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Abstract
Deep learning frameworks are powerful tools to support model training. They dispatch operators by mapping them into a 
series of kernel functions and launching these kernel functions to specialized devices such as GPUs. However, there is little 
known about the performance of dispatching and mapping mechanisms in different frameworks, although these mechanisms 
directly affect training time. This paper presents a performance evaluation in various frameworks by examining their kernel 
function efficiency and operator dispatching mechanisms. We introduce two evaluation metrics, device computing time 
(DCT) and device occupancy ratio (DOR), based on the device’s active and idle states. To ensure comparable evaluation 
results, we propose a three-step verification method including hyper-parameter, model, and updating method equivalences. 
Due to inequivalent implementations in frameworks, we present an equivalence adjustment method based on the number of 
operators. Our evaluation results demonstrate the device utilization capability of five frameworks, namely PyTorch, Tensor-
Flow 1, TensorFlow 2, MXNet, and PaddlePaddle, and reveal the potential for further optimizing the training performance 
of deep learning frameworks.

Keywords Deep learning framework · Performance evaluation · Device computing time · Device occupancy ratio

1 Introduction

In the realm of deep learning, frameworks like TensorFlow 
(Abadi et al. 2016) and PyTorch (Paszke et al. 2019) play a 
crucial role in bridging deep learning models and hardware 
platforms. These frameworks automatically execute user-
defined training processes in heterogeneous computing sys-
tems by dispatching computing tasks, referred to as opera-
tors, on high-performance computing devices such as GPUs 
to alleviate the burden of model training. However, it is not 
trivial for frameworks to gain high performance from hetero-
geneous computing. During training, frameworks dispatch 
operators by mapping them into a series of kernel functions 
and launching these kernel functions to the device sequen-
tially. Their operator mapping and dispatching mechanisms 
can significantly affect the training performance (Kim et al. 
2017; Zhu et al. 2018). Besides, various optimization tech-
niques are also adopted to accelerate the training. Through 
evaluation, we can better understand their mechanisms, aid 
in the more efficient use of frameworks, and explore further 
optimization opportunities.

However, recent studies have mainly evaluated deep 
learning frameworks by discussing their lack of support for 
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specific device architectures (Trindade et al. 2019; Yang 
et al. 2021), communication issues in distributed training 
(Shi et al. 2018; Jäger et al. 2018; Shams et al. 2017), hard-
ware resource consumption (Wu et al. 2018; Elshawi et al. 
2021), and software engineering issues (Guo et al. 2019; 
Han et al. 2020a, b; Sun et al. 2021). While various deep 
learning frameworks have been included in benchmarking 
efforts, these efforts have focused on different evaluation 
targets, such as deep learning workload (Adolf et al. 2016; 
Zhu et al. 2018; Mattson et al. 2020a). Some studies have 
similar concerns to ours, but they are limited to discussing 
the kernel function computation efficiency of certain opera-
tors, such as convolutions (Shi et al. 2016; Kim et al. 2017). 
The performance gap among frameworks due to their differ-
ent operator mapping and dispatching mechanisms remains 
unknown.

In this paper, we aim to evaluate and reveal the perfor-
mance of different mechanisms among deep learning frame-
works. The performance evaluation of frameworks has two 
limitations. (1) Both the operator mapping mechanism and 
operator dispatching mechanism in the framework can 
become performance bottlenecks. It is not possible to evalu-
ate the mechanism that does not become the performance 
bottleneck by training time, leading to incomparable evalu-
ation results. (2) Implementing a training process for each 
framework is necessary, but inequivalent training process 
implementations may lead to unfair evaluation results. For 
example, if one framework’s training includes bias computa-
tions in convolutional layers while others do not, the evalu-
ation will lead to misunderstandings that the framework is 
worse in performance. Consequently, to perform an evalu-
ation of frameworks, there are two challenges: (1) how to 
compare the operator mapping and dispatching mechanisms 
among various frameworks; (2) how to locate and elimi-
nate the inequivalent implementations of training process 
to ensure the comparability of evaluation.

We employ two key designs to address the challenges 
mentioned above. To tackle the first challenge, we divide 
the device state into two categories: active and idle states, 
to reflect the operator mapping and dispatching mechanism 
of the frameworks. Based on these states, we propose the 
device computing time (DCT) metric to measure the execu-
tion time of the kernel functions on the device and the device 
occupancy ratio (DOR) metric to reveal the degree of device 
starvation. Shorter DCT and higher DOR lead to less train-
ing time. For the second challenge, we propose a three-step 
equivalence validation method that includes hyper-param-
eter equivalence, model equivalence, and parameter updat-
ing equivalence. This validation method helps to locate the 
inequivalent implementations and verify the training pro-
cess equivalence. To eliminate the discovered inequivalent 
implementations, we present an equivalence adjustment 
method based on the number of operators. By comparing the 

number of operators before and after the equivalence adjust-
ment, we can determine whether to adjust the inequivalent 
implementations.

We carefully choose a convolutional neural network 
named ResNet (He et al. 2016) training on the CIFAR-
10 (Krizhevsky et  al. 2009) dataset and a Transformer 
named BERT (Devlin et al. 2019) training on the SQuAD 
(Rajpurkar et al. 2016) as our study cases. We evaluate five 
frameworks, i.e., PyTorch, MXNet, PaddlePaddle, Tensor-
Flow 1, and TensorFlow 2, on NVIDIA RTX A6000 GPU. 
Our evaluation shows the advantages and disadvantages of 
frameworks that use different mechanisms. Furthermore, we 
also investigate how different hyper-parameters can affect 
training performance. We also demonstrated the results of 
applying our metrics to Huawei Atlas 300T. The contribu-
tions of this paper are as follows:

• We introduce evaluation metrics based on device states, 
namely DCT and DOR, to provide a comprehensive anal-
ysis of deep learning frameworks. These metrics reflect 
changes in the inner state of the device, facilitate the 
decoupling of training time, and reveal the effectiveness 
of mechanisms.

• We propose a three-step equivalence validation method 
and an equivalence adjustment method for evaluation 
comparability. Through validation and adjustment, we 
can identify any inequivalent implementations in train-
ing and eliminate them to obtain the equivalent training 
process across frameworks.

• We conduct a comprehensive evaluation of five deep 
learning frameworks and derive several conclusions. 
For instance, we find that PaddlePaddle outperforms 
PyTorch in certain cases due to its built-in operators, 
while PyTorch performs better than PaddlePaddle in 
large-batch training due to fewer device synchroniza-
tions.

