
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing (2023) 5:277–291
https://doi.org/10.1007/s42514-023-00155-x

REGULAR PAPER

FSGraph: fast and scalable implementation of graph traversal on GPUs

Yuan Zhang1,2 · Huawei Cao1,3 · Yan Liang1,2 · Jie Zhang1,2 · Junying Huang1 · Xiaochun Ye1 · Xuejun An1,2

Received: 11 March 2023 / Accepted: 15 May 2023 / Published online: 31 May 2023
© China Computer Federation (CCF) 2023

Abstract
Graph is one of the best ways to express and process association relationship. It is widely used in various applications,
including social networks, fraud detection, Internet of things, etc. As a typical graph traversal algorithm, the Breadth-First
Search (BFS) performance on GPU is not desirable, due to strong data dependency, intensive irregular memory access and
low computation intensity. On GPUs, the situation is even worse with unbalanced data partitioning and high communication-
to-computation ratios. In this paper, we implement FSGraph that is a fast and scalable BFS implementation on GPUs. In
FSGraph, we propose three optimizing techniques: GPU-friendly Compressed Sparse Row (CSR) structure, bidirectional
one-dimensional (1d) partition and UM-aware communication. We have evaluated our work with extensive experiments on
four T4 and four V100 GPUs. The average performance of BFS on four T4 GPUs is 132.67 Giga-Traversed Edges per Second
(GTEPS), which delivers up to 1.44× improvement than that on single T4. In terms of four V100 GPUs, the BFS performance
achieves 392.35 GTEPS and outperforms existing CPU-based cluster with 1024 nodes on November 2022 Graph500 list.

Keywords BFS · GPU-friendly CSR structure · Bidirectional 1d partition · UM-aware communication

1 Introduction

With the development of information society, people are fac-
ing the need to process the continuously generated data. To
facilitate our lives, graph analytic becomes a new explora-
tion in the wave of big data analysis (Bader and Madduri
2008). In reality, it is a common method to abstract and
describe problems with graph. Graph is one of the most
important data structures, which is widely used in various
applications, such as social networks, fraud detection, Inter-
net of things and so on (Pham et al. 2015; Li et al. 2021;
Mislove et al. 2007; Ting et al. 2013).

As a typical graph algorithm, the Breadth-First Search
(BFS) is the core component of high-level graph analysis
algorithms, including Betweenness Centrality (BC), Con-
nected Component (CC) and Single-Source Shortest Path

(SSSP) (Murphy et al. 2010). Different from the compute-
intensive workload, the typical characteristics of BFS,
classified as data-intensive application, are strong data
dependency, intensive irregular memory access and low
computation intensity. Towards data-intensive applications,
the Graph500 list [7] was introduced to rank computer per-
formance. In the benchmark of Graph500, the BFS is one of
the key kernels (Murphy et al. 2010; Ueno and Suzumura
2012).

Designed for high throughput, Graphics Processing Unit
(GPU) provides high memory bandwidth and massive par-
allelism towards compute-intensive workloads. It is widely
used in big data, deep learning and high-performance
computing. With the development of graph computing,
the acceleration of graph traversal on GPU is gradually
becoming a research trend. However, the irregular char-
acteristic of graph traversal and the explosive growth of
graph scale hinder the high performance gain on GPU plat-
form (Sabet et al. 2020; Dong et al. 2020). The core prob-
lems are intensive random access, workload imbalance,
high communication-to-computation ratios, and limited
communication bandwidth. What’s worse, the problems
are further deteriorated for scale-free graphs, which follow
power-law distribution (Faloutsos et al. 2011). The topol-
ogy of scale-free graph results in workload imbalance.

 * Huawei Cao
 caohuawei@ict.ac.cn

1 Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing 100049,
China

3 University of Chinese Academy of Sciences,
Nanjing 211135, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00155-x&domain=pdf
http://orcid.org/0000-0003-1176-2521

278 Y. Zhang et al.

1 3

Memory divergence creates additional challenges in BFS
processing. Because of the discontinuous memory access
within a warp, a large amount of load and store transac-
tions are caused during the traversal. Besides, for large
graph, unbalanced data partitioning and communication
overhead are extra challenges for graph traversal on GPUs.

Considering above problems, we propose several opti-
mizing schemes on data representation, graph partitioning
and communication optimization among GPUs. Based on
these optimizations, we carry out plenty of experiments
and evaluate the performance of BFS implementation on
multiple T4 and V100 GPUs, compare and analyze the
results with some existing works to show the effective per-
formance improvement of our work. Specifically, the main
contributions are as follows:

1. In order to improve the data locality of graph tra-
versal, GPU-friendly graph representation includes bitmap
adaptive CSR and adjacency list reorganization is pro-
posed, which improves the memory divergence of graph
traversal on GPUs.

2. Due to the scale-free graph topology, there exists
heavy communication overhead and workload imbalance.
We develop a bidirectional 1d partition scheme, and com-
bine it with a static shuffle method to reduce the workload
unbalance and communication overhead.

3. In terms of data communication overhead among
GPUs, this paper systematically evaluates the performance
and scalability of a series of efficient communication
libraries. Finally, we propose UM-aware communication in
our implementation, which can reduce the communication
overhead and increase the scalability of graph traversal.

4. We systematically evaluate our optimizations with
extensive experiments on NVIDIA Tesla T4 and V100.
The results show better performance and scalability on
GPUs than existing GPU-based systems.

The rest of this paper is organized as follows: Sect. 2
and Sect. 3 introduce the background and discuss the chal-
lenge of graph traversal on GPUs. Section 4 presents our
optimizations in FSGraph. The experiment and evalua-
tion of our work are in Sect. 5. Then the related work is
clarified in Sect. 6. Finally, we conclude the FSGraph in
Sect. 7.

2 Background

BFS is a widely used graph algorithm and the fundamental
building block of many graph analysis algorithms. To boost
the performance of BFS, there has been a lot of work on
parallel implementation of BFS on GPUs. In this section,
we will present some state-of-art optimizations for BFS
implementation.

2.1 CSR format

Graph is usually presented in CSR format, which can
reduce the memory footprint and increase the stream-
ing access to neighboring edges. With CSR format, the
graph data can be compressed to row storage of adjacency
matrix. Figure 1 shows the basic idea of CSR. There are
two arrays named row list and adjacency list. For each
vertex, all the neighboring vertices are stored in adjacency
list. The size of adjacency list is equal to the total num-
ber of edges in the graph. The offset of each vertex’s first
neighbor in adjacency list is stored in row list, and the
adjacent values in row list are the degree of each vertex.
Taking Fig. 1 as an example, the degree of vertex 0 is 3,
and the neighbors of vertex 0 are 1, 2, 3.

2.2 Top‑down BFS algorithm

Traditionally, BFS is performed in top-down manner. Given
a graph G=(V, E) and the initial root vertex s, V={v1 , v2 , v3 ,
… }, E={(v1 , v2), (v1 , v5), (v2 , v4), … }, V is vertex set and E
is edge set. The top-down BFS will visit all reachable ver-
tices from s, then generate the final BFS spanning tree. The
pseudo-code of top-down BFS is shown in Algorithm 1. At
the beginning, all data structures are initialized, a random
root vertex s is generated and put into current queue. When
current queue is not empty, all neighbors of each vertex u

279FSGraph: fast and scalable implementation of graph traversal on GPUs

1 3

in current queue will be traversed. The traversal procedure
is to mark the status of unvisited neighbors as visited, map
their parent vertices and put these vertices into next queue.
When all the vertices in current queue are processed, then
the current queue is swapped with next queue and next queue
is cleared. In this way, top-down BFS can generate the BFS
searching tree at the end of this algorithm.

