
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2023) 5:442–464
https://doi.org/10.1007/s42514-023-00173-9

1 3

REGULAR PAPER

Leveraging simulation of high performance computing systems 
with node simulation using architecture simulator

Fang Lin1   · Yi Liu1 · Xin Wang1 · Xueyan Gai1

Received: 25 July 2023 / Accepted: 25 October 2023 / Published online: 13 November 2023 
© China Computer Federation (CCF) 2023

Abstract
With the scaling-up of high-performance computing (HPC) systems, their simulation becomes more challenging. Realizing 
that simulation of HPC systems plays an important role in system evaluation and software development, this paper proposes 
an approach to simulate HPC systems by simulating one node using traditional execution-driven full-system simulators. Our 
approach incorporates an off-the-shelf architecture simulator with a message emulation environment and an interconnection 
network simulation module. The architecture simulator is used to model the hardware architecture of the node of the target 
HPC system, and then to simulate one specified node of the target system by executing MPI processes as well as the operat-
ing system in the node simulation instance. The message emulation environment is used to emulate message transportation 
between the processes in the simulated node and other processes, which is essential to drive the execution of those processes 
in the node. The interconnection network simulation module assists the message emulation environment in computing the 
transport latency of messages based on the model of the target interconnection network. By utilizing the powerful modeling 
and simulation capabilities of architecture simulators, researchers can not only perform detailed and accurate simulation of 
the node of the target HPC system, but also can simulate the execution of large-scale parallel programs in the target HPC 
system. Our simulation system is implemented based on the GEM5, and experimental results demonstrate the effectiveness 
& performance of our approach.

Keywords  High-performance computing · Full-system simulator · Execution-driven simulation · Performance evaluation

1  Introduction

Simulator plays a very important role in the design of 
high-performance computing (HPC) systems as well as the 
development of HPC software. In the past decades, with the 
increasing performance of HPC systems, the system scale 
has grown continuously. In addition to the rapid growth of 
the system scale, various heterogeneous processors and 
accelerators (e.g., GPU, FPGA, AI accelerator) have been 

widely used in HPC systems, which also increases the com-
plexity of the system. The huge-scale heterogeneous HPC 
systems bring challenges to traditional simulators, including 
both execution-driven and trace-driven simulation.

The execution-driven methods simulate the target HPC 
system by executing parallel programs on the modeled target 
system. Furthermore, a simulator is full-system if it supports 
the execution of both operating system and applications. The 
current execution-driven HPC simulators mainly have the 
following limitations. (1) The scalability is insufficient, and 
the simulator will eventually become unusable when the 
scale of the target system and parallel programs reaches a 
certain level. And the larger the scale of the target system 
and the parallel program, the more local hosts are needed for 
simulation, which is a huge consumption of resources. (2) 
To improve the scalability, some simulators only simulate 
the workload of the parallel program and do not simulate the 
execution of the operating system, which cannot reflect the 
interaction between the parallel program and the software 
environment(e.g., operating system and MPI library, etc.). 

 *	 Fang Lin 
	 fanglinjsi@buaa.edu.cn

	 Yi Liu 
	 yi.liu@buaa.edu.cn

	 Xin Wang 
	 qaqxwang@buaa.edu.cn

	 Xueyan Gai 
	 gaixueyan@buaa.edu.cn

1	 School of Computer Science and Engineering, Beihang 
University, Xueyuan Road, Haidian 100191, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00173-9&domain=pdf
http://orcid.org/0000-0003-1411-0115


443Leveraging simulation of high performance computing systems with node simulation using…

1 3

(3) To improve the simulation performance of HPC systems 
and simplify the modeling of the microarchitecture of the 
computing node, some simulators use the host nodes that are 
the same as the target HPC system, which can only simulate 
the HPC system when the target node is available.

The trace-driven methods firstly collect traces of program 
executions in available platforms and then simulate the target 
system using the traces. Most component-level simulators 
use this kind of method due to its simplicity. When using 
the trace-driven approach to simulate the HPC system, the 
researchers run the parallel program with the desired scale 
to collect specified event traces (e.g., communication traces) 
firstly; then the trace-driven simulator simulates the target 
HPC system by modeling the traces based on the target HPC 
system. Since there are various kinds of traces for parallel 
programs, trace-driven simulators are often used to evaluate 
the performance of components or sub-systems, e.g., simu-
lating the interconnection network with message traces, sim-
ulating the storage system with file-access traces, etc. The 
trace-driven methods are very effective in simulating some 
specific characteristics of the HPC system. However, the 
trace-driven methods are difficult to simulate the dynamic 
procedure of the execution of parallel programs. Therefore, 
it is complex to comprehensively evaluate the interaction 
and integration between the application, the software envi-
ronment and the hardware architecture through the trace-
driven methods.

Traditional execution-driven full-system simulators (e.g., 
Gem5 (Binkert et al. 2011)) have powerful modeling and 
simulation capabilities for processors as well as systems, 
and provide multiple levels of simulation precisions. They 
also can run unmodified operating systems to simulate the 
execution of applications in the operating system. Although 
this kind of simulator cannot simulate large-scale parallel 
systems due to its performance and scalability, it is very suit-
able for modeling and simulating computing node of HPC 
systems, especially when the processor / accelerator / node 
is newly designed and therefore is unavailable in the stage 
of system design. However, the modeling and simulation 
of one single node cannot support large-scale execution of 
parallel programs, and therefore is not sufficient to evaluate 
the performance of the target HPC system.

This paper proposes an execution-driven HPC simulation 
system based on traditional execution-driven full-system 
simulators, more specifically, the Gem5 in this paper. Our 
simulation system incorporates an off-the-shelf execution-
driven full-system simulator with a message emulation 
environment and an interconnection network simulation 
module. The off-the-shelf execution-driven full-system 
simulator, called node-simulator, is used to model the hard-
ware architecture of the node of the target HPC system and 
then simulate one specified node of the target system by 
executing MPI processes as well as the operating system in 

the node simulation instance. The message emulation envi-
ronment is used to emulate message transportation between 
the processes in the simulated node and other processes, 
which is essential to drive the execution of those processes 
in the node. The interconnection network simulation module 
assists the message emulation environment in computing the 
transport latency of messages by using the off-the-shelf net-
working simulator, more specifically, the Omnet++(Varga 
and Hornig 2008) in this paper. The messages among pro-
cesses are collected in a pre-execution of the program with 
the desired number of processes in an available HPC system.

Compared to existing simulators of HPC systems, our 
simulation system leverages traditional architecture simula-
tors to simulate large-scale HPC systems. By utilizing the 
powerful modeling & simulation capabilities of architecture 
simulators, researchers can not only perform detailed and 
accurate simulation of the target node of the HPC system, 
but also can evaluate the overall performance of the tar-
get system by running large-scale parallel programs in the 
simulation system. Our simulation system mainly has the 
following advantages: 

(1)	 Our simulation system is the first work that can simu-
late HPC systems and the execution of large-scale par-
allel programs based on execution-driven using only 
one local host. And our simulation system has sufficient 
scalability.

(2)	 Our simulation system extends classic architectural 
simulators to enable them to simulate HPC systems 
and the execution of large-scale parallel programs. 
Researchers can comprehensively evaluate the inter-
action and integration between the application, the 
software environment and the hardware architecture 
through our simulation system.

The rest of this paper is organized as follows. Section 2 ana-
lyzes and presents our simulation approach of HPC systems. 
Section 3 introduces the architecture and implementation of 
the HPC simulation system. Section 4 gives experimental 
results. Section 5 discusses related work. Finally, we con-
clude the paper in Sect. 6.

2 � Approach

2.1 � Analysis

Execution-driven simulation of HPC systems requires large-
scale execution of parallel programs on the modeled target 
system, which is very challenging, especially when the target 
node is unavailable.



444	 F. Lin et al.

1 3

Some architecture simulators (e.g., Gem5) support exe-
cution-driven simulation of distributed systems. The set of 
components of gem5 that simulates distributed systems is 
named dist-gem5. The approach dist-gem5 simulates a dis-
tributed system is to use enough node simulation instances 
to simulate all nodes of the target system, and use a switch 
simulation instance to connect all simulated nodes. The 
simulated switch is used to transport the data from different 
nodes.

Although the approach of dist-gem5 is theoretically able 
to simulate HPC systems, it is difficult to use in practice. 
There are three main reasons, as follows: (1) Each node 
simulation instance is a process running on the host. The 
scheduling of the processes by the host operating system will 
cause the running speed of each node simulation instance 
to be inconsistent. In order to balance the running speed of 
each simulation instance, each simulation instance stops the 
simulation procedure at certain intervals for synchroniza-
tion. When the number of nodes reaches a certain scale, the 
simulation speed will be quite slow. (2) The scale of HPC 
systems far exceeds the scale of distributed systems. Simu-
lating HPC systems requires enough local hosts, resulting in 
huge resource consumption. (3) When the node’s hardware 
is relatively complex, such as having a large number of cores 
or having acceleration components, it will cause a single 
node instance to run slowly. Many node instances can make 
the simulation of the system slower.

The MPI programs use the parallel paradigm of single-
program multiple-data (SPMD), in which each process 
executes the same program and computes on different data. 
Therefore, the behavior of nodes are often the same in the 
HPC system that executes an MPI program. Suppose an MPI 
program running with 4096 processes that are allocated to 
the node 0–255 of an HPC system, there will be only one 
or several kinds of node-behavior according to the num-
ber of process groups. Therefore, we can simulate one node 
of the target system under large-scale parallel execution of 
programs. Considering that processes always communicate 
with each other, when simulating the execution of the pro-
cesses in one node, necessary messages must be simulated 
to drive those processes to continue. In addition, the latency 
of message transportation must also be simulated.

For a process running in one node, its running behav-
ior can be mainly divided into two aspects: the computing 
behavior and the communication behavior. The computing 
behavior depends on the hardware and software architecture 
of the target node, which can be simulated by the execution-
driven full-system simulators, e.g., Gem5. The communi-
cation behavior mainly depends on the implementation of 
communication functions as well as the target interconnec-
tion network. In this case, we can use the off-the-shelf net-
work simulators to model the target interconnection network 
and compute the transport latency of messages.

