
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2024) 6:94–111
https://doi.org/10.1007/s42514-023-00168-6

1 3

REGULAR PAPER

Quantitative evaluation of deep learning frameworks
in heterogeneous computing environment

Zhengxian Lu1 · Chengkun Du1 · Yanfeng Jiang1 · Xueshuo Xie2,3 · Tao Li1,2 · Fei Yang4

Received: 8 July 2023 / Accepted: 28 August 2023 / Published online: 8 September 2023
© China Computer Federation (CCF) 2023

Abstract
Deep learning frameworks are powerful tools to support model training. They dispatch operators by mapping them into a
series of kernel functions and launching these kernel functions to specialized devices such as GPUs. However, there is little
known about the performance of dispatching and mapping mechanisms in different frameworks, although these mechanisms
directly affect training time. This paper presents a performance evaluation in various frameworks by examining their kernel
function efficiency and operator dispatching mechanisms. We introduce two evaluation metrics, device computing time
(DCT) and device occupancy ratio (DOR), based on the device’s active and idle states. To ensure comparable evaluation
results, we propose a three-step verification method including hyper-parameter, model, and updating method equivalences.
Due to inequivalent implementations in frameworks, we present an equivalence adjustment method based on the number of
operators. Our evaluation results demonstrate the device utilization capability of five frameworks, namely PyTorch, Tensor-
Flow 1, TensorFlow 2, MXNet, and PaddlePaddle, and reveal the potential for further optimizing the training performance
of deep learning frameworks.

Keywords Deep learning framework · Performance evaluation · Device computing time · Device occupancy ratio

1 Introduction

In the realm of deep learning, frameworks like TensorFlow
(Abadi et al. 2016) and PyTorch (Paszke et al. 2019) play a
crucial role in bridging deep learning models and hardware
platforms. These frameworks automatically execute user-
defined training processes in heterogeneous computing sys-
tems by dispatching computing tasks, referred to as opera-
tors, on high-performance computing devices such as GPUs
to alleviate the burden of model training. However, it is not
trivial for frameworks to gain high performance from hetero-
geneous computing. During training, frameworks dispatch
operators by mapping them into a series of kernel functions
and launching these kernel functions to the device sequen-
tially. Their operator mapping and dispatching mechanisms
can significantly affect the training performance (Kim et al.
2017; Zhu et al. 2018). Besides, various optimization tech-
niques are also adopted to accelerate the training. Through
evaluation, we can better understand their mechanisms, aid
in the more efficient use of frameworks, and explore further
optimization opportunities.

However, recent studies have mainly evaluated deep
learning frameworks by discussing their lack of support for

 * Xueshuo Xie
 xueshuoxie@nankai.edu.cn

 * Tao Li
 litao@nankai.edu.cn

 Zhengxian Lu
 luzx@mail.nankai.edu.cn

 Chengkun Du
 dck@mail.nankai.edu.cn

 Yanfeng Jiang
 yfjiang@mail.nankai.edu.cn

 Fei Yang
 yangf@zhejianglab.com

1 College of Computer, Nankai University, Tianjin 300350,
China

2 Haihe Lab of ITAI Street, Tianjin 300350, China
3 State Key Laboratory of Computer Architecture, Institute

of Computing Technology, Beijing 100190, China
4 Zhejiang Lab, Zhejiang 310058, China

http://orcid.org/0000-0002-8245-8415
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00168-6&domain=pdf

95Quantitative evaluation of deep learning frameworks in heterogeneous computing environment

1 3

specific device architectures (Trindade et al. 2019; Yang
et al. 2021), communication issues in distributed training
(Shi et al. 2018; Jäger et al. 2018; Shams et al. 2017), hard-
ware resource consumption (Wu et al. 2018; Elshawi et al.
2021), and software engineering issues (Guo et al. 2019;
Han et al. 2020a, b; Sun et al. 2021). While various deep
learning frameworks have been included in benchmarking
efforts, these efforts have focused on different evaluation
targets, such as deep learning workload (Adolf et al. 2016;
Zhu et al. 2018; Mattson et al. 2020a). Some studies have
similar concerns to ours, but they are limited to discussing
the kernel function computation efficiency of certain opera-
tors, such as convolutions (Shi et al. 2016; Kim et al. 2017).
The performance gap among frameworks due to their differ-
ent operator mapping and dispatching mechanisms remains
unknown.

In this paper, we aim to evaluate and reveal the perfor-
mance of different mechanisms among deep learning frame-
works. The performance evaluation of frameworks has two
limitations. (1) Both the operator mapping mechanism and
operator dispatching mechanism in the framework can
become performance bottlenecks. It is not possible to evalu-
ate the mechanism that does not become the performance
bottleneck by training time, leading to incomparable evalu-
ation results. (2) Implementing a training process for each
framework is necessary, but inequivalent training process
implementations may lead to unfair evaluation results. For
example, if one framework’s training includes bias computa-
tions in convolutional layers while others do not, the evalu-
ation will lead to misunderstandings that the framework is
worse in performance. Consequently, to perform an evalu-
ation of frameworks, there are two challenges: (1) how to
compare the operator mapping and dispatching mechanisms
among various frameworks; (2) how to locate and elimi-
nate the inequivalent implementations of training process
to ensure the comparability of evaluation.

We employ two key designs to address the challenges
mentioned above. To tackle the first challenge, we divide
the device state into two categories: active and idle states,
to reflect the operator mapping and dispatching mechanism
of the frameworks. Based on these states, we propose the
device computing time (DCT) metric to measure the execu-
tion time of the kernel functions on the device and the device
occupancy ratio (DOR) metric to reveal the degree of device
starvation. Shorter DCT and higher DOR lead to less train-
ing time. For the second challenge, we propose a three-step
equivalence validation method that includes hyper-param-
eter equivalence, model equivalence, and parameter updat-
ing equivalence. This validation method helps to locate the
inequivalent implementations and verify the training pro-
cess equivalence. To eliminate the discovered inequivalent
implementations, we present an equivalence adjustment
method based on the number of operators. By comparing the

number of operators before and after the equivalence adjust-
ment, we can determine whether to adjust the inequivalent
implementations.

We carefully choose a convolutional neural network
named ResNet (He et al. 2016) training on the CIFAR-
10 (Krizhevsky et al. 2009) dataset and a Transformer
named BERT (Devlin et al. 2019) training on the SQuAD
(Rajpurkar et al. 2016) as our study cases. We evaluate five
frameworks, i.e., PyTorch, MXNet, PaddlePaddle, Tensor-
Flow 1, and TensorFlow 2, on NVIDIA RTX A6000 GPU.
Our evaluation shows the advantages and disadvantages of
frameworks that use different mechanisms. Furthermore, we
also investigate how different hyper-parameters can affect
training performance. We also demonstrated the results of
applying our metrics to Huawei Atlas 300T. The contribu-
tions of this paper are as follows:

• We introduce evaluation metrics based on device states,
namely DCT and DOR, to provide a comprehensive anal-
ysis of deep learning frameworks. These metrics reflect
changes in the inner state of the device, facilitate the
decoupling of training time, and reveal the effectiveness
of mechanisms.

• We propose a three-step equivalence validation method
and an equivalence adjustment method for evaluation
comparability. Through validation and adjustment, we
can identify any inequivalent implementations in train-
ing and eliminate them to obtain the equivalent training
process across frameworks.

• We conduct a comprehensive evaluation of five deep
learning frameworks and derive several conclusions.
For instance, we find that PaddlePaddle outperforms
PyTorch in certain cases due to its built-in operators,
while PyTorch performs better than PaddlePaddle in
large-batch training due to fewer device synchroniza-
tions.

2 Background

2.1 Deep learning training and frameworks

Generally, deep learning is to design a model and an
objective function based on domain knowledge and then
perform a training process to determine the model param-
eters by optimizing the objective function (Li et al. 2014).
The most commonly used optimization method for deep
learning models is an iterative algorithm called Stochas-
tic Gradient Descent (SGD) (Sun et al. 2019). The train-
ing process with SGD consists of multiple epochs. In
each epoch, the model is trained on the training data by
randomly dividing the entire dataset into batches of the
same size and updating the model parameters with these

96 Z. Lu et al.

1 3

batches sequentially. The number of samples in each batch
is referred to as the batch size. A training step processes
a single batch and approaches the local optimum point
through several stages, including data preprocessing, for-
ward computing, backward propagation, and parameter
updating (Rumelhart et al. 1986). Data preprocessing per-
forms data augmentation and processes the samples into a
format that can be fed into the model. The processed sam-
ples then undergo forward computing and backward propa-
gation to obtain the gradients of the parameters, which are
used to update the model parameters to approach the local
minimum value of the objective function.

