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Abstract
Graph is one of the best ways to express and process association relationship. It is widely used in various applications, 
including social networks, fraud detection, Internet of things, etc. As a typical graph traversal algorithm, the Breadth-First 
Search (BFS) performance on GPU is not desirable, due to strong data dependency, intensive irregular memory access and 
low computation intensity. On GPUs, the situation is even worse with unbalanced data partitioning and high communication-
to-computation ratios. In this paper, we implement FSGraph that is a fast and scalable BFS implementation on GPUs. In 
FSGraph, we propose three optimizing techniques: GPU-friendly Compressed Sparse Row (CSR) structure, bidirectional 
one-dimensional (1d) partition and UM-aware communication. We have evaluated our work with extensive experiments on 
four T4 and four V100 GPUs. The average performance of BFS on four T4 GPUs is 132.67 Giga-Traversed Edges per Second 
(GTEPS), which delivers up to 1.44× improvement than that on single T4. In terms of four V100 GPUs, the BFS performance 
achieves 392.35 GTEPS and outperforms existing CPU-based cluster with 1024 nodes on November 2022 Graph500 list.
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1  Introduction

With the development of information society, people are fac-
ing the need to process the continuously generated data. To 
facilitate our lives, graph analytic becomes a new explora-
tion in the wave of big data analysis (Bader and Madduri 
2008). In reality, it is a common method to abstract and 
describe problems with graph. Graph is one of the most 
important data structures, which is widely used in various 
applications, such as social networks, fraud detection, Inter-
net of things and so on (Pham et al. 2015; Li et al. 2021; 
Mislove et al. 2007; Ting et al. 2013).

As a typical graph algorithm, the Breadth-First Search 
(BFS) is the core component of high-level graph analysis 
algorithms, including Betweenness Centrality (BC), Con-
nected Component (CC) and Single-Source Shortest Path 

(SSSP) (Murphy et al. 2010). Different from the compute-
intensive workload, the typical characteristics of BFS, 
classified as data-intensive application, are strong data 
dependency, intensive irregular memory access and low 
computation intensity. Towards data-intensive applications, 
the Graph500 list [7] was introduced to rank computer per-
formance. In the benchmark of Graph500, the BFS is one of 
the key kernels (Murphy et al. 2010; Ueno and Suzumura 
2012).

Designed for high throughput, Graphics Processing Unit 
(GPU) provides high memory bandwidth and massive par-
allelism towards compute-intensive workloads. It is widely 
used in big data, deep learning and high-performance 
computing. With the development of graph computing, 
the acceleration of graph traversal on GPU is gradually 
becoming a research trend. However, the irregular char-
acteristic of graph traversal and the explosive growth of 
graph scale hinder the high performance gain on GPU plat-
form (Sabet et al. 2020; Dong et al. 2020). The core prob-
lems are intensive random access, workload imbalance, 
high communication-to-computation ratios, and limited 
communication bandwidth. What’s worse, the problems 
are further deteriorated for scale-free graphs, which follow 
power-law distribution (Faloutsos et al. 2011). The topol-
ogy of scale-free graph results in workload imbalance. 
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Memory divergence creates additional challenges in BFS 
processing. Because of the discontinuous memory access 
within a warp, a large amount of load and store transac-
tions are caused during the traversal. Besides, for large 
graph, unbalanced data partitioning and communication 
overhead are extra challenges for graph traversal on GPUs.

Considering above problems, we propose several opti-
mizing schemes on data representation, graph partitioning 
and communication optimization among GPUs. Based on 
these optimizations, we carry out plenty of experiments 
and evaluate the performance of BFS implementation on 
multiple T4 and V100 GPUs, compare and analyze the 
results with some existing works to show the effective per-
formance improvement of our work. Specifically, the main 
contributions are as follows:

1. In order to improve the data locality of graph tra-
versal, GPU-friendly graph representation includes bitmap 
adaptive CSR and adjacency list reorganization is pro-
posed, which improves the memory divergence of graph 
traversal on GPUs.

2. Due to the scale-free graph topology, there exists 
heavy communication overhead and workload imbalance. 
We develop a bidirectional 1d partition scheme, and com-
bine it with a static shuffle method to reduce the workload 
unbalance and communication overhead.

3. In terms of data communication overhead among 
GPUs, this paper systematically evaluates the performance 
and scalability of a series of efficient communication 
libraries. Finally, we propose UM-aware communication in 
our implementation, which can reduce the communication 
overhead and increase the scalability of graph traversal.

4. We systematically evaluate our optimizations with 
extensive experiments on NVIDIA Tesla T4 and V100. 
The results show better performance and scalability on 
GPUs than existing GPU-based systems.

The rest of this paper is organized as follows: Sect. 2 
and Sect. 3 introduce the background and discuss the chal-
lenge of graph traversal on GPUs. Section 4 presents our 
optimizations in FSGraph. The experiment and evalua-
tion of our work are in Sect. 5. Then the related work is 
clarified in Sect. 6. Finally, we conclude the FSGraph in 
Sect. 7.

2 � Background

BFS is a widely used graph algorithm and the fundamental 
building block of many graph analysis algorithms. To boost 
the performance of BFS, there has been a lot of work on 
parallel implementation of BFS on GPUs. In this section, 
we will present some state-of-art optimizations for BFS 
implementation.

