
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2023) 5:304–321
https://doi.org/10.1007/s42514-023-00154-y

1 3

REGULAR PAPER

ArkGPU: enabling applications’ high‑goodput co‑location execution
on multitasking GPUs

Jie Lou1,2 · Yiming Sun1,2 · Jie Zhang1,2 · Huawei Cao1,3  · Yuan Zhang1,2 · Ninghui Sun1,2

Received: 11 March 2023 / Accepted: 4 May 2023 / Published online: 24 May 2023
© China Computer Federation (CCF) 2023

Abstract
With the development of deep learning, hardware accelerators represented by GPUs have been used to accelerate the
execution of deep learning applications. A key problem in GPU cluster is how to schedule various deep learning applica-
tions, including training applications and latency-critical inference applications, to achieve optimal system performance. In
cloud datacenters, inference applications often require fewer resources, and the exclusive GPU execution of one inference
application can result in a significant waste of GPU resources. Existing work mainly focuses on the co-location execution
of multiple inference applications in datacenters using MPS (Multi-Process Service). There are several problems with this
execution pattern, datacenters may be in low-workload state for long periods of time due to the diurnal pattern of inference
applications, MPS-based data sharing can lead to interaction errors between contexts, and resource contention may cause
Quality of Service (QoS) violations. To solve above problems, we propose ArkGPU, a runtime system that dynamically
allocates resources. ArkGPU can improve the resource utilization of the cluster, while guaranteeing the QoS of inference
applications. ArkGPU is comprised of a performance predictor, a scheduler, a resource limiter, and an adjustment unit. We
conduct extensive experiments on the NVIDIA V100 GPU to verify the effectiveness of ArkGPU. We achieve High-Goodput
for latency-critical applications which have an average throughput increase of 584.27% compared to MPS. We deploy mul-
tiple applications simultaneously on ArkGPU, and in this case, goodput is improved by 94.98% compared to k8s-native and
38.65% compared to MPS.

Keywords  Goodput · GPU sharing · Co-location · Latency critical jobs scheduling · QoS guarantee

1  Introduction

With the rapid development of deep learning technology,
recent applications often rely on (Artificial Intelligence) AI
accelerators such as GPUs, to improve computational effi-
ciency and accuracy. In addition to this, tens of thousands
of information devices are generating a magnitude increase
in concurrent tasks. A key problem in GPU cluster is how
to schedule a large number of deep learning applications,
including training applications and (Latency-Critical) LC
inference applications, to achieve optimal system perfor-
mance. The current practice is to deploy a single service on
one GPU to meet the QoS target of the application (Burns
et al. 2016). However, the model of exclusive GPU resources
for one application can often result in wasted resources,
reducing GPU utilization. As a result, how to share GPU
resources among different applications is an issue worth
investigating. After the sharing problem has been resolved,
High-Goodput computing must be implemented to increase

Jie Lou and Yiming Sun contributed equally to this work.

 *	 Huawei Cao
	 caohuawei@ict.ac.cn

	 Jie Lou
	 loujie18b@ict.ac.cn

	 Yiming Sun
	 sunyiming20g@ict.ac.cn

	 Jie Zhang
	 zhangjie20s@ict.ac.cn

	 Yuan Zhang
	 zhangyuan-ams@ict.ac.cn

	 Ninghui Sun
	 snh@ict.ac.cn

1	 Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China

2	 University of Chinese Academy of Sciences, Beijing 100049,
China

3	 University of Chinese Academy of Sciences,
Nanjing 211135, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00154-y&domain=pdf
http://orcid.org/0000-0003-1176-2521

305ArkGPU: enabling applications’ high‑goodput co‑location execution on multitasking GPUs﻿	

1 3

the number of quality-assured tasks completed per unit time
(Xu et al. 2022).