2  Background

2.1  Deep learning training and frameworks

Generally, deep learning is to design a model and an 
objective function based on domain knowledge and then 
perform a training process to determine the model param-
eters by optimizing the objective function (Li et al. 2014). 
The most commonly used optimization method for deep 
learning models is an iterative algorithm called Stochas-
tic Gradient Descent (SGD) (Sun et al. 2019). The train-
ing process with SGD consists of multiple epochs. In 
each epoch, the model is trained on the training data by 
randomly dividing the entire dataset into batches of the 
same size and updating the model parameters with these 
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batches sequentially. The number of samples in each batch 
is referred to as the batch size. A training step processes 
a single batch and approaches the local optimum point 
through several stages, including data preprocessing, for-
ward computing, backward propagation, and parameter 
updating (Rumelhart et al. 1986). Data preprocessing per-
forms data augmentation and processes the samples into a 
format that can be fed into the model. The processed sam-
ples then undergo forward computing and backward propa-
gation to obtain the gradients of the parameters, which are 
used to update the model parameters to approach the local 
minimum value of the objective function.

To execute the training process, deep learning frame-
works should construct a computation graph that abstracts 
the calculations of the application (Abadi et al. 2016). A 
computation graph is a directed acyclic graph composed 
of nodes representing operators, such as convolutional lay-
ers and ReLU activation functions, and edges representing 
data dependencies. Frameworks have two execution modes 
to generate computation graphs: static deferred execu-
tion (Abadi et al. 2016) and eager execution (Paszke et al. 
2019). In the static deferred execution mode, the framework 
explicitly constructs the computation graph to obtain global 
computation information. In the eager execution mode, the 
framework implicitly builds the computation graph by only 
reserving sub-graphs of intermediate results and releasing 
them when they are no longer referenced. For example, 
PyTorch adopts eager execution to simplify the construction 
and debugging of modules (Paszke et al. 2019). Conversely, 
MXNet employs a static execution mode to ensure that an 
optimized graph is executed on devices (Chen et al. 2015).

Frameworks may change their default execution mode 
alone with the version updates to ease the development and 
debugging for users. For instance, while TensorFlow 1 only 
supports static deferred execution, TensorFlow 2 adopts 
dynamic eager execution as the default mode. To bridge 
the performance gap, these frameworks also provide meth-
ods to generate static dataflow graphs from eager execu-
tion codes. Furthermore, the development status of some 
frameworks has also changed. For example, Theano and 
CNTK have ceased development, and Caffe2 became the 
backend of PyTorch to provide both development efficiency 
and production-ready capability. Table 1 exhibits community 
activity, status, and default execution mode of some popular 
frameworks.

2.2  Related works

Many efforts have conducted remarkable experimental com-
parisons of training times and hardware resource utiliza-
tion (Shi et al. 2016; Kim et al. 2017; Mahmoud et al. 2019; 
Elshawi et al. 2021; Xie et al. 2023). These studies analyze the 
performance characteristics of frameworks by breaking down 
the training time into stage-wise or operator-wise execution 
time and examining the utilization of deep learning libraries, 
such as cuDNN and fbcunn. However, the usage of deep learn-
ing libraries is insufficient to represent the performance of the 
mechanisms implemented in frameworks. Liu et al. (2018) 
demonstrated that default configurations recommended by 
frameworks could significantly impact results and highlighted 
the importance of considering hyper-parameters and software 
configurations when benchmarking deep learning frameworks. 

Table 1  Information of deep 
learning frameworks

The community activities were obtained from GitHub on March 21, 2023. Recent activities are categorized 
by the total number of issues and pull requests in the past month: Low (less than 1), Medium (between 1 
and 100), and High (above 100). The default execution mode (DEMs) is denoted as S for static, E for eager, 
and S/E for static before but eager now
ahttps:// deepl earni ng4j. kondu it. ai/
bhttps:// www. minds pore. cn/
chttps:// caffe2. ai/

Stars Forks Recent activities Status DEM

TensorFlow (Abadi et al. 2016) 172,265 87,980 High Ongoing S/E
PyTorch (Paszke et al. 2019) 64,151 17,753 High Ongoing E
PaddlePaddle (Ma et al. 2019) 19,851 5049 High Ongoing S/E
MXNet (Chen et al. 2015) 20,322 6872 Medium Ongoing S/E
DL4Ja 12,826 4937 Medium Ongoing E
OneFlow (Yuan et al. 2021) 4610 534 Medium Ongoing E
MindSporeb 3386 623 Low Ongoing E
Caffe (Jia et al. 2014) 33,184 18,969 Low Discontinued S
CNTK (Seide and Agarwal 2016) 17,331 4380 Low Discontinued S
Theano (Al-Rfou et al. 2016) 9685 2509 Low Discontinued S
Caffe2c 8399 1998 Low Discontinued S

https://deeplearning4j.konduit.ai/
https://www.mindspore.cn/
https://caffe2.ai/
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However, they do not consider the inequivalence implementa-
tions in frameworks.

Several researchers have investigated the performance 
of various frameworks on specific device architectures. For 
instance, Trindade et al. (2019) studied NUMA architectures, 
while Yang et al. (2021) focused on Xeon Phi CPU. In dis-
tributed training, studies have examined the performance of 
NVLink and Knights Landing (Shams et al. 2017), parallel 
communication overhead (Shi et al. 2018), and different com-
munication approaches (Jäger et al. 2018). Recent efforts in 
software engineering have concentrated on development and 
deployment (Guo et al. 2019), dependency networks (Han 
et al. 2020a), popular topics discussed (Han et al. 2020b), and 
bug fixes (Sun et al. 2021; Makkouk et al. 2022) in frame-
works. Additionally, several benchmarks aim to characterize 
deep learning workloads, such as DAWNBench (Coleman 
et al. 2019), Fathom (Adolf et al. 2016), TBD (Zhu et al. 2018), 
MLPerf (Mattson et al. 2020b; Reddi et al. 2020, 2021), and 
AIBench (Tang et al. 2021). While the above works provide 
excellent experimental benchmarks and analysis, our focus is 
primarily on the mechanisms within frameworks.

Remark The aforementioned efforts lack a comprehensive 
evaluation of mechanisms in frameworks. Besides, very few 
studies have discussed the inequivalence implementations in 
frameworks. These are precisely the problems that our work 
mainly solves.