2.1 � CSR format

Graph is usually presented in CSR format, which can 
reduce the memory footprint and increase the stream-
ing access to neighboring edges. With CSR format, the 
graph data can be compressed to row storage of adjacency 
matrix. Figure 1 shows the basic idea of CSR. There are 
two arrays named row list and adjacency list. For each 
vertex, all the neighboring vertices are stored in adjacency 
list. The size of adjacency list is equal to the total num-
ber of edges in the graph. The offset of each vertex’s first 
neighbor in adjacency list is stored in row list, and the 
adjacent values in row list are the degree of each vertex. 
Taking Fig. 1 as an example, the degree of vertex 0 is 3, 
and the neighbors of vertex 0 are 1, 2, 3.

2.2 � Top‑down BFS algorithm

Traditionally, BFS is performed in top-down manner. Given 
a graph G=(V, E) and the initial root vertex s, V={v1 , v2 , v3 , 
… }, E={(v1 , v2 ), ( v1 , v5 ), ( v2 , v4 ), … }, V is vertex set and E 
is edge set. The top-down BFS will visit all reachable ver-
tices from s, then generate the final BFS spanning tree. The 
pseudo-code of top-down BFS is shown in Algorithm 1. At 
the beginning, all data structures are initialized, a random 
root vertex s is generated and put into current queue. When 
current queue is not empty, all neighbors of each vertex u 
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in current queue will be traversed. The traversal procedure 
is to mark the status of unvisited neighbors as visited, map 
their parent vertices and put these vertices into next queue. 
When all the vertices in current queue are processed, then 
the current queue is swapped with next queue and next queue 
is cleared. In this way, top-down BFS can generate the BFS 
searching tree at the end of this algorithm.

2.3 � Bottom‑up BFS algorithm

When current queue is small, the top-down BFS approach 
is very efficient. After several iterations, the size of current 
queue increases rapidly, and many vertices in adjacency list 
have been visited. Under the circumstances, if we continue 
to traverse the graph in top-down manner, it will lead to mas-
sive redundant edges traversal. Besides, there exist plenty of 
atomic operations to get global next queue for parallel BFS 
implementation on GPUs, leading to extra heavy computa-
tional overhead.

In order to solve the bottleneck of top-down BFS 
approach, Beamer proposed an effective bottom-up BFS 
algorithm (Beamer et al. 2012). Compared with top-down 
approach, bottom-up approach works in the opposite way. 
When the size of current queue is large, it starts from all 
the unvisited vertices and checks whether their parent ver-
tices are in current queue. Using bottom-up approach, as 
the current queue increases, the iteration of graph traversal 

will finish earlier. Thus, bottom-up approach can signifi-
cantly reduce the redundant traversal of edges. The detailed 
pseudo-code of this algorithm is shown in Algorithm 2.

Besides, in order to find the parent of vertex in the current 
queue quickly, Yasui and Fujisawa (2015) conducted a sta-
tistical analysis depending on the degree and the frequency 
of vertex access in the graph. He found that the vertices with 
high degree had a high probability of being the parent for an 
unvisited vertex. Thus, the degree-aware optimization was 
proposed to speed up the graph traversal during bottom-up 
stage. This optimization could further reduce the redundant 
edges checking in bottom-up BFS algorithm and enhance 
the performance of the BFS algorithm.

However, bottom-up approach also has its drawbacks. 
When there are a few vertices in current queue, most ver-
tices will not be expanded at this iteration, causing plenty 
of redundant edges checking in the parent checking. So, the 
bottom-up BFS is advantageous when the size of current 
queue is large, while top-down BFS is efficient when the size 
is small. Top-down and bottom-up approaches are comple-
mentary in graph traversal. In Beamer’s direction-optimizing 
approach (Beamer et al. 2012), BFS algorithm started to run 
in top-down approach and switched to bottom-up approach 
when the size of current queue was large enough. In the last 
several iterations, BFS switched back to top-down approach 
when the size of the current queue became small. Under 
appropriate switching policy, BFS performance improves 
a lot.

2.4 � Graph partitioning scheme

For distributed BFS implementation, the partition of graph 
data can usually be categorized into one dimensional 
(1d) partition, two dimensional (2d) partition and even 
three dimensional (3d) partition, based on different vertex 

vertex ID

row list

adjacency list

0

1

2

3

5

4

1 2 3 50 0 04 2 1

0 3 5 87 9 10

0 1 2 3 4 5

Fig. 1   Illustration of CSR format



280	 Y. Zhang et al.

1 3

mapping and data partitioning methods (Buluç and Mad-
duri 2011; Yoo et al. 2005; Checconi et al. 2012). 1d par-
tition mainly divides graph data according to the indices 
of vertices. The vertex information and its adjacent edges 
are placed on the same computing node. 1d partition has 
the characteristics of simple thinking and easy implementa-
tion. It works well on evenly distributed graphs. However, 
due to the power-law distribution of most graph (Faloutsos 
et al. 2011), 1d partition can induce serious workload imbal-
ance among distributed computing nodes. The 2d partition 
divides the adjacency matrix of graph on the basis of block 
method. 2d partition can split the collective communications 
from one dimension to two dimensions, which reduces the 
communication overhead. The detailed 1d and 2d partition 
schemes are shown in Fig. 2 (Note: the original graph is 
shown in Fig. 1). 3d partition is realized on the basis of 
the 2d partition and can further reduce the communication 
overhead compared to 2d partition. However, this method 
is relatively complicated and changes the computation and 
communication models, which is not effective for large scale 
parallel BFS implementation.