To execute the training process, deep learning frame-
works should construct a computation graph that abstracts
the calculations of the application (Abadi et al. 2016). A
computation graph is a directed acyclic graph composed
of nodes representing operators, such as convolutional lay-
ers and ReLU activation functions, and edges representing
data dependencies. Frameworks have two execution modes
to generate computation graphs: static deferred execu-
tion (Abadi et al. 2016) and eager execution (Paszke et al.
2019). In the static deferred execution mode, the framework
explicitly constructs the computation graph to obtain global
computation information. In the eager execution mode, the
framework implicitly builds the computation graph by only
reserving sub-graphs of intermediate results and releasing
them when they are no longer referenced. For example,
PyTorch adopts eager execution to simplify the construction
and debugging of modules (Paszke et al. 2019). Conversely,
MXNet employs a static execution mode to ensure that an
optimized graph is executed on devices (Chen et al. 2015).

Frameworks may change their default execution mode
alone with the version updates to ease the development and
debugging for users. For instance, while TensorFlow 1 only
supports static deferred execution, TensorFlow 2 adopts
dynamic eager execution as the default mode. To bridge
the performance gap, these frameworks also provide meth-
ods to generate static dataflow graphs from eager execu-
tion codes. Furthermore, the development status of some
frameworks has also changed. For example, Theano and
CNTK have ceased development, and Caffe2 became the
backend of PyTorch to provide both development efficiency
and production-ready capability. Table 1 exhibits community
activity, status, and default execution mode of some popular
frameworks.

2.2 Related works

Many efforts have conducted remarkable experimental com-
parisons of training times and hardware resource utiliza-
tion (Shi et al. 2016; Kim et al. 2017; Mahmoud et al. 2019;
Elshawi et al. 2021; Xie et al. 2023). These studies analyze the
performance characteristics of frameworks by breaking down
the training time into stage-wise or operator-wise execution
time and examining the utilization of deep learning libraries,
such as cuDNN and fbcunn. However, the usage of deep learn-
ing libraries is insufficient to represent the performance of the
mechanisms implemented in frameworks. Liu et al. (2018)
demonstrated that default configurations recommended by
frameworks could significantly impact results and highlighted
the importance of considering hyper-parameters and software
configurations when benchmarking deep learning frameworks.

Table 1 Information of deep
learning frameworks

The community activities were obtained from GitHub on March 21, 2023. Recent activities are categorized
by the total number of issues and pull requests in the past month: Low (less than 1), Medium (between 1
and 100), and High (above 100). The default execution mode (DEMs) is denoted as S for static, E for eager,
and S/E for static before but eager now
ahttps:// deepl earni ng4j. kondu it. ai/
bhttps:// www. minds pore. cn/
chttps:// caffe2. ai/

Stars Forks Recent activities Status DEM

TensorFlow (Abadi et al. 2016) 172,265 87,980 High Ongoing S/E
PyTorch (Paszke et al. 2019) 64,151 17,753 High Ongoing E
PaddlePaddle (Ma et al. 2019) 19,851 5049 High Ongoing S/E
MXNet (Chen et al. 2015) 20,322 6872 Medium Ongoing S/E
DL4Ja 12,826 4937 Medium Ongoing E
OneFlow (Yuan et al. 2021) 4610 534 Medium Ongoing E
MindSporeb 3386 623 Low Ongoing E
Caffe (Jia et al. 2014) 33,184 18,969 Low Discontinued S
CNTK (Seide and Agarwal 2016) 17,331 4380 Low Discontinued S
Theano (Al-Rfou et al. 2016) 9685 2509 Low Discontinued S
Caffe2c 8399 1998 Low Discontinued S

https://deeplearning4j.konduit.ai/
https://www.mindspore.cn/
https://caffe2.ai/

97Quantitative evaluation of deep learning frameworks in heterogeneous computing environment

1 3

However, they do not consider the inequivalence implementa-
tions in frameworks.

Several researchers have investigated the performance
of various frameworks on specific device architectures. For
instance, Trindade et al. (2019) studied NUMA architectures,
while Yang et al. (2021) focused on Xeon Phi CPU. In dis-
tributed training, studies have examined the performance of
NVLink and Knights Landing (Shams et al. 2017), parallel
communication overhead (Shi et al. 2018), and different com-
munication approaches (Jäger et al. 2018). Recent efforts in
software engineering have concentrated on development and
deployment (Guo et al. 2019), dependency networks (Han
et al. 2020a), popular topics discussed (Han et al. 2020b), and
bug fixes (Sun et al. 2021; Makkouk et al. 2022) in frame-
works. Additionally, several benchmarks aim to characterize
deep learning workloads, such as DAWNBench (Coleman
et al. 2019), Fathom (Adolf et al. 2016), TBD (Zhu et al. 2018),
MLPerf (Mattson et al. 2020b; Reddi et al. 2020, 2021), and
AIBench (Tang et al. 2021). While the above works provide
excellent experimental benchmarks and analysis, our focus is
primarily on the mechanisms within frameworks.

Remark The aforementioned efforts lack a comprehensive
evaluation of mechanisms in frameworks. Besides, very few
studies have discussed the inequivalence implementations in
frameworks. These are precisely the problems that our work
mainly solves.

3 Methodology

3.1 Overview

We propose three methods to obtain comparable evaluation
results, as shown in Fig. 1. We adopt two metrics to reveal

the framework working mechanism based on the device
states during training. We validate the training process
equivalence and identify any inequivalence implementation
of frameworks by proposing a three-step validation method.
Moreover, we adjust all the identified inequivalence imple-
mentations based on the number of operators.

• Evaluation metrics by device state.
 Deep learning frameworks transform the training pro-

cess into a series of kernel functions and launch them on
devices. The dispatching mechanism of operators and
operator mapping methods in various frameworks can
be assessed based on the device state. We measure the
duration of the active state using device computing time
(DCT) and reveal the proportion of idle state in the total
time through device occupancy ratio (DOR). These two
metrics can be seen as two optimization directions of
training time, indicating the potential improvement space
of frameworks.

• Three-step equivalence validation.
 Frameworks should execute the same training pro-

cess to ensure the comparability of evaluation results.
According to the composition of the training process, we
propose a three-step validation method. Firstly, we estab-
lish hyper-parameter equivalence by setting each neces-
sary hyper-parameters to the same value. Secondly, we
ensure model equivalence by comparing output values
of forward computing among frameworks. Finally, we
verify parameter updating equivalence by checking that
all parameter updating methods are equivalent.

• Equivalence adjustment based on the number of opera-
tors.

 After completing the three-step equivalence valida-
tion, we can find inequivalence implementations in
frameworks. To determine if these inequivalence imple-

Fig. 1 Framework working mechanism and our methods. To dispatch operators like Conv1 and ReLU1 in the computation graph, frameworks
map operators to kernel functions and launch them on the high-performance computing device

98 Z. Lu et al.

1 3

mentations will result in incomparability in evaluations,
we compare the number of operators before and after
equivalence adjustment. Additionally, we demonstrate
our equivalence adjustment method using examples of
momentum optimizer inequivalence and �

2
 regularization

inequivalence.

3.2 Evaluation metrics by device state

Figure 1 illustrates how frameworks dispatch operators on
devices. During training, frameworks map operators into
kernel functions according to the computation graph and
launch all kernel functions on the computing device. In
operator mapping, frameworks either map an operator into
the same kernel function, leveraging deep learning librar-
ies like cuDNN, or map into different kernel functions.
Besides, an inefficient operator dispatching can cause the
device lying idle state. On the other hand, the device is in
an active state when the device is running for computing
one or more kernel functions. In Fig. 1, the active state and
the idle state are represented by A and I, respectively. To
shorten training time, frameworks should optimize training
performance from two aspects: (1) to minimize the execution
time of kernel functions, such as designing more efficient
kernel functions and reducing unnecessary computation, to
reduce the active time; (2) to improve the speed of operator
dispatching and overlap the input/output and CPU (central
processing unit) execution time spent with kernel function
computing time to avoid the device being idle. Therefore, we
can evaluate the operator mapping mechanism and the oper-
ator dispatching mechanism according to the device state.