2.2 � Simulation of HPC systems based 
on node‑simulation

Through the analysis, we propose an execution-driven 
simulation approach for HPC systems based on node simu-
lation. Figure 1 shows the overview of our approach. We 
simulate the target HPC system by incorporating an off-
the-shelf architecture simulator with a message emulation 
environment and an interconnection network simulation 
module in a local host. The researcher specifies one node 
of the target system to be simulated. Our simulation system 
simulates the node by using a node simulation instance of 
the node-simulator. Then the researcher run the parallel 
program with the desired process-node distribution file. 
The MPI processes that are distributed in the chosen node 
are simulation executed in the simulated node. During the 
simulation, the message emulation environment emulates 
message transportation between the processes in the simu-
lated node and the other processes that are not started. The 
messages among processes are collected in a pre-execution 
of the program with the desired number of processes in an 
existing available HPC system. The interconnection net-
work simulation module is based on an off-the-shelf net-
work simulator Omnet++. The network simulator is used 
to model and simulate the target interconnection network. 
The interconnection network simulation module computes 
the transport latency of messages by simulating message 
transportation in the simulated interconnection network.

2.2.1 � Modeling of the target node

The researcher models the computing node of the target 
HPC system using the execution-driven full-system simu-
lator, including the instruction system, processor micro-
architecture, memory system, etc. The researcher creates 
the system disk image deployed with the same software 
architecture as the target system, including the operat-
ing system, kernel, parallel environment (MPI library), 
etc. The modeling and configuring of hardware and soft-
ware architecture makes the node full-system simulation 
instance the same as the node of the target system. When 
researchers run the parallel program in the node full-
system simulation instance, the researchers can flexibly 
switch the simulation precision through the various preci-
sions provided by the full-system simulator to explore the 
target computing node at different levels. The research-
ers can also use the functions provided by the simulator, 
such as checkpoints, fast forwarding, etc., to flexibly locate 
the program segments of interest and better pay attention 
to the behavior and performance of the system and the 
program.



445Leveraging simulation of high performance computing systems with node simulation using…

1 3

2.2.2 � Message emulation environment

When starting the node-simulator, the researcher specifies 
the node to be simulated, then runs the processes distrib-
uted on the node in the simulation instance according to the 
desired process-node distribution. We use the message emu-
lation environment to ensure that those processes execute 
correctly as expected. That is, the message emulation envi-
ronment controls the execution of the processes, and simu-
lates the messages from/to all other nodes of the target sys-
tem. When the program runs to the specified MPI functions, 
the functions are not executed by the native MPI library but 
re-directed to the message emulation environment to accom-
plish essential processing. When the processes execute to 
communicator-related functions and communication-group-
related functions, the message emulation environment con-
trols the execution of the process that makes the process 
behave with the specified rank and the specified number of 

processes. When the process executes the communication 
functions, the message emulation environment simulates the 
message transportation between the process and the pro-
cesses in other nodes, to drive the execution of the process. 
In addition to making the process send and receive the cor-
rect message content, the message emulation also computes 
the execution time of the communication function, to make 
the execution behavior of the process closer to the execution 
behavior in target system.

2.2.3 � Simulation of interconnection network

The researchers model the interconnection network of 
the target system using an off-the-shelf network simula-
tor Omnet++, mainly including the network technology 
(e.g., Infiniband), topology, bandwidth and transmission 
speed, etc. An interconnection network simulation instance 
maintains the virtual target interconnection network. The 

Message Emulation Environmnet 

Execution 

Control

messages

Interconnection Network Simulation

A subset of processes

Node Simulator (Simulating one node)

Software Architecture Model

(Operating system, MPI libarary)

...

...

...

Message 

Transportation

Hardware Architecture Model

(ISA,CPU,Cache,Memory,Device)

Target HPC System

All processes pre-execution

...

...

...

...

Existing HPC System

Node Node Node

Interconnection Network

... Node

HPC Simulation System 

Interconnection Network Model

(Network technology, Topology,

Bandwidth, Transmission speed)

Messages

Communicator Information

Fig. 1   Illustration of the simulation approach



446	 F. Lin et al.

1 3

message emulation environment requests the interconnec-
tion network simulation instance to simulate the message 
transportation to compute the transport latency of mes-
sages. Since the processes outside the simulated node are 
not executed, we only need to model the time of message 
transmissions in the interconnection network, regardless of 
the message content. It simplifies the design of intercon-
nection network modeling. The interconnection network 
simulates the transmission of the message of a specified 
size from the source node to the destination node to com-
pute the transport latency of the message.

Through the cooperative work of the node-simulator, 
the interconnect network modeling, and message emu-
lation, we can simulate the complete execution of the 
processes in the specified node of the target system. The 
researcher can arbitrarily choose the node to simulate and 
specify the process-node distribution.

3 � Implementation

Figure 2 shows the architecture of our simulation system. 
The system mainly consists of an off-the-shelf full-system 
simulator (Gem5 in this paper), the message emulation 
environment, and the interconnection network simulation 
module. The full-system simulator is used to model the hard-
ware and software architecture of the node of the target HPC 
system and then starts a node simulation instance to simulate 
the specified node and runs the processes in the simulated 
node according to the desired process-node distribution. The 
message emulation environment is used to emulate message 
transportation between the processes in the simulated node 
and other processes, which is essential to drive the execution 
of those processes in the node. The interconnection network 
simulation module assists the message emulation environ-
ment in computing the transport latency of messages based 
on modeling the target interconnection network through an 
off-the-shelf network simulator (Omnet++ in this paper).

P0 P1 Pn

Processes

...

Node Full-System Simulation Instance

Process Control Sub-module

Communication Emulation Sub-module

Point-to-point

communication  

emulation

Collective

communication

emulation

Message Emulation Environment

Target Interconnected 

Network Model 

Omnet++

Simulation

Components

Interconnection Network Simulation Module

Communication Time Computing Sub-module

Point-to-point

communication  

analyzing and 

computing

Collective

communication

analyzing and

computing

message

transmission

events

message

transport

latency

Gem5 Simulation Components

Device Model

Memory Model

Operating System

MPI Library

Software Architecture Model

Hardware Architecture Model

Driver

Kernel

Microarchitecture Model

ISA Model

Fig. 2   Architecture of the simulation system



447Leveraging simulation of high performance computing systems with node simulation using…

1 3

3.1 � Node full‑system simulation instance

We use the Gem5 to realize our HPC simulator. Gem5 is one 
of the most classic computer architecture simulation frame-
works which integrates the advantages of the M5(Binkert 
et al. 2006) and Gems(Martin et al. 2005) simulator. Gem5 
supports full-system simulation and can run a completely 
unmodified operating system. Researchers can flexibly 
deploy the operating system kernel, MPI library, and other 
software environments in the node simulation instance.

For heterogeneous nodes with accelerators, we can use 
the corresponding accelerator simulator according to the 
type of the accelerator and combine it with Gem5 to model 
the heterogeneous node system. For example, the modeling 
and simulating of GPUs can utilize the classic GPU simu-
lator gpgpu-sim (Bakhoda et al. 2009). Gem5-gpu (Power 
et al. 2014) is a classic CPU-GPU heterogeneous system 
architecture simulator which integrates gem5 with gpgpu-
sim and can simulate the heterogeneous system with the 
full-system mode.

It should be noted that this paper is not focusing on how 
to model the microarchitecture in a simulation framework. 
Instead, we aim to propose and verify the approach to simu-
late the HPC system using an architecture simulator. The 
implementation of the node-simulator, such as the simula-
tion of the heterogeneous architecture of the node, the simu-
lation of accelerators, etc., is beyond this paper’s scope.

3.2 � Interconnection network simulation module

We model the interconnection network of the target HPC 
system using the classic network simulation framework 
Omnet++. The current working mode of Omnet++ is as fol-
lows. The user firstly models the target network architecture 
and defines the network transmission events to be simulated 
in the C++ files; then the user starts an Omnet++ simula-
tion instance to simulate the defined network transmission 
events. Omnet++ will exit directly after the simulation is 
complete. We modified the working mode of Omnet++ to 
make the simulation instance stay in the memory. We add 
a management component in Omnet++ that listens for the 
requests of message transmission events. The management 
component drives a data transmission in the network simula-
tion instance according to the request.

We developed the interconnection network simulation 
module based on the modified Omnet++, to compute the 
latency of a message transmission from the source node to 
the destination node in the target system. Figure 3 shows 
the structure of the interconnection network simulation 
module. After modeling the interconnection network of 
the target system, a software simulation instance of the 
target interconnection network is started and stays in the 
memory. The message emulation environment analyzes the 

communication-related functions and generates message 
transmission events to enter the simulation instance. The 
simulation instance simulates each event and returns the 
simulated transport latency back to the message emulation 
environment.

3.3 � Message emulation environment

After modeling the hardware and software architecture of the 
target node, the researcher specifies the node to simulate and 
starts a node simulation instance. The researcher runs the 
processes in the simulated node according to the expected 
process-node distribution. We developed the message emu-
lation environment which cooperates with the native MPI 
environment to simulate the execution of the communicator-
related and communication-related MPI functions to ensure 
that the simulated processes run with the expected behavior. 
The message emulation environment consists of the sub-
modules of the process control, the communication emula-
tion, and the communication time computation. The pro-
cess control sub-module emulates the communicator-related 
functions. The communication emulation sub-module and 
the communication time computing sub-module simulate 
the execution of the communication-related functions. They 
mainly fill the output of the functions with expected values, 
analyze the communication behavior, and model the execu-
tion time of the function based on the simulation result of 
the interconnection network simulation module.