2.3 Bottom‑up BFS algorithm

When current queue is small, the top-down BFS approach
is very efficient. After several iterations, the size of current
queue increases rapidly, and many vertices in adjacency list
have been visited. Under the circumstances, if we continue
to traverse the graph in top-down manner, it will lead to mas-
sive redundant edges traversal. Besides, there exist plenty of
atomic operations to get global next queue for parallel BFS
implementation on GPUs, leading to extra heavy computa-
tional overhead.

In order to solve the bottleneck of top-down BFS
approach, Beamer proposed an effective bottom-up BFS
algorithm (Beamer et al. 2012). Compared with top-down
approach, bottom-up approach works in the opposite way.
When the size of current queue is large, it starts from all
the unvisited vertices and checks whether their parent ver-
tices are in current queue. Using bottom-up approach, as
the current queue increases, the iteration of graph traversal

will finish earlier. Thus, bottom-up approach can signifi-
cantly reduce the redundant traversal of edges. The detailed
pseudo-code of this algorithm is shown in Algorithm 2.

Besides, in order to find the parent of vertex in the current
queue quickly, Yasui and Fujisawa (2015) conducted a sta-
tistical analysis depending on the degree and the frequency
of vertex access in the graph. He found that the vertices with
high degree had a high probability of being the parent for an
unvisited vertex. Thus, the degree-aware optimization was
proposed to speed up the graph traversal during bottom-up
stage. This optimization could further reduce the redundant
edges checking in bottom-up BFS algorithm and enhance
the performance of the BFS algorithm.

However, bottom-up approach also has its drawbacks.
When there are a few vertices in current queue, most ver-
tices will not be expanded at this iteration, causing plenty
of redundant edges checking in the parent checking. So, the
bottom-up BFS is advantageous when the size of current
queue is large, while top-down BFS is efficient when the size
is small. Top-down and bottom-up approaches are comple-
mentary in graph traversal. In Beamer’s direction-optimizing
approach (Beamer et al. 2012), BFS algorithm started to run
in top-down approach and switched to bottom-up approach
when the size of current queue was large enough. In the last
several iterations, BFS switched back to top-down approach
when the size of the current queue became small. Under
appropriate switching policy, BFS performance improves
a lot.

2.4 Graph partitioning scheme

For distributed BFS implementation, the partition of graph
data can usually be categorized into one dimensional
(1d) partition, two dimensional (2d) partition and even
three dimensional (3d) partition, based on different vertex

vertex ID

row list

adjacency list

0

1

2

3

5

4

1 2 3 50 0 04 2 1

0 3 5 87 9 10

0 1 2 3 4 5

Fig. 1 Illustration of CSR format

280 Y. Zhang et al.

1 3

mapping and data partitioning methods (Buluç and Mad-
duri 2011; Yoo et al. 2005; Checconi et al. 2012). 1d par-
tition mainly divides graph data according to the indices
of vertices. The vertex information and its adjacent edges
are placed on the same computing node. 1d partition has
the characteristics of simple thinking and easy implementa-
tion. It works well on evenly distributed graphs. However,
due to the power-law distribution of most graph (Faloutsos
et al. 2011), 1d partition can induce serious workload imbal-
ance among distributed computing nodes. The 2d partition
divides the adjacency matrix of graph on the basis of block
method. 2d partition can split the collective communications
from one dimension to two dimensions, which reduces the
communication overhead. The detailed 1d and 2d partition
schemes are shown in Fig. 2 (Note: the original graph is
shown in Fig. 1). 3d partition is realized on the basis of
the 2d partition and can further reduce the communication
overhead compared to 2d partition. However, this method
is relatively complicated and changes the computation and
communication models, which is not effective for large scale
parallel BFS implementation.

2.5 Data communication on GPUs

There are several methods of data communication for the
implementation of graph traversal on GPUs. Originally,
NVIDIA provided a general library named Compute Unified
Device Architecture (CUDA). By using the cudaMemcpy
function provided by CUDA, researchers and developers can
simply transfer data among GPUs and CPU. However, this
method requires frequent data copy. Under the limitation of
PCIe bandwidth, the communication overhead among GPUs
and CPU for graph traversal are high. To facilitate and sim-
plify data exchange between GPU and GPU, NVIDIA pro-
vides Peer to Peer (P2P) communication interface, which
can eliminate two copies of data from GPU to GPU. Some

works use P2P to implement data communication on multi-
GPUs. Although this method enhances the performance of
graph traversal to some degree, it has a low scalability for
graph traversal with the number of GPUs increasing.

In 2017, Potluri et al. put forward using NVSHMEM
library functions for efficient BFS on multi-GPUs sys-
tems (Potluri et al. 2017). On GPUs, NVSHMEM-based
data communication is mainly relied on the storage model
of OpenSHMEM, which is a single-program multi-data pro-
gramming model and provides high performance and good
scalability. It is a fine-grained inter-GPU communication,
which can realize data synchronization in the kernel func-
tion. Although the library is advantageous over the above
two methods, it is difficult to program, and the performance
degrades significantly as the data communication increases.
Besides, for GPU clusters, some researches focus on using
Message Passing Interface (MPI) for data communication
on GPUs.

3 Challenges of BFS on GPUs

In this section, we motivate our approach by identifying
challenges for parallel BFS implementation on GPUs.
With the explosive growth of graph data, graph process-
ing on a single GPU can no longer achieve high perfor-
mance due to insufficient GPU global memory. The BFS
performance has a sharp decline when the size of graph
data exceeds the memory footprint of GPU. Multi-GPUs
system has large potential in exploiting the scalability of
large-scale graph traversal. However, due to the irregular
characteristics of BFS traversal, causing severe memory
divergence, load imbalance and high communication over-
head, it’s difficult for efficient implementation of BFS on
GPUs.

Fig. 2 The illustration of 1d
partition (left) and 2d partition
(right)

0

0

0

0

0

0

0 0 0

0

0

1

0 1

01 0

1

1

0

0

0

0

0 1 1

0

0

1

0

0

1

1 0 0

51 2 3 40

5

1

2

3

4

0

0

Adj(0,0)

Adj(1,0)

Adj(0,1)

Adj(1,1)

Part0 Part1

Part2 Part3

0

0

0

0

0

0

0 0 0

0

0

1

0 1

01 0

1

1

0

0

0

0

0 1 1

0

0

1

0

0

1

1 0 0

51 2 3 40

5

1

2

3

4

0

0

Adj(n,0)

Part0 Part1 Part3

Adj(n,1) Adj(n,2)

281FSGraph: fast and scalable implementation of graph traversal on GPUs

1 3

3.1 Memory divergence

As we all know, GPU can provide massive parallelism and
high bandwidth. Generally, high bandwidth utilization of
GPU is achieved by regular and sequential memory access.
However, due to the power-law distribution, the social
and web networks graphs are highly irregular distributed.
From the work of Khorasani, the BFS implementation on
GPU only achieves 12.8%∼15.8% memory bandwidth uti-
lization (Khorasani et al. 2014). The irregular memory
access within the same warp can cause severe memory
divergence, leading to a large amount of load and store
transactions, and high latency.