Device computing time. We employ a metric called
device computing time (DCT) to measure the time cost for
the computing unit of the device to handle kernel functions
during the sampling period; that is, the time the compute
engine of the device is active. Specifically, we denote DCT
within a sampling period that starts at time ts and ends at
time te as T(ts, te) . This metric is defined as follows:

where Dactive(t) represents the state of the device as in (3).

Device occupancy ratio. We use a metric called device
occupancy ratio (DOR) to reveal the degree of device starva-
tion. Specifically, we denote DOR within a sampling period
that starts at time ts and ends at time te as R(ts, te) . This metric
is defined as follows:

(2)T(ts, te) =

te

∫
ts

Dactive(t)dt,

(3)Dactive(t) =

{

1, if device is in active at time t

0, otherwise
.

We have R(ts, te) ∈ (0, 1] . The longer the device is idle, the
closer R(ts, te) is to 0. On the other hand, if the device is
active throughout the entire sample duration, R(ts, te) takes
the maximum value of 1.

Analysis. The training time is a general metric for the
overall performance evaluation. However, it cannot pinpoint
the exact bottleneck in performance since it is difficult to
determine whether the kernel functions computation or the
operator dispatching is inefficient during training. To evalu-
ate operator mapping and dispatching, we observe internal
changes in device states during the training process. Given a
certain computation graph, a short DCT represents efficient
kernel functions, while a DOR closing to one suggests effi-
cient operator dispatching. Since training time is the sum of
active and idle time on the device, shorter DCT and higher
DOR lead to less total training time. Therefore, we can indi-
cate the further optimization direction within frameworks
according to the continuous device state switching between
active and idle.

3.3 Three‑step equivalence validation

To ensure the comparability of performance evaluation, we
should keep training process equivalence on all frameworks.
As illustrated in Fig. 1, the training process consists of mul-
tiple successive training steps. The consistent training step
can ensure the training process equivalence. A single step
includes data preprocessing, forward computing, backward
propagation, and parameter updating. Therefore, to ensure
the training process equivalence, we need to guarantee that:
(1) data preprocessing is consistent; (2) model operators and
data dependencies are consistent; (3) parameter updating
methods are consistent across all frameworks. We propose
a three-step validation method, including hyper-parameter
equivalence, model equivalence, and parameter updating
equivalence, to verify the training process equivalence.

Hyper-parameter equivalence ensures consistent data
preprocessing and assists in ensuring the same operators and
parameter updating method. We validate four types of hyper-
parameters: (1) dataset preprocessing, like mean for data
standardization; (2) operators, e.g., rate for dropout layers;
(3) parameter updating, such as learning rate and weight
decay; (4) performance factors like the number of workers
for data preprocessing in parallel. To accomplish the hyper-
parameter equivalence validation, we begin by loading an
identical configure file into all frameworks. We then explic-
itly pass all arguments when calling APIs to avoid different
default arguments, such as bias for convolutional layers and
epsilon for batch normalization layers. Finally, we consider
API support when determining hyper-parameters because

(4)R(ts, te) =
T(ts, te)

te − ts
.

99Quantitative evaluation of deep learning frameworks in heterogeneous computing environment

1 3

not all frameworks support every API. For example, some
frameworks do not supply initialization techniques like He
initialization (He et al. 2015), so we set convolution initial-
izers as Xavier Uniform (Glorot and Bengio 2010) instead.

Model equivalence allows verifying the operators and
data dependencies equivalence of models. However, obtain-
ing computation graphs built by frameworks can be chal-
lenging, and different orders of floating-point calculation
may result in varying outputs. To address these issues, we
employ an indirect approach to validate model equivalence.
(1) We first train a model with one framework for several
epochs, save the parameters of the trained model into a
binary file, and then load it into other frameworks so that
all frameworks have identical model parameters. (2) We
compare the model using Open Neural Network Exchange
(ONNX),1 which is an open format for representing deep
learning models. We export the model in each framework
as an ONNX model, input the same data to these ONNX
models, and check whether all the models output consist-
ent results. (3) If there are discrepancies in output results
among the models, we identify the cause of the difference
and patch it. We repeat the validation process until all mod-
els produce consistent outputs. We record inequivalence
implementations of frameworks causing the different out-
puts and decide whether to adjust these implementations in
equivalence adjustment.

Parameter updating equivalence aims to ensure that
the same parameters are obtained after updating. In param-
eter updating, a transformation function is first applied to
gradients, followed by an optimizer function to update the
parameters according to transformed gradients. In addition,
a regularization function is used to prevent overfitting. How-
ever, frameworks may have different implementations of the
same function. To address this issue, we validate the equiva-
lence of the transformation, regularization, and optimizer
functions. We compare these implementations based on the
descriptions of these functions from their official documents.
We also examine their source codes if necessary. We have
discovered some inequivalence implementations, such as
differences in momentum optimizer and �

2
 regularization

between TensorFlow and PyTorch. We will use our equiva-
lence adjustment method to adjust these implementations.

3.4 Equivalence adjustment based on the number
of operators

Considering that the working mechanism of the frame-
work is to continuously dispatch operators in the computa-
tion graph during training, it is important to keep the same
number of operators across frameworks to maintain the

comparability of evaluation results. We propose an equiva-
lence adjustment method based on the number of opera-
tors to address each inequivalence implementation among
frameworks. The proposed method involves four steps. (1)
We count the number of operators for the inequivalence
implementation in different frameworks and calculate the
difference in operator counts as countpre . (2) We modify the
training process instead of changing the implementation in
the framework to make the implementation equivalent. (3)
We count the number of operators in different frameworks
after modification and calculate their difference as countpost .
(4) We apply the implementation with a smaller difference
in the number of operators for performance evaluation. If
countpre < countpost , the modification will not be applied;
otherwise, we will modify the inequivalence. Below we take
momentum optimizer and �

2
 regularization as examples.

For momentum optimizer inequivalence, TensorFlow
adopts (5) to update parameters, where wt , 𝜀 > 0 , and �
are the model parameters in iteration t, learning rate and
momentum coefficient, respectively. gt is the gradient given
wt . v0 = 0.

However, PyTorch employs the following equation:

Equation (5) and (6) both require four operators, including
twice multiplication and twice addition/subtraction. There-
fore, We have countpre = 0 for momentum optimizer inequiv-
alence. We can modify (6)–(7) to make the two momentum
optimizers equivalent.

We can adjust � during training to modify the momen-
tum optimizer. However, computing the new � will
introduce extra operators with countpost = 2 . We have
countpre < countpost , and thus discard adjusting the momen-
tum optimizer inequivalence.

For �
2
 regularization inequivalence, TensorFlow adds the

weight penalties to the objective function and calculates the
gradients of model weights to perform the regularization:

where L(w) is the objective function, and � is the regulariza-
tion coefficient. PyTorch adopts weight decay to implement
�
2
 regularization, which can be represented as:

(5)
vt+1 = �vt + �gt+1

wt+1 = wt − vt+1
.

(6)
vt+1 = �vt + gt+1

wt+1 = wt − �vt+1
.

(7)
vt+1 =

�t

�t+1
�vt + gt+1

wt+1 = wt − �t+1vt+1

.

(8)gt =
�L(wt) + �

∑

w2

t

�wt

,

1 https:// onnx. ai/.

https://onnx.ai/

100 Z. Lu et al.

1 3

TensorFlow requires extra operators for the �
2
 weight pen-

alty term
∑

w2

t
 , and we have countpre > 0 . We implement

the weight decay method as (9) on TensorFlow by removing
weight penalties (� = 0) and adjusting the parameter updat-
ing process. After this modification, both TensorFlow and
PyTorch have the same number of operators for �

2
 regulari-

zation implementation. Therefore, we have countpost = 0 and
countpre > countpost , and thus apply this modification to our
performance evaluation.