Operating system containerization in datacenters allows
different applications from different users to run on physical
servers. At present, cloud service providers such as Amazon,
Google, Tencent, Baidu, and others are using Kubernetes
(Burns et al. 2016) as a container orchestration platform to
centrally manage various resources in the cluster. However,
Kubernetes can only assign a GPU to a pod and doesn’t
support sharing GPU resources among multiple pods. To
improve the utilization of GPU, co-location execution of
applications needs to be implemented. However, execut-
ing multiple applications simultaneously on a single GPU
increases the response time of queries, destroying the QoS
target of the application. We need to guarantee the QoS tar-
get while improving resource utilization.

In this work, we present the ArkGPU, a runtime sys-
tem that solves the following problems: allocating GPU
resources accurately for applications to meet their demand
while ensuring the QoS target of LC applications, co-locat-
ing LC applications with (Best-Effort) BE applications while
maximizing BE application performance. ArkGPU consists
of a resource limiter, a two-level performance predictor, a
two-level scheduler, and a performance adjustment unit. The
main contributions of ArkGPU are as follows:

•	 Enable accurate predictions of applications resource
utilization and execution time. We determine the
features of the deep learning application and train the
predictive model. The model predicts the application’s
resource requirements and ensures that the application
meets QoS targets when it executes within that resource
quota.

•	 Enable precise resource allocation. We divide GPU
computing resources and storage by percentage to avoid
error sharing among contexts generated by MPS while
improving the granularity of that resource division.

•	 Provide a runtime system that guarantees high good-
put. We achieve increased cluster utilization and guaran-
teed task throughput by predicting and limiting resource
usage. Furthermore, we provide performance adjustment
unit to prevent QoS violations caused by resource conten-
tion and insufficient resource limits. Application aborts
and migrations are achieved through a checkpointing
mechanism provided by the deep learning framework.

•	 We conduct extensive experiments on four NVIDIA
V100 GPUs to verify the effectiveness of ArkGPU. We
achieve High-Goodput for LC inference applications
which have an average throughput increase of 584.27%
compared to MPS. We deploy multiple applications
simultaneously on ArkGPU, and in this case, goodput
is improved by 94.98% compared to Kubernetes-native
(k8s-native) and 38.65% compared to MPS.

2 � Related work

There has been some research that focuses on improving
resource utilization while guaranteeing applications’ QoS
targets. Bubble-up (Mars et al. 2011) is a work imple-
mented on the CPU. It improves resource utilization in
CPU-based datacenters by predicting interference between
co-located applications. Bubble-flux(Yang et al. 2013)
uses dynamic interference measurements and enables safe
co-locations. SMiTe (Zhang et al. 2014) implements inter-
ference prediction on simultaneous multithreading archi-
tectures, extending Bubble-up. Dirigent (Zhu and Erez
2016) analyzes the performance model of LC applications
to accurately control the QoS of LC applications at a fine
time scale. PARTIES (Chen et al. 2019) proposes a solu-
tion on the CPU to evaluate the performance by adding
fewer resources each time for LC applications to meet QoS
targets. CLITE (Patel and Tiwari 2020) uses a black-box
model to maximize the throughput of the BE applications
while meeting the QoS targets of the LC applications.
These works are implemented on the CPU platforms and
can’t be directly migrated to the GPU, which has different
interference factors.

In order to enable applications’ co-location on GPUs,
NVIDIA has proposed MPS (Multi xxx), which can share
GPUs among multiple applications concurrently. MPS
doesn’t have the flexibility to adjust resource limits based
on GPU state, and a fatal GPU exception generated by a
kernel may affect all kernels that share GPU resources
(Multi xxx). rCUDA (Duato et al. 2019) implements
GPU pooling and sharing through API interception, but
its main purpose is to make remote calls to GPUs with-
out strict restrictions on resource usage. KubeShare (Yeh
et al. 2020) and GaiaGPU (Gu et al. 2018) implement the
division of GPUs through API interception, with the dif-
ference that KubeShare isolates applications through time-
division multiplexing and GaiaGPU limits the resources
percentage used by each pod through monitoring-adjust-
ment. However, the co-location of LC and BE applica-
tions on the GPU can cause interference that affects the
QoS of these applications. Baymax (Chen et al. 2016)
implements applications’ co-location using time-division
of GPU, which predicts the duration to reorder the LC
applications. Themis (Zhao et al. 2019) can predict the
slowdown of co-located applications, but it is based on the
work of the simulator and various statistics are not avail-
able on real GPUs. C-Laius (Zhang et al. 2021) guarantees
the QoS target by dividing the task types and allocating
sufficient resources to LC application. Unfortunately, pre-
vious works are based on MPS, and as previously stated,
errors from different kernels can interfere with each other.
What’s worse, they can’t strictly limit the GPU resources