Memory coalescing is always a way to improve memory
efficiency on GPU. In this work, we focus on the improve-
ment of graph data layout by taking the benefit of memory
coalescing technique. Original CSR format is not GPU-
friendly in bottom-up phase. To make BFS more GPU-
aware, we propose an improved graph data structure to
achieve high memory efficiency.

3.2 Workload imbalance

For parallel BFS implementation on distributed GPUs, the
workload is usually divided with 1d partition based on
vertex indices, and distributed evenly to available GPU
nodes. Due to the power-law nature of scale-free graphs,
the degree of vertex varies significantly, leading to seri-
ous workload imbalance in graph traversal. Although GPU
provides strong computing power, the running time will be
dominated by the vertices with high degrees.

What’s worse, the above 1d partition divides neigh-
boring edges of one vertex into different GPUs, which
will induce frequent communication and synchronization
during the graph traversal. To improve the communica-
tion efficiency and workload balance, we develop a bidi-
rectional 1d partition method, and combine it with static
shuffle scheme proposed in our previous work (Zhang et al.
2019).

3.3 Communication overhead

For parallel BFS implementation on GPUs, there exists fre-
quent data communication and synchronization among host
CPU and GPUs. With the increase of the graph scale, the
communication overhead explodes a lot. However, due to the
limited PCIe bandwidth, which is only 32 GB/s in the ideal
case of PCIe Gen 4.0 x16, while the memory bandwidth of
T4 is 320 GB/s [20], the data transmission among CPU and
GPUs is the main bottleneck of the performance.

To reduce the communication overhead among host CPU
and GPU, we propose a UM-aware communication scheme,

which combines the efficient communication library and
Unified Memory (UM). UM can provide unified memory
address for CPU and GPU, which further breaks the barriers
of PCIe performance.

4 Algorithm optimization

In this section, the detailed optimizations for BFS imple-
mentation on multi-GPUs will be illustrated. We propose
three techniques regarding the challenges of BFS parallel-
ism. These GPU-friendly optimizations are used to improve
memory access, balance workload, and reduce communica-
tion overhead.

4.1 GPU‑friendly CSR structure

It is well-known that intensive irregular memory access
and low memory bandwidth utilization are characteristics
of BFS. Those characteristics prevent efficient BFS accelera-
tion on GPU. The main reason is that most graph data reside
in GPU global memory and only a small amount of data can
be cached in cache or shared memory. Thus, it is critical for
BFS to achieve efficient data access in global memory. We
need to relieve irregular memory access and improve global
memory bandwidth utilization to facilitate BFS performance
on GPU.

To enhance the efficiency of memory access on GPU,
memory coalescing technique is put forward in this paper.
Under the SIMT model, all threads in a warp execute the
same instruction. If the memory access of all threads within
a warp could be coalesced to consecutive addresses, all
these memory operations can be combined into one single
access transaction, which drastically decreases the latency
and increases memory utilization. Different from prior
works (Busato and Bombieri 2014; Luo et al. 2010; Zhong
et al. 2016), we pay more attention to the improvement of
graph data structure and construct a GPU-friendly CSR
structure, which follows the rule of memory coalescing in
bottom-up phase. Compared with original CSR, the GPU-
friendly CSR structure is constructed under two optimizing
techniques. One is the bitmap adaptive CSR and the other is
the warp-aligned adjacency list.

4.1.1 Bitmap adaptive CSR

Firstly, the idea of bitmap adaptive CSR is introduced. To
reduce the memory access in bottom-up stage, bitmap opti-
mizing technique is used. For parallel BFS implementa-
tion (Agarwal et al. 2010), each thread deals with one unit of
bitmap each time. The size of bitmap unit is usually 4 bytes.
Combined with vertex sorting technique, good locality is
offered by bitmap. When we use the technique of bitmap

282 Y. Zhang et al.

1 3

optimizing on GPU, the threads in the same warp will face
memory divergence problem in accessing index mapping
lists, including row list and some other auxiliary structures.
If the vertex indices in bitmap are remapped, the locality of
the bitmap will be broken. Thus, to access index mapping
lists efficiently, we propose bitmap adaptive CSR, which
does not break the benefit of bitmap.

The main idea of the bitmap adaptive CSR is like the remix
of original CSR structure. The position of vertex in the bitmap
is kept as before. But in the index mapping lists, like the row
list, the corresponding position of the vertex is remapped to
achieve the memory coalescing. In this way, not only we can
keep the locality of bitmap, but also we can improve memory
access efficiency at the same time. All threads in the same
warp deal with the same bit in their own bitmap unit every
time. To introduce the procedure clearly, we define b_size as
bitmap unit size and w_size as warp size. Generally, the w_size
is 32. As can be seen in Fig. 3, thread_0 (t0) deals with vertex
b_size*0 (the 1st bit of bitmap unit 0), thread_1 (t1) deal with
vertex b_size*1 (the 1st bit of bitmap unit 1),..., thread_31 (t31)
deal with vertex b_size*31 (the 1st bitmap of unit 31). Differ-
ent from prior CSR, the vertices with ID b_size*0, b_size*1,
b_size*2,..., b_size*31 are put together in the bitmap adap-
tive CSR. The memory access to the row list in the warp can
be coalesced into one transaction, which is suitable for SIMT
execution. All following vertices that belong to the same bit-
map unit are remixed in the same way. However, in adjacency
list, the values are not changed. The main reason is that the
technique does not reorder the vertex ID. All vertices are kept
with the step size of b_size*w_size in the same way.

Figure 3 shows the structure of bitmap adaptive CSR. All
index mapping lists are rearranged. Here, we take the row list
as an example. The value in bitmap and row list is the mapped
vertex ID. The locations of all vertices in bitmap keep the
same, while their locations in row list are reordered for mem-
ory coalescing. Under SIMT execution model, all threads in

a wrap can access consecutive memory in the row list. Equa-
tion(1) and Eq.(2) show the mapping policy between original
vertex ID and rearranged location in index mapping lists.

4.1.2 Warp‑aligned adjacency list

To improve the global memory access efficiency in edge tra-
versal procedure, the warp-aligned adjacency list is used. As
described above, although memory coalescing is achieved
in the index mapping lists, using original adjacency list still
leads to severe memory divergence problem. Because all
threads in the same warp execute edge traversal procedure of
different vertices at the same time. To realize the coalesced
memory access in adjacency list, we need to keep the adja-
cent threads in the same warp addressing the neighboring
cells in global memory. Thus, the warp-aligned adjacency
list tries to reassemble the neighbors of the vertices pro-
cessed in the same warp to adhere to the memory coalescing
rule.

Taking Fig. 4 as an example, adjacent w_size vertices will
be processed by the same warp in SIMT execution model,
so all vertices are formed into groups in units of w_size. The
warp-aligned adjacency list is derived from original adjacency
list. In Fig. 4, the 1st neighbor of vertex 0 are rearranged with
other 1st neighboring vertices which will be processed in the

(1)

id_to_loc(id) =
id

b_size∗w_size
∗ (b_size ∗ w_size)

+ (id mod b_size) ∗ w_size

+
id mod (b_size∗w_size)

b_size

−
id mod b_size

b_size

(2)
loc_to_id(loc) =

loc

b_size∗w_size
∗ (b_size ∗ w_size)

+ (loc mod w_size) ∗ b_size

+
loc mod (b_size∗w_size)

w_size

Fig. 3 The bitmap adaptive
CSR structure

0 1 ... 31 32 33 ... 63 ... 992 993 ... 1023 ...