4 Evaluation

4.1 Experimental setup

Application. We choose a convolution neural network called
ResNet (He et al. 2016) and a transformer model named
BERT (Devlin et al. 2019) as the workloads. ResNet uses
residual modules to maintain gradients for deep layers,
which is a common practice in many deep learning mod-
els. Additionally, ResNet is widely used as the backbone for
other computer vision tasks. We choose an image classifica-
tion task called CIFAR-10 (Krizhevsky et al. 2009), which
is widely used to evaluate the classification capability of
deep learning models. The ResNet architecture for CIFAR-
10 employs a hyper-parameter n to control network size, as
the number of convolutions and fully-connected layers can
be computed by 2 + 6n . Therefore, we can easily expand the
model size and explore the impact of model size on perfor-
mance based on ResNet and CIFAR-10. BERT is a classic
Transformer model widely used in natural language process-
ing (NLP). Considering that the Transformer is often used
for different NLP tasks by fine-tuning, we choose SQuAD
v1.1 (Rajpurkar et al. 2016) as the dataset and fine-tune
the pre-trained BERT on it. Due to the memory limitations
of the device, we only tested the BERT-base, which is the
smaller model size of BERT. We examined its performance
under six different batch sizes. Notably, our focus is not on
neural network capabilities but rather on differences in train-
ing performance among frameworks.

Platform. Our experiments are conducted on hardware
equipped with two Intel(R) Xeon(R) Gold 6248 CPUs and
one NVIDIA RTX A6000 GPU. We select five frameworks,
namely MXNet, PaddlePaddle, PyTorch, TensorFlow 1, and
TensorFlow 2, based on the community activity and sta-
tus as shown in Table 1. Our evaluation includes two major
versions of TensorFlow because there are significant differ-
ences between TensorFlow 1 and TensorFlow 2 in default
execution mode and APIs. We leverage Docker2 to set up the
development environment for each framework. For stability

(9)gt =
�L(wt)

�wt

+ �wt.

in framework performance, we ensure the consistent major
versions, but adopt the official default version of CUDA and
cuDNN instead of matching equal version numbers for all
frameworks. Table 2 shows the version number of all the
frameworks.

Optimization techniques. We apply two extra optimi-
zation techniques for all frameworks supporting them. (1)
Choosing convolution algorithms by testing (OpT in short).
This allows MXNet, PaddlePaddle, and PyTorch to bench-
mark and choose the fastest convolution algorithm prior to
training. (2) Static deferred execution (OpS). MXNet, Pad-
dlePaddle, and TensorFlow 2 can run eager execution pro-
grams under the static deferred execution mode. We also
evaluate these two optimization techniques.

Metric. We use DCT and DOR to evaluate the perfor-
mance of frameworks. We consider one training epoch as
one sampling duration and mark each epoch’s start and end
timestamps using NVIDIA Tools Extension Library (NVTX)3
to measure the training time per epoch. We use a framework
independent tool named NVIDIA Nsight System4 to gather
GPU Metrics. We disable other features like CUDA tracing
to avoid additional overhead. We obtain DCT according to
GR Active, which is one of the GPU Metrics and represents
the percentage of cycles the graphics/compute engine is
active. We calculate DOR according to (4), using measured
DCT and training time per epoch. The first training step
includes initializations like memory allocation. Therefore,
we train models for six epochs but remove the first epoch
to suppress the impact of initialization. We obtain the final
results by averaging results from the remaining five epochs.
For the BERT model, since the number of step is large, we
load all the dataset and shuffle samples, and then we train
3200 samples as one epoch.

Implementation. We use our three-step equivalence
validation and equivalence adjustment methods to ensure
comparability. We demonstrate in Tables 3 and 4 that all the
frameworks can achieve comparable prediction accuracy by

Table 2 Version information of frameworks

Framework CUDA cuDNN
Version Version Version

MXNet 1.8.0 11.0 8.0.4
PaddlePaddle 2.1.3 11.2 8.1.1
PyTorch 1.9.0 11.1 8.0.5
TensorFlow 1 1.15.1 11.2 8.1.1
TensorFlow 2 2.6.0 11.2 8.1.0

2 https:// www. docker. com/.
3 https:// docs. nvidia. com/ nvtx/.
4 https:// devel oper. nvidia. com/ nsight- syste ms.

https://www.docker.com/
https://docs.nvidia.com/nvtx/
https://developer.nvidia.com/nsight-systems

101Quantitative evaluation of deep learning frameworks in heterogeneous computing environment

1 3

modifying all the inequivalence implementations. The vali-
dation accuracy results are obtained by repeating the model
training five times. We can observe that they have comparable
precisions with a difference of no more than 0.35%. The reason
for outperforming the result in the original paper may be attrib-
uted to the use of different weight initialization, post-process,
and convolution downsampling methods. We can also obtain
the coincident accuracy curves during training.

4.2 Comprehensive evaluation results

4.2.1 Comprehensive comparison by DCT and DOR

Figure 2 shows the performance of different frameworks
using DCT and DOR. We examined three ResNets with a

batch size of 512 and a BERT with a batch size of 32. We
draw a dashed line in Fig. 2 to represent the least training
time among the five frameworks as the training time equals
T(ts, te)∕R(ts, te) . We can observe that only the frameworks
with a DCT below a certain threshold and a relatively
high DOR can achieve optimal training performance. This
is because DCT reflects the minimum value that training
time can achieve, while DOR indicates how much poten-
tial the framework can reach. Figure 2 shows that PyTorch
achieves superior training performance for ResNet-20 due to
its high kernel function efficiency and ability to fully utilize
the device. On the other hand, MXNet achieves the highest
training performance for ResNet-56 and ResNet-110 owing
to its most efficient kernel functions. Similarly, PyTorch
achieves the highest BERT training performance due to its
most efficient DCT.

Remark Maximizing the training performance requires ena-
bling the framework to fully utilize the GPU to increase
DOR and efficiently utilize the GPU to improve DCT.

4.2.2 Framework evaluation by DCT

Figure 3 and 4 shows the DCT results of training ResNet
and BERT, respectively. We can observe that PaddlePad-
dle can achieve the lowest DCT with a small batch size.
As the batch size increases, the DCT of PyTorch gradually
becomes smaller than that of PaddlePaddle. For the con-
volution neural network, this is because PaddlePaddle also
adopts built-in convolution operators in addition to cuDNN.
The built-in convolution implementation is more efficient
than that in the deep learning library when the computing
complexity is low. However, it fails to fully utilize the GPU
with large batch sizes. For the Transformer model, the differ-
ence in DCT is mainly due to the different implementations
of permuting and matrix multiplication operators between

Table 3 ResNet accuracy (%) shown as “mean ± std”

ResNet-20 ResNet-56 ResNet-110

MXNet 92.10 ± 0.24 93.71 ± 0.31 94.14 ± 0.17
PaddlePaddle 91.97 ± 0.06 93.53 ± 0.11 94.18 ± 0.18
PyTorch 91.94 ± 0.20 93.68 ± 0.17 94.05 ± 0.20
TensorFlow 1 91.95 ± 0.16 93.59 ± 0.03 94.07 ± 0.13
TensorFlow 2 91.94 ± 0.30 93.70 ± 0.20 93.96 ± 0.18
Origin 91.25 93.03 93.57 ± 0.16

Table 4 BERT-base results shown as “mean ± std”

Exact match (%) F1 score (%)

MXNet 81.26 ± 0.18 88.60 ± 0.21
PaddlePaddle 81.21 ± 0.10 88.55 ± 0.09
PyTorch 81.16 ± 0.21 88.61 ± 0.24
TensorFlow 1 81.49 ± 0.17 88.78 ± 0.14
TensorFlow 2 81.21 ± 0.12 88.53 ± 0.11
Origin 80.8 88.5

Fig. 2 Evaluation results of DCT(s) and 1/DOR. The dashed line denotes the best training time (computed by DCT/DOR) among these five
frameworks

102 Z. Lu et al.

1 3

the two frameworks. On the implementation of permuting,
PyTorch adopts a “lazy” execution method, which only
annotates tensors without explicitly executing permut-
ing kernel functions. This method provides PyTorch with
additional optimization space. For example, many librar-
ies provide arguments on whether the matrix is transposed
when executing GEMM. When conditions permit, GEMM
can be used to complete tensor permuting, thereby reducing

kernel function execution time. Especially when the batch
size is large, the permuting operators have a greater time
overhead, so PyTorch’s DCT is better at large batch sizes. On
the other hand, PaddlePaddle implements a kernel function
named MatrixColReduce to assist in the backpropagation of
matrix multiplication. Thus the computational efficiency of
the matrix multiplication operator in PaddlePaddle is sig-
nificantly better than PyTorch when the batch size is small.