306	 J. Lou et al.

1 3

available to the application. Fine-grained GPU allocation
to different applications to guarantee the QoS target while
improving GPU utilization is a new challenge.

In current implementations, inference jobs and train-
ing jobs are often deployed separately. Inference jobs are
executed in a dedicated inference cluster. The inference job,
as a user-oriented job, has a diurnal pattern. The inference
cluster can only be kept at full workload during peak hours
and is relatively idle during the rest of the day. This diurnal
pattern for datacenters shows the possibility of co-locating
processing of user-oriented applications and batch applica-
tions without QoS targets. Therefore, co-located execution
of training and inference jobs has the potential to improve
the resource utilization of the cluster. There has been already
some works considering a hybrid of training and infer-
ence jobs. Kube-Knots (Thinakaran et al. 2019) performs
co-scheduling of inference jobs and offline batch jobs. It
constructs a scheduler by correlation prediction and peak
prediction to solve the problem that inference jobs can’t fully
utilize GPU. Aryl (Li et al. 2022) enables the inference clus-
ter to deploy training jobs on idle GPUs during low-traffic
periods, enabling improved cluster resource utilization.

3 � Background and motivation

3.1 � GPU sharing solutions

GPU sharing refers to running multiple tasks concurrently
on the same GPU. With GPU sharing, more tasks can be
executed simultaneously, improving resource utilization
and reducing total tasks end time. NVIDIA’s latest GPUs
now add physical support for multitasking shared resources
(named MIG NVIDIA yyy). For previous GPUs, resource
sharing can be achieved using MPS (Multi xxx) provided
by NVIDIA. (MPS has some problems, a fatal GPU excep-
tion generated by an MPS client process will be contained
within the subset of GPUs shared between all clients with
the fatal exception-causing GPU.). Due to the numerous
problems caused by MPS, API interception is commonly
used to achieve resource isolation. Figure 1 shows the soft-
ware stack of DNN application. The isolation layer generally
sits on top of the CUDA driver API layer and replaces the

CUDA library through the LD_LIBRARY_PATH mecha-
nism. Using LD_LIBRARY_PATH, we can intercept the
relevant APIs in the CUDA library to achieve resource
limits. Currently, there are two main sharing schemes
based on API interception: time-division multiplexing and
monitoring-adjustment.

For time-division multiplexing, the runtime of GPU is
usually divided into several fixed-length time slices, and
tasks request services from the GPU by requesting a share
of the time slice. Within one time slice, only the task that
occupy the slice can emit instructions. A typical time-divi-
sion multiplexing pattern is shown in Fig. 2(a). KubeShare
(Yeh et al. 2020) uses a token-based approach for time slice
allocation. The token is circulated among all tasks and only
the task holding the token currently can use the GPU.

For monitoring-adjustment, a fixed monitoring period
is set to monitor the status of tasks and make adjustments.
The monitored objects can be states of GPUs, such as GPU
utilization and memory utilization. It can also be DNN appli-
cations, such as the execution time of each iteration. The
speed of task delivery is adjusted by slow delivery according
to the change of task status. A typical monitoring-adjust-
ment pattern is shown in Fig. 2(b). Tencent’s GaiaGPU (Gu
et al. 2018) uses this model to share GPU resources, moni-
tor GPU utilization and memory utilization, and adjust the
resource usage of each task. Our implementation is similar
to GaiaGPU and also based on a monitor-tune approach for
GPU sharing.