3  Methodology

3.1  Overview

We propose three methods to obtain comparable evaluation 
results, as shown in Fig. 1. We adopt two metrics to reveal 

the framework working mechanism based on the device 
states during training. We validate the training process 
equivalence and identify any inequivalence implementation 
of frameworks by proposing a three-step validation method. 
Moreover, we adjust all the identified inequivalence imple-
mentations based on the number of operators.

• Evaluation metrics by device state.
  Deep learning frameworks transform the training pro-

cess into a series of kernel functions and launch them on 
devices. The dispatching mechanism of operators and 
operator mapping methods in various frameworks can 
be assessed based on the device state. We measure the 
duration of the active state using device computing time 
(DCT) and reveal the proportion of idle state in the total 
time through device occupancy ratio (DOR). These two 
metrics can be seen as two optimization directions of 
training time, indicating the potential improvement space 
of frameworks.

• Three-step equivalence validation.
  Frameworks should execute the same training pro-

cess to ensure the comparability of evaluation results. 
According to the composition of the training process, we 
propose a three-step validation method. Firstly, we estab-
lish hyper-parameter equivalence by setting each neces-
sary hyper-parameters to the same value. Secondly, we 
ensure model equivalence by comparing output values 
of forward computing among frameworks. Finally, we 
verify parameter updating equivalence by checking that 
all parameter updating methods are equivalent.

• Equivalence adjustment based on the number of opera-
tors.

  After completing the three-step equivalence valida-
tion, we can find inequivalence implementations in 
frameworks. To determine if these inequivalence imple-

Fig. 1  Framework working mechanism and our methods. To dispatch operators like Conv1 and ReLU1 in the computation graph, frameworks 
map operators to kernel functions and launch them on the high-performance computing device
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mentations will result in incomparability in evaluations, 
we compare the number of operators before and after 
equivalence adjustment. Additionally, we demonstrate 
our equivalence adjustment method using examples of 
momentum optimizer inequivalence and �

2
 regularization 

inequivalence.

3.2  Evaluation metrics by device state

Figure 1 illustrates how frameworks dispatch operators on 
devices. During training, frameworks map operators into 
kernel functions according to the computation graph and 
launch all kernel functions on the computing device. In 
operator mapping, frameworks either map an operator into 
the same kernel function, leveraging deep learning librar-
ies like cuDNN, or map into different kernel functions. 
Besides, an inefficient operator dispatching can cause the 
device lying idle state. On the other hand, the device is in 
an active state when the device is running for computing 
one or more kernel functions. In Fig. 1, the active state and 
the idle state are represented by A and I, respectively. To 
shorten training time, frameworks should optimize training 
performance from two aspects: (1) to minimize the execution 
time of kernel functions, such as designing more efficient 
kernel functions and reducing unnecessary computation, to 
reduce the active time; (2) to improve the speed of operator 
dispatching and overlap the input/output and CPU (central 
processing unit) execution time spent with kernel function 
computing time to avoid the device being idle. Therefore, we 
can evaluate the operator mapping mechanism and the oper-
ator dispatching mechanism according to the device state.

Device computing time. We employ a metric called 
device computing time (DCT) to measure the time cost for 
the computing unit of the device to handle kernel functions 
during the sampling period; that is, the time the compute 
engine of the device is active. Specifically, we denote DCT 
within a sampling period that starts at time ts and ends at 
time te as T(ts, te) . This metric is defined as follows:

where Dactive(t) represents the state of the device as in (3).

Device occupancy ratio. We use a metric called device 
occupancy ratio (DOR) to reveal the degree of device starva-
tion. Specifically, we denote DOR within a sampling period 
that starts at time ts and ends at time te as R(ts, te) . This metric 
is defined as follows:

(2)T(ts, te) =

te

∫
ts

Dactive(t)dt,

(3)Dactive(t) =

{

1, if device is in active at time t

0, otherwise
.

We have R(ts, te) ∈ (0, 1] . The longer the device is idle, the 
closer R(ts, te) is to 0. On the other hand, if the device is 
active throughout the entire sample duration, R(ts, te) takes 
the maximum value of 1.

Analysis. The training time is a general metric for the 
overall performance evaluation. However, it cannot pinpoint 
the exact bottleneck in performance since it is difficult to 
determine whether the kernel functions computation or the 
operator dispatching is inefficient during training. To evalu-
ate operator mapping and dispatching, we observe internal 
changes in device states during the training process. Given a 
certain computation graph, a short DCT represents efficient 
kernel functions, while a DOR closing to one suggests effi-
cient operator dispatching. Since training time is the sum of 
active and idle time on the device, shorter DCT and higher 
DOR lead to less total training time. Therefore, we can indi-
cate the further optimization direction within frameworks 
according to the continuous device state switching between 
active and idle.

3.3  Three‑step equivalence validation

To ensure the comparability of performance evaluation, we 
should keep training process equivalence on all frameworks. 
As illustrated in Fig. 1, the training process consists of mul-
tiple successive training steps. The consistent training step 
can ensure the training process equivalence. A single step 
includes data preprocessing, forward computing, backward 
propagation, and parameter updating. Therefore, to ensure 
the training process equivalence, we need to guarantee that: 
(1) data preprocessing is consistent; (2) model operators and 
data dependencies are consistent; (3) parameter updating 
methods are consistent across all frameworks. We propose 
a three-step validation method, including hyper-parameter 
equivalence, model equivalence, and parameter updating 
equivalence, to verify the training process equivalence.

Hyper-parameter equivalence ensures consistent data 
preprocessing and assists in ensuring the same operators and 
parameter updating method. We validate four types of hyper-
parameters: (1) dataset preprocessing, like mean for data 
standardization; (2) operators, e.g., rate for dropout layers; 
(3) parameter updating, such as learning rate and weight 
decay; (4) performance factors like the number of workers 
for data preprocessing in parallel. To accomplish the hyper-
parameter equivalence validation, we begin by loading an 
identical configure file into all frameworks. We then explic-
itly pass all arguments when calling APIs to avoid different 
default arguments, such as bias for convolutional layers and 
epsilon for batch normalization layers. Finally, we consider 
API support when determining hyper-parameters because 

(4)R(ts, te) =
T(ts, te)

te − ts
.
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not all frameworks support every API. For example, some 
frameworks do not supply initialization techniques like He 
initialization (He et al. 2015), so we set convolution initial-
izers as Xavier Uniform (Glorot and Bengio 2010) instead.