...

0 32 ... 992 1 33 ... 993 ... 31 63 ... 1023 ...

Bitmap

Row list

Adjacency list

Warp(threads)

Coalesced memory accessw_size

b_size*w_size

t31t1t0

283FSGraph: fast and scalable implementation of graph traversal on GPUs

1 3

same warp. All following neighboring vertices belonging to
the same group are remixed in the same way. Due to varied
degree of vertices, the minus sign (-) is extra padding space
for neighboring alignment. If we mix all neighbors of each
vertex, the padding cost will occupy huge memory footprint.
There is a discrepancy between memory access efficiency and
memory footprint. Using degree-aware (Yasui and Fujisawa
2015) optimization, the traversal procedure based on bottom-
up approach stops in a small number of neighboring vertices.
As a result, the warp-aligned adjacency list is constructed
by choosing a certain number of adjacent neighbors. Taking
memory efficiency and padding cost into consideration, in our
implementation, the warp-aligned adjacency list only includes
the first 30% edges of original adjacency list. Based on our
experiment, no more than 7% memory overhead is brought by
this new structure. Using this technique, the memory accesses
are coalesced in a warp, which highly enhances the memory
efficiency.

4.2 Bidirectional 1d partition

As described in Sect. 2.4, traditional 1d partition divides graph
data based on the indices of vertices. The information of ver-
tex and its adjacent edges are placed on the same compute
node. However, the irregularity of graph data restricts efficient
BFS implementation on GPUs and can cause severe workload
imbalance and communication overhead.

In order to reduce the communication overhead among
GPUs, we propose a bidirectional 1d partition. The corre-
sponding division is shown in Fig. 5. The left figure is column
direction (column-based) 1d partition and the right figure is
row direction (row-based) 1d partition.

Let G = (V, E), V represents vertex set, a total of n vertices,
and E represents edge set, a total of e edges. Assuming that
the number of divisions in row is r, the number of divisions in
column is c, the corresponding information based on row and
column 1d partition are as follows:

For row-based 1d partition, the V and E are divided by:

In Eq.(3) and Eq.(4), each set of partial vertices V rk and E rk
on the k-th computing node is defined by:

The E out(v) in Eq.(6) is the set of outgoing edges of each
vertex v in the vertex set V rk.

For column-based 1d partition, the V and E are divided
by:

In Eq.(7) and Eq.(8), each set of partial vertices V ck and E ck
on the k-th computing node is defined by:

(3)V =[Vr0|Vr1|Vr2|...|Vr(r−1)]

(4)E =[Er0|Er1|Er2|...|Er(r−1)]

(5)Vrk =

{

vk ∈ V|k ∈

[
kn

r
,
(k + 1)n

r

]}

(6)Erk(v) ={e(v,u) ∈ Eout(v)|v ∈ Vrk, u ∈ V}

(7)V = [Vc0|Vc1|Vc2|...|Vc(c−1)]

(8)E = [Ec0|Ec1|Ec2|...|Ec(c−1)]

(9)Vck ={vk ∈ V}

Fig. 4 The data structure of
warp-aligned adjacency list

... ...

0

1

2

...

31

... ...

...

...

...1st ... 2nd

1st 2nd 3rd 4th 5th

... - 3rd ... -

Vertex ID

Adjacency list

Warp-aligned adjacency list

284 Y. Zhang et al.

1 3

The E in(v) in Eq.(10) is the set of ingoing edges of each
vertex v in the vertex set V ck.

The column direction partition divides graph data by
edges. It will separate the adjacent edges of high-degree
vertices into different GPU nodes. In top-down stage, col-
umn direction partition is more suitable, which can ensure
initial workload balance on each GPU after partitioning.
Because we assign an approximation number of edges for
each GPU. However, in bottom-up stage, the graph tra-
versal starts from vertices that have not been visited, and it
will check whether the parent vertex locates in the current
queue. If we use column-based 1d partition, the neighbor-
ing edges of the vertex will be divided into different GPU
nodes, which induces frequent communication during the
graph traversal. The row-based 1d partition can collect
unvisited vertices and their neighboring edges together,
which can eliminate the data communication in bottom-up
stage among GPUs.

To reduce the communication overhead among GPUs,
extra graph data need to be stored in each GPU by bidi-
rectional 1d partition. In our experiment, bidirectional 1d
partition needs 0.31 times extra memory capacity but the
communication-to-computation ratios reduce 15.04 times,
compared with traditional 1d partition. To further improve
the workload balance in each GPU, we implement the static
shuffle scheme proposed in our previous work (Zhang et al.
2019). The specific method sorts the vertices’ degrees in
descending order and further improves load balance in task
assignment.

(10)
Eck(v) = {e

(u,v) ∈ Ein(v)|u ∈

[
kn

c
,
(k+1)n

c

]

,

v ∈ Vck}

4.3 UM‑aware communication

To reduce the overhead of communication and synchroniza-
tion among GPUs, we propose a UM-aware communication
scheme, which combines MPI library and data placements
of UM.

As described above, the graph is divided and stored in
each GPU node by bidirectional 1d partition. For the parallel
BFS implementation among GPUs, the global synchroniza-
tion in each iteration is needed for the calculation of next
queue, inducing extra communication overhead. However,
limited PCIe bandwidth becomes the main bottleneck for the
performance of BFS. In this regard, NVIDIA has proposed
P2P, GPU-based MPI, NVSHMEM and other technologies
to achieve efficient data transmission among GPUs and CPU.
The communication process of P2P is shown in Fig. 6.

In Fig. 6, although the data communication based on P2P
is still limited by the bandwidth of PCIe, it eliminates two
data copies between GPU and CPU, which improves the
data communication among GPUs. In this paper, the initial
distributed algorithm is implemented based on P2P com-
munication. However, the scalability of the implementation
gets worse with the increases of GPU numbers and graph
scale, as discussed in below performance evaluation sec-
tion. We further implement parallel graph traversal based
on UM-aware communication approach, which combines
our BFS algorithm with CUDA-based MPI and UM tech-
nologies. In this way, we can carry out the message transfer
in a pipeline, which utilizes asynchronous stream to copy
data and improve communication efficiency greatly. These
are the main reasons that the performance of BFS based on
UM-aware communication outperforms the scheme based
on P2P.

Fig. 5 The bidirectional 1d
partition

0

0

0

0

0

0

0 0 0

0

0

1

0 1

01 0

1

1

0

0

0

0

0 1 1

0

0

1

0

0

1

1 0 0

51 2 3 40

5

1

2

3

4

0

0

Adj(n,0)

Part0 Part1 Part3

Adj(n,1) Adj(n,2)

0

0

0

0

0

0

0 0 0

0

0

1

0 1

01 0

1

1

0

0

0

0

0 1 1

0

0

1

0

0

1

1 0 0

51 2 3 40

5

1

2

3

4

0

0

Adj(0,n) Part0

Part1

Part3

Adj(1,n)

Adj(2,n)

Column direc�on Row direc�on

285FSGraph: fast and scalable implementation of graph traversal on GPUs

1 3

UM method unifies host memory and device memory
into the same address spaces, and fetched required data from
CPU on-the-fly. It can reduce the overhead of communica-
tion between CPU and GPU to a certain extent. We using it
to transfer data that require frequent CPU-GPU interaction,
such as intermediate attribute information, state data and so
on. The UM method is suitable for algorithm with relatively
good spatial and temporal locality. In order to improve the
locality of BFS execution, we propose to use UM-aware
communication, which designs UM-based data placements.
Usually, UM depends on CUDA driver to implement the
data movement, but the performance is cut down when it
is combined with CUDA-based MPI. The main reason lies
in the access of managed buffer. Under the circumstances,
we pay more attention to the data placements of UM, and
propose to launch a kernel on the device for migrating the
memory pages to GPU from underlying CUDA driver. The
detailed data process is shown in Fig. 7.