2.5 � Data communication on GPUs

There are several methods of data communication for the 
implementation of graph traversal on GPUs. Originally, 
NVIDIA provided a general library named Compute Unified 
Device Architecture (CUDA). By using the cudaMemcpy 
function provided by CUDA, researchers and developers can 
simply transfer data among GPUs and CPU. However, this 
method requires frequent data copy. Under the limitation of 
PCIe bandwidth, the communication overhead among GPUs 
and CPU for graph traversal are high. To facilitate and sim-
plify data exchange between GPU and GPU, NVIDIA pro-
vides Peer to Peer (P2P) communication interface, which 
can eliminate two copies of data from GPU to GPU. Some 

works use P2P to implement data communication on multi-
GPUs. Although this method enhances the performance of 
graph traversal to some degree, it has a low scalability for 
graph traversal with the number of GPUs increasing.

In 2017, Potluri et al. put forward using NVSHMEM 
library functions for efficient BFS on multi-GPUs sys-
tems (Potluri et al. 2017). On GPUs, NVSHMEM-based 
data communication is mainly relied on the storage model 
of OpenSHMEM, which is a single-program multi-data pro-
gramming model and provides high performance and good 
scalability. It is a fine-grained inter-GPU communication, 
which can realize data synchronization in the kernel func-
tion. Although the library is advantageous over the above 
two methods, it is difficult to program, and the performance 
degrades significantly as the data communication increases. 
Besides, for GPU clusters, some researches focus on using 
Message Passing Interface (MPI) for data communication 
on GPUs.

3 � Challenges of BFS on GPUs

In this section, we motivate our approach by identifying 
challenges for parallel BFS implementation on GPUs. 
With the explosive growth of graph data, graph process-
ing on a single GPU can no longer achieve high perfor-
mance due to insufficient GPU global memory. The BFS 
performance has a sharp decline when the size of graph 
data exceeds the memory footprint of GPU. Multi-GPUs 
system has large potential in exploiting the scalability of 
large-scale graph traversal. However, due to the irregular 
characteristics of BFS traversal, causing severe memory 
divergence, load imbalance and high communication over-
head, it’s difficult for efficient implementation of BFS on 
GPUs.

Fig. 2   The illustration of 1d 
partition (left) and 2d partition 
(right)
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3.1 � Memory divergence

As we all know, GPU can provide massive parallelism and 
high bandwidth. Generally, high bandwidth utilization of 
GPU is achieved by regular and sequential memory access. 
However, due to the power-law distribution, the social 
and web networks graphs are highly irregular distributed. 
From the work of Khorasani, the BFS implementation on 
GPU only achieves 12.8%∼15.8% memory bandwidth uti-
lization (Khorasani et al. 2014). The irregular memory 
access within the same warp can cause severe memory 
divergence, leading to a large amount of load and store 
transactions, and high latency.

Memory coalescing is always a way to improve memory 
efficiency on GPU. In this work, we focus on the improve-
ment of graph data layout by taking the benefit of memory 
coalescing technique. Original CSR format is not GPU-
friendly in bottom-up phase. To make BFS more GPU-
aware, we propose an improved graph data structure to 
achieve high memory efficiency.

3.2 � Workload imbalance

For parallel BFS implementation on distributed GPUs, the 
workload is usually divided with 1d partition based on 
vertex indices, and distributed evenly to available GPU 
nodes. Due to the power-law nature of scale-free graphs, 
the degree of vertex varies significantly, leading to seri-
ous workload imbalance in graph traversal. Although GPU 
provides strong computing power, the running time will be 
dominated by the vertices with high degrees.

What’s worse, the above 1d partition divides neigh-
boring edges of one vertex into different GPUs, which 
will induce frequent communication and synchronization 
during the graph traversal. To improve the communica-
tion efficiency and workload balance, we develop a bidi-
rectional 1d partition method, and combine it with static 
shuffle scheme proposed in our previous work (Zhang et al. 
2019).

3.3 � Communication overhead

For parallel BFS implementation on GPUs, there exists fre-
quent data communication and synchronization among host 
CPU and GPUs. With the increase of the graph scale, the 
communication overhead explodes a lot. However, due to the 
limited PCIe bandwidth, which is only 32 GB/s in the ideal 
case of PCIe Gen 4.0 x16, while the memory bandwidth of 
T4 is 320 GB/s [20], the data transmission among CPU and 
GPUs is the main bottleneck of the performance.

To reduce the communication overhead among host CPU 
and GPU, we propose a UM-aware communication scheme, 

which combines the efficient communication library and 
Unified Memory (UM). UM can provide unified memory 
address for CPU and GPU, which further breaks the barriers 
of PCIe performance.

4 � Algorithm optimization

In this section, the detailed optimizations for BFS imple-
mentation on multi-GPUs will be illustrated. We propose 
three techniques regarding the challenges of BFS parallel-
ism. These GPU-friendly optimizations are used to improve 
memory access, balance workload, and reduce communica-
tion overhead.

4.1 � GPU‑friendly CSR structure

It is well-known that intensive irregular memory access 
and low memory bandwidth utilization are characteristics 
of BFS. Those characteristics prevent efficient BFS accelera-
tion on GPU. The main reason is that most graph data reside 
in GPU global memory and only a small amount of data can 
be cached in cache or shared memory. Thus, it is critical for 
BFS to achieve efficient data access in global memory. We 
need to relieve irregular memory access and improve global 
memory bandwidth utilization to facilitate BFS performance 
on GPU.