Resource sharing based on API interception requires
consideration of the mechanism of memory sharing. Some
works (Yeh et al. 2020, Gu et al. 2018) allow all tasks on the
same GPU to share memory, while other work (Xiao et al.
2018) keeps swapping memory in and out and optimizing it
for task characteristics.

3.2 � Real system setup

We use NVIDIA V100 as our experimental platform. In this
work, we use both user-oriented LC applications (inference
tasks) and throughput-oriented BE applications (training
tasks). Our work doesn’t rely on any specific features of

Fig. 1   DNN application layering structure Fig. 2   Time-division multiplexing and monitoring-adjustment

307ArkGPU: enabling applications’ high‑goodput co‑location execution on multitasking GPUs﻿	

1 3

V100 and is therefore applicable to other GPUs as well.
In our experiments, we execute the LC application and BE
application together to obtain their execution performance.
We gather LC workloads using MLperf (Reddi et al. 2020),
which is designed for the evaluation of inference applica-
tions. We use single-stream mode. This mode is a stream
of inference queries of query size 1, which measures the
response performance of the LC application. We select five
inference tasks in MLperf as LC workloads, including three
CV models and two NLP models.

Table 1 shows the detailed model information. For the
BE workloads, we selected the training tasks of the cor-
responding models. The specific network types are listed
in Table 2.

3.3 � Execute inference application on real systems

In this subsection, we explore the execution characteristics
of inference tasks by executing a single inference task on
GPU. In this experiment, we executed the inference appli-
cation in MLperf on NVIDIA V100 and report its resource
usage in Fig. 3. As can be seen from the figure, when a
GPU is assigned exclusively to an inference application, the

GPU utilization is relatively low, wasting a large amount of
computational and storage resources. Moreover, for different
applications, they have different occupancy of computational
and storage resources. For example, the dlrm-based imple-
mentation of the recommended application has a fairly high
demand for memory resources, while consuming almost no
computational resources. In this work, we implement co-
location of applications to improve resource utilization. In
the meantime, we analyze the resource requirements of the
applications and allocate appropriate resources for different
applications.

3.4 � MPS‑based co‑location execution

To explore the QoS violation due to co-location, we imple-
ment co-location execution of inference and training tasks
using MPS. Similar to the previous work (Shen et al. 2019),
the QoS target for the inference application is set to twice
the latency of this application execute exclusively on GPU.
Figure 4 shows the results of the experiment. In Fig. 4, the
x-axis shows the co-located application pairs and the y-axis
shows the 99%-ile latency of the inference application,
normalized to the QoS target. Among these 30 co-located
execution pairs, 12 sets of applications showed QoS viola-
tions. For example, When the resnet50-based classification
and detection application and the vgg16-based neural style
application are co-located, QoS violation will occur for the
LC application. The main reason for QoS violation is the
competition for resources between two applications. When

Table 1   The benchmarks used
as the LC applications

Scenario Neural model Dataset

Classification and detection resnet50-v1.5 imagenet2021
Classification and detection ssd-mobilenet 300×300 coco resized to 300×300
Classification and detection ssd-resnet34 1200x1200 coco resized to 1200x1200
Language bert squad−1.1
Recommendation dlrm Criteo Terabyte

Table 2   The models used as the BE applications

Models

Resnet50, Resnet101, Resnet152, VGG16, VGG19, Inception_v4

Fig. 3   Time-division multiplexing and monitoring-adjustment

308	 J. Lou et al.

1 3

the BE application and the LC application are co-located,
the BE application competes for the computing resource and
storage of the LC application, leading to QoS violation. As
a result, we need to predict the resource requirements of the
LC execution in advance to ensure that the LC application
receives enough resources to guarantee its QoS target.