From Fig. 3, we can also observe that there is a discern-
ible difference in DCT between TensorFlow 1 and Tensor-
Flow 2, particularly at small batch sizes. This is because the
kernel functions mapped into by TensorFlow 1 and Ten-
sorFlow 2 are distinct for certain convolutions in forward
computing and backward propagation. Hence, TensorFlow
2’s kernel function computation efficiency outperforms Ten-
sorFlow 1’s at lower workloads and performs comparably
to TensorFlow 1 at higher workloads. We also observe that
TensorFlow performs worse in terms of DCT compared to
other frameworks. This is because TensorFlow does not pro-
vide the OpT setting and thus cannot choose the fastest con-
volution algorithm from various algorithms in cuDNN. For

Fig. 3 Evaluation results of DCT(s) for ResNet-20 (n = 3), ResNet-56 (n = 9), and ResNet-110 (n = 18)

Fig. 4 Evaluation results of DCT(s) for BERT-base

103Quantitative evaluation of deep learning frameworks in heterogeneous computing environment

1 3

BERT in Fig. 4, the most kernel functions executed in Ten-
sorflow 1, including matrix multiplication and element-wise
operators, are based on Eigen. The matrix multiplication of
TensorFlow 2 is implemented using CUTLASS,5 while some
operators are still based on Eigen.6 Therefore, in some cases,
the DCT of TensorFlow is poor.

With the large batch size, MXNet can leverage GPU more
efficiently compared to other frameworks when training
ResNet, as in Fig. 3. In addition to the use of OpT, there are
two additional reasons: (1) MXNet employs a more efficient
built-in element-wise kernel function for the ReLU operator;
(2) MXNet does not need to clear gradients before backward
propagation since MXNet writes into the gradients instead of
accumulating them from zeros. In BERT training, the time
cost of kernel functions for activation values and gradient
clearing is relatively small. Due to PyTorch’s “lazy” execu-
tion of permuting operators, PyTorch’s DCT is better than
MXNet at large batch sizes.

Remark PaddlePaddle has developed built-in kernel func-
tions for convolutions to optimize performance resulting in
higher device computing efficiency with small batch sizes.
TensorFlow 2 achieves better DCT results for small batch
sizes compared to its previous version. MXNet can utilize
devices most efficiently through more efficient mechanisms
like the built-in ReLU kernel function in convolution neural
networks training. PyTorch can achieve the best DCT results
while training Transformers at large batch sizes.

4.2.3 Framework evaluation by DOR

Figure 5 shows the DOR results of training ResNet with
five frameworks at different batch sizes. We can observe
that PyTorch has the lowest DOR for ResNet-20 training
when the batch size is set to 16. This is because, with the
eager execution mode, PyTorch cannot overlap its CPU
control flow execution with GPU computing time. Ten-
sorFlow 2 can also not fully utilize the GPU for a lower

Fig. 5 Evaluation results of DOR(%) for ResNet-20 (n = 3), ResNet-56 (n = 9), and ResNet-110 (n = 18)

5 https:// github. com/ NVIDIA/ cutla ss. 6 https:// eigen. tuxfa mily. org.

https://github.com/NVIDIA/cutlass
https://eigen.tuxfamily.org

104 Z. Lu et al.

1 3

workload. This could be due to the fact that the computa-
tion graph TensorFlow 1 built also includes the data fetch
and preprocessing. TensorFlow 2 only converts the com-
putation graph of a single training step to a static graph,
resulting in high CPU execution overhead between steps.
Besides, building the static computation graph through
tracing will incur more time overhead at the beginning
of each epoch. However, we can also observe that this
situation is alleviated as the computational load increases.
When the batch size is set to 512, it can be observed that
PyTorch and TensorFlow 2 can better utilize GPU com-
putation to hide the execution time overhead on the CPU.
This situation also occurs in training models with higher
computational loads, such as BERT-base. As shown in
Fig. 6, for BERT-base, PyTorch and TensorFlow 2 can
achieve higher DOR when the batch size is 1. Moreover,
this advantage continues to exist as the batch size increa
ses.

Figure 7 more clearly demonstrates the reasons for the
difference in DOR by dividing the CPU-side execution time
into six parts: data preprocessing, forward computation, gra-
dient clearing, backward propagation, parameter updating,
and others. Each part is further divided into two categories:
those that overlap with GPU execution time (-G in Fig. 7)
and those that do not overlap with GPU execution time (-C).
TensorFlow 1 and TensorFlow 2 are not listed in the figure
as they compile the entire step or epoch into a static graph.
We can see that the gradient clearing and parameter updating
stages have a low ratio of GPU usage, particularly at small
batch sizes. This is because a large number of kernel func-
tions generated from zero-setting operators during the gra-
dient clearing stage have less computing time on the GPU.
However, launching these kernel functions to the device
requires significantly more CPU execution time than GPU
computing time. Typically, frameworks execute kernel func-
tions asynchronously. It means that the GPU computation in
the forward pass stage can cover the CPU execution time in
the gradient clearing stage with a sufficiently high workload.
Similarly, frameworks can overlap the parameter updating
stage and the subsequent data preprocessing stage with ker-
nel functions launched in the backward propagation stage.

We can observe that PyTorch effectively hides the CPU
overhead of the gradient update stage when using a batch
size of 256. However, PaddlePaddle performs synchroniza-
tion before each gradient clearing and parameter updating
stage, leading to the lower DOR regardless of the large batch
size. Finally, MXNet’s main thread and threads responsi-
ble for dispatching operators are asynchronous. As a result,
MXNet achieves the highest DOR when the computational

Fig. 6 Evaluation results of DOR(%) for BERT-base

Fig. 7 Training time breakdown
by stages for ResNet-20 and
BERT-base training. We denote
PaddlePaddle as “Paddle”, and
the labels for the y-axis are
denoted as “Framework (Batch
size)”. For instance, “PyTorch
(128)” represents the training
time of PyTorch with a batch
size of 128. “Prepare”, “For-
ward”, “Clear”, “Backward”,
and “Update” represent the data
preprocessing, forward pass,
gradient clearing, backward
propagation, and parameter
updating stages, respectively.
“-G” indicates the CPU execu-
tion time overlapped by GPU
computing time, and “-C”
otherwise

105Quantitative evaluation of deep learning frameworks in heterogeneous computing environment

1 3

load is small. However, in MXNet, the thread for dispatching
operators synchronizes with the stream of the GPU, result-
ing in a lower DOR when the batch size is becoming larger,
like 512.

Remark PyTorch underutilizes the device at a small compu-
tational load because of its eager execution mode. Paddle-
Paddle and MXNet have low DOR when the computational
load is large, owing to their frequent synchronizations with
the device and streams. For TensorFlow 2, the inefficient
CPU execution between steps causes it to perform worse
than the previous versions when the computational load is
small. When the computational load is large, TensorFlow 2
effectively overlaps this CPU execution overhead with GPU
computation, resulting in a better DOR than TensorFlow 1.

4.3 Evaluation of optimization techniques

Figure 8a shows the evaluation results of ResNet-20 training
with the batch size set to 128. We can observe that turn-
ing on OpT can reduce DCT significantly in MXNet, Pad-
dlePaddle, and PyTorch. This is because without OpT, the

framework selects convolution algorithms and correspond-
ing kernel functions through heuristic methods. The effi-
ciency of heuristically selected kernel functions is slower
than the kernel functions selected by running all possible
convolution algorithms once. For MXNet and PyTorch, this
optimization also deteriorates the DOR. This is because a
faster convolutional algorithm reduces DCT, while their per-
formance bottleneck comes from the CPU execution time
of operator dispatching when the batch size is set to 128. In
models without convolutional layers, OpT will not have an
impact on training performance, as shown in Fig. 8b.