3.3.1 � Process control sub‑module

After the simulated process is started in the simulation 
instance, each process has a global rank in the native MPI 
environment. However, the rank is not the expected rank 
to be simulated. The process control sub-module assigns 
each process the target rank to be simulated. It maintains the 
mapping between the global rank in the native MPI environ-
ment and the target rank in the message emulation environ-
ment. When a process runs to the communicator-related and 
communication-group-related function, the process control 
sub-module will assign the function the expected output 
according to the mapping so that the process can behave as 
the target process it simulates. For example, in Fig. 4, we 
simulate the node 16 of the target system and we run the pro-
cess 512–543 in the node. The global ranks of the processes 
in the native MPI environment are from 0 to 31, and the 
global ranks in the message emulation environment are their 
target ranks from 512 to 543. In many applications, there 
are not only the global communicator but also some other 
communicators created by some communicator-related func-
tions. Therefore, in addition to maintaining the correspond-
ing relationship between the global ranks in the message 
emulation environment and the native MPI environment, it 



448	 F. Lin et al.

1 3

Fig. 3   Structure of the intercon-
nection network simulation 
module

Management

components

Computing

node

Computing

node

Computing

node

OMNet++

simulation

kernel

Model 

component 

library

Interconncetion network model

...

Network simulation instance

Interconnection network 
simulation module

data

data

Drive data transmisstion 

simulation
latency

message 

transmisstion 

events

message 

transport 

latency

Interface

Fig. 4   An example of mapping 
the ranks

Mapping at initialization

Message Emulation 

Environment

512,513,514, ,543

 Native MPI Environment

0 ,1, 2,  , 31

Global Comm  

Comm1   

Comm2

Message 

Emulation 

Environment

Native

MPI 

Environment

process 0, 1, 2, 3, , 1022, 1023  

process 0, 2, 4, 6, , 1020, 1022

Process 1, 3, 5, 7, , 1021, 1023

512

513

543

0

1

31

256

257

271

0

2

30

Global 

Comm  

Comm1

256

257

271

1

3

31

Comm2



449Leveraging simulation of high performance computing systems with node simulation using…

1 3

is also necessary to maintain the corresponding relationship 
between the ranks in other communicators in the message 
emulation environment and the global rank in the native MPI 
environment. For example, in Fig. 4, the comm1 and comm2 
are split from the global communicator according to the 
result of "global rank % 2". The process control sub-module 
maintains the mapping between the ranks in the comm1/
comm2 and the global rank in the native MPI environment 
for each process.

3.3.2 � Communication time computing sub‑module

In the pre-execution of the parallel program, we record 
all uncertain factors in the communication functions. In 
this case, if the process scale of the program is specified, 
the sequence of communication functions for each pro-
cess is fixed. To simplify the simulation procedure of the 

communication function, we developed the communica-
tion time computing sub-module. We record the sequences 
of communication functions of the processes which will be 
simulated during the pre-execution. Before simulating, the 
communication time computing sub-module traverses the 
sequences of communication functions, and analyzes each 
function to generate the message transmission events. The 
message transmission event mainly indicates the source 
node, destination node, and data length without modeling 
specific message content. The communication time com-
puting sub-module enters the events into the interconnec-
tion simulation instance, obtains the simulated message 
transport latency, and records them. During the simulation, 
the message emulation sub-module will use the recorded 
time to model the execution time of the communication-
related functions. Figure 5 shows the main procedure of 

Fig. 5   The procedure of com-
puting the time of the communi-
cation function

src

node

dest

node

length

(byte)

1 0 100

0 1 400

0 1 2048

1 0 2048

MPI_Recv(100,  MPI_BYTE, 

5, 1000, MPI_COMM_WORLD )

MPI_Send(100, MPI_INT, 

6, 2000, MPI_COMM_WORLD )

MPI_Allreduce(1024, MPI_INT,

MPI_COMM_WORLD )
0 1 2048

1 0 2048

Interconnection Network Simulation Module

Switch

...
P0 P1 P2 P3 P4 P5 P6 P7

node 0 node 1 node N
time time

time

time time

time

MPI_Recv time

MPI_Send time

MPI_Allreduce time

MPI functions and envelops

Message transmission events

Transport

latency for

each

message 

Computing

time for

each

function

Communication Time Computing Sub-module



450	 F. Lin et al.

1 3

how the communication time computing sub-module com-
putes the time of each communication function.

For the point-to-point communication functions, the com-
munication time computing sub-module generates the mes-
sage transmission event according to the envelope and the 
process-node distribution. For the collective communication 
functions, the communication time computing sub-module 
generates multiple message transmission events based on 
the algorithm implementation of the collective communi-
cation functions in the native MPI library. The implemen-
tation of collective communication function in the native 
MPI library is not directly converted into multiple point-
to-point communications according to the semantics of the 
function but according to a certain algorithm. For example, 

the implementation of the broadcast communication func-
tion MPI_Bcast() is based on the broadcast tree algorithm, 
instead of the root process doing point-to-point sending 
operations to all other processes in turn. According to the 
function’s algorithm, the communication time computing 
sub-module parses out the point-to-point communication 
events that the process participates in the algorithm. Then 
the communication time computing sub-module analyzes 
whether each message transmission event is intra-node com-
munication or inter-node communication and enters the 
inter-node message transmission events into the intercon-
nection simulation instance.

The example in Fig.  6 shows the parsing procedure 
of the function MPI_Allreduce(), which is based on the 

2

4

6

8

2

4

6

8

2

4

6

8

2

4

6

8

10

12

14

16

10

12

14

16

10

12

14

16

10

12

14

16

4

8

4

8

12

16

12

16

20

24

20

24

28

32

28

32

8

16

24

32

40

48

56

64

8

16

24

32

8

16

24

32

8

16

24

32

8

16

24

32

8

16

24

32

4040404040

48

56

64

4848

56

64

56

64

48

56

64

48

56

64

8

16

24

32

40

48

56

64

8

16

24

32

40

48

56

64

8

16

24

32

40

48

56

64

8

16

24

32

40404040

48

56

64

4848

56

64

56

64

48

56

64

8

16

24

32

8

16

24

32

8

16

24

32

24

32

4040

56

64

48

56

64

48

24

32

8

16

8

16

P0 P1 P2 P3 P4 P0 P1P6 P7 P2 P3P5 P4 P7P6 P1P5 P0 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P0 P1P6 P7 P2 P3P5 P4 P7P6 P1P5 P0 P2 P3 P4 P5 P6 P7

Initial

Reduce-scatter operation

Allgather operation

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8P0

P1

P2

P3

P4 P6

P7P51 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Fig. 6   The parsing procedure of MPI_Allreduce() 



451Leveraging simulation of high performance computing systems with node simulation using…

1 3

implementation in the MPICH3(MPICH 2023). For the 
function MPI_Allreduce(), when the data length is greater 
than 2KB, Rabenseifner’s algorithm is used. This algorithm 
is divided into two steps. The first step is a reduce-scatter 
operation, and the second step is an allgather operation. The 
reduce-scatter operation uses the recursive-halving algo-
rithm, and the allgather operation uses the recursive dou-
bling algorithm. We further describe these two steps with an 
8-process example in Fig. 6. In the reduce-scatter operation, 
each process exchanges data with the process that is a dis-
tance p/2 away in the first step. The process sends the data 
needed by the processes in the other half and receives the 
data needed by the processes in its own half. Then the pro-
cess performs a reduce operation. In the second step, each 
process exchanges data with the process that is a distance 
p/4 away, and finally exchanges data with the process that 
is a distance 1 away. In the allgather operation, in the first 
step, each process exchanges data with the process that is a 
distance of 1 away, and so on until that exchanges data with 
the process that is a distance p/2 away. Assuming that these 
8 processes are distributed in 2 nodes, process 0 performs 8 
intra-node sending and receiving and 4 inter-node sending 
and receiving when running the MPI_Allreduce() function.

3.3.3 � Communication emulation sub‑module

(1) Point-to-point communication
When the process executes the point-to-point communi-

cation, the message emulation sub-module analyzes if the 
target process is on the same node as the process, accord-
ing to the message envelope and the process-node distribu-
tion. If the two processes are on the same node, the message 
emulation sub-module translates the ranks of the two pro-
cesses in the message emulation environment into the ranks 
in the native MPI environment. Then the process calls the 
native MPI functions with the translated ranks to complete 
the communication. If the target process is not on the same 

node, the message emulation sub-module analyzes the com-
munication semantics of this function and then simulates 
the execution of the function. Figure 7 shows an example of 
point-to-point communication emulation, it illustrates how 
the communication emulation sub-module analyzes whether 
the function is intra-node or inter-node communication. 
Table 1 shows the emulation procedure of some commonly 
used point-to-point communication function types in the 
case of inter-node communication.

(2) Collection communication
The simulation of collective communication functions is 

based on the semantics of the function and the recorded data 
comprehensively. For example, MPI_Allreduce() is used for 
all processes performing a reduce operation. Figure 6 shows 
the result of the function. The data in the receive buffers of 
all processes is the same after the function completes. For 
these functions that all processes have the same content of 
receive buffers, the message emulation sub-module fills the 
receive buffers of processes and models the execution time 
of the function. Some functions are used to exchange data 
between every two processes in the same communicator, 
such as MPI_Alltoall() and MPI_Alltoallv(). For these func-
tions, processes call the native MPI_Isend() and MPI_Irecv() 
to exchange data with the processes in the same node and 
receive the data from the processes in other nodes from the 
message emulation sub-module.Table 2 shows the emula-
tion procedure of some commonly used collective functions.

(3) Model the execution timeline for each process
During the simulation execution of the processes, the 

message emulation sub-module models the execution time-
line for each process based on the target HPC system. The 
total execution time mainly consists of computation time 
and communication time. The computation time refers to 
the time it takes for a process to execute the computation 
statements. The communication time refers to the time of 
the execution of the communication functions. Figure 8 

Table 1   The emulation procedure of the point-to-point communication function

Function type Emulation procedure

Blocking standard send function The process gets the expected return value from the message emulation sub-module and then returns. 
The message emulation sub-module models the execution time of the send function.

Blocking standard receive function The process receives the expected message buffer and return value from the message emulation 
sub-module and then returns. The message emulation sub-module models the execution time of the 
receive function.