Model equivalence allows verifying the operators and 
data dependencies equivalence of models. However, obtain-
ing computation graphs built by frameworks can be chal-
lenging, and different orders of floating-point calculation 
may result in varying outputs. To address these issues, we 
employ an indirect approach to validate model equivalence. 
(1) We first train a model with one framework for several 
epochs, save the parameters of the trained model into a 
binary file, and then load it into other frameworks so that 
all frameworks have identical model parameters. (2) We 
compare the model using Open Neural Network Exchange 
(ONNX),1 which is an open format for representing deep 
learning models. We export the model in each framework 
as an ONNX model, input the same data to these ONNX 
models, and check whether all the models output consist-
ent results. (3) If there are discrepancies in output results 
among the models, we identify the cause of the difference 
and patch it. We repeat the validation process until all mod-
els produce consistent outputs. We record inequivalence 
implementations of frameworks causing the different out-
puts and decide whether to adjust these implementations in 
equivalence adjustment.

Parameter updating equivalence aims to ensure that 
the same parameters are obtained after updating. In param-
eter updating, a transformation function is first applied to 
gradients, followed by an optimizer function to update the 
parameters according to transformed gradients. In addition, 
a regularization function is used to prevent overfitting. How-
ever, frameworks may have different implementations of the 
same function. To address this issue, we validate the equiva-
lence of the transformation, regularization, and optimizer 
functions. We compare these implementations based on the 
descriptions of these functions from their official documents. 
We also examine their source codes if necessary. We have 
discovered some inequivalence implementations, such as 
differences in momentum optimizer and �

2
 regularization 

between TensorFlow and PyTorch. We will use our equiva-
lence adjustment method to adjust these implementations.

3.4  Equivalence adjustment based on the number 
of operators

Considering that the working mechanism of the frame-
work is to continuously dispatch operators in the computa-
tion graph during training, it is important to keep the same 
number of operators across frameworks to maintain the 

comparability of evaluation results. We propose an equiva-
lence adjustment method based on the number of opera-
tors to address each inequivalence implementation among 
frameworks. The proposed method involves four steps. (1) 
We count the number of operators for the inequivalence 
implementation in different frameworks and calculate the 
difference in operator counts as countpre . (2) We modify the 
training process instead of changing the implementation in 
the framework to make the implementation equivalent. (3) 
We count the number of operators in different frameworks 
after modification and calculate their difference as countpost . 
(4) We apply the implementation with a smaller difference 
in the number of operators for performance evaluation. If 
countpre < countpost , the modification will not be applied; 
otherwise, we will modify the inequivalence. Below we take 
momentum optimizer and �

2
 regularization as examples.

For momentum optimizer inequivalence, TensorFlow 
adopts (5) to update parameters, where wt , 𝜀 > 0 , and � 
are the model parameters in iteration t, learning rate and 
momentum coefficient, respectively. gt is the gradient given 
wt . v0 = 0.

However, PyTorch employs the following equation:

Equation (5) and (6) both require four operators, including 
twice multiplication and twice addition/subtraction. There-
fore, We have countpre = 0 for momentum optimizer inequiv-
alence. We can modify (6)–(7) to make the two momentum 
optimizers equivalent.

We can adjust � during training to modify the momen-
tum optimizer. However, computing the new � will 
introduce extra operators with countpost = 2 . We have 
countpre < countpost , and thus discard adjusting the momen-
tum optimizer inequivalence.

For �
2
 regularization inequivalence, TensorFlow adds the 

weight penalties to the objective function and calculates the 
gradients of model weights to perform the regularization:

where L(w) is the objective function, and � is the regulariza-
tion coefficient. PyTorch adopts weight decay to implement 
�
2
 regularization, which can be represented as:

(5)
vt+1 = �vt + �gt+1

wt+1 = wt − vt+1
.

(6)
vt+1 = �vt + gt+1

wt+1 = wt − �vt+1
.

(7)
vt+1 =

�t

�t+1
�vt + gt+1

wt+1 = wt − �t+1vt+1

.

(8)gt =
�L(wt) + �

∑

w2

t

�wt

,

1 https:// onnx. ai/.

https://onnx.ai/
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TensorFlow requires extra operators for the �
2
 weight pen-

alty term 
∑

w2

t
 , and we have countpre > 0 . We implement 

the weight decay method as (9) on TensorFlow by removing 
weight penalties ( � = 0 ) and adjusting the parameter updat-
ing process. After this modification, both TensorFlow and 
PyTorch have the same number of operators for �

2
 regulari-

zation implementation. Therefore, we have countpost = 0 and 
countpre > countpost , and thus apply this modification to our 
performance evaluation.

4  Evaluation

4.1  Experimental setup

Application. We choose a convolution neural network called 
ResNet (He et al. 2016) and a transformer model named 
BERT (Devlin et al. 2019) as the workloads. ResNet uses 
residual modules to maintain gradients for deep layers, 
which is a common practice in many deep learning mod-
els. Additionally, ResNet is widely used as the backbone for 
other computer vision tasks. We choose an image classifica-
tion task called CIFAR-10 (Krizhevsky et al. 2009), which 
is widely used to evaluate the classification capability of 
deep learning models. The ResNet architecture for CIFAR-
10 employs a hyper-parameter n to control network size, as 
the number of convolutions and fully-connected layers can 
be computed by 2 + 6n . Therefore, we can easily expand the 
model size and explore the impact of model size on perfor-
mance based on ResNet and CIFAR-10. BERT is a classic 
Transformer model widely used in natural language process-
ing (NLP). Considering that the Transformer is often used 
for different NLP tasks by fine-tuning, we choose SQuAD 
v1.1 (Rajpurkar et al. 2016) as the dataset and fine-tune 
the pre-trained BERT on it. Due to the memory limitations 
of the device, we only tested the BERT-base, which is the 
smaller model size of BERT. We examined its performance 
under six different batch sizes. Notably, our focus is not on 
neural network capabilities but rather on differences in train-
ing performance among frameworks.

Platform. Our experiments are conducted on hardware 
equipped with two Intel(R) Xeon(R) Gold 6248 CPUs and 
one NVIDIA RTX A6000 GPU. We select five frameworks, 
namely MXNet, PaddlePaddle, PyTorch, TensorFlow 1, and 
TensorFlow 2, based on the community activity and sta-
tus as shown in Table 1. Our evaluation includes two major 
versions of TensorFlow because there are significant differ-
ences between TensorFlow 1 and TensorFlow 2 in default 
execution mode and APIs. We leverage Docker2 to set up the 
development environment for each framework. For stability 

(9)gt =
�L(wt)

�wt

+ �wt.

in framework performance, we ensure the consistent major 
versions, but adopt the official default version of CUDA and 
cuDNN instead of matching equal version numbers for all 
frameworks. Table 2 shows the version number of all the 
frameworks.