3.5 � Challenges for applications co‑location
execution

The above experiments show that there exists severe wasting
of resources when the application executes exclusively on
the GPU. However, when using MPS-based GPU sharing
mechanism to implement co-located execution of applica-
tions, it can cause serious QoS violations. These facts show
that there are several key challenges in achieving QoS goals
for applications while sharing GPU resources.

(1)	 Applications have different network models and
different resource requirements. Different applica-
tions usually consist of different network models, and
the operators that make up the models are therefore
quite different. It is difficult to determine the resource
requirements for each LC application.

(2)	 Using MPS to implement co-location enforcement
can cause serious QoS violations. The main reason for
the poor performance is the contention for resources,
and the QoS of LC applications can be ensured by lim-
iting the maximum resource request of the application.
MPS can’t manage computing resources and storage at
a granular level based on the execution characteristics
of the application, and a new approach is needed to
place limits on the application’s resource usage.

(3)	 The QoS violation of LC application still occurs,
due to the overhead of resource constraints. To
prevent QoS violations, the resources allocated to LC
applications need to be dynamically adjusted to satisfy
the resource requests of LC applications at different
moments.

4 � Design of ArkGPU

In this section, we present the basics of ArkGPU, which
guarantees the QoS targets of LC applications while improv-
ing the resource utilization of GPU. To address above chal-
lenges, we adopt the following scheme.

•	 ArkGPU should include a performance predictor to pre-
dict the resource requirements of LC applications, based
on the network model structure and workload, thus guar-
anteeing the QoS targets of the applications.

•	 ArkGPU should implement a new resource sharing
scheme to achieve precise resource allocation and limits
to prevent QoS violations.

•	 ArkGPU should be able to sense the interference of LC
applications during execution, and if QoS targets cannot
be guaranteed, they should be handled accordingly.

Figure 5 shows the overview of ArkGPU. It consists of a
two-level performance predictor, a two-level scheduler that
makes decisions based on the predicting results, a resource
limiter, and a performance adjustment unit. The perfor-
mance predictor consists of two levels, one in the control
plane and the other in the work plane, which accurately pre-
dicts the maximum resource request and the corresponding

Fig. 4   The 99%-ile latency of LC applications normalized to the QoS target with MPS

309ArkGPU: enabling applications’ high‑goodput co‑location execution on multitasking GPUs﻿	

1 3

processing time during task execution. The two-level sched-
uler receives the prediction results from the two-level predic-
tor and assigns the appropriate host and GPU to the appli-
cation. The resource limiter monitors the resource usage of
each task and defers the task’s API when resource requests
exceed the limit. The performance adjustment unit monitors
the execution progress of tasks and adjusts resource alloca-
tion in case of possible QoS violations.

As shown in Fig. 5, ArkGPU handles inference applica-
tions (LC applications) and training applications (BE appli-
cations), separately. Specifically, when ArkGPU receives
a scheduling request from LC application, it performs the
scheduling process in the following steps.

(1) ArkGPU predicts the maximum resource request for
task q by receiving the network model structure and input
size. Based on the predicting results, the GPU resources
which are sufficient to meet the QoS goals are determined.

(2) The scheduler allocates GPUs for task q based on the
predicting results. When performing the allocation, the first-
level scheduler selects the host for q and the second-level
scheduler selects the GPU for q based on the specifics of
the GPU. When allocating resources, ArkGPU performs the
allocation according to the maximum resource requirements
based on the results of the predictor.

(3) The scheduler allocates the remaining resources for
the BE application. During the allocation process, a second-
level predictor predicts the execution time of the BE applica-
tion on each GPU, aiming at maximizing the performance of
the BE application. The resource limiter monitors both LC
applications and BE applications running on the same GPU
and limits the over-used applications.

(4) Due to the incomplete restriction, the BE application
may overuse the resources and cause the slowdown of task
q. ArkGPU checks the execution of q regularly, and if it is

judged that it cannot meet the QoS, the performance adjust-
ment unit will reallocate resources for the LC application.
The reallocation of resources involves the suspension and
restart of tasks, which can be achieved through the check-
point mechanism of the deep learning framework.