Non-blocking standard send function The process gets the expected return value from the message emulation sub-module. The message 
emulation sub-module sets the value to the request object and puts the request object and the enve-
lope into a table. Then the process returns.When the process runs to the corresponding wait func-
tion, the message emulation sub-module gets the envelope from the table and models the execution 
time of the wait function.

Non-blocking standard receive function Similar to the simulation procedure of the non-blocking standard send function. The difference is that 
the message emulation sub-module also puts the head address of the receive buffer into the table 
and fills the receive buffer with expected content in the wait function.



452	 F. Lin et al.

1 3

shows the build method of the execution timeline. The 
message emulation sub-module starts with the MPI_Init() 
function, stores the time the process leaves, and enters 
each communication function. The execution time of the 
computation statements between two adjacent communica-
tion functions can be computed by subtracting the time of 
leaving the former function from the time of entering the 
latter function. Since the hardware and software architec-
ture of the node simulation instance is consistent with the 
target node, this time can be directly used to establish the 

timeline without any handling. The establishment of the 
execution time of the communication function is based on 
the communication type, semantics, and implementation 
algorithm of the function. Figure 8 shows the procedure of 
establishing some basic communication functions.

3.4 � Pre‑execution of the program

During the pre-execution of the parallel program, the paral-
lel program is completely run on an existing HPC system 

Table 2   The emulation procedure of the collective communication function

Function Emulation of the function

MPI_Bcast If the process is not the root, the process receives the expected message buffer and return value 
from the message emulation sub-module. If the process is the root, the process receives the 
expected return value from the message emulation sub-module.The message emulation sub-
module models the execution time of the function.

MPI_Gather MPI_Gatherv MPI_Reduce If the process is the root, the process receives the expected message buffer and return value 
from the message emulation sub-module. If the process is not the root, the process receives 
the expected return value from the message emulation sub-module.The message emulation 
sub-module models the execution time of the function.

MPI_Allgather MPI_Allgatherv MPI_Allreduce The process receives the expected message buffer and return value from the message emulation 
sub-module. The message emulation sub-module models the execution time of the function.

MPI_Alltoall MPI_Alltoallv The process calls multiple pairs of MPI_Irecv() and MPI_Isend() to exchange intra-node 
messages with the processes on the same node. The process receives the expected inter-node 
messages and return value from the message emulation sub-module. The message emulation 
sub-module models the execution time of the function.

Fig. 7   An example of point-to-
point communication emulation // members of comm2 is from process 512 to 1023

// simulating the node 20, in which running process 608 to process 639

// analyzing the point-to-point communication of process 608

MPI_Recv(buf, count, datatype, 50, 1000, comm2 ,status)

{

      The process control sub-module analyze the envelop, the dest 50 in comm2 indicates 

the  process 562. The porcess 562 is not simulated, so the process gets buf and status from 

the  communication emulation  submodule.

}

MPI_Irecv(buf, count, datatype, 100, 2000, comm2 , request)

{

     

      The process control sub-module analyze the envelop, the dest 100  in comm2 

indicates the  process 612. The porcess 612 is simulated in the node, and the global rank 

in the native MPI evironment is 5, so the process call  native MPI function as follows,

     call PMPI_Irecv(buf, count, datatype, 5, 2000, MPI_COMM_WORLD , request)      

}

MPI_Wait(request, status)

{

      call PMPI_Wait(request, status)

      The process control sub-module modifies the status as expected.  

}



453Leveraging simulation of high performance computing systems with node simulation using…

1 3

with the desired scale to collect the necessary messages and 
information. The researcher specifies the processes that need 
to record. We instrument all the functions that need to be 
recorded.

The data volume of the recorded log is quite large because 
of the need to log the contents of all messages received from 
other processes. Therefore, our system mainly reduces vol-
ume of the log in two ways: 

Fig. 8   Procedure of building the 
execution timeline

MPI_Recv() //intra-node Recv

{

entertime = PMPI_Wtime()      

computationtime = entertime leavetime      

time1 = PMPI_Wtime()

PMPI_Recv()

time2 = PMPI_Wtime()

communicationtime = time2 - time1

leavetime = PMPI_Wtime()

}

MPI_Recv() //inter-node Recv

{

entertime = PMPI_Wtime()

computationtime = entertime leavetime     

Get the message transport latency from the 

communication time computing sub-module

communicationtime = message transport latency

leavetime = PMPI_Wtime()

}

MPI_Irecv(request1) //inter-node Irecv

{

entertime = PMPI_Wtime()

computationtime = entertime leavetime     

Get the message transport latency from the 

communication time computing sub-module

communicationtime[request1] = message transport latency

leavetime = PMPI_Wtime()

}

MPI_Wait(request1)

{

entertime = PMPI_Wtime()

computationtime = entertime leavetime

wait_time = communicationtime[request1]

computationtime

leavetime = PMPI_Wtime()

}

MPI collective communication()

{

Transfer the collective communication to

multiple point-to-point communication.

Analyze the communication,

then operates in the same way as the       

intra-node or inter-node communication.      

}

Timeline (ptime means process time)

ptime= ptime +

computationtime + 

communicationtime

ptime= ptime +

computationtime + 

communicationtime

ptime= ptime +

computationtime 

ptime= ptime +

computationtime + 

if(wait_time > 0)

ptime= ptime +

wait_time

ptime= ptime +

computationtime + 

communicationtime



454	 F. Lin et al.

1 3

(1)	 Our system only records the message content of inter-
node communication. Processes on the same node are 
always simulation executed together. When the process 
communicates with processes on the same node, it can 
directly send/receive the message to/from them. We 
only record the messages received from the processes 
on other nodes. For point-to-point communication 
functions, if the message is received from a process of 
other nodes, the contents of the entire receive buffer are 
recorded. For some collective communication functions 
used to exchange data between every two processes, 
we only record the data of the received buffers, which 
corresponds to the processes in other nodes.

(2)	 As mentioned in section 3.3.2, a notable feature of 
some collective communications is that all of the pro-
cesses in the communicator have the same content of 
the receive buffer after completing the collective com-
munication, such as the function MPI_Allreduce(), 
MPI_Allgather(), and MPI_Bcast(). For this type of 
functions, our system only records one copy of data 
instead of multiple data copies for each process.

4 � Experiments

4.1 � Methodology

We evaluate our simulation system by simulating a 300-
nodes target HPC system, in which each node has an 
FT2000+ processor based on the ARM V8 ISA. The HPC 
system is part of the prototype system of a supercomputer. 
The 300 nodes are connected to one switch. Table 3 shows 
the detailed configuration of the target HPC system.

We run the simulator in the local host equipped with 
two 12-core Intel Xeon processors and 256GB memory. 
We model the target node according to the node configura-
tion (same number of cores and memory size, etc.), using 
the ARM V8 model of Gem5. We create a disk image and 
deploy the same operating system and MPI library in it. The 
MPI library deployed in the target node is a customized ver-
sion and is not open source, so we use the original version 
instead.

We model the target interconnection network using 
Omnet++. The interconnection network of the target proto-
type system is self-developed and technical details are not 
in the open. After investigation, we find that the speed of 
this network is similar to that of the 100Gbps Infiniband 
network. So we model the target interconnection network 
based on the 100Gbps Infiniband network instead.

We use the NPB (NAS Parallel Benchmarks)(NPB 2023) 
as the workload to evaluate our system. The NPB has 8 clas-
sic programs, including IS (Integer Sort), CG (Conjugate 

Gradient), EP (Embarrassingly Parallel), MG (Multi-Grid), 
LU (Lower-Upper GaussSeidel solver), FT (discrete 3D fast 
Fourier Transform), BT (Block Tri-diagonal solver) and SP 
(Scalar Penta-diagonal solver). We run the 8 programs on 
the target system with different scales according to specified 
process-node distribution, respectively. Then we simulate 
one node of the target HPC system and run the correspond-
ing processes of the programs in the simulated node.

4.2 � Validation

This experiment is to evaluate the accuracy of our simu-
lation system by comparing the execution of processes of 
each program in the target system with that of our simula-
tion system. The number of processes of CG, EP, IS, FT, 
LU, and MG is 256, 512 and 1024, respectively, while the 
number of processes of SP and BT is 256, 576 and 1024, 
respectively. The problem size of MG,EP,and IS is CLASS 
A, the problem size of LU, SP and BT is CLASS B, and 
the problem size of CG and FT is CLASS C. For the seven 
programs except for EP, each program consists of multiple 
iterations. The behavior of each iteration is close, so we just 
selectively simulate the procedure of the first three iterations 
of these programs. For EP, we simulate the whole procedure. 
It should be pointed out that in the main procedure of EP, 
there is only computation but no communication. After the 
main procedure, each process will call MPI communication 
functions to exchange some statistical information. To better 
verify the simulation of the communication, we simulate the 
whole procedure that refers to the execution from MPI_Init() 
to MPI_Finalize().

We firstly run these programs with a certain number of 
processes on the target system. We distribute the processes 
in order of node number starting from node 0. The node of 
the target system has 64 cores, we also distribute the pro-
cesses in the order of the process ranks, and there are 64 pro-
cesses running in each node. Then we simulate node 0 of the 

Table 3   Configuration of the target HPC system

Parameter Specifications

Node CPU: FT2000+ (customized
configuration ARMv8 architecture) @2.3GHz

64 processor cores
L1dcache 2MB L1icache 2MB
L2cache 256MB shared by 64 cores
128GB memory

Operating system Ubuntu 18.04
MPI MPICH3
Interconnection Autonomous high speed
connection interconnection network

(100Gbps)



455Leveraging simulation of high performance computing systems with node simulation using…

1 3

target system with the AtomicCPU of gem5 and run process 
0 to process 63 of each program to evaluate the accuracy of 
our simulation system.

To further demonstrate the simulation accuracy of the 
program’s computation and communication behaviors in our 
simulation system, we define the time it takes for a process 
to run the computation statements of the program as the 
computation time, and define the time of running the com-
munication functions as the communication time. Obviously, 
the total time of the execution of the process is the sum of 
the computation time and the communication time.