Optimization techniques. We apply two extra optimi-
zation techniques for all frameworks supporting them. (1) 
Choosing convolution algorithms by testing (OpT in short). 
This allows MXNet, PaddlePaddle, and PyTorch to bench-
mark and choose the fastest convolution algorithm prior to 
training. (2) Static deferred execution (OpS). MXNet, Pad-
dlePaddle, and TensorFlow 2 can run eager execution pro-
grams under the static deferred execution mode. We also 
evaluate these two optimization techniques.

Metric. We use DCT and DOR to evaluate the perfor-
mance of frameworks. We consider one training epoch as 
one sampling duration and mark each epoch’s start and end 
timestamps using NVIDIA Tools Extension Library (NVTX)3 
to measure the training time per epoch. We use a framework 
independent tool named NVIDIA Nsight System4 to gather 
GPU Metrics. We disable other features like CUDA tracing 
to avoid additional overhead. We obtain DCT according to 
GR Active, which is one of the GPU Metrics and represents 
the percentage of cycles the graphics/compute engine is 
active. We calculate DOR according to (4), using measured 
DCT and training time per epoch. The first training step 
includes initializations like memory allocation. Therefore, 
we train models for six epochs but remove the first epoch 
to suppress the impact of initialization. We obtain the final 
results by averaging results from the remaining five epochs. 
For the BERT model, since the number of step is large, we 
load all the dataset and shuffle samples, and then we train 
3200 samples as one epoch.

Implementation. We use our three-step equivalence 
validation and equivalence adjustment methods to ensure 
comparability. We demonstrate in Tables 3 and 4 that all the 
frameworks can achieve comparable prediction accuracy by 

Table 2  Version information of frameworks

Framework CUDA cuDNN
Version Version Version

MXNet 1.8.0 11.0 8.0.4
PaddlePaddle 2.1.3 11.2 8.1.1
PyTorch 1.9.0 11.1 8.0.5
TensorFlow 1 1.15.1 11.2 8.1.1
TensorFlow 2 2.6.0 11.2 8.1.0

2 https:// www. docker. com/.
3 https:// docs. nvidia. com/ nvtx/.
4 https:// devel oper. nvidia. com/ nsight- syste ms.

https://www.docker.com/
https://docs.nvidia.com/nvtx/
https://developer.nvidia.com/nsight-systems
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modifying all the inequivalence implementations. The vali-
dation accuracy results are obtained by repeating the model 
training five times. We can observe that they have comparable 
precisions with a difference of no more than 0.35%. The reason 
for outperforming the result in the original paper may be attrib-
uted to the use of different weight initialization, post-process, 
and convolution downsampling methods. We can also obtain 
the coincident accuracy curves during training.

4.2  Comprehensive evaluation results

4.2.1  Comprehensive comparison by DCT and DOR

Figure 2 shows the performance of different frameworks 
using DCT and DOR. We examined three ResNets with a 

batch size of 512 and a BERT with a batch size of 32. We 
draw a dashed line in Fig. 2 to represent the least training 
time among the five frameworks as the training time equals 
T(ts, te)∕R(ts, te) . We can observe that only the frameworks 
with a DCT below a certain threshold and a relatively 
high DOR can achieve optimal training performance. This 
is because DCT reflects the minimum value that training 
time can achieve, while DOR indicates how much poten-
tial the framework can reach. Figure 2 shows that PyTorch 
achieves superior training performance for ResNet-20 due to 
its high kernel function efficiency and ability to fully utilize 
the device. On the other hand, MXNet achieves the highest 
training performance for ResNet-56 and ResNet-110 owing 
to its most efficient kernel functions. Similarly, PyTorch 
achieves the highest BERT training performance due to its 
most efficient DCT.

Remark Maximizing the training performance requires ena-
bling the framework to fully utilize the GPU to increase 
DOR and efficiently utilize the GPU to improve DCT.

4.2.2  Framework evaluation by DCT

Figure 3 and 4 shows the DCT results of training ResNet 
and BERT, respectively. We can observe that PaddlePad-
dle can achieve the lowest DCT with a small batch size. 
As the batch size increases, the DCT of PyTorch gradually 
becomes smaller than that of PaddlePaddle. For the con-
volution neural network, this is because PaddlePaddle also 
adopts built-in convolution operators in addition to cuDNN. 
The built-in convolution implementation is more efficient 
than that in the deep learning library when the computing 
complexity is low. However, it fails to fully utilize the GPU 
with large batch sizes. For the Transformer model, the differ-
ence in DCT is mainly due to the different implementations 
of permuting and matrix multiplication operators between 

Table 3  ResNet accuracy (%) shown as “mean ± std”

ResNet-20 ResNet-56 ResNet-110

MXNet 92.10 ± 0.24 93.71 ± 0.31 94.14 ± 0.17
PaddlePaddle 91.97 ± 0.06 93.53 ± 0.11 94.18 ± 0.18
PyTorch 91.94 ± 0.20 93.68 ± 0.17 94.05 ± 0.20
TensorFlow 1 91.95 ± 0.16 93.59 ± 0.03 94.07 ± 0.13
TensorFlow 2 91.94 ± 0.30 93.70 ± 0.20 93.96 ± 0.18
Origin 91.25 93.03 93.57 ± 0.16

Table 4  BERT-base results shown as “mean ± std”

Exact match (%) F1 score (%)

MXNet 81.26 ± 0.18 88.60 ± 0.21
PaddlePaddle 81.21 ± 0.10 88.55 ± 0.09
PyTorch 81.16 ± 0.21 88.61 ± 0.24
TensorFlow 1 81.49 ± 0.17 88.78 ± 0.14
TensorFlow 2 81.21 ± 0.12 88.53 ± 0.11
Origin 80.8 88.5

Fig. 2  Evaluation results of DCT(s) and 1/DOR. The dashed line denotes the best training time (computed by DCT/DOR) among these five 
frameworks
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the two frameworks. On the implementation of permuting, 
PyTorch adopts a “lazy” execution method, which only 
annotates tensors without explicitly executing permut-
ing kernel functions. This method provides PyTorch with 
additional optimization space. For example, many librar-
ies provide arguments on whether the matrix is transposed 
when executing GEMM. When conditions permit, GEMM 
can be used to complete tensor permuting, thereby reducing 

kernel function execution time. Especially when the batch 
size is large, the permuting operators have a greater time 
overhead, so PyTorch’s DCT is better at large batch sizes. On 
the other hand, PaddlePaddle implements a kernel function 
named MatrixColReduce to assist in the backpropagation of 
matrix multiplication. Thus the computational efficiency of 
the matrix multiplication operator in PaddlePaddle is sig-
nificantly better than PyTorch when the batch size is small.