To enhance the efficiency of memory access on GPU, 
memory coalescing technique is put forward in this paper. 
Under the SIMT model, all threads in a warp execute the 
same instruction. If the memory access of all threads within 
a warp could be coalesced to consecutive addresses, all 
these memory operations can be combined into one single 
access transaction, which drastically decreases the latency 
and increases memory utilization. Different from prior 
works (Busato and Bombieri 2014; Luo et al. 2010; Zhong 
et al. 2016), we pay more attention to the improvement of 
graph data structure and construct a GPU-friendly CSR 
structure, which follows the rule of memory coalescing in 
bottom-up phase. Compared with original CSR, the GPU-
friendly CSR structure is constructed under two optimizing 
techniques. One is the bitmap adaptive CSR and the other is 
the warp-aligned adjacency list.

4.1.1 � Bitmap adaptive CSR

Firstly, the idea of bitmap adaptive CSR is introduced. To 
reduce the memory access in bottom-up stage, bitmap opti-
mizing technique is used. For parallel BFS implementa-
tion (Agarwal et al. 2010), each thread deals with one unit of 
bitmap each time. The size of bitmap unit is usually 4 bytes. 
Combined with vertex sorting technique, good locality is 
offered by bitmap. When we use the technique of bitmap 
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optimizing on GPU, the threads in the same warp will face 
memory divergence problem in accessing index mapping 
lists, including row list and some other auxiliary structures. 
If the vertex indices in bitmap are remapped, the locality of 
the bitmap will be broken. Thus, to access index mapping 
lists efficiently, we propose bitmap adaptive CSR, which 
does not break the benefit of bitmap.

The main idea of the bitmap adaptive CSR is like the remix 
of original CSR structure. The position of vertex in the bitmap 
is kept as before. But in the index mapping lists, like the row 
list, the corresponding position of the vertex is remapped to 
achieve the memory coalescing. In this way, not only we can 
keep the locality of bitmap, but also we can improve memory 
access efficiency at the same time. All threads in the same 
warp deal with the same bit in their own bitmap unit every 
time. To introduce the procedure clearly, we define b_size as 
bitmap unit size and w_size as warp size. Generally, the w_size 
is 32. As can be seen in Fig. 3, thread_0 ( t0 ) deals with vertex 
b_size*0 (the 1st bit of bitmap unit 0), thread_1 ( t1 ) deal with 
vertex b_size*1 (the 1st bit of bitmap unit 1),..., thread_31 ( t31 ) 
deal with vertex b_size*31 (the 1st bitmap of unit 31). Differ-
ent from prior CSR, the vertices with ID b_size*0, b_size*1, 
b_size*2,..., b_size*31 are put together in the bitmap adap-
tive CSR. The memory access to the row list in the warp can 
be coalesced into one transaction, which is suitable for SIMT 
execution. All following vertices that belong to the same bit-
map unit are remixed in the same way. However, in adjacency 
list, the values are not changed. The main reason is that the 
technique does not reorder the vertex ID. All vertices are kept 
with the step size of b_size*w_size in the same way.

Figure 3 shows the structure of bitmap adaptive CSR. All 
index mapping lists are rearranged. Here, we take the row list 
as an example. The value in bitmap and row list is the mapped 
vertex ID. The locations of all vertices in bitmap keep the 
same, while their locations in row list are reordered for mem-
ory coalescing. Under SIMT execution model, all threads in 

a wrap can access consecutive memory in the row list. Equa-
tion(1) and Eq.(2) show the mapping policy between original 
vertex ID and rearranged location in index mapping lists.

4.1.2 � Warp‑aligned adjacency list

To improve the global memory access efficiency in edge tra-
versal procedure, the warp-aligned adjacency list is used. As 
described above, although memory coalescing is achieved 
in the index mapping lists, using original adjacency list still 
leads to severe memory divergence problem. Because all 
threads in the same warp execute edge traversal procedure of 
different vertices at the same time. To realize the coalesced 
memory access in adjacency list, we need to keep the adja-
cent threads in the same warp addressing the neighboring 
cells in global memory. Thus, the warp-aligned adjacency 
list tries to reassemble the neighbors of the vertices pro-
cessed in the same warp to adhere to the memory coalescing 
rule.

Taking Fig. 4 as an example, adjacent w_size vertices will 
be processed by the same warp in SIMT execution model, 
so all vertices are formed into groups in units of w_size. The 
warp-aligned adjacency list is derived from original adjacency 
list. In Fig. 4, the 1st neighbor of vertex 0 are rearranged with 
other 1st neighboring vertices which will be processed in the 

(1)

id_to_loc(id) =
id

b_size∗w_size
∗ (b_size ∗ w_size)

+ (id mod b_size) ∗ w_size

+
id mod (b_size∗w_size)

b_size

−
id mod b_size

b_size

(2)
loc_to_id(loc) =

loc

b_size∗w_size
∗ (b_size ∗ w_size)

+ (loc mod w_size) ∗ b_size

+
loc mod (b_size∗w_size)

w_size

Fig. 3   The bitmap adaptive 
CSR structure
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same warp. All following neighboring vertices belonging to 
the same group are remixed in the same way. Due to varied 
degree of vertices, the minus sign (-) is extra padding space 
for neighboring alignment. If we mix all neighbors of each 
vertex, the padding cost will occupy huge memory footprint. 
There is a discrepancy between memory access efficiency and 
memory footprint. Using degree-aware (Yasui and Fujisawa 
2015) optimization, the traversal procedure based on bottom-
up approach stops in a small number of neighboring vertices. 
As a result, the warp-aligned adjacency list is constructed 
by choosing a certain number of adjacent neighbors. Taking 
memory efficiency and padding cost into consideration, in our 
implementation, the warp-aligned adjacency list only includes 
the first 30% edges of original adjacency list. Based on our 
experiment, no more than 7% memory overhead is brought by 
this new structure. Using this technique, the memory accesses 
are coalesced in a warp, which highly enhances the memory 
efficiency.