Figure 9 shows the simulation result of the 8 programs 
with different number of processes running in the simulation 
system. In Fig. 9, we list the average total time of the simu-
lated execution of the processes in the simulation system 
and the average total time of the real execution in the target 
system, respectively. We also list the average computation 
time of the processes in the simulation system and the target 
system. The communication time can be obtained by sub-
tracting the computation time from the total time.

Table 4 shows the error rate of our system. For each pro-
gram, we separately show the error rate in total time, error 
rate in computation time, and error rate in communication 
time. The error rate is calculated by Eq. 1.

From Table 4, the error rate of the average total execution 
time of the processes ranges from 0.5% to 10.5%, and the 
errors are mainly composed of computation time errors and 
communication time errors. Table 4 shows that the error 
rate of computation time ranges from 4.6% to 14.5%. From 
Table 4, it can be concluded that EP and FT have the rela-
tively largest errors of the computation behavior. This is 
because the computation behavior is the main behavior in EP 
and FT, and it is easier to accumulate errors of computation 
behavior. For instance, all processes of EP run computation 
statements from the beginning, and only call several commu-
nication functions to transport results to other processes until 
the whole computation procedure is completed. The error of 
computation time is mainly composed of two aspects. One is 
that we cannot accurately model the microarchitecture of the 
target node, and the other is the error of the computer archi-
tecture simulator (Gem5) itself. Researchers can improve the 
accuracy of computation behavior by modeling the hardware 
architecture (e.g., microarchitecture, memory, etc.) of the 
node in more detail.

From Table 4, the error rate of the communication time 
ranges from 4% to 11%, and the simulated communication 
time is always less than the real communication time. It 
can be seen from Table 4 that the errors of communication 
behavior of LU, SP, and BT are relatively larger. This is 

(1)rate =

(

1 −
simulated_time

real_time

)

× 100%

because these programs call a large number of communica-
tion functions, which leads to the accumulation of errors 
of communication behavior. Although there are only a 
few communication function calls in IS, the communica-
tion functions called are full exchange collective commu-
nications, which will generate a vast number of messages, 
therefore the error of communication behavior of IS is not 
relatively small. The error of communication time is mainly 
composed of three aspects. The first one is that we cannot 
accurately model the target interconnection network. The 
second one is that we lack the simulation of the data depend-
ency when simulating some communication functions. For 
example, when the process runs to MPI_Recv(), we directly 
compute the transmission time of the message, but do not 
model the possible synchronization time for the target pro-
cess to call the corresponding MPI_Send(). This causes the 
simulated communication time is always less than the real 
communication time. The third one is the error of the net-
work simulator itself. Researchers can improve the accuracy 
of communication behavior by modeling the interconnection 
network and simulating the procedure of message transpor-
tation in more detail.

4.3 � Performance of the simulation system

This experiment is to evaluate the performance of the simu-
lation system. The simulation speed is the most important 
metric to evaluate the performance of an architecture simula-
tor. Table 5 and Table 6 show the performance of our system 
by listing the simulation time and the slowdown of each 
program. 

There are two main reasons that affect the simulation 
speed of our HPC simulation system. One is the speed of the 
architecture simulator (Gem5) that we use, and the other is 
the speed of the components that we extend the architecture 
simulator (e.g., message emulation environment). To verify 
the main reasons that affect the simulation speed, we do a 
set of comparative experiments.

We assume that the target system has only one comput-
ing node. The configuration of the computing node is the 
same as that in Table 3. We simulate the execution of the 
eight programs with the scale of 64 processes in the target 
computing node, respectively. Since all the 64 processes of 
the programs can run in the node, we can only use the Gem5 
to simulate the target system and simulate the execution of 
the programs.

The problem size of all programs is CLASS A. For the 
seven programs except for EP, we just selectively simulate 
the process of the first three iterations of these programs. 
For EP, we simulate the whole procedure. We run the 8 pro-
grams with the scale of 64 processes in a Gem5 simulation 
instance, respectively. Table 7 shows the simulated execu-
tion time of the programs versus the simulation time that the 



456	 F. Lin et al.

1 3

Fig. 9   The result of simulation. (Sim-total-time indicates the average 
total time of the simulated execution of the processes, Real-total-time 
indicates the average total time of the real execution of the processes 

in the target system, Sim-compute-time indicates the average compu-
tation time of the simulated execution, Real-compute-time indicates 
the average computation time of the real execution.)



457Leveraging simulation of high performance computing systems with node simulation using…

1 3

Gem5 simulates the programs. The slowdown is calculated 
by comparing the simulation time and the simulated execu-
tion time of each program. From Table 7, it can be con-
cluded that the simulation speed of our simulation system is 
close to the Gem5. Therefore, it can be concluded that the 
main factor affecting the speed of our simulation system is 

the simulation speed of the off-the-shelf architecture simula-
tor we use.

4.4 � Comparison with dist‑gem5

This subsection conducts a set of comparative experiments 
to compare the accuracy and performance of our system 
with dist-gem5. We try to use dist-gem5 to simulate HPC 
systems. The number of simulation instances launched by 
dist-gem5 is the number of nodes of the target system plus 
one (one switch instance), each simulation instance occupies 
one processor core. For HPC systems with a large number of 
nodes, using dist-gem5 to simulate HPC systems requires a 
considerable number of hosts. Therefore, using dist-gem5 to 
simulate HPC systems is theoretically possible, but difficult 
to implement in practice.

In order to be able to complete the comparative experi-
ment between our system and dist-gem5, we assume that the 
target HPC system has only four nodes, and the four nodes 

Table 4   The error rate of the simulation system (%) (The Comp time 
indicates the computation time, the Comm time indicates the commu-
nication time)

Program Num of Total Comp Comm
proc time time time

MG 256 −4.02% −7.58% 7.18%

512 −1.37% −7.38% 7.26%

1024 1.37% −7.65% 7.44%

EP 256 −4.28% −14.05% 3.98%

512 −1.32% −13.96% 3.98%

1024 1.39% −14.11% 4.01%

IS 256 7.01% 8.04% 6.96%

512 6.99% 7.78% 6.98%

1024 7.11% 7.86% 7.1%

BT 256 −1.65% −4.86% 8.03%

576 1.55% −5.07% 8.21%

1024 3.41% −4.66% 8.32%

SP 256 9.38% 9.53% 9.13%

576 9.27% 9.37% 9.19%

1024 9.5% 10% 9.31%

LU 256 9.51% 8.56% 9.51%

512 9.81% 8.32% 9.81%

1024 10.41% 7.51% 11.01%

FT 256 −6.26% −11.06% 7.81%

512 −2.82% −10.88% 7.83%

1024 −1.72% −11.41% 7.89%

CG 256 −1.01% −5.74% 5.58%

512 −2.06% −5.67% 5.62%

1024 2.93% −5.33% 5.82%

Table 5   The simulation time of programs (seconds)

Program Number of processes

256 512/576 1024

MG 3.080 × 103 1.702 × 103 1.180 × 103

EP 11.365 × 103 8.134 × 103 6.761 × 103

IS 1.678 × 103 1.420 × 103 1.255 × 103

BT 4.648 × 103 2.892 × 103 2.528 × 103

SP 3.014 × 103 2.134 × 103 1.694 × 103

LU 5.292 × 103 5.038 × 103 3.284 × 103

FT 107.507 × 103 57.092 × 103 40.740 × 103

CG 30.146 × 103 17.449 × 103 10.180 × 103

Table 6   The slowdown of programs

Program Number of processes

256 512/576 1024

MG 1.281 × 105 1.313 × 105 1.271 × 105

EP 1.043 × 105 0.961 × 105 0.694 × 105

IS 0.339 × 105 0.166 × 105 0.074 × 105

BT 1.021 × 105 0.803 × 105 0.648 × 105

SP 0.925 × 105 0.740 × 105 0.558 × 105

LU 1.082 × 105 0.994 × 105 0.588 × 105

FT 1.022 × 105 0.879 × 105 0.849 × 105

CG 1.041 × 105 1.036 × 105 0.545 × 105

Table 7   The slowdown of Gem5 simulator in our system

Note: When Gem5 is simulating, no matter how many cores it simu-
lates, it all works with one thread. Although gem5 has a multi-thread-
ing mode, this mode can only be used for fast forwarding, not for 
simulation

Program Simulated Simulation Slowdown
execution time

time(seconds) (seconds)

MG 94.686 × 10−3 10.480 × 103 1.107 × 105

EP 271.880 × 10−3 30.588 × 103 1.125 × 105

IS 18.314 × 10−3 2.123 × 103 1.159 × 105

BT 46.303 × 10−3 5.128 × 103 1.107 × 105

SP 29.650 × 10−3 3.288 × 103 1.109 × 105

LU 44.240 × 10−3 5.010 × 103 1.132 × 105

FT 255.220 × 10−3 28.564 × 103 1.119 × 105

CG 28.651 × 10−3 3.250 × 103 1.134 × 105



458	 F. Lin et al.

1 3

are connected through an Ethernet switch. Each node has 
an ARMv8 processor with 8 cores and 8 G memory. We 
run eight programs of NPB in dist-gem5 and our system 
respectively. The number of processes for MG, CG, IS, EP, 
LU and FT is 32. The number of processes for BT and SP is 
25. Processes are distributed in order of process number and 
node number. The program scale of all programs is CLASS 
A. We also selectively simulate the procedure of the first 
three iterations of the seven programs except EP. For EP, we 
simulate the whole procedure. In our system, we select node 
0 of the target system and simulate the running of processes 
0 to 7.

Table 8 shows the average simulated execution time of 
processes 0 to 7 of programs in our system and dist-gem5. 
Figure 10 shows the ratio of the simulated time in our system 
to the simulated time in dist-gem5, which is calculated by 
comparing the simulated time in our system and the simu-
lated time in dist-gem5. From Table 8 and Fig. 10 we can 
conclude that the simulated time of programs in our system 
is approximate to the simulated time in dist-gem5.

