Her research interests
include heterogeneous comput-
ing and artificial intelligence.

Yicheng Sui is a phD student in
College of Software at Nankai
University. His research interests
include artificial intelligence and
deep learning.

Yuqiao Chen is a graduate student
in College of Software at Nankai
University. His research interests
include heterogeneous comput-
ing and computer architecture.

Haotian Wang is a phD student
in College of Software at Nankai
University. His research interests
include natural language pro-
cessing and deep learning.

Yuzhi Zhang is the chair professor
and the Dean of software college
in Nankai University. His
research interests focus on artifi-
cial intelligence, etc.

	oclCUB: an OpenCL parallel computing library for deep learning operators
	Abstract
	1 Introduction
	2 Background and related work
	3 Research and implementation
	3.1 Overview of oclCUB
	3.2 Abstracting the computing model
	3.3 Designing two types of programming interfaces
	3.4 Reusable kernel computations

	4 Application
	4.1 The compilation of oclCUB and associated programs
	4.2 Utilizing the programming interfaces

	5 Evaluations
	5.1 Experimental subject and environment
	5.2 Portability and accuracy
	5.3 Gains of computing management module

	6 Performance of oclCUB-based operators
	7 Conclusion
	Acknowledgements
	References