4.2 � Bidirectional 1d partition

As described in Sect. 2.4, traditional 1d partition divides graph 
data based on the indices of vertices. The information of ver-
tex and its adjacent edges are placed on the same compute 
node. However, the irregularity of graph data restricts efficient 
BFS implementation on GPUs and can cause severe workload 
imbalance and communication overhead.

In order to reduce the communication overhead among 
GPUs, we propose a bidirectional 1d partition. The corre-
sponding division is shown in Fig. 5. The left figure is column 
direction (column-based) 1d partition and the right figure is 
row direction (row-based) 1d partition.

Let G = (V, E), V represents vertex set, a total of n vertices, 
and E represents edge set, a total of e edges. Assuming that 
the number of divisions in row is r, the number of divisions in 
column is c, the corresponding information based on row and 
column 1d partition are as follows:

For row-based 1d partition, the V and E are divided by:

In Eq.(3) and Eq.(4), each set of partial vertices V rk and E rk 
on the k-th computing node is defined by:

The E out(v) in Eq.(6) is the set of outgoing edges of each 
vertex v in the vertex set V rk.

For column-based 1d partition, the V and E are divided 
by:

In Eq.(7) and Eq.(8), each set of partial vertices V ck and E ck 
on the k-th computing node is defined by:

(3)V =[Vr0|Vr1|Vr2|...|Vr(r−1)]

(4)E =[Er0|Er1|Er2|...|Er(r−1)]

(5)Vrk =

{

vk ∈ V|k ∈

[
kn

r
,
(k + 1)n

r

]}

(6)Erk(v) ={e(v,u) ∈ Eout(v)|v ∈ Vrk, u ∈ V}

(7)V = [Vc0|Vc1|Vc2|...|Vc(c−1)]

(8)E = [Ec0|Ec1|Ec2|...|Ec(c−1)]

(9)Vck ={vk ∈ V}

Fig. 4   The data structure of 
warp-aligned adjacency list 
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The E in(v) in Eq.(10) is the set of ingoing edges of each 
vertex v in the vertex set V ck.

The column direction partition divides graph data by 
edges. It will separate the adjacent edges of high-degree 
vertices into different GPU nodes. In top-down stage, col-
umn direction partition is more suitable, which can ensure 
initial workload balance on each GPU after partitioning. 
Because we assign an approximation number of edges for 
each GPU. However, in bottom-up stage, the graph tra-
versal starts from vertices that have not been visited, and it 
will check whether the parent vertex locates in the current 
queue. If we use column-based 1d partition, the neighbor-
ing edges of the vertex will be divided into different GPU 
nodes, which induces frequent communication during the 
graph traversal. The row-based 1d partition can collect 
unvisited vertices and their neighboring edges together, 
which can eliminate the data communication in bottom-up 
stage among GPUs.

To reduce the communication overhead among GPUs, 
extra graph data need to be stored in each GPU by bidi-
rectional 1d partition. In our experiment, bidirectional 1d 
partition needs 0.31 times extra memory capacity but the 
communication-to-computation ratios reduce 15.04 times, 
compared with traditional 1d partition. To further improve 
the workload balance in each GPU, we implement the static 
shuffle scheme proposed in our previous work (Zhang et al. 
2019). The specific method sorts the vertices’ degrees in 
descending order and further improves load balance in task 
assignment.

(10)
Eck(v) = {e

(u,v) ∈ Ein(v)|u ∈

[
kn

c
,
(k+1)n

c

]

,

v ∈ Vck}

4.3 � UM‑aware communication

To reduce the overhead of communication and synchroniza-
tion among GPUs, we propose a UM-aware communication 
scheme, which combines MPI library and data placements 
of UM.

As described above, the graph is divided and stored in 
each GPU node by bidirectional 1d partition. For the parallel 
BFS implementation among GPUs, the global synchroniza-
tion in each iteration is needed for the calculation of next 
queue, inducing extra communication overhead. However, 
limited PCIe bandwidth becomes the main bottleneck for the 
performance of BFS. In this regard, NVIDIA has proposed 
P2P, GPU-based MPI, NVSHMEM and other technologies 
to achieve efficient data transmission among GPUs and CPU. 
The communication process of P2P is shown in Fig. 6.

In Fig. 6, although the data communication based on P2P 
is still limited by the bandwidth of PCIe, it eliminates two 
data copies between GPU and CPU, which improves the 
data communication among GPUs. In this paper, the initial 
distributed algorithm is implemented based on P2P com-
munication. However, the scalability of the implementation 
gets worse with the increases of GPU numbers and graph 
scale, as discussed in below performance evaluation sec-
tion. We further implement parallel graph traversal based 
on UM-aware communication approach, which combines 
our BFS algorithm with CUDA-based MPI and UM tech-
nologies. In this way, we can carry out the message transfer 
in a pipeline, which utilizes asynchronous stream to copy 
data and improve communication efficiency greatly. These 
are the main reasons that the performance of BFS based on 
UM-aware communication outperforms the scheme based 
on P2P.