Table 9 shows the simulation time of programs in our 
system and dist-gem5. Table 10 shows the slowdown of 
programs in our system and dist-gem5. Figure 11 shows the 
speedup of the simulation speed of our system to dist-gem5, 
which is calculated by comparing the simulation time in dist-
gem5 and the simulation time in our system. From Table 9, 
Table 10 and Fig. 11 we can conclude that the simulation 

Table 8   Simulated execution time of programs: our system vs. dist-
gem5 (seconds)

Program Simulated Simulated
execution time execution time

(our system) (dist-gem5)

MG 245.955 × 10−3 248.514 × 10−3

EP 788.965 × 10−3 796.030 × 10−3

IS 766.846 × 10−3 818.402 × 10−3

BT 137.358 × 10−3 139.459 × 10−3

SP 73.283 × 10−3 74.784 × 10−3

LU 84.629 × 10−3 87.859 × 10−3

FT 360.568 × 10−3 372.495 × 10−3

CG 54.009 × 10−3 55.270 × 10−3

Fig. 10   The ratio of the 
simulated time in our system to 
dist-gem5

Table 9   Simulation time of programs: our system vs. dist-gem5 (sec-
onds)

Program Simulation time Simulation time
(our system) (dist-gem5)

MG 9.126 × 103 12.925 × 103

EP 23.225 × 103 56.885 × 103

IS 2.453 × 103 34.742 × 103

BT 5.346 × 103 13.668 × 103

SP 2.394 × 103 5.904 × 103

LU 4.122 × 103 7.110 × 103

FT 10.214 × 103 20.826 × 103

CG 1.355 × 103 3.468 × 103



459Leveraging simulation of high performance computing systems with node simulation using…

1 3

speed of our system is significantly improved compared 
to dist-gem5. The biggest improvement is the program IS. 
This is because the communication behavior of IS mainly 
consists of full-exchange collective communication, which 
will generate a vast number of messages. The speed of the 
execution of this type of message function in our message 
emulation environment will be faster than the execution of 
these functions in the native MPI environment. In addition, 
the synchronization mechanism of dist-gem5 will further 
slow down the simulation speed.

We further compare the scalability of our simulation 
system and dist-gem5. We assume that the target system 
has 2048 nodes. The interconnection network is InfiniBand 
EDR and the topology is Fat-Tree. Each node has an ARMv8 
processor with 8 cores and 8 G memory. Since the maximum 
number of processes supported by IS is 1024, we simulate 

seven programs of NPB except IS. The number of processes 
for MG, CG, EP, LU and FT is 2048. The number of pro-
cesses for BT and SP is 2025. The program scale of CG, FT, 
EP, SP and BT is CLASS C. The program scale of LU and 
MG is CLASS D. Processes are distributed in order of pro-
cess number and node number. We also selectively simulate 
the procedure of the first three iterations of the six programs 
except EP. For EP, we simulate the whole procedure.

We first run the programs in our simulation system. We 
select node 0 of the target system and simulate the running 
of processes 0 to 7. Table 11 shows the average simulated 
execution time of the processes and the simulation time. The 

Table 10   Slowdown of programs: our system vs. dist-gem5

Program Slowdown Slowdown
(our system) (dist-gem5)

MG 0.371 × 105 0.520 × 105

EP 0.294 × 105 0.715 × 105

IS 0.032 × 105 0.425 × 105

BT 0.389 × 105 0.980 × 105

SP 0.327 × 105 0.789 × 105

LU 0.487 × 105 0.809 × 105

FT 0.283 × 105 0.559 × 105

CG 0.251 × 105 0.627 × 105

Fig. 11   The speedup of the 
simulation speed of our system 
to dist-gem5

Table 11   The result and performance of simulating a target system 
with 2048 nodes

Program Simulated Simulation Slowdown
execution time

time(seconds) (seconds)

MG 236.660 × 10−3 3.213 × 103 1.358 × 105

EP 357.998 × 10−3 7.956 × 103 0.222 × 105

BT 98.358 × 10−3 2.772 × 103 0.282 × 105

SP 75.652 × 10−3 1.416 × 103 0.187 × 105

LU 496.838 × 10−3 8.766 × 103 0.176 × 105

FT 285.006 × 10−3 4.344 × 103 0.152 × 105

CG 117.402 × 10−3 9.894 × 103 0.843 × 105



460	 F. Lin et al.

1 3

slowdown is calculated by comparing the simulation time 
and the simulated execution time of each program.

From Tables 6, 10 and 11 we can conclude that as the 
number of nodes of the simulated target system increases, the 
slowdown of our system does not corresponding increase. 
The system’s slowdown is more related to the complexity of 
the computing nodes and the behavior of the program. This 
demonstrates that our system has sufficient scalability and is 
capable of simulating large-scale HPC systems.

We then test dist-gem5. As mentioned above, the num-
ber of simulation instances launched by dist-gem5 is the 
number of nodes of the target system plus one (one switch 
instance), and each simulation instance occupies one proces-
sor core. Since each local host has 24 cores, 86 local hosts 
are required to simulate the target system using dist-gem5. 
Since simulating the complete target system requires a large 
number of hosts, we only simulate a subset of nodes of the 
target system. We simulate 64 nodes of the target system in 
three local hosts, running the program CG with 512 pro-
cesses with the problem size CLASS C. Experimental results 
show that the simulation time of the first three iterations 
of the program exceeds 12 h. From the experimental result 
we can conclude that if we simulate all the 2048 nodes and 
execute the CG with 2048 processes, the simulation time 
will be significantly more than 12 h.

The above experiments show that the scalability of our 
system is suitable for simulating HPC systems. Obviously, 
from the perspective of resource usage and simulation speed, 
dist-gem5 is not suitable for simulating HPC systems.

4.5 � Validation of heterogeneous systems

There are only a few execution-driven simulators for hetero-
geneous architectures. One of the most classic off-the-shelf 
heterogeneous node full-system simulators is Gem5-gpu. 
However, the Gem5-gpu can only support simulation of 
NVIDIA GTX580, and support CUDA version up to version 
3.2. It is difficult for us to find a target system to verify the 
accuracy of our system for heterogeneous CPU-GPU nodes, 
so in this sub-section we only verify the functionality of our 
system for heterogeneous nodes.

We assume a target heterogeneous HPC system that 
the node has a dual-core X86 processor and an NVIDIA 
GTX580 GPU. The memory of the node is 4GB. The target 
HPC system has 300 nodes connected via a 100Gb Infini-
band switch.

We use the SHOC(Scalable HeterOgeneous Computing 
benchmark) (Danalis et al. 2010) as the workload to evaluate 
our simulation system for heterogeneous architecture. There 
are 4 MPI+CUDA programs in SHOC, namely scan (parallel 
prefix sum algorithm on a large array of floating point data), 
reduction (a sum reduction operation using single-precision 
floating-point data), qtc (Quality Threshold Clustering) and 

stencil2d (a standard two-dimensional nine-point stencil cal-
culation) and QTC (Quality Threshold Clustering). Since the 
CUDA version supported by SHOC is above 4.0, while the 
highest CUDA version supported by Gem5-gpu is 3.2, we 
have made minimal modifications to these four programs. 
However, only the program scan and reduction can run cor-
rectly without affecting their core procedure after removing 
some high version functions. Some high version functions 
of qtc and stencil2d are functions that implement their core 
procedures and cannot be removed. Ultimately, we choose 
scan and reduction as the workload.

Gem5-gpu only supports one process to use GPU. There-
fore, we assume scan and reduction run on 128 nodes of the 
target system with 128 processes. Processes are assigned to 
node 0 to node 127 in sequence. We simulate node 0 and run 
process 0 in the node.

Table 12 shows the simulation result and the performance 
of our simulation system.

5 � Related work

There is a lot of work related to simulation and simulators 
of computer architecture, and we selectively introduce some 
work closely related to our work. We introduce related work 
from three aspects: (1) the classic computer architecture sim-
ulator, (2) the HPC system simulator, and (3) the extensions 
of the Gem5 simulator.

(1) The classic computer architecture simulator
Computer architecture simulators can be classified in 

many ways according to different perspectives. For instance, 
it can be divided into full-system simulators and application-
level simulators based on the scope of the target. The full-
system simulator can simulate the complete operating sys-
tem, and the application level simulator can only run target 
applications. Some classic computer architecture simulators 
support both full-system simulation and application-level 
simulation.

Several simulators support full-system simulation. Gem5 
is a simulation framework that integrates the advantages of 
both the simulator M5, which models networked systems, 
and the Gems, which is a simulation toolset for multiproces-
sors. It covers the simulation of system-level architectures 

Table 12   The result and performance of simulating the heterogene-
ous system

Program Simulated Simulation Slowdown
execution time

time (seconds) (seconds)

Scan 9.831 34.560 × 103 3.515 × 103

Reduction 9.056 51.120 × 103 5.644 × 103



461Leveraging simulation of high performance computing systems with node simulation using…

1 3

as well as processor microarchitectures. Gem5 provides four 
interpretation-based CPU models: a simple one-CPI CPU, a 
detailed model of an in-order CPU, and a detailed model of 
an out-of-order CPU. Gem5 supports mainstream instruc-
tion set architectures such as X86, Alpha, ARM, SPARC, 
MIPS, etc. Gem5 is one of the most classic and commonly 
used computer architecture simulators. It is developed in 
C++ and Python. C++ code implements the core simula-
tion components, and Python implements user interfaces, so 
that users can flexibly create and configure target simulation 
objects.

SimOS (Rosenblum et al. 1997) is an early commonly 
used full-system simulator. It is enabled to run IRIX on 
MIPS, and Unix on Alpha. Simics (Magnusson et al. 2002) 
is a full-system simulation platform; it supports numerous 
instruction sets and can directly run unmodified operating 
systems. What is special is that Simics can implement execu-
tion in a backward direction to help analyze how program 
errors and exceptions occur.

SimpleScalar (Austin et al. 2002) is a classic simulation 
toolset and provides multiple simulation modes, of which 
ss-os is a full-system simulator. PTLsim (Yourst 2007) is 
a full-system simulator that models a modern superscalar 
out-of-order x86-64 processor core and only targets the real 
commercially available x86 ISA. MARSSx86 (Patel et al. 
2011) is an x86 full-system simulator that is based on PTL-
sim. It adds various optimizations for better performance 
and flexibility than PTLsim, and adds supporting in-order 
(IO) pipeline models.