When placing data movement from CPU to CPU, the
effective locations of the sending and receiving buffers are
on host CPU. We only need to use CUDA-based MPI to
send and receive data. When placing data movement from
GPU to GPU, the effective locations of sending and receiv-
ing buffers are on GPU devices. The sending process and
receiving process all need to involve with GPU kernels to
send and receive data with MPI. When placing data move-
ment from GPU to CPU, the effective locations are on host
and devices, respectively. At this time, GPU device should
invoke a kernel to read the relative buffer data. By this
design, the communication among CPU and GPUs can take
full advantage of UM, which significantly reduces the com-
munication overhead.

5 Performance evaluation

The experimental platform is an X86 server equipped with
four T4 GPUs, each of which contains 16GB global memory
and 40 SMs. The specific configuration of hardware platform
is shown in Table 1. Most of the experiments in this paper
are running on this platform and gain good performance.
The BFS algorithm on multi-GPUs is implemented with
CUDA SDK and C/C++ language. The software compila-
tion environment is NVIDIA NVCC 10.2 and GCC 6.2.0
with optimization flag of -O3.

The main datasets used in our evaluation are Kronecker
graphs, which are generated using Graph500 benchmark.
We use the standard parameters with (A=0.57, B=0.19,
C=0.19, D=0.05), and the average degree of the vertex is
16. The Kronecker graph generator adjusts the scale and
average degree of graph through the parameters SCALE and
edgefactor. The generated graphs contain 2̂ SCALE vertices
and 2̂ SCALE*edgefactor edges and follow the power-law
distribution. The performance of BFS is measured in Giga-
Traversed Edges per Seconds (GTEPS), by taking the ratio

GPU1
memory

CPU
memory

GPU1 CPU

PCIe switch

GPU0
memory

GPU0

PCIe

Fig. 6 Peer to Peer communication among GPUs

Fig. 7 The data placement
scheme with UM-aware com-
munication

MPI_Send(sendBuf,) MPI_recv(recvBuf,)

MPI_Send(sendBuf,) MPI_recv(recvBuf,) Kernel_touch(recvBuf)

Kernel_touch(sendBuf) MPI_Send(sendBuf,) MPI_recv(recvBuf,) Kernel_touch(recvBuf)

CPU-CPU

CPU-GPU

GPU-GPU
Process 0 Process 1

Kernel_touch(sendBuf) MPI_Send(sendBuf,) MPI_recv(recvBuf,)

GPU-CPU

286 Y. Zhang et al.

1 3

of the number of edges over the traversal time. For each
experiment, we randomly selected 64 root vertices and run
64 times BFS with different root vertices, then get the per-
formance by taking average performance.

5.1 Performance variation on single GPU

In this section, we first evaluate our optimizations on a single
GPU. Direction-optimizing BFS was chosen as the baseline
(BL). Traditional optimizations (TDO) involve the existing
techniques, including vertex sorting, degree-aware, and bit-
map lookup approaches (Yasui and Fujisawa 2015; Zhang
et al. 2019). The performance comparison of various optimi-
zations for graphs with different SCALE, ranging from 2 ̂ 21
to 2 ̂ 26 on single GPU is shown in Fig. 8.

From Fig. 8, based on different SCALE, the performance
of TDO outperforms BL by 1.00 to 1.66 times. These opti-
mizations enhance the performance of BFS algorithm and
achieve 16.07 GTEPS on Tesla T4. However, the perfor-
mance is still lower than the state-of-art work on CPU-based
platform (Zhang et al. 2019). To fully utilize the massive
processing units and high bandwidth of GPU, GCS (GPU-
friendly CSR structure) is proposed. It uses memory coalesc-
ing technique to improve the efficiency of memory access in
bottom-up stage. Compared with the BL, GCS performance
achieves up to 3.64 to 5.50 times speedup. The highest per-
formance achieves 92.15 GTEPS with SCALE=26 on Kro-
necker graph.

On single GPU, the scalability of our algorithm with var-
ied graph SCALE and edgefactor was evaluated. The per-
formance of graph traversal with edgefactor ranging from
16 to 512 is shown in Fig. 9. Due to the limited memory of
T4 GPU, memory overflow occurs when processing data of
SCALE=22 and edgefactor=512. For this, we have added
an annotation in Fig. 9. Apparently, the performance is
more efficient with a larger edgefactor. For the graph with
SCALE=21 and edgefactor=512, the performance achieves
668.75 GTEPS, which is nearly 15.60 times better than the

graph with edgefactor 16. The acceleration afforded by
bottom-up approaches reduces the edge traversal required
for a dense graph (larger edgefactor). Based on Graph500
benchmark, 16 is chosen as the default edgefactor in the
following experiments.

5.2 Performance on multi‑GPUs

In order to figure out the effect of bidirectional 1d partition,
Fig. 10 shows the overhead of communication and com-
putation before and after our optimization for graph with
SCALE=26 on four T4 GPUs. The communication and com-
putation time of the original 1d partition are 159.79ms and
12.56ms respectively, while the communication and com-
putation time with bidirectional 1d partition are 7.38ms
and 9.31ms. Although bidirectional 1d partition increases
the memory footprint by 1.31 times, the communication to
computation ratios reduces 15.04 times compared with tra-
ditional 1d partition.

In terms of communication, this paper systematically
compares graph traversal performance based on P2P com-
munication and UM-aware communication. The comparison
result is shown in Fig. 11. When there is only one GPU, the
performance of using P2P and UM-aware communication
is the same, which is reasonable because it does not involve
communication among multi-GPUs. When the number of
GPU increases to 4, it can be seen that the BFS performance
based on UM-aware communication outperforms 1.64 times
than that based on P2P. In addition, the BFS performance
based on P2P degrades with the number of GPU increas-
ing from two to four, so the scalability of distributed graph
traversal based on P2P communication is limited. The main
reason of the bad scalability of P2P is that multi-GPUs share
a fixed PCIe bandwidth, leading to heavy communication
latency.

Table 1 Experimental platform configuration

Processor Xeon(R) Gold NVIDIA
6148 CPU Tesla T4

frequency 2.40GHz 1590MHz
cores 20cores 40SMs
memory 256GB 16GB
memory type DDR4 HBM2
L1 cache 64KB 48KB
L2 cache 1MB 4MB
L3 cache 27.5MB –

21 22 23 24 25 26
0

20

40

60

80

100

Scale

Pe
rf
or
m
an

ce
(G

TE
PS

)

BL BL+TDO BL+TDO+GCS

Fig. 8 BFS performance with varied optimizations

287FSGraph: fast and scalable implementation of graph traversal on GPUs

1 3

5.3 Scalability on GPUs

In Fig. 12, we evaluate the scalability of our algorithm with
varied graph SCALE and GPU numbers. The performance
of BFS traversal increases with the GPU number, reaching
the peak performance of 132.67 GTEPS at the SCALE of 26

on four T4 GPUs. It achieves 1.44 times speedup compared
with that on single GPU. When the graph SCALE increases
to 27, only the system with four GPUs can process the large-
scale graph, due to the insufficient distributed GPU global
memory. Under the circumstances, the peak performance is
155.37 GTEPS. Our algorithm shows good scalability for
large-scale graph on multi-GPUs.