Fig. 5   The bidirectional 1d 
partition
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UM method unifies host memory and device memory 
into the same address spaces, and fetched required data from 
CPU on-the-fly. It can reduce the overhead of communica-
tion between CPU and GPU to a certain extent. We using it 
to transfer data that require frequent CPU-GPU interaction, 
such as intermediate attribute information, state data and so 
on. The UM method is suitable for algorithm with relatively 
good spatial and temporal locality. In order to improve the 
locality of BFS execution, we propose to use UM-aware 
communication, which designs UM-based data placements. 
Usually, UM depends on CUDA driver to implement the 
data movement, but the performance is cut down when it 
is combined with CUDA-based MPI. The main reason lies 
in the access of managed buffer. Under the circumstances, 
we pay more attention to the data placements of UM, and 
propose to launch a kernel on the device for migrating the 
memory pages to GPU from underlying CUDA driver. The 
detailed data process is shown in Fig. 7.

When placing data movement from CPU to CPU, the 
effective locations of the sending and receiving buffers are 
on host CPU. We only need to use CUDA-based MPI to 
send and receive data. When placing data movement from 
GPU to GPU, the effective locations of sending and receiv-
ing buffers are on GPU devices. The sending process and 
receiving process all need to involve with GPU kernels to 
send and receive data with MPI. When placing data move-
ment from GPU to CPU, the effective locations are on host 
and devices, respectively. At this time, GPU device should 
invoke a kernel to read the relative buffer data. By this 
design, the communication among CPU and GPUs can take 
full advantage of UM, which significantly reduces the com-
munication overhead.

5 � Performance evaluation

The experimental platform is an X86 server equipped with 
four T4 GPUs, each of which contains 16GB global memory 
and 40 SMs. The specific configuration of hardware platform 
is shown in Table 1. Most of the experiments in this paper 
are running on this platform and gain good performance. 
The BFS algorithm on multi-GPUs is implemented with 
CUDA SDK and C/C++ language. The software compila-
tion environment is NVIDIA NVCC 10.2 and GCC 6.2.0 
with optimization flag of -O3.

The main datasets used in our evaluation are Kronecker 
graphs, which are generated using Graph500 benchmark. 
We use the standard parameters with (A=0.57, B=0.19, 
C=0.19, D=0.05), and the average degree of the vertex is 
16. The Kronecker graph generator adjusts the scale and 
average degree of graph through the parameters SCALE and 
edgefactor. The generated graphs contain 2̂ SCALE vertices 
and 2̂ SCALE*edgefactor edges and follow the power-law 
distribution. The performance of BFS is measured in Giga-
Traversed Edges per Seconds (GTEPS), by taking the ratio 

GPU1 
memory

CPU 
memory

GPU1 CPU

PCIe switch

GPU0 
memory

GPU0
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Fig. 6   Peer to Peer communication among GPUs

Fig. 7   The data placement 
scheme with UM-aware com-
munication
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of the number of edges over the traversal time. For each 
experiment, we randomly selected 64 root vertices and run 
64 times BFS with different root vertices, then get the per-
formance by taking average performance.

5.1 � Performance variation on single GPU

In this section, we first evaluate our optimizations on a single 
GPU. Direction-optimizing BFS was chosen as the baseline 
(BL). Traditional optimizations (TDO) involve the existing 
techniques, including vertex sorting, degree-aware, and bit-
map lookup approaches (Yasui and Fujisawa 2015; Zhang 
et al. 2019). The performance comparison of various optimi-
zations for graphs with different SCALE, ranging from 2 ̂  21 
to 2 ̂  26 on single GPU is shown in Fig. 8.

From Fig. 8, based on different SCALE, the performance 
of TDO outperforms BL by 1.00 to 1.66 times. These opti-
mizations enhance the performance of BFS algorithm and 
achieve 16.07 GTEPS on Tesla T4. However, the perfor-
mance is still lower than the state-of-art work on CPU-based 
platform (Zhang et al. 2019). To fully utilize the massive 
processing units and high bandwidth of GPU, GCS (GPU-
friendly CSR structure) is proposed. It uses memory coalesc-
ing technique to improve the efficiency of memory access in 
bottom-up stage. Compared with the BL, GCS performance 
achieves up to 3.64 to 5.50 times speedup. The highest per-
formance achieves 92.15 GTEPS with SCALE=26 on Kro-
necker graph.

On single GPU, the scalability of our algorithm with var-
ied graph SCALE and edgefactor was evaluated. The per-
formance of graph traversal with edgefactor ranging from 
16 to 512 is shown in Fig. 9. Due to the limited memory of 
T4 GPU, memory overflow occurs when processing data of 
SCALE=22 and edgefactor=512. For this, we have added 
an annotation in Fig. 9. Apparently, the performance is 
more efficient with a larger edgefactor. For the graph with 
SCALE=21 and edgefactor=512, the performance achieves 
668.75 GTEPS, which is nearly 15.60 times better than the 

graph with edgefactor 16. The acceleration afforded by 
bottom-up approaches reduces the edge traversal required 
for a dense graph (larger edgefactor). Based on Graph500 
benchmark, 16 is chosen as the default edgefactor in the 
following experiments.