Gem5-gpu is a classic CPU-GPU heterogeneous system 
architecture simulator. It integrates gem5 with gpgpu-sim 
and can simulate the heterogeneous system with the full-
system mode. Gem5-gpu adds a memory interface, which 
is implemented by modeling CU memory accesses through 
Ruby, between the Gem5 and gpgpu-sim.

If the researcher does not care about the interaction of 
the application with the operating system, the application-
level simulator is also useful. Some simulation platforms 
also provide application-level simulators, such as Gem5, 
SimpleScalar, Gem5-gpu and SimpleScalar. Multi2Sim 
(Ubal et al. 2012) is an application-level simulator that tar-
gets CPU-GPU architectures. It supports multi-threaded or 
single-threaded processor cores with an out-of-order pipe-
line. Sniper is an application-level parallel multi-core simu-
lator that supports both out-of-order and in-order pipeline 
simulation.

For the application-level simulators, in addition to simu-
lating the entire system, there are many simulators that simu-
late a component, such as memory simulator, accelerator 
simulator, etc. For example, DRAMSim2 (Rosenfeld et al. 
2011) is a memory system simulator that can obtain vari-
ous static and dynamic parameters of the memory system 
during the program operation, including memory access 

delay, memory bandwidth, memory power consumption, and 
memory controller scheduling. GPGPU-Sim is a GPGPU 
simulator. The GPU model of GPGPU-Sim consists of a 
series of SIMT cores. These SIMT cores are connected to 
the memory partition through an interconnection network to 
communicate with the GDDR memory.

(2) The HPC system simulator
Bigsim (Zheng et al. 2004) is a trace-driven simulator that 

simulates processes through threads. The target application 
runs on an emulator and generates communication traces, 
and a trace-based simulator takes these traces as input to 
predict the overall performance of the target system. Big-
sim relies on the CHARM++ (Kale and Krishnan 1993) 
environment.

LogGOPSim (Hoefler et al. 2010) and SIM-MPI (Zhai 
et al. 2010, 2015) are trace-driven HPC simulators. They 
model the traces and predict the overall performance of 
the target system. The input of LogGOPSim is expressed 
by Group Operation Assembly Language (GOAL), which 
is used to define the three different types of tasks: send, 
receive, and computation. LogGOPSim uses the LogGOP 
model to simulate the send and receive traces to predict the 
communication time. The input of SIM-MPI is composed 
of the computation time sequence and the MPI operation 
traces. SIM-MPI uses the LogGPO model to simulate the 
computation traces. To obtain more accurate traces related 
to the computation time, the two simulators usually collect 
the computation trace on local nodes that are the same as 
the target system.

Denzel et al. (2010) presented a trace-driven HPC simu-
lation framework. Similar to LogGOPSim and SIM-MPI, 
the simulation framework models the computation and com-
munication traces to predict the overall performance of the 
target system. It consists of the computing node model and 
the interconnection network model. The computing node 
model simulates the computation traces. The interconnec-
tion network model that is based on Omnet++ simulates the 
communication traces.

The Structural Simulation Toolkit (SST) (Rodrigues 
et al. 2011) is a parallel simulation framework that was 
developed to explore innovations in highly concurrent sys-
tems. It supports integration of different simulation com-
ponents by providing a set of common services and inter-
faces. The implementation of SST is based on MPI. The 
components run as processes on different physic proces-
sor cores to simulate concurrently and communicate with 
other components through MPI communication. This pro-
vides a high level of performance. BE-SST (Ramaswamy 
et al. 2018) is an execution-driven simulator for behavioral 
emulation of extreme-scale systems. It incorporates BE 
(behavioral emulation models) into the SST. It mainly uti-
lizes the interfaces provided by SST for defining proces-
sor BE objects and communication BE objects, resulting 



462	 F. Lin et al.

1 3

in a parallel and scalable coarse-grained simulator. Hsieh 
et al. (2012) presented a scalable execution-driven simu-
lation infrastructure for HPC system by integrating the 
Gem5 into the SST. The simulation infrastructure makes 
all Gem5 SimObjects live inside an SST component and 
modifies the Gem5 event queue to be driven by the SST 
event queue.

SystemC (Panda 2001) is a library that provides an event-
driven simulation interface. It provides a set of C++ classes 
and macros to model systems composed of both hardware 
and software components. Some works (Galiano et al. 2009; 
Ziyu et al. 2009) implement parallel simulation based on 
systemC and MPI. They use systemC to model processors 
and run one logical process on one processor core. The syn-
chronization and communication between the logical pro-
cesses are implemented based on MPI.

MPI-SIM (Prakash and Bagrodia 1998) is an execution-
driven simulator that provides a capability for multithreaded 
execution of MPI programs. It reprocesses the program to 
convert each MPI call to an MPI-SIM call. MPI-SIM is 
mainly used to predict the performance of MPI programs. 
The researchers can set the number of processors and com-
munication latencies of the target system. MPI-SIM does 
not support modeling and simulation of the processor micro-
architecture and the interconnection network.

SimHPC (Liu et al. 2013), PS-SIM (Guo et al. 2011) and 
VACED-SIM (Lin et al. 2013) are execution-driven HPC 
simulators. These simulators run the MPI program with the 
desired scale on a local cluster with fewer processors than 
the target system. They use local hosts and an interconnec-
tion network model to simulate the target system. During 
the execution of the program, they simulate the computa-
tion and communication time of the processes on target 
system. They have different methods to simulate the com-
putation and communication time. SimHPC captures the 
process scheduling events to simulate the running time of 
the process and uses a mathematical model to simulate the 
message transport latency. PS-SIM uses a logical process 
mapping mechanism to simulate the computation time and 
a communication model based on LogP (Culler et al. 1993) 
model to simulate the communication time. VACED-SIM 
assumes that the number of processor cores of the local hosts 
is greater than or equal to the number of processes in the 
target program. Under this assumption, each process can be 
allocated a processor core, so that the computation time of 
processes is acquired by measurement directly. VACED-SIM 
also uses a communication model to simulate the commu-
nication time of the processes. To make the modeling of the 
microarchitecture more accurate and to simplify the design 
of the microarchitecture simulation, these simulators usu-
ally use the nodes that are the same as the target system as 
local hosts.

Riesen (2006) presented a hybrid MPI simulator. The pro-
gram runs on computing nodes and its MPI communication 
calls are re-direct to a trace-driven network simulator. The 
network simulator analyzes the MPI communication traces 
to simulate network delay. Then the network simulator feeds 
back the network delay to the running application. Similar to 
VACED-SIM, the simulator uses the nodes are the same as 
the target system, and assumes the number of processor cores 
of the local hosts is greater than or equal to the number of 
processes in the target program.

Compared with the work introduced above, our system 
mainly has the following advantages: (1) Our system only 
requires one local host to simulate an HPC system and simu-
late the execution of large-scale parallel programs. And our 
simulation system has sufficient scalability. (2) Our system can 
reproduce the scenario of large-scale parallel programs run-
ning on any computing node of an HPC system, including the 
same hardware architecture of the computing node, the same 
operating system and MPI library, and the approximate behav-
ior of processes. (3) Our system can support the simulation of 
large-scale heterogeneous parallel systems. More specifically, 
in this paper our system demonstrates support for large-scale 
CPU-GPU parallel systems and can run MPI+CUDA parallel 
programs.

(3) The extensions of Gem5
Gem5 is one of the most classic and commonly used 

simulators, there is much work to extend Gem5. Dist-gem5 
(Mohammad et al. 2017) is a simulator of the distributed sys-
tem based on Gem5. It connects an Ethernet switch simula-
tion instance with multiple gem5 node full-system simulation 
instances by the linking objects. Each simulation node trans-
mits data through the Ethernet switch simulation. COSSIM 
(Tampouratzis et al. 2020) is also a simulator of the distributed 
system with a similar design idea to Dist-gem5. COSSIM con-
nects the gem5 node instance with the Omnet++ simulation 
instance by developing an interface between the gem5 and 
Omnet++. gem5-X (Qureshi et al. 2021) is a simulation frame-
work for architectural exploration of heterogeneous many-core 
systems. It supports heterogeneous architecture simulation 
allowing both in-order and out-of-cores cores to be simulated 
simultaneously.Gem5v (Nikounia and Mohammadi 2015) is 
a modified gem5 that can simulate simulates the behavior of 
the hypervisor and can simulate virtual machines. It modi-
fies Ruby to support the translation of physical addresses to 
real addresses. Each VM is simulated by an instance. All VM 
instances are connected to one instance of Ruby.

6 � Conclusion and future work

This paper demonstrates a novel approach for simulating 
the HPC system with node simulation using the architec-
ture simulator and realizes a simulation system based on 



463Leveraging simulation of high performance computing systems with node simulation using…

1 3

the classic simulator Gem5. In our system, researchers can 
flexibly model and configure the hardware and software 
architecture of the target node as well as the target inter-
connection network. Compared to existing HPC simula-
tors, researchers can not only perform detailed and accurate 
simulation of the node of target HPC system, but also can 
evaluate the overall performance of the target system by run-
ning large-scale parallel programs in our simulation system. 
In addition, researchers can comprehensively evaluate the 
interaction and integration between the application, the soft-
ware environment and the hardware architecture through our 
simulation system.

In the future, we will improve the simulation system 
mainly by three aspects. (1) We will simulate the procedure 
of message transportation in more detail, mainly including 
researching the approach to simulate the data dependency 
among the processes, which will make the simulation system 
more accurate. (2) We will enhance the support for hetero-
geneous architecture. (3) We will research how to simulate 
the parallel file I/O (e.g. MPI_File_read_at() and MPI_File_
write_at()) in our simulation system.

Data availability  All relevant data are within the manuscript.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author 
states that there is no confict of interest.