When training ResNet, we can also observe that OpS
shortens the DCT only in TensorFlow 2, while the other
two frameworks cannot achieve better DCT with static
execution mode. It is because ResNet has limited space
for graph optimizations. For example, batch normalization
is applied immediately after each convolution and before
activation in ResNet. As a result, the remapper optimiza-
tion can not replace the subgraph of convolution and acti-
vation with an optimized fused kernel. TensorFlow estab-
lishes the entire training step as a graph instead of building
a graph only for the neural network, which provides

Fig. 8 The effect of optimiza-
tion techniques in MXNet, Pad-
dlePaddle (Paddle), PyTorch,
and TensorFlow 2 (TF2) when
training ResNet-20 and BERT-
base. “Baseline” represents
training without OpS and OpT.
“+OpT” and “+OpS” denote
training with OpT and OpS,
respectively

106 Z. Lu et al.

1 3

additional optimization space. For BERT’s training tasks,
both MXNet and TensorFlow 2 can find graph optimiza-
tion space and reduce DCT. In PaddlePaddle, although
some kernel functions have shortened their time, some
operators, such as permuting, have added memory copy
operators from device to device, resulting in an increase in
DCT time. We can also observe the improvements in DOR
for all three frameworks since static execution reduces the
time cost of operator dispatching. One exception is Paddle-
Paddle when training BERT, as it synchronizes the device
after the forward computing and backpropagations when
applying OpS, resulting in a decrease in DOR, as analyzed
in the previous section.

Remark Using OpT can improve GPU computing effi-
ciency in any framework when training convolution neural
networks. Besides, OpS can help frameworks focus less on
improving the dispatching efficiency under eager execution
mode. However, applying OpS will not improve the kernel
function efficiency in MXNet and PaddlePaddle if a neural
network has limited graph optimization space.

4.4 Performance at different hyper‑parameters

4.4.1 Effect of the batch size

Figure 9 shows the DCT and DOR improvement obtained by
the five frameworks at different batch sizes for ResNet-110.
We can observe that the improvement trend of DCT is
similar among all frameworks. One exception is MXNet,
which uses different convolutional algorithms at different
batch sizes. However, the improvement trend of DOR var-
ies among frameworks. For example, we can observe that
PyTorch, PaddlePaddle, and TensorFlow 2 still have a rela-
tive improvement above 1.25× at a batch size of 256.

The batch size increase can benefit the framework perfor-
mance twofold. Firstly, due to the massive cores in the GPU
architecture, a kernel function with insufficient computa-
tion required will result in the underutilization of the GPU.
The batch size increase can enhance the kernel computing
efficiency on GPU and reduces the DCT intensely. Since the
computation required for a single kernel function to fully
utilize computing cores in GPU is almost independent of
the framework, similar DCT improvement trends can be
observed in different frameworks. Secondly, the growth of

Fig. 9 Improvements of DCT and DOR for ResNet-110 training in
PyTorch, PaddlePaddle, TensorFlow 1, and TensorFlow 2. Bars show
improvement based on the performance at a batch size of 16. Lines

show improvement relative to the performance at (batch size)/2 for a
certain batch size

107Quantitative evaluation of deep learning frameworks in heterogeneous computing environment

1 3

batch size increases the computation requirement of opera-
tors in the forward computing and backward propagation
stages. As the batch size increases, the time to execute kernel
functions on GPU grows, thus masking more CPU execution
time and improving DOR. Therefore, if a framework has a
lower DOR at a small batch size, it will have a longer CPU
execution time for dispatching operators and require a larger
batch size to improve DOR.

Remark For all frameworks, the required batch size to
achieve optimal DCT is similar. Besides, the more efficient
the operators dispatching in a framework, the smaller the
batch size required to achieve optimal performance.

4.4.2 Effect of the network size

By comparing different network sizes in Fig. 3, we can see
that the DCT rises with the increase of the network size n.
Figure 10 further shows the DCT results of all five frame-
works at batch sizes 16, 64, and 256. The lines in the figure
show the linear regression for modeling the relationship
between network size n and DCT. We can observe that lin-
ear regression can fit the relationship between n and DCT
well, regardless of the framework or batch size. Theoreti-
cally, DCT is linearly related to n since 6n + 2 represents
the number of operators in ResNet. When n increases by 1,
the convolutional, batch normalization, and ReLU layers in
ResNet increase by 6, making DCT grow by a fixed value.
Therefore, DCT and n exhibit a linear relationship in all
cases.

For DOR, we can observe in Fig. 5 that all frameworks
improve with the increase in network size. There are two
situations. (1) When the batch size is small, the kernel

functions launched in forward computation and backward
propagation are not enough to overlap with CPU execution
time for gradient clearing and parameter updating. Increas-
ing network size reduces the proportion of the data process-
ing stage, which does not change with network sizes and
has low DOR. (2) When the batch size is large, increas-
ing network size helps more CPU execution time that can
be overlapped to be overlapped, thereby improving DOR.
Besides, for PaddlePaddle, the reason for DOR improvement
is always the first situation due to its frequent synchroniza-
tion with the device.

Remark There is a linear relationship between DCT and
network size n for all frameworks. Besides, a larger net-
work size is more advantageous in hiding CPU execution
overhead.

4.5 Discussion

4.5.1 Summary

We summarize the above analysis in Table 5, including eight
aspects: convolution kernel function computation efficiency
(Conv in the table), ReLU kernel function computation effi-
ciency (ReLU), OpT, OpS, gradient clearing (Grad clear),
for which to synchronize (Sync target) and the frequency of
synchronization (Sync freq). We also consider two cases:
low workload (LW) and high workload (HW). These mecha-
nisms are reflected in DCT and DOR and ultimately have an
impact on training time (Time).

We also highlight the following conclusions. (1) We
observe that the performance of using deep learning libraries
is sometimes lower than built-in operators. This implies that

Fig. 10 The relationship between network size n and DCT at batch sizes of 16, 64, and 256, fitting with linear regression

108 Z. Lu et al.

1 3

it is challenging to design a high-performance deep learn-
ing library that covers as many situations as possible. (2)
DCT can be improved by testing all the convolution algo-
rithms and selecting the fastest one. This indicates that it is
challenging to choose the optimum convolution algorithm
by predicting the performance. (3) Compared to the eager
execution mode, the static execution mode does not signifi-
cantly improve the computational efficiency of operators
when training convolution neural networks like ResNet.

For different hyper-parameters, we first pointed out that
some frameworks require larger batch sizes to achieve opti-
mal DOR compared to other frameworks. Considering a
too-large batch size can negatively impact the quality of the
model (Goyal et al. 2017; Smith et al. 2020), the degree of
parallelism for data parallelism in such frameworks may be
more restricted. Secondly, we find that DCT can establish a
good relationship with network size across all frameworks.
Considering that the DOR is close to 1 under high work-
loads, it is hopeful to use DCT to estimate the minimum
training time for larger networks.

4.5.2 Other devices

In this section, we apply our metrics to another hardware
device to determine the optimization direction of model
training. The hardware environment is equipped with two
Intel (R) Xeon (R) Gold 5218R CPUs @ 2.10 GHz and one
Atlas 300T. The Atlas 300T (NPU) is a specialized device
developed by Huawei to accelerate deep learning computing.
Huawei also developed deep learning frameworks that can
perform training on NPUs. For now, they support PyTorch

1.8 and TensorFlow 2.6 running on NPUs. We use these two
frameworks to perform ResNet training on CIFAR-10, col-
lecting kernel function execution start and end times, as well
as epoch time, through the dedicated tool named msprof.
Due to support issues, we preprocess input data serially dur-
ing training on TensorFlow 2.