5.2 � Performance on multi‑GPUs

In order to figure out the effect of bidirectional 1d partition, 
Fig. 10 shows the overhead of communication and com-
putation before and after our optimization for graph with 
SCALE=26 on four T4 GPUs. The communication and com-
putation time of the original 1d partition are 159.79ms and 
12.56ms respectively, while the communication and com-
putation time with bidirectional 1d partition are 7.38ms 
and 9.31ms. Although bidirectional 1d partition increases 
the memory footprint by 1.31 times, the communication to 
computation ratios reduces 15.04 times compared with tra-
ditional 1d partition.

In terms of communication, this paper systematically 
compares graph traversal performance based on P2P com-
munication and UM-aware communication. The comparison 
result is shown in Fig. 11. When there is only one GPU, the 
performance of using P2P and UM-aware communication 
is the same, which is reasonable because it does not involve 
communication among multi-GPUs. When the number of 
GPU increases to 4, it can be seen that the BFS performance 
based on UM-aware communication outperforms 1.64 times 
than that based on P2P. In addition, the BFS performance 
based on P2P degrades with the number of GPU increas-
ing from two to four, so the scalability of distributed graph 
traversal based on P2P communication is limited. The main 
reason of the bad scalability of P2P is that multi-GPUs share 
a fixed PCIe bandwidth, leading to heavy communication 
latency.

Table 1   Experimental platform configuration

Processor Xeon(R) Gold NVIDIA
6148 CPU Tesla T4

frequency 2.40GHz 1590MHz
cores 20cores 40SMs
memory 256GB 16GB
memory type DDR4 HBM2
L1 cache 64KB 48KB
L2 cache 1MB 4MB
L3 cache 27.5MB –
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Fig. 8   BFS performance with varied optimizations
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5.3 � Scalability on GPUs

In Fig. 12, we evaluate the scalability of our algorithm with 
varied graph SCALE and GPU numbers. The performance 
of BFS traversal increases with the GPU number, reaching 
the peak performance of 132.67 GTEPS at the SCALE of 26 

on four T4 GPUs. It achieves 1.44 times speedup compared 
with that on single GPU. When the graph SCALE increases 
to 27, only the system with four GPUs can process the large-
scale graph, due to the insufficient distributed GPU global 
memory. Under the circumstances, the peak performance is 
155.37 GTEPS. Our algorithm shows good scalability for 
large-scale graph on multi-GPUs.

If GPU has stronger computing power or NVLink 
technology is supported, the performance will be further 
improved. The NVIDIA Tesla V100 GPU has 80 SMs, 5120 
CUDA cores in total, and its memory bandwidth reaches 
900 GB/s. We launch the algorithm on four V100, which 
support for the NVLink with the second generation and 
the global memory of each GPU is 16GB. The results is 
show in Fig. 13 (a), the peak performance for the graph with 
SCALE=26 and edgefactor=16 reaches 392.35 GTEPS. Our 
implementation on four V100 GPUs is in a leading position 
among GPU-based systems, and it is better than the existing 
CPU-based implementation with 1024 nodes.

In Fig. 13 (a), we also find that the performance of BFS 
on single GPU outperforms that on two GPUs. In this regard, 
we further analyze the computation and communication 
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overhead during the execution of BFS algorithm. The results 
are show in Fig. 13 (b). The parallel efficiency of BFS algo-
rithm can be improved with the number of GPUs increas-
ing, but it also increases communication overhead, which 
affects the performance of the algorithm. When the number 
of GPUs is 2, the improvement brought by multi-GPUs par-
allelism can not completely cover the time delay caused by 
communication among GPUs. In addition, it is supposed to 
have good scalability among more GPUs within one node. 
Due to the limited hardware environment, it is currently not 
possible to conduct relevant experiments.

5.4 � Comparison with existing work

In order to show the efficiency of our optimizations, we com-
pare our algorithm with several BFS implementations on 
GPU platform.

For single GPU, we compare our BFS with several 
state-of-art works, including Enterprise Liu and Huang 
(2015) and Tigr (Sabet et al. 2018). Our work is primarily 
designed for scale-free graphs with small diameter, instead 
of graphs with high diameter like road networks. Except for 
Kronecker graph, we also evaluate some real-word small-
diameter graphs, such as higgs (De Domenico et al. 2013), 
soc-Pokec (Takac and Zabovsky 2012), com-Orkut (Yang 
and Leskovec 2015) and wiki-topcats (Klymko et al. 2014; 
Yin et al. 2017). The results are shown in Table 2. For 
Kron-n24-16 (Kronecker graph with SCALE=24 and edge-
factor=16), our algorithm achieves 96.97 GTEPS, which is 
much higher than other works. For small-diameter graphs, 
our work performs average 1.65, 2.35 times better than Tigr 
and Enterprise.

We also compare our implementation with exist-
ing distributed works, including (Liu and Huang 2015; 
Pan et al. 2017; Bisson et al. 2015) and (Bernaschi et al. 
2015). The results are taken directly from their paper due 
to the unopened source of their distributed code. As shown 
in Table 3, for Kron-n24-32 graph on four T4 GPUs, the 

performance of our work reaches 192.53 GTEPS, which 
is 2.84 times better than (Pan et  al. 2017). For com-
Orkut  (Yang and Leskovec 2015) graph, our algorithm 
achieves 3.08× speedup, compared with (Bisson et al. 2015).