From Fig. 3, we can also observe that there is a discern-
ible difference in DCT between TensorFlow 1 and Tensor-
Flow 2, particularly at small batch sizes. This is because the 
kernel functions mapped into by TensorFlow 1 and Ten-
sorFlow 2 are distinct for certain convolutions in forward 
computing and backward propagation. Hence, TensorFlow 
2’s kernel function computation efficiency outperforms Ten-
sorFlow 1’s at lower workloads and performs comparably 
to TensorFlow 1 at higher workloads. We also observe that 
TensorFlow performs worse in terms of DCT compared to 
other frameworks. This is because TensorFlow does not pro-
vide the OpT setting and thus cannot choose the fastest con-
volution algorithm from various algorithms in cuDNN. For 

Fig. 3  Evaluation results of DCT(s) for ResNet-20 ( n = 3 ), ResNet-56 ( n = 9 ), and ResNet-110 ( n = 18)

Fig. 4  Evaluation results of DCT(s) for BERT-base
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BERT in Fig. 4, the most kernel functions executed in Ten-
sorflow 1, including matrix multiplication and element-wise 
operators, are based on Eigen. The matrix multiplication of 
TensorFlow 2 is implemented using CUTLASS,5 while some 
operators are still based on Eigen.6 Therefore, in some cases, 
the DCT of TensorFlow is poor.

With the large batch size, MXNet can leverage GPU more 
efficiently compared to other frameworks when training 
ResNet, as in Fig. 3. In addition to the use of OpT, there are 
two additional reasons: (1) MXNet employs a more efficient 
built-in element-wise kernel function for the ReLU operator; 
(2) MXNet does not need to clear gradients before backward 
propagation since MXNet writes into the gradients instead of 
accumulating them from zeros. In BERT training, the time 
cost of kernel functions for activation values and gradient 
clearing is relatively small. Due to PyTorch’s “lazy” execu-
tion of permuting operators, PyTorch’s DCT is better than 
MXNet at large batch sizes.

Remark PaddlePaddle has developed built-in kernel func-
tions for convolutions to optimize performance resulting in 
higher device computing efficiency with small batch sizes. 
TensorFlow 2 achieves better DCT results for small batch 
sizes compared to its previous version. MXNet can utilize 
devices most efficiently through more efficient mechanisms 
like the built-in ReLU kernel function in convolution neural 
networks training. PyTorch can achieve the best DCT results 
while training Transformers at large batch sizes.

4.2.3  Framework evaluation by DOR

Figure 5 shows the DOR results of training ResNet with 
five frameworks at different batch sizes. We can observe 
that PyTorch has the lowest DOR for ResNet-20 training 
when the batch size is set to 16. This is because, with the 
eager execution mode, PyTorch cannot overlap its CPU 
control flow execution with GPU computing time. Ten-
sorFlow 2 can also not fully utilize the GPU for a lower 

Fig. 5  Evaluation results of DOR(%) for ResNet-20 ( n = 3 ), ResNet-56 ( n = 9 ), and ResNet-110 ( n = 18)

5 https:// github. com/ NVIDIA/ cutla ss. 6 https:// eigen. tuxfa mily. org.

https://github.com/NVIDIA/cutlass
https://eigen.tuxfamily.org
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workload. This could be due to the fact that the computa-
tion graph TensorFlow 1 built also includes the data fetch 
and preprocessing. TensorFlow 2 only converts the com-
putation graph of a single training step to a static graph, 
resulting in high CPU execution overhead between steps. 
Besides, building the static computation graph through 
tracing will incur more time overhead at the beginning 
of each epoch. However, we can also observe that this 
situation is alleviated as the computational load increases. 
When the batch size is set to 512, it can be observed that 
PyTorch and TensorFlow 2 can better utilize GPU com-
putation to hide the execution time overhead on the CPU. 
This situation also occurs in training models with higher 
computational loads, such as BERT-base. As shown in 
Fig. 6, for BERT-base, PyTorch and TensorFlow 2 can 
achieve higher DOR when the batch size is 1. Moreover, 
this advantage continues to exist as the batch size increa
ses.

Figure 7 more clearly demonstrates the reasons for the 
difference in DOR by dividing the CPU-side execution time 
into six parts: data preprocessing, forward computation, gra-
dient clearing, backward propagation, parameter updating, 
and others. Each part is further divided into two categories: 
those that overlap with GPU execution time (-G in Fig. 7) 
and those that do not overlap with GPU execution time (-C). 
TensorFlow 1 and TensorFlow 2 are not listed in the figure 
as they compile the entire step or epoch into a static graph. 
We can see that the gradient clearing and parameter updating 
stages have a low ratio of GPU usage, particularly at small 
batch sizes. This is because a large number of kernel func-
tions generated from zero-setting operators during the gra-
dient clearing stage have less computing time on the GPU. 
However, launching these kernel functions to the device 
requires significantly more CPU execution time than GPU 
computing time. Typically, frameworks execute kernel func-
tions asynchronously. It means that the GPU computation in 
the forward pass stage can cover the CPU execution time in 
the gradient clearing stage with a sufficiently high workload. 
Similarly, frameworks can overlap the parameter updating 
stage and the subsequent data preprocessing stage with ker-
nel functions launched in the backward propagation stage.

We can observe that PyTorch effectively hides the CPU 
overhead of the gradient update stage when using a batch 
size of 256. However, PaddlePaddle performs synchroniza-
tion before each gradient clearing and parameter updating 
stage, leading to the lower DOR regardless of the large batch 
size. Finally, MXNet’s main thread and threads responsi-
ble for dispatching operators are asynchronous. As a result, 
MXNet achieves the highest DOR when the computational 

Fig. 6  Evaluation results of DOR(%) for BERT-base

Fig. 7  Training time breakdown 
by stages for ResNet-20 and 
BERT-base training. We denote 
PaddlePaddle as “Paddle”, and 
the labels for the y-axis are 
denoted as “Framework (Batch 
size)”. For instance, “PyTorch 
(128)” represents the training 
time of PyTorch with a batch 
size of 128. “Prepare”, “For-
ward”, “Clear”, “Backward”, 
and “Update” represent the data 
preprocessing, forward pass, 
gradient clearing, backward 
propagation, and parameter 
updating stages, respectively. 
“-G” indicates the CPU execu-
tion time overlapped by GPU 
computing time, and “-C” 
otherwise
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load is small. However, in MXNet, the thread for dispatching 
operators synchronizes with the stream of the GPU, result-
ing in a lower DOR when the batch size is becoming larger, 
like 512.