If GPU has stronger computing power or NVLink
technology is supported, the performance will be further
improved. The NVIDIA Tesla V100 GPU has 80 SMs, 5120
CUDA cores in total, and its memory bandwidth reaches
900 GB/s. We launch the algorithm on four V100, which
support for the NVLink with the second generation and
the global memory of each GPU is 16GB. The results is
show in Fig. 13 (a), the peak performance for the graph with
SCALE=26 and edgefactor=16 reaches 392.35 GTEPS. Our
implementation on four V100 GPUs is in a leading position
among GPU-based systems, and it is better than the existing
CPU-based implementation with 1024 nodes.

In Fig. 13 (a), we also find that the performance of BFS
on single GPU outperforms that on two GPUs. In this regard,
we further analyze the computation and communication

Fig. 9 BFS performance with
different edgefactors

20 21 22
0

200

400

600

800

Scale

Pe
rf
or
m
an

ce
(G

TE
PS

)

edgefactor=16 edgefactor=32 edgefactor=64

edgefactor=128 edgefactor=256 edgefactor=512

m
em

ory
overleaf

1 2
0

50

100

150

200

Ti
m

e
us

e
(m

s)

bidirectional 1d partition

original 1d partition

Fig. 10 Communication and computation overhead

1 2 4
0

50

100

150

GPU Number

Pe
rf

or
m

an
ce

(G
TE

PS
)

P2P UM-aware communication

Fig. 11 BFS performance with different communication

1 2 4
0

50

100

150

200

GPU Number

Pe
rf

or
m

an
ce

(G
TE

PS
) Scale=25 Scale=26 Scale=27

m
em

ory
overleaf

m
em

ory
overleaf

Fig. 12 BFS performance with different scale on four T4

288 Y. Zhang et al.

1 3

overhead during the execution of BFS algorithm. The results
are show in Fig. 13 (b). The parallel efficiency of BFS algo-
rithm can be improved with the number of GPUs increas-
ing, but it also increases communication overhead, which
affects the performance of the algorithm. When the number
of GPUs is 2, the improvement brought by multi-GPUs par-
allelism can not completely cover the time delay caused by
communication among GPUs. In addition, it is supposed to
have good scalability among more GPUs within one node.
Due to the limited hardware environment, it is currently not
possible to conduct relevant experiments.

5.4 Comparison with existing work

In order to show the efficiency of our optimizations, we com-
pare our algorithm with several BFS implementations on
GPU platform.

For single GPU, we compare our BFS with several
state-of-art works, including Enterprise Liu and Huang
(2015) and Tigr (Sabet et al. 2018). Our work is primarily
designed for scale-free graphs with small diameter, instead
of graphs with high diameter like road networks. Except for
Kronecker graph, we also evaluate some real-word small-
diameter graphs, such as higgs (De Domenico et al. 2013),
soc-Pokec (Takac and Zabovsky 2012), com-Orkut (Yang
and Leskovec 2015) and wiki-topcats (Klymko et al. 2014;
Yin et al. 2017). The results are shown in Table 2. For
Kron-n24-16 (Kronecker graph with SCALE=24 and edge-
factor=16), our algorithm achieves 96.97 GTEPS, which is
much higher than other works. For small-diameter graphs,
our work performs average 1.65, 2.35 times better than Tigr
and Enterprise.

We also compare our implementation with exist-
ing distributed works, including (Liu and Huang 2015;
Pan et al. 2017; Bisson et al. 2015) and (Bernaschi et al.
2015). The results are taken directly from their paper due
to the unopened source of their distributed code. As shown
in Table 3, for Kron-n24-32 graph on four T4 GPUs, the

performance of our work reaches 192.53 GTEPS, which
is 2.84 times better than (Pan et al. 2017). For com-
Orkut (Yang and Leskovec 2015) graph, our algorithm
achieves 3.08× speedup, compared with (Bisson et al. 2015).

Considering the software and hardware performance of
T4, K40, K20X GPUs, our work shows superior perfor-
mance gains with regard to existing works. Tesla T4 has 40
SMs, with total 2560 CUDA cores. In terms of memory sys-
tem, the peak memory bandwidth of T4 is 320 GB/s. While
K40 and K20X have 2880 and 2688 CUDA cores respec-
tively, as well the memory bandwidth of K40 and K20X
are 288, 255 GB/s. Therefore, taking parallelism resources
and memory bandwidth into consideration, our theoretical

Fig. 13 The performance of
BFS on four V100

1 2 3 4
280

300

320

340

360

380

400

GPU Number
Pe

rf
or

m
an

ce
(G

TE
PS

)

NVIDIA V100

(a)

1 2 3 4
0

5

10

15

GPU Number

Ti
m

e
us

e
(m

s) Computation

Communication

(b)

Table 2 Comparison with previous single GPU BFS work (GTEPS)

Graph data Enterprise Tigr Our

higgs 3.23 4.61 7.61
soc-Pokec 4.56 2.67 7.85
com-Orkut 3.16 2.75 8.86
wiki-topcats 2.60 3.96 8.76
Kron-n24-16 5.64 1.08 90.17
Kron-n25-16 7.31 0.99 96.97

Table 3 Comparison with previous multi-GPUs BFS work (GTEPS)

Ref Graph data Hardware Performance

Liu and Huang (2015) Kron-n24-32 2*K40 15.00
Pan et al. (2017) Kron-n24-32 2*K40 77.70
Our Kron-n24-32 2*T4 177.69
Pan et al. (2017) Kron-n24-32 4*K40 67.70
Our Kron-n24-32 4*T4 192.53
Bernaschi et al. (2015) Kron-n23-16 4*K20X 1.30
Our Kron-n23-16 4*T4 65.91
Bisson et al. (2015) com-Orkut 4*K20X 2.67
Our com-Orkut 4*T4 8.25

289FSGraph: fast and scalable implementation of graph traversal on GPUs

1 3

analysis suggests that the a T4 GPU give almost 1.5 to 2.0
times performance of a K40 or K20X. And the experimental
results are consistent with the theoretical analysis, which
shows that our BFS algorithm has substantial scalability on
different GPU platforms.

6 Related work

In recent years, in order to utilize the massive parallelism
and enhance the performance of graph traversal on GPUs,
plenty of optimizations have been put forward, which
achieve a series of improvements and promote good per-
formance on GPU-based platforms to some certain degree.

For graph traversal on a single GPU, Harish and Naray-
anan put forward BFS implementation on GPU based on
vertex-centric model, which identified active vertices by
scanning vertices’ status array (Harish and Narayanan
2007). Hong et al. proposed virtual warp to improve the
workload balance on GPU (Hong et al. 2011). Under the
circumstances, the adjacency list of each active vertex would
be processed by a group of threads instead of one thread,
which further improve the efficiency of graph traversal.
Merrill et al. proposed an adaptive parallelization of BFS
algorithm that mapped the workload of a vertex to a sin-
gle thread, warp or block depending on its out-degree and
achieved high performance on GPU (Merrill et al. 2012). In
2013, Beamer proposed a direction-optimizing scheme that
combined the traditional top-down approach with a novel
bottom-up approach (Beamer et al. 2012). It could dramati-
cally reduce the number of redundant edges traversal.