Considering the software and hardware performance of 
T4, K40, K20X GPUs, our work shows superior perfor-
mance gains with regard to existing works. Tesla T4 has 40 
SMs, with total 2560 CUDA cores. In terms of memory sys-
tem, the peak memory bandwidth of T4 is 320 GB/s. While 
K40 and K20X have 2880 and 2688 CUDA cores respec-
tively, as well the memory bandwidth of K40 and K20X 
are 288, 255 GB/s. Therefore, taking parallelism resources 
and memory bandwidth into consideration, our theoretical 

Fig. 13   The performance of 
BFS on four V100
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Table 2   Comparison with previous single GPU BFS work (GTEPS)

Graph data Enterprise Tigr Our

higgs 3.23 4.61 7.61
soc-Pokec 4.56 2.67 7.85
com-Orkut 3.16 2.75 8.86
wiki-topcats 2.60 3.96 8.76
Kron-n24-16 5.64 1.08 90.17
Kron-n25-16 7.31 0.99 96.97

Table 3   Comparison with previous multi-GPUs BFS work (GTEPS)

Ref Graph data Hardware Performance

Liu and Huang (2015) Kron-n24-32 2*K40 15.00
Pan et al. (2017) Kron-n24-32 2*K40 77.70
Our Kron-n24-32 2*T4 177.69
Pan et al. (2017) Kron-n24-32 4*K40 67.70
Our Kron-n24-32 4*T4 192.53
Bernaschi et al. (2015) Kron-n23-16 4*K20X 1.30
Our Kron-n23-16 4*T4 65.91
Bisson et al. (2015) com-Orkut 4*K20X 2.67
Our com-Orkut 4*T4 8.25
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analysis suggests that the a T4 GPU give almost 1.5 to 2.0 
times performance of a K40 or K20X. And the experimental 
results are consistent with the theoretical analysis, which 
shows that our BFS algorithm has substantial scalability on 
different GPU platforms.

6 � Related work

In recent years, in order to utilize the massive parallelism 
and enhance the performance of graph traversal on GPUs, 
plenty of optimizations have been put forward, which 
achieve a series of improvements and promote good per-
formance on GPU-based platforms to some certain degree.

For graph traversal on a single GPU, Harish and Naray-
anan put forward BFS implementation on GPU based on 
vertex-centric model, which identified active vertices by 
scanning vertices’ status array  (Harish and Narayanan 
2007). Hong et al. proposed virtual warp to improve the 
workload balance on GPU (Hong et al. 2011). Under the 
circumstances, the adjacency list of each active vertex would 
be processed by a group of threads instead of one thread, 
which further improve the efficiency of graph traversal. 
Merrill et al. proposed an adaptive parallelization of BFS 
algorithm that mapped the workload of a vertex to a sin-
gle thread, warp or block depending on its out-degree and 
achieved high performance on GPU (Merrill et al. 2012). In 
2013, Beamer proposed a direction-optimizing scheme that 
combined the traditional top-down approach with a novel 
bottom-up approach (Beamer et al. 2012). It could dramati-
cally reduce the number of redundant edges traversal.

For graph traversal on multi-GPUs, Hiragushi et  al. 
implemented an efficient hybrid BFS implementation on 
GPUs, demonstrating that it was beneficial for graph tra-
versal on GPUs (Hiragushi and Takahashi 2013). Zhong 
et al. proposed the Medusa graph processing system, which 
adapted the multi-hop replication mechanism to reduce the 
communication overhead between GPU and CPU (Zhong 
and He 2013). Khorasani and Takahashi proposed a CUDA-
based graph processing framework CuSha, which used two 
novel graph representations G-Shared and Concatenated 
Windows to overcome the irregular memory accesses and 
underutilization of GPU resources (Khorasani et al. 2014). 
Pan et al. implemented a distributed BFS algorithm on GPUs 
and proposed a novel communication model by using global 
reduction for high-degree vertices, and point-to-point trans-
mission for low-degree vertices (Pan et al. 2018). Besides, to 
accelerate the data interaction between CPU and GPU, some 
works focus on GPUs by using Unified Memory (UM), such 
as SubWay (Sabet et al. 2020), GRUS (Wang et al. 2021) 
et al.

Although plenty of optimizations have been proposed 
and achieved good results on GPU platform, the essential 
problems, such as workload imbalance, memory access inef-
ficiency and high communication overhead, still need fur-
ther improvements. Our work focus on dealing with memory 
access divergence, workload imbalance, communication 
overhead and redundant computation on GPUs, and achieve 
good performance and high scalability.

7 � Conclusions

In this paper, we implement FSGraph, a fast and scalable 
BFS algorithm on GPUs. We propose three optimization 
techniques and study the performance of BFS implementa-
tion on NVIDIA Tesla T4 and V100 GPUs. Our algorithm 
demonstrates good performance and scalability. The average 
performance of BFS on four T4 GPUs is 132.67 GPTES with 
SCALE=26 and edgefactoer=16, which delivers up to 1.44× 
improvement than that on a single T4. In terms of V100 
GPUs, the BFS performance on four V100 GPUs achieves 
nearly 392.35 GTEPS with improved memory access, bal-
anced data partition, efficient data communication. To the 
best of our knowledge, our implementation achieves the 
highest performance among existing GPU-based systems. 
In the near future, it is planned to investigate the big data 
extension on GPU cluster with limited memory.
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