The DCT and DOR results are shown in Table 6. Firstly,
comparing the two frameworks, it can be observed that
PyTorch has a lower DCT. This is mainly because PyTorch
and TensorFlow 2 use different kernel functions to calculate
Batch Normalization operators. The TensorFlow 2’s DOR
is significantly lower than PyTorch because it performs
data preprocessing in a serial manner, resulting in a longer
idle time for the NPU. Compared with the results obtained
with the NVIDIA A6000, it can be seen that all DCTs have
achieved more than twice the acceleration. The main reason
is that NPU contains a large number of FP16 computing
units, so the entire training process uses mixed precision
training. In addition, both PyTorch and TensorFlow 2 have
lower DOR results. This means that operator distribution

Table 5 Evaluation results with
different mechanisms

Texts in bold indicate the superior performance or mechanisms

MXNet PaddlePaddle PyTorch TensorFlow 1 TensorFlow 2

Conv (LW) Avg Good Avg Avg Good
Conv (HW) Good Avg Good Avg Avg
ReLU Good Avg Avg Avg Avg
GEMM (LW) Avg Good Avg Poor Avg
GEMM (HW) Avg Avg Good Poor Avg
Lazy Permuting No No Yes No No
OpT Yes Yes Yes No No
OpS Yes Yes No / Yes
Grad clear No Yes Yes No No
Sync target Stream Device Device Device Device
Sync freq High Medium Low Low Low
DCT (LW) Avg Good Avg Avg Good
DOR (LW) Good Avg Poor Good Poor
DCT (HW) Good Avg Good Avg Avg
DOR (HW) Avg Poor Good Good Good
Time (LW) Good Avg Poor Avg Poor
Time (HW) Good Poor Good Avg Avg

Table 6 ResNet training on Atlas 300T

DCT DOR

ResNet-20(PyTorch) 1.32s 5.59%
ResNet-56(PyTorch) 3.43s 6.81%
ResNet-110(PyTorch) 6.58s 7.06%
ResNet-20(TensorFlow 2) 1.40s 0.29%
ResNet-56(TensorFlow 2) 3.81s 0.77%
ResNet-110(TensorFlow 2) 7.42s 1.50%

109Quantitative evaluation of deep learning frameworks in heterogeneous computing environment

1 3

has become the main bottleneck in training. Therefore, in
order to further improve training performance, the next goal
should be to maximize the operator distribution speed of the
framework.

5 Conclusion

In this paper, we provide a method for evaluating deep
learning frameworks, including evaluation metrics, equiva-
lence validation, and equivalence adjustment. We introduce
DCT and DOR to evaluate the kernel function computa-
tion efficiency and operator dispatching efficiency, respec-
tively. DCT and DOR can decouple the impact of different
mechanisms on training performance, enabling the effect
of each mechanism to be effectively reflected in the evalua-
tion results. We propose a three-step equivalence validation
method, called hyperparameter, model, and parameter updat-
ing equivalence, to ensure all the frameworks execute the
same computation graph and discover inequivalence imple-
mentations in frameworks. We further propose a method
to adjust these inequivalence implementations based on the
number of operators. We evaluate PyTorch, MXNet, Pad-
dlePaddle, TensorFlow 1, and TensorFlow 2 and uncover the
reasons for the performance gap among these frameworks,
which can help better utilize frameworks and optimize train-
ing performance on heterogeneous computing. The source
code can be found at https:// github. com/ LuZhe ngx/ DLFra
meBen ch.

Acknowledgements This work is partially supported by the National
Natural Science Foundation (62272248), the National Key Research
and Development Program of China (2018YFB2100300), the Open
Project Fund of State Key Laboratory of Computer Architecture, Insti-
tute of Computing Technology, Chinese Academy of Sciences (CAR-
CHA202108), the Natural Science Foundation of Tianjin of China
(21JCZDJC00740, 21JCYBJC00760), the Key Research Project of
Zhejiang Lab (2022PG0AC02), and the Key R &D Program of Zhe-
jiang (2022C04006).

Data availability The data underlying this article are available in the
article. The article includes citations for the datasets that were used.
The code used in the experiments is open source on GitHub and can
be accessed through https:// github. com/ LuZhe ngx/ DLFra meBen ch.

Declarations

 Conflict of interest All authors certify that they have no affiliations
with or involvement in any organization or entity with any financial
interest or non-financial interest in the subject matter or materials dis-
cussed in this manuscript.

References

Abadi, M., Barham, P., Chen, J., et al.: TensorFlow: a system for
large-scale machine learning. In: 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 16), pp.
265–283. USENIX Association, Savannah, GA (2016)

Adolf, R., Rama, S., Reagen, B., et al.: Fathom: reference workloads
for modern deep learning methods. In: 2016 IEEE International
Symposium on Workload Characterization (IISWC), pp. 1–10
(2016). https:// doi. org/ 10. 1109/ IISWC. 2016. 75812 75

Al-Rfou, R., Alain, G., Almahairi, A., et al.: Theano: A Python
Framework for Fast Computation of Mathematical Expressions.
arXiv e-prints pp arXiv-1605 (2016)

Chen, T., Li, M., Li, Y., et al.: Mxnet: A Flexible and eFficient
Machine Learning Library for Heterogeneous Distributed Sys-
tems. arXiv preprint arXiv: 1512. 01274 (2015)

Coleman, C., Kang, D., Narayanan, D., et al.: Analysis of dawn-
bench, a time-to-accuracy machine learning performance bench-
mark. ACM SIGOPS Oper. Syst. Rev. 53(1), 14–25 (2019)

Devlin, J., Chang, M.W., Lee, K., et al.: Bert: Pre-training of deep
bidirectional transformers for language understanding. In: Pro-
ceedings of NAACL-HLT. Association for Computational Lin-
guistics, pp. 4171–4186 (2019)

Elshawi, R., Wahab, A., Barnawi, A., et al.: Dlbench: a compre-
hensive experimental evaluation of deep learning frameworks.
Clust. Comput. 24, 2017–2038 (2021)

Glorot, X., Bengio, Y.: Understanding the difficulty of training
deep feedforward neural networks. In: Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and
Statistics, JMLR Workshop and Conference Proceedings, pp.
249–256 (2010)

Goyal, P., Dollár, P., Girshick, R., et al.: Accurate, Large Minibatch
sgd: Training Imagenet in 1 hour. arXiv preprint arXiv: 1706.
02677 (2017)

Guo, Q., Chen, S., Xie, X., et al.: An empirical study towards char-
acterizing deep learning development and deployment across
different frameworks and platforms. In: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering
(ASE), pp. 810–822. IEEE (2019)

Han, J., Deng, S., Lo, D., et al.: An empirical study of the depend-
ency networks of deep learning libraries. In: 2020 IEEE Inter-
national Conference on Software Maintenance and Evolution
(ICSME), pp. 868–878. IEEE (2020a)

Han, J., Shihab, E., Wan, Z., et al.: What do programmers discuss
about deep learning frameworks. Empir. Softw. Eng. 25, 2694–
2747 (2020b)

He, K., Zhang, X., Ren, S., et al.: Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In:
Proceedings of the IEEE International Conference on Computer
Vision, pp. 1026–1034 (2015)

He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 770–778 (2016)

Jäger, S., Zorn, H.P., Igel, S., et al.: Parallelized training of deep nn:
comparison of current concepts and frameworks. In: Proceed-
ings of the Second Workshop on Distributed Infrastructures for
Deep Learning, pp. 15–20 (2018)

Jia, Y., Shelhamer, E., Donahue, J., et al.: Caffe: Convolutional archi-
tecture for fast feature embedding. In: Proceedings of the 22nd
Acm International Conference on Multimedia, pp. 675–678
(2014)

Kim, H., Nam, H., Jung, W., et al.: Performance analysis of cnn
frameworks for gpus. In: 2017 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS),
pp. 55–64. IEEE (2017)

Krizhevsky, A., Hinton, G., et al.: Learning Multiple Layers of Fea-
tures From Tiny Images (2009)

Li, M., Andersen, D.G., Park, J.W., et al.: Scaling distributed
machine learning with the parameter server. In: 11th USENIX

https://github.com/LuZhengx/DLFrameBench
https://github.com/LuZhengx/DLFrameBench
https://github.com/LuZhengx/DLFrameBench
https://doi.org/10.1109/IISWC.2016.7581275
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677

110 Z. Lu et al.

1 3

Symposium on Operating Systems Design and Implementation
(OSDI 14), pp. 583–598 (2014)

Liu, L., Wu, Y., Wei, W., et al.: Benchmarking deep learning frame-
works: Design considerations, metrics and beyond. In: 2018
IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), pp. 1258–1269. IEEE (2018)

Ma, Y., Yu, D., Wu, T., et al.: Paddlepaddle: an open-source deep
learning platform from industrial practice. Front. Data Comput.
1(1), 105–115 (2019)

Mahmoud, N., Essam, Y., Elshawi, R., et al.: Dlbench: an experi-
mental evaluation of deep learning frameworks. In: 2019 IEEE
International Congress on Big Data (BigDataCongress), pp.
149–156. IEEE (2019)