For graph traversal on multi-GPUs, Hiragushi et al.
implemented an efficient hybrid BFS implementation on
GPUs, demonstrating that it was beneficial for graph tra-
versal on GPUs (Hiragushi and Takahashi 2013). Zhong
et al. proposed the Medusa graph processing system, which
adapted the multi-hop replication mechanism to reduce the
communication overhead between GPU and CPU (Zhong
and He 2013). Khorasani and Takahashi proposed a CUDA-
based graph processing framework CuSha, which used two
novel graph representations G-Shared and Concatenated
Windows to overcome the irregular memory accesses and
underutilization of GPU resources (Khorasani et al. 2014).
Pan et al. implemented a distributed BFS algorithm on GPUs
and proposed a novel communication model by using global
reduction for high-degree vertices, and point-to-point trans-
mission for low-degree vertices (Pan et al. 2018). Besides, to
accelerate the data interaction between CPU and GPU, some
works focus on GPUs by using Unified Memory (UM), such
as SubWay (Sabet et al. 2020), GRUS (Wang et al. 2021)
et al.

Although plenty of optimizations have been proposed
and achieved good results on GPU platform, the essential
problems, such as workload imbalance, memory access inef-
ficiency and high communication overhead, still need fur-
ther improvements. Our work focus on dealing with memory
access divergence, workload imbalance, communication
overhead and redundant computation on GPUs, and achieve
good performance and high scalability.

7 Conclusions

In this paper, we implement FSGraph, a fast and scalable
BFS algorithm on GPUs. We propose three optimization
techniques and study the performance of BFS implementa-
tion on NVIDIA Tesla T4 and V100 GPUs. Our algorithm
demonstrates good performance and scalability. The average
performance of BFS on four T4 GPUs is 132.67 GPTES with
SCALE=26 and edgefactoer=16, which delivers up to 1.44×
improvement than that on a single T4. In terms of V100
GPUs, the BFS performance on four V100 GPUs achieves
nearly 392.35 GTEPS with improved memory access, bal-
anced data partition, efficient data communication. To the
best of our knowledge, our implementation achieves the
highest performance among existing GPU-based systems.
In the near future, it is planned to investigate the big data
extension on GPU cluster with limited memory.

Acknowledgements This work was supported by National Key
Research and Development Program (Grant No. 2022YFB4501404),
the Beijing Natural Science Foundation (4232036), CAS Project for
Youth Innovation Promotion Association.

Data Availability The data that support the findings of this study are
available from the corresponding author upon reasonable request.

Declarations

Conflict of interest No potential conflict of interest was reported by
the authors

References

Agarwal, V., Petrini, F., Pasetto, D., Bader, D.:A.: Scalable graph
exploration on multicore processors. In: SC’10: Proceedings of
the 2010 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages
1–11. IEEE, 2010

Bader, D. A., Madduri, K.: Snap, small-world network analysis and
partitioning: An open-source parallel graph framework for the
exploration of large-scale networks. In: 2008 IEEE international
symposium on parallel and distributed processing, pp. 1–12,
IEEE, 2008

Beamer, S., Asanovic, K., Patterson, D.: Direction-optimizing
breadth-first search. In: SC’12: Proceedings of the International

290 Y. Zhang et al.

1 3

Conference on High Performance Computing, Networking, Stor-
age and Analysis, pp 1–10, IEEE, 2012

Bernaschi, M., Carbone, G., Mastrostefano, E., Bisson, M., Fatica, M.:
Enhanced gpu-based distributed breadth first search. In: Proceed-
ings of the 12th ACM International Conference on Computing
Frontiers, pages 1–8, 2015

Bisson, Mauro, Bernaschi, Massimo, Mastrostefano, Enrico: Parallel
distributed breadth first search on the kepler architecture. IEEE
Transact. Parallel Distrib. Syst 27(7), 2091–2102 (2015)

Buluç, Aydin, Madduri, K.: Parallel breadth-first search on distributed
memory systems. In: Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis, pages 1–12, 2011

Busato, Federico, Bombieri, Nicola: Bfs-4k: an efficient implementa-
tion of bfs for kepler gpu architectures. IEEE Transact. Parallel
Distrib. Syst. 26(7), 1826–1838 (2014)

Checconi, F.o, Petrini, F., Willcock, J., Lumsdaine, A., Choudhury,
A. Roy, Sabharwal, Y.: Breaking the speed and scalability bar-
riers for graph exploration on distributed-memory machines. In:
SC’12: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, pages
1–12, IEEE, 2012

De Domenico, Manlio, Lima, Antonio, Mougel, Paul, Musolesi, Mirco:
The anatomy of a scientific rumor. Sci. Rep. 3(1), 1–9 (2013)

Dong, R.u, Cao, H., Ye, X., Zhang, Y., Hao, Q., Fan, D.: Highly effi-
cient and gpu-friendly implementation of bfs on single-node
system. In: 2020 IEEE Intl Conf on Parallel and Distributed
Processing with Applications, Big Data and Cloud Computing,
Sustainable Computing and Communications, Social Computing
and Networking (ISPA/BDCloud/SocialCom/SustainCom), pp
544–553, IEEE, 2020

Faloutsos, Michalis, Faloutsos, Petros, Faloutsos, Christos: On power-
law relationships of the internet topology. In: The Structure and
Dynamics of Networks, pp. 195–206. Princeton University Press,
New jersey (2011)

Graph500. http:// www. graph 500. org, (2010)
Harish, P., Narayanan, P. J.: Accelerating large graph algorithms on the

gpu using cuda. In International conference on high-performance
computing, Springer, pp 197–208, 2007

Hiragushi, T., Takahashi, D.: Efficient hybrid breadth-first search on
gpus. In: International Conference on Algorithms and Architec-
tures for Parallel Processing, Springer, pages 40–50, 2013

Hong, Sungpack, Kim, Sang Kyun, Oguntebi, Tayo, Olukotun, Kunle:
Accelerating cuda graph algorithms at maximum warp. Acm. Sig-
plan. Notices 46(8), 267–276 (2011)

Khorasani, F., Vora, Keval, G., Rajiv, B., Laxmi N., Cusha.: Vertex-
centric graph processing on gpus. In: Proceedings of the 23rd
international symposium on High-performance parallel and dis-
tributed computing, pages 239–252, 2014

Klymko, C., Gleich, D., Kolda, T, G.: Using triangles to improve com-
munity detection in directed networks. arXiv preprint arXiv: 1404.
5874,(2014)

Li, Z., Wang, H., Zhang, P., Hui, P., Huang, J., Liao, J., Zhang, J.,
Bu, J.: Live-streaming fraud detection: a heterogeneous graph
neural network approach. In: Proceedings of the 27th ACM SIG-
KDD Conference on Knowledge Discovery and Data Mining, pp.
3670–3678, 2021

Liu, H., Huang, H H.: Enterprise: breadth-first graph traversal on
gpus. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
pages 1–12, 2015

Luo, L., Wong, M., Hwu, Wen-m.: An effective gpu implementa-
tion of breadth-first search. In: Design Automation Conference,
pages 52–55, IEEE, 2010

Merrill, Duane, Garland, Michael, Grimshaw, Andrew: Scalable gpu
graph traversal. Acm. Sigplan. Notices 47(8), 117–128 (2012)

Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., Bhattachar-
jee, B.: Measurement and analysis of online social networks. In:
Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement, pages 29–42, 2007

Murphy, Richard C., Wheeler, Kyle B., Barrett, Brian W., Ang,
James A.: Introducing the graph 500. Cray Use. Group (CUG).
19, 45–74 (2010)

Nvidia. nvidia t4 70w low profile pcie gpu accelerator. https:// www.
nvidia. com/ conte nt/ dam/ en- zz/ Solut ions/ Data- Center/ tesla- t4/
t4- tensor- core- produ ct- brief. pdf, (2020)

Pan, Y., Pearce, R., Owens, J, D.: Scalable breadth-first search on a
gpu cluster. In: 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 1090–1101. IEEE, 2018

Pan, Y., Wang, Y., Wu, Y., Yang, C., Owens, J. D.: Multi-gpu graph
analytics. In: 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), IEEE,pages 479–490, 2017

Pham, T.-A. N., Li, X., Cong, G., Zhang, Z.: A general graph-based
model for recommendation in event-based social networks. In:
2015 IEEE 31st international conference on data engineering,
pp. 567–578, IEEE, 2015

Potluri, Sreeram, Goswami, Anshuman, Venkata, Manjunath Gore-
ntla, Imam, Neena: Efficient breadth first search on multi-gpu
systems using gpu-centric openshmem, pp. 82–96. Springer, In
Workshop on OpenSHMEM and Related Technologies (2017)

Sabet, Amir Hossein N., Zhao, Zhijia, Gupta R.: Subway Minimizing
data transfer during out-of-gpu-memory graph processing. In:
Proceedings of the Fifteenth European Conference on Computer
Systems, pages 1–16, 2020

Sabet, Amir Hossein Nodehi., Qiu, Junqiao, Zhao, Zhijia: Tigr:
Transforming irregular graphs for gpu-friendly graph process-
ing. ACM SIGPLAN Notices 53(2), 622–636 (2018)

Takac, L., Zabovsky, M.: Data analysis in public social networks. In:
International scientific conference and international workshop
present day trends of innovations. Present Day Trends of Inno-
vations Lamza Poland, 2012

Ting, Y., Yan, C., Xiang-wei, M.: Personalized recommendation sys-
tem based on web log mining and weighted bipartite graph. In:
2013 international conference on computational and informa-
tion sciences, pp 587–590, IEEE, 2013

Ueno, K., Suzumura, T.: Highly scalable graph search for the
graph500 benchmark. In: Proceedings of the 21st international
symposium on High-Performance Parallel and Distributed Com-
puting, pages 149–160, 2012

Wang, Pengyu, Wang, Jing, Li, Chao, Wang, Jianzong, Zhu, Hao-
jin, Guo, Minyi: Grus: Toward unified-memory-efficient high-
performance graph processing on gpu. ACM Transact. Architec.
Code Optimiz. (TACO) 18(2), 1–25 (2021)

Yang, Jaewon, Leskovec, Jure: Defining and evaluating network com-
munities based on ground-truth. Knowledge Info. Syst. 42(1),
181–213 (2015)

Yasui, Y., Fujisawa, K.: Fast and scalable numa-based thread parallel
breadth-first search. In: 2015 International Conference on High
Performance Computing and Simulation (HPCS), pp 377–385,
IEEE, 2015

Yin, H., Benson, A. R., Leskovec, J., Gleich, D. F.:Local higher-
order graph clustering. In: Proceedings of the 23rd ACM SIG-
KDD international conference on knowledge discovery and data
mining, pages 555–564, 2017

Yoo, A., Chow, E., Henderson, K.h, McLendon, W., Hendrickson,
B., Catalyurek, U.: A scalable distributed parallel breadth-first
search algorithm on bluegene/l. In: SC’05: Proceedings of the
2005 ACM/IEEE Conference on Supercomputing, pp 25–25,
IEEE, 2005

Zhang, C., Cao, H., Ye, X., Wang, G., Hao, Q., Fan, D.: Highly effi-
cient breadth-first search on cpu-based single-node system. In:
2019 IEEE 21st International Conference on High Performance

http://www.graph500.org
http://arxiv.org/abs/1404.5874
http://arxiv.org/abs/1404.5874
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf

291FSGraph: fast and scalable implementation of graph traversal on GPUs

1 3

Computing and Communications; IEEE 17th International Con-
ference on Smart City; IEEE 5th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), pages 2066–2071,
IEEE, 2019

Zhong, Jianlong, He, Bingsheng: Medusa: Simplified graph processing
on gpus. IEEE Transact. Parallel Distrib. Syst. 25(6), 1543–1552
(2013)

Zhong, Wenyong, Sun, Jianhua, Chen, Hao, Xiao, Jun, Chen, Zhiwen,
Cheng, Chang, Shi, Xuanhua: Optimizing graph processing on
gpus. IEEE Transact. Parallel Distrib. Syst. 28(4), 1149–1162
(2016)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Yuan Zhang born in 1990. PhD
candidate. Member of CCF. Her
main research interests include
high throughput computing
archi tecture and paral le l
computing.

Huawei Cao born in 1989. PhD.
Member of CCF. His main
research interests include paral-
lel computing and high through-
put computing architecture.

Yan Liang born in 1984. PhD
candidate. His main research
interests include high throughput
computing architecture and par-
allel computing.

Jie Zhang born in 1999. She is
currently pursuing the master’s
degree in computer architecture
from Institute of Computing
Technology, Chinese Academy
of Sciences. Her main research
interests include high throughput
computing architecture and par-
alleling computing.

Junying Huang received her
Ph.D. degree in microelectronics
and solid-state electronics from
the University of Chinese Acad-
emy of Sciences in 2016. Cur-
rently she is an associate profes-
sor with the Department of
High-throughput Computer
Research Center, Institute of
Computing Technology, Chinese
Academy of Sciences. Her
research interests include super-
conductive RSFQ logic, com-
puter architecture, electronic
design automation, and hardware
security.

Xiaochun Ye received the Ph.D.
degree in computer architecture
from the Institute of Computing
Technology, Chinese Academy
of Sciences (CAS), in 2010. Cur-
rently he is a Professor
Researcher, director of the High-
Throughput Computer Research
Center in Institute of Computing
Technology, CAS. His main
research interests include many-
core processor structure and
software simulation technology.

Xuejun An born in 1966. PhD,
senior engineer, PhD supervisor.
Member of CCF. His main
research interests include com-
puter system architecture and
high performance interconnec-
tion network.

	FSGraph: fast and scalable implementation of graph traversal on GPUs
	Abstract
	1 Introduction
	2 Background
	2.1 CSR format
	2.2 Top-down BFS algorithm
	2.3 Bottom-up BFS algorithm
	2.4 Graph partitioning scheme
	2.5 Data communication on GPUs

	3 Challenges of BFS on GPUs
	3.1 Memory divergence
	3.2 Workload imbalance
	3.3 Communication overhead

	4 Algorithm optimization
	4.1 GPU-friendly CSR structure
	4.1.1 Bitmap adaptive CSR
	4.1.2 Warp-aligned adjacency list

	4.2 Bidirectional 1d partition
	4.3 UM-aware communication

	5 Performance evaluation
	5.1 Performance variation on single GPU
	5.2 Performance on multi-GPUs
	5.3 Scalability on GPUs
	5.4 Comparison with existing work

	6 Related work
	7 Conclusions
	Acknowledgements
	References