Remark PyTorch underutilizes the device at a small compu-
tational load because of its eager execution mode. Paddle-
Paddle and MXNet have low DOR when the computational 
load is large, owing to their frequent synchronizations with 
the device and streams. For TensorFlow 2, the inefficient 
CPU execution between steps causes it to perform worse 
than the previous versions when the computational load is 
small. When the computational load is large, TensorFlow 2 
effectively overlaps this CPU execution overhead with GPU 
computation, resulting in a better DOR than TensorFlow 1.

4.3  Evaluation of optimization techniques

Figure 8a shows the evaluation results of ResNet-20 training 
with the batch size set to 128. We can observe that turn-
ing on OpT can reduce DCT significantly in MXNet, Pad-
dlePaddle, and PyTorch. This is because without OpT, the 

framework selects convolution algorithms and correspond-
ing kernel functions through heuristic methods. The effi-
ciency of heuristically selected kernel functions is slower 
than the kernel functions selected by running all possible 
convolution algorithms once. For MXNet and PyTorch, this 
optimization also deteriorates the DOR. This is because a 
faster convolutional algorithm reduces DCT, while their per-
formance bottleneck comes from the CPU execution time 
of operator dispatching when the batch size is set to 128. In 
models without convolutional layers, OpT will not have an 
impact on training performance, as shown in Fig. 8b.

When training ResNet, we can also observe that OpS 
shortens the DCT only in TensorFlow 2, while the other 
two frameworks cannot achieve better DCT with static 
execution mode. It is because ResNet has limited space 
for graph optimizations. For example, batch normalization 
is applied immediately after each convolution and before 
activation in ResNet. As a result, the remapper optimiza-
tion can not replace the subgraph of convolution and acti-
vation with an optimized fused kernel. TensorFlow estab-
lishes the entire training step as a graph instead of building 
a graph only for the neural network, which provides 

Fig. 8  The effect of optimiza-
tion techniques in MXNet, Pad-
dlePaddle (Paddle), PyTorch, 
and TensorFlow 2 (TF2) when 
training ResNet-20 and BERT-
base. “Baseline” represents 
training without OpS and OpT. 
“+OpT” and “+OpS” denote 
training with OpT and OpS, 
respectively
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additional optimization space. For BERT’s training tasks, 
both MXNet and TensorFlow 2 can find graph optimiza-
tion space and reduce DCT. In PaddlePaddle, although 
some kernel functions have shortened their time, some 
operators, such as permuting, have added memory copy 
operators from device to device, resulting in an increase in 
DCT time. We can also observe the improvements in DOR 
for all three frameworks since static execution reduces the 
time cost of operator dispatching. One exception is Paddle-
Paddle when training BERT, as it synchronizes the device 
after the forward computing and backpropagations when 
applying OpS, resulting in a decrease in DOR, as analyzed 
in the previous section.

Remark Using OpT can improve GPU computing effi-
ciency in any framework when training convolution neural 
networks. Besides, OpS can help frameworks focus less on 
improving the dispatching efficiency under eager execution 
mode. However, applying OpS will not improve the kernel 
function efficiency in MXNet and PaddlePaddle if a neural 
network has limited graph optimization space.

4.4  Performance at different hyper‑parameters

4.4.1  Effect of the batch size

Figure 9 shows the DCT and DOR improvement obtained by 
the five frameworks at different batch sizes for ResNet-110. 
We can observe that the improvement trend of DCT is 
similar among all frameworks. One exception is MXNet, 
which uses different convolutional algorithms at different 
batch sizes. However, the improvement trend of DOR var-
ies among frameworks. For example, we can observe that 
PyTorch, PaddlePaddle, and TensorFlow 2 still have a rela-
tive improvement above 1.25× at a batch size of 256.

The batch size increase can benefit the framework perfor-
mance twofold. Firstly, due to the massive cores in the GPU 
architecture, a kernel function with insufficient computa-
tion required will result in the underutilization of the GPU. 
The batch size increase can enhance the kernel computing 
efficiency on GPU and reduces the DCT intensely. Since the 
computation required for a single kernel function to fully 
utilize computing cores in GPU is almost independent of 
the framework, similar DCT improvement trends can be 
observed in different frameworks. Secondly, the growth of 

Fig. 9  Improvements of DCT and DOR for ResNet-110 training in 
PyTorch, PaddlePaddle, TensorFlow 1, and TensorFlow 2. Bars show 
improvement based on the performance at a batch size of 16. Lines 

show improvement relative to the performance at (batch size)/2 for a 
certain batch size
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batch size increases the computation requirement of opera-
tors in the forward computing and backward propagation 
stages. As the batch size increases, the time to execute kernel 
functions on GPU grows, thus masking more CPU execution 
time and improving DOR. Therefore, if a framework has a 
lower DOR at a small batch size, it will have a longer CPU 
execution time for dispatching operators and require a larger 
batch size to improve DOR.

Remark For all frameworks, the required batch size to 
achieve optimal DCT is similar. Besides, the more efficient 
the operators dispatching in a framework, the smaller the 
batch size required to achieve optimal performance.

4.4.2  Effect of the network size

By comparing different network sizes in Fig. 3, we can see 
that the DCT rises with the increase of the network size n. 
Figure 10 further shows the DCT results of all five frame-
works at batch sizes 16, 64, and 256. The lines in the figure 
show the linear regression for modeling the relationship 
between network size n and DCT. We can observe that lin-
ear regression can fit the relationship between n and DCT 
well, regardless of the framework or batch size. Theoreti-
cally, DCT is linearly related to n since 6n + 2 represents 
the number of operators in ResNet. When n increases by 1, 
the convolutional, batch normalization, and ReLU layers in 
ResNet increase by 6, making DCT grow by a fixed value. 
Therefore, DCT and n exhibit a linear relationship in all 
cases.