References

Austin, T., Larson, E., Ernst, D.: Simplescalar: An infrastructure for 
computer system modeling. Computer 35(2), 59–67 (2002)

Bakhoda, A., Yuan, G.L., Fung, W.W., et al.: Analyzing cuda work-
loads using a detailed gpu simulator. IEEE, 2009 IEEE interna-
tional symposium on performance analysis of systems and soft-
ware, pp 163–174 (2009)

Binkert, N., Beckmann, B., Black, G., et al.: The gem5 simulator. ACM 
Sigarch Comput Archit News 39(2), 1–7 (2011)

Binkert, N.L., Dreslinski, R.G., Hsu, L.R., et al.: The m5 simulator: 
Modeling networked systems. IEEE Micro 26(4), 52–60 (2006)

Culler, D., Karp, R., Patterson, D., et al: Logp: Towards a realistic 
model of parallel computation. Proceedings of the fourth ACM 
SIGPLAN symposium on Principles and practice of parallel pro-
gramming, pp 1–12 (1993)

Danalis, A., Marin, G., McCurdy, C., et al: The scalable heterogeneous 
computing (shoc) benchmark suite. Proceedings of the 3rd Work-
shop on General-Purpose Computation on Graphics Processing 
Units, pp 63–74 (2010)

Denzel, W.E., Li, J., Walker, P., et al.: A framework for end-to-end 
simulation of high-performance computing systems. SIMULA-
TION 86(5–6), 331–350 (2010)

Galiano, V., Migallón, H., Pérez-Caparrós, D., et al: Distributing sys-
temc structures in parallel simulations. Proceedings of the 2009 
Spring Simulation Multiconference, pp 1–8 (2009)

Guo, X., Lin, Y., Xu, X., et al: Ps-sim: An execution-driven perfor-
mance simulation technology based on process-switch. Springer, 

International Conference on Computer Science, Environment, 
Ecoinformatics, and Education, pp 15–22 (2011)

Hoefler, T., Schneider, T., Lumsdaine, A.: Loggopsim: simulating 
large-scale applications in the loggops model. Proceedings of the 
19th ACM International Symposium on High Performance Dis-
tributed Computing, pp 597–604 (2010)

Hsieh, M., Pedretti, K., Meng, J., et al: Sst+ gem5= a scalable simula-
tion infrastructure for high performance computing. Proceedings 
of the 5th International ICST Conference on Simulation Tools and 
Techniques, pp 196–201 (2012)

Kale, L.V., Krishnan, S.: Charm++ a portable concurrent object ori-
ented system based on c++. Proceedings of the eighth annual 
conference on Object-oriented programming systems, languages, 
and applications, pp 91–108 (1993)

Lin, Y., Yang, X., Xu, X., et al.: Vaced-sim: A simulator for scalability 
prediction in large-scale parallel computing. IEICE T Inf Syst 
96(7), 1430–1442 (2013)

Liu, Y., Zhi, Y.Z., Zhang, X., et al: Simhpc: An execution-driven simu-
lator for high-performance computers. Jisuanji Xuebao(Chinese 
Journal of Computers) 36(4):738–746 (2013)

Magnusson, P.S., Christensson, M., Eskilson, J., et al.: Simics: A full 
system simulation platform. Computer 35(2), 50–58 (2002)

Martin, M.M., Sorin, D.J., Beckmann, B.M., et al.: Multifacet’s general 
execution-driven multiprocessor simulator (gems) toolset. ACM 
Sigarch Comput Archit News 33(4), 92–99 (2005)

Mohammad, A., Darbaz, U., Dozsa, G., et al: dist-gem5: Distributed 
simulation of computer clusters. IEEE, 2017 IEEE International 
Symposium on Performance Analysis of Systems and Software 
(ISPASS), pp 153–162 (2017)

MPICH (2023) MPICH homepage, [online]. https://​www.​mpich.​org/
Nikounia, S.H., Mohammadi, S.: Gem5v: a modified gem5 for simulat-

ing virtualized systems. J Supercomput 71(4), 1484–1504 (2015)
NPB (2023) THE NAS PARALLEL BENCHMARKS, [online]. https://​

www.​nas.​nasa.​gov/​publi​catio​ns/​npb.​html
Panda, P.R.: Systemc: a modeling platform supporting multiple design 

abstractions. Proceedings of the 14th international symposium on 
Systems synthesis, pp 75–80 (2001)

Patel, A., Afram, F., Ghose, K.: Marss-x86: A qemu-based micro-
architectural and systems simulator for x86 multicore processors. 
Citeseer, 1st International Qemu Users’ Forum, pp 29–30 (2011)

Power, J., Hestness, J., Orr, M.S., et al.: gem5-gpu: A heterogeneous 
cpu-gpu simulator. IEEE Comput Archit L 14(1), 34–36 (2014)

Prakash, S., Bagrodia, R.L.: Mpi-sim: using parallel simulation to 
evaluate mpi programs. IEEE, pp 467–474 (1998)

Qureshi, Y.M., Simon, W.A., Zapater, M., et al.: Gem5-x: A many-core 
heterogeneous simulation platform for architectural exploration 
and optimization. ACM T Archit Code Op (TACO) 18(4), 1–27 
(2021)

Ramaswamy, A., Kumar, N., Neelakantan, A., et al: Scalable behavioral 
emulation of extreme-scale systems using structural simulation 
toolkit. Proceedings of the 47th International Conference on Paral-
lel Processing, pp 1–11 (2018)

Riesen, R.:A hybrid mpi simulator. IEEE, 2006 IEEE international 
conference on cluster computing, pp 1–9 (2006)

Rodrigues, A.F., Hemmert, K.S., Barrett, B.W., et al.: The structural 
simulation toolkit. ACM SIGMETRICS Performance Evaluation 
Review 38(4), 37–42 (2011)

Rosenblum, M., Bugnion, E., Devine, S., et  al.: Using the simos 
machine simulator to study complex computer systems. ACM T 
Model Comput S (TOMACS) 7(1), 78–103 (1997)

Rosenfeld, P., Cooper-Balis, E., Jacob, B.: Dramsim2: A cycle accurate 
memory system simulator. IEEE Comput Archit L 10(1), 16–19 
(2011)

Tampouratzis, N., Papaefstathiou, I., Nikitakis, A., et al.: A novel, 
highly integrated simulator for parallel and distributed systems. 
ACM T Archit Code Op (TACO) 17(1), 1–28 (2020)

https://www.mpich.org/
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html


464	 F. Lin et al.

1 3

Ubal, R., Jang, B., Mistry, P., et al: Multi2sim: A simulation framework 
for cpu-gpu computing. IEEE, 2012 21st International Conference 
on Parallel Architectures and Compilation Techniques (PACT), 
pp 335–344 (2012)

Varga, A., Hornig, R.: An overview of the omnet++ simulation envi-
ronment. Proceedings of the 1st international conference on Sim-
ulation tools and techniques for communications, networks and 
systems & workshops, pp 1–10 (2008)

Yourst, M.T.: Ptlsim: A cycle accurate full system x86-64 microarchi-
tectural simulator. IEEE, 2007 IEEE International Symposium on 
Performance Analysis of Systems & Software, pp 23–34 (2007)

Zhai, J., Chen, W., Zheng, W.: Phantom: predicting performance of 
parallel applications on large-scale parallel machines using a sin-
gle node. Proceedings of the 15th ACM SIGPLAN Symposium 
on Principles and Practice of Parallel Programming, pp 305–314 
(2010)

Zhai, J., Chen, W., Zheng, W., et al.: Performance prediction for large-
scale parallel applications using representative replay. IEEE 
Trans. Comput. 65(7), 2184–2198 (2015)

Zheng, G., Kakulapati, G., Kalé, L.V.: Bigsim: A parallel simulator 
for performance prediction of extremely large parallel machines. 
IEEE, 18th International Parallel and Distributed Processing Sym-
posium, 2004. Proceedings., p 78 (2004)

Ziyu, H., Lei, Q., Hongliang, L., et al: A parallel systemc environment: 
Archsc. IEEE, 2009 15th International Conference on Parallel and 
Distributed Systems, pp 617–623 (2009)

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

Fang Lin  received the master’s 
degree in computer science and 
technology from the Beijing Uni-
versity of Posts and Telecommu-
nications (BUPT), in 2013. He is 
currently pursuing the Ph.D. 
degree with the School of Com-
puter Science and Engineering, 
Beihang University(BUAA). His 
research interests include high-
performance computing, distrib-
uted computing, and computer 
architecture.

Yi Liu  is a professor in School of 
Computer Science and Engineer-
ing, and Director of the Sino-
German Joint Software Institute 
(JSI) at Beihang University, 
China. In 2000, he completed 
Ph.D in Department of Com-
puter Science of Xi’an Jiaotong 
University. His research interests 
include computer architecture, 
HPC and new generation of net-
work technology.

Xin Wang  received the bachelor’s 
degree from Chongqing Univer-
sity in 2018 and the master’s 
degree from Beihang University 
in 2021. His research interest is 
high-performance computing 
and computer architecture.

Xueyan Gai  received the bache-
lor’s degree from Jilin University 
in 2020 and the master’s degree 
from Beihang University in 
2023. Her research interest is 
high-performance computing 
and computer architecture.


	Leveraging simulation of high performance computing systems with node simulation using architecture simulator
	Abstract
	1 Introduction
	2 Approach
	2.1 Analysis
	2.2 Simulation of HPC systems based on node-simulation
	2.2.1 Modeling of the target node
	2.2.2 Message emulation environment
	2.2.3 Simulation of interconnection network


	3 Implementation
	3.1 Node full-system simulation instance
	3.2 Interconnection network simulation module
	3.3 Message emulation environment
	3.3.1 Process control sub-module
	3.3.2 Communication time computing sub-module
	3.3.3 Communication emulation sub-module

	3.4 Pre-execution of the program

	4 Experiments
	4.1 Methodology
	4.2 Validation
	4.3 Performance of the simulation system
	4.4 Comparison with dist-gem5
	4.5 Validation of heterogeneous systems

	5 Related work
	6 Conclusion and future work
	References