Makkouk, T., Kim, D.J., Chen, T.H.P.: An empirical study on per-
formance bugs in deep learning frameworks. In: 2022 IEEE
International Conference on Software Maintenance and Evolu-
tion (ICSME), pp. 35–46. IEEE (2022)

Mattson, P., Cheng, C., Diamos, G., et al.: Mlperf training bench-
mark. Proc. Mach. Learn. Syst. 2, 336–349 (2020a)

Mattson, P., Reddi, V.J., Cheng, C., et al.: Mlperf: an industry stand-
ard benchmark suite for machine learning performance. IEEE
Micro 40(2), 8–16 (2020b)

Paszke, A., Gross, S., Massa, F., et al.: Pytorch: an imperative style,
high-performance deep learning library. Adv. Neural Inf. Pro-
cess. Syst. 32, 8026 (2019)

Rajpurkar, P., Zhang, J., Lopyrev, K., et al.: SQuAD: 100,000+ ques-
tions for machine comprehension of text. In: Proceedings of
the 2016 Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguistics,
Austin, TX, pp. 2383–2392 (2016). https:// doi. org/ 10. 18653/
v1/ D16- 1264

Reddi, V.J., Cheng, C., Kanter, D., et al.: Mlperf inference bench-
mark. In: 2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA), pp. 446–459. IEEE
(2020)

Reddi, V.J., Cheng, C., Kanter, D., et al.: The vision behind mlperf:
understanding AI inference performance. IEEE Micro 41(3),
10–18 (2021)

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representa-
tions by back-propagating errors. Nature 323(6088), 533–536
(1986)

Seide, F., Agarwal, A.: Cntk: microsoft’s open-source deep-learning
toolkit. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 2135–
2135 (2016)

Shams, S., Platania, R., Lee, K., et al.: Evaluation of deep learning
frameworks over different HPC architectures. In: 2017 IEEE 37th
International Conference on Distributed Computing Systems
(ICDCS), pp. 1389–1396. IEEE (2017)

Shi, S., Wang, Q., Xu, P., et al.: Benchmarking state-of-the-art deep
learning software tools. In: 2016 7th International Conference
on Cloud Computing and Big Data (CCBD), pp. 99–104. IEEE
(2016)

Shi, S., Wang, Q., Chu, X.: Performance modeling and evaluation of
distributed deep learning frameworks on Gpus. In: 2018 IEEE
16th Intl Conf on Dependable, Autonomic and Secure Comput-
ing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th
Intl Conf on Big Data Intelligence and Computing and Cyber
Science and Technology Congress (DASC/PiCom/DataCom/
CyberSciTech), pp. 949–957. IEEE (2018)

Smith, S., Elsen, E., De, S.: On the generalization benefit of noise
in stochastic gradient descent. In: International Conference on
Machine Learning, PMLR, pp. 9058–9067 (2020)

Sun, S., Cao, Z., Zhu, H., et al.: A survey of optimization methods
from a machine learning perspective. IEEE Trans. Cybern. 50(8),
3668–3681 (2019)

Sun, X., Zhou, T., Wang, R., et al.: Experience report: investigat-
ing bug fixes in machine learning frameworks/libraries. Front.
Comp. Sci. 15, 1–16 (2021)

Tang, F., Gao, W., Zhan, J., et al.: Aibench training: Balanced indus-
try-standard ai training benchmarking. In: 2021 IEEE Interna-
tional Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 24–35. IEEE (2021)

Trindade, R.G., Lima, J.V.F., Charão, A.S.: Performance evaluation
of deep learning frameworks over different architectures. In:
High Performance Computing for Computational Science—
VECPAR 2018, pp. 92–104. Springer International Publishing,
Cham (2019)

Wu, Y., Cao, W., Sahin, S., et al.: Experimental characterizations and
analysis of deep learning frameworks. In: 2018 IEEE Interna-
tional Conference on Big Data (Big Data), pp. 372–377. IEEE
(2018)

Xie, X., He, W., Zhu, Y., et al.: Performance evaluation and analysis
of deep learning frameworks. In: Proceedings of the 2022 5th
International Conference on Artificial Intelligence and Pattern
Recognition. Association for Computing Machinery, New York,
NY, USA, AIPR ’22, pp. 38–44. https:// doi. org/ 10. 1145/ 35739
42. 35739 48(2023)

Yang, C.T., Liu, J.C., Chan, Y.W., et al.: Performance benchmarking
of deep learning framework on intel xeon phi. J. Supercomput.
77, 2486–2510 (2021)

Yuan, J., Li, X., Cheng, C., et al.: Oneflow: Redesign the Distributed
Deep Learning Framework from Scratch (2021). arXiv preprint
arXiv: 2110. 15032

Zhu, H., Akrout, M., Zheng, B., et al.: Benchmarking and analyzing
deep neural network training. In: 2018 IEEE International Sym-
posium on Workload Characterization (IISWC), pp. 88–100. IEEE
(2018)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Zhengxian Lu received his B.S.
degree from Nankai University
in 2020. Since 2020, he has been
working toward his Ph.D. degree
at the College of Computer Sci-
ence, Nankai University. His
main research interests include
heterogeneous computing and
systems for machine learning.

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1145/3573942.3573948
https://doi.org/10.1145/3573942.3573948
http://arxiv.org/abs/2110.15032

111Quantitative evaluation of deep learning frameworks in heterogeneous computing environment

1 3

Chengkun Du received his B.S.
degree from Nankai University
in 2020 and his M.S. degree
from Nankai University in 2023.
He is currently working at Hua-
wei Technologies Co., Ltd. His
main research interests include
d e e p l e a r n i n g a n d A I
frameworks.

Yanfeng Jiang received his B.S.
degree in 2021 from Chongqing
University. He is now studying at
Nankai University for a Ph.D.
degree in computer science and
technology. His main research
interests are deep learning and
systems.

Xueshuo Xie is currently an asso-
ciate researcher at Haihe Lab of
ITAI, received a postdoctoral in
the College of Computer Sci-
ence, Nankai Universi ty,
received a Ph.D. degree in engi-
neering from Nankai University
in 2021, and received a B.S. and
MA. SC degree from Shandong
University, Jinan, China, in 2011
and 2014. He is currently work-
ing at the Intelligent Computing
System Lab, College of Cyber-
Science, Nankai University,
Tianjin, China. His current
research interests include IoT

security, data-driven anomaly detection, and Blockchain.

Tao Li received his Ph.D. degree
in Computer Science from Nan-
kai University, China, in 2007.
He works at the College of Com-
puter Science, Nankai Univer-
sity, as a Professor. He is a Mem-
ber of the IEEE Computer
Society and the ACM and a dis-
tinguished member of the CCF.
His main research interests
include heterogeneous comput-
ing, Intelligent IoT, and Block-
chain systems.

Fei Yang received a B.S. and M.S.
degree in computer science from
Shanghai Jiao Tong University
in 2011 and 2014, and the Ph.D.
degree in computer science from
Eindhoven University of Tech-
nology, the Netherlands, in 2018.
From 2019 to 2020, He worked
as a research fellow at the Cyber
Security Lab in the Department
of Computer Science and Engi-
neering at Nanyang Technologi-
cal University, Singapore. Since
2020, he has worked at Zhejiang
Lab as an advanced research spe-
cialist. His major research inter-

est at Zhejiang Lab includes deep learning framework, distributed
computing technique, and intelligent computing platform. He is the
software architect of the Digital Reactor OS project.

	Quantitative evaluation of deep learning frameworks in heterogeneous computing environment
	Abstract
	1 Introduction
	2 Background
	2.1 Deep learning training and frameworks
	2.2 Related works

	3 Methodology
	3.1 Overview
	3.2 Evaluation metrics by device state
	3.3 Three-step equivalence validation
	3.4 Equivalence adjustment based on the number of operators

	4 Evaluation
	4.1 Experimental setup
	4.2 Comprehensive evaluation results
	4.2.1 Comprehensive comparison by DCT and DOR
	4.2.2 Framework evaluation by DCT
	4.2.3 Framework evaluation by DOR

	4.3 Evaluation of optimization techniques
	4.4 Performance at different hyper-parameters
	4.4.1 Effect of the batch size
	4.4.2 Effect of the network size

	4.5 Discussion
	4.5.1 Summary
	4.5.2 Other devices

	5 Conclusion
	Acknowledgements
	References