For DOR, we can observe in Fig. 5 that all frameworks 
improve with the increase in network size. There are two 
situations. (1) When the batch size is small, the kernel 

functions launched in forward computation and backward 
propagation are not enough to overlap with CPU execution 
time for gradient clearing and parameter updating. Increas-
ing network size reduces the proportion of the data process-
ing stage, which does not change with network sizes and 
has low DOR. (2) When the batch size is large, increas-
ing network size helps more CPU execution time that can 
be overlapped to be overlapped, thereby improving DOR. 
Besides, for PaddlePaddle, the reason for DOR improvement 
is always the first situation due to its frequent synchroniza-
tion with the device.

Remark There is a linear relationship between DCT and 
network size n for all frameworks. Besides, a larger net-
work size is more advantageous in hiding CPU execution 
overhead.

4.5  Discussion

4.5.1  Summary

We summarize the above analysis in Table 5, including eight 
aspects: convolution kernel function computation efficiency 
(Conv in the table), ReLU kernel function computation effi-
ciency (ReLU), OpT, OpS, gradient clearing (Grad clear), 
for which to synchronize (Sync target) and the frequency of 
synchronization (Sync freq). We also consider two cases: 
low workload (LW) and high workload (HW). These mecha-
nisms are reflected in DCT and DOR and ultimately have an 
impact on training time (Time).

We also highlight the following conclusions. (1) We 
observe that the performance of using deep learning libraries 
is sometimes lower than built-in operators. This implies that 

Fig. 10  The relationship between network size n and DCT at batch sizes of 16, 64, and 256, fitting with linear regression



108 Z. Lu et al.

1 3

it is challenging to design a high-performance deep learn-
ing library that covers as many situations as possible. (2) 
DCT can be improved by testing all the convolution algo-
rithms and selecting the fastest one. This indicates that it is 
challenging to choose the optimum convolution algorithm 
by predicting the performance. (3) Compared to the eager 
execution mode, the static execution mode does not signifi-
cantly improve the computational efficiency of operators 
when training convolution neural networks like ResNet.

For different hyper-parameters, we first pointed out that 
some frameworks require larger batch sizes to achieve opti-
mal DOR compared to other frameworks. Considering a 
too-large batch size can negatively impact the quality of the 
model (Goyal et al. 2017; Smith et al. 2020), the degree of 
parallelism for data parallelism in such frameworks may be 
more restricted. Secondly, we find that DCT can establish a 
good relationship with network size across all frameworks. 
Considering that the DOR is close to 1 under high work-
loads, it is hopeful to use DCT to estimate the minimum 
training time for larger networks.

4.5.2  Other devices

In this section, we apply our metrics to another hardware 
device to determine the optimization direction of model 
training. The hardware environment is equipped with two 
Intel (R) Xeon (R) Gold 5218R CPUs @ 2.10 GHz and one 
Atlas 300T. The Atlas 300T (NPU) is a specialized device 
developed by Huawei to accelerate deep learning computing. 
Huawei also developed deep learning frameworks that can 
perform training on NPUs. For now, they support PyTorch 

1.8 and TensorFlow 2.6 running on NPUs. We use these two 
frameworks to perform ResNet training on CIFAR-10, col-
lecting kernel function execution start and end times, as well 
as epoch time, through the dedicated tool named msprof. 
Due to support issues, we preprocess input data serially dur-
ing training on TensorFlow 2.

The DCT and DOR results are shown in Table 6. Firstly, 
comparing the two frameworks, it can be observed that 
PyTorch has a lower DCT. This is mainly because PyTorch 
and TensorFlow 2 use different kernel functions to calculate 
Batch Normalization operators. The TensorFlow 2’s DOR 
is significantly lower than PyTorch because it performs 
data preprocessing in a serial manner, resulting in a longer 
idle time for the NPU. Compared with the results obtained 
with the NVIDIA A6000, it can be seen that all DCTs have 
achieved more than twice the acceleration. The main reason 
is that NPU contains a large number of FP16 computing 
units, so the entire training process uses mixed precision 
training. In addition, both PyTorch and TensorFlow 2 have 
lower DOR results. This means that operator distribution 

Table 5  Evaluation results with 
different mechanisms

Texts in bold indicate the superior performance or mechanisms

MXNet PaddlePaddle PyTorch TensorFlow 1 TensorFlow 2

Conv (LW) Avg Good Avg Avg Good
Conv (HW) Good Avg Good Avg Avg
ReLU Good Avg Avg Avg Avg
GEMM (LW) Avg Good Avg Poor Avg
GEMM (HW) Avg Avg Good Poor Avg
Lazy Permuting No No Yes No No
OpT Yes Yes Yes No No
OpS Yes Yes No / Yes
Grad clear No Yes Yes No No
Sync target Stream Device Device Device Device
Sync freq High Medium Low Low Low
DCT (LW) Avg Good Avg Avg Good
DOR (LW) Good Avg Poor Good Poor
DCT (HW) Good Avg Good Avg Avg
DOR (HW) Avg Poor Good Good Good
Time (LW) Good Avg Poor Avg Poor
Time (HW) Good Poor Good Avg Avg

Table 6  ResNet training on Atlas 300T

DCT DOR

ResNet-20(PyTorch) 1.32s 5.59%
ResNet-56(PyTorch) 3.43s 6.81%
ResNet-110(PyTorch) 6.58s 7.06%
ResNet-20(TensorFlow 2) 1.40s 0.29%
ResNet-56(TensorFlow 2) 3.81s 0.77%
ResNet-110(TensorFlow 2) 7.42s 1.50%
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has become the main bottleneck in training. Therefore, in 
order to further improve training performance, the next goal 
should be to maximize the operator distribution speed of the 
framework.

5  Conclusion

In this paper, we provide a method for evaluating deep 
learning frameworks, including evaluation metrics, equiva-
lence validation, and equivalence adjustment. We introduce 
DCT and DOR to evaluate the kernel function computa-
tion efficiency and operator dispatching efficiency, respec-
tively. DCT and DOR can decouple the impact of different 
mechanisms on training performance, enabling the effect 
of each mechanism to be effectively reflected in the evalua-
tion results. We propose a three-step equivalence validation 
method, called hyperparameter, model, and parameter updat-
ing equivalence, to ensure all the frameworks execute the 
same computation graph and discover inequivalence imple-
mentations in frameworks. We further propose a method 
to adjust these inequivalence implementations based on the 
number of operators. We evaluate PyTorch, MXNet, Pad-
dlePaddle, TensorFlow 1, and TensorFlow 2 and uncover the 
reasons for the performance gap among these frameworks, 
which can help better utilize frameworks and optimize train-
ing performance on heterogeneous computing. The source 
code can be found at https:// github. com/ LuZhe ngx/ DLFra 
meBen ch.
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