4.1 � Performance prediction

In order to obtain the execution of a deep learning applica-
tion in advance, we train a performance prediction model.
The model can predict the resource requirements and dura-
tion of the application.

Figure 6 shows a network model of a DNN application,
which network structure can be described using a data flow
graph (DFG). Each node in the DFG represents an operator
that is processed in certain topological order. Rather than call-
ing large functions, DNN applications are processed by execut-
ing operators one by one in sequence. During the execution,
the two operators connected by the directed edge need to be
executed in order. The basic set of operators is very small,
and some operator libraries (e.g., cuBLAS (cuB zzz), OpenAI
(Open aaaaa), etc.) implement GPU Kernels for common oper-
ators. Frameworks such as TensorFlow parse models written in
Python and build DFGs from them, mapping the DFG nodes
to kernel implementations in the operator libraries.

We use performance predictors to predict the maxi-
mum resource requirements of LC application and thus
allocate sufficient resources to them. In order to build the

Fig. 5   Design overview of
ArkGPU

Fig. 6   Network model for a DNN application

310	 J. Lou et al.

1 3

performance prediction model, we need to gather the per-
formance parameters of the application.

4.1.1 � Impact of input size on resource utilization

Each operation in a deep learning application has to run on
specific input data, so the size of the input data affects the
resource utilization of the application. Figure 7 shows the vari-
ation of resource utilization for different input sizes. The input
data is a square with side length n. The information of GPU
utilization is obtained using the NVML API(Nvml bbbb). We
implemented the Conv2D operator using TensorFlow, with a
special setting since TensorFlow requests as much memory
as possible by default. Obviously, the GPU resource usage
depends on the size of the input data, and with the increase of
input data size, the GPU utilization also increases.

We performed a similar analysis for other operations (e.g.,
ReLU, MaxPool, etc.), and the resource utilization all behaved
as related to the input size. Except the size of the input data,
resource utilization may also be related to other factors.

4.1.2 � Impact of batch size on resource utilization

Usually, deep learning inference applications use batch pro-
cessing to obtain a higher degree of parallelism. In a single
execution, multiple queries are organized into the same batch
and packaged for execution on the network. Figure 8 shows
the Conv2D operator executed at different batch sizes. It can
be seen that the batch size also affects the GPU resource uti-
lization. As the batch size increases, more data needs to be
processed during one execution of the neural network, which
requires extra memory footprint and therefore increases the
requested storage. The increase of batch size also requires extra
computing resources, thus increasing GPU utilization as well.

4.1.3 � Impact of operator types

We further analyze the way that the DNN model is processed
to understand the impact of operators on application execu-
tion. The DNN network, as shown in Fig. 6, is executed by

executing each operator in topological order. The specific pro-
cessing is shown in Fig. 9.

Under the circumstances, the resource usage of the whole
application depends on the resource usage of each operator.
That is, the maximum resource usage of the application should
be the resource usage of the operator with the maximum
resource requirements. Obviously, some operators that occupy
fewer resources can be ignored. With reference to prior work
(Hafeez and Gandhi 2020), we select operators with relatively
higher resource requirements. We select following operators:
Pad, AddV2, ConcatV2, Slice, AddN, BiasAdd, Mul, Relu,
FusedBatchNormV3, L2Loss, Conv2D, MaxPool, AvgPool.
If the same operator exists in the network model, the one with
higher operations is kept. For the Bert-like model, we also
used sequence length of execution as a parameter feature.

4.1.4 � Predictive model implementation

For one application, we need to predict its GPU utilization
(GPU util.) and memory utilization (Memory util.), where
GPU utilization is a value between 0 and 100 using NVML
(Nvml bbbb) queries.

We only have access to a small amount of information before
the task is officially executed. For user-oriented inference appli-
cations, according to above analysis, their resource utilization
is related to the input data size, batch size, and operator type.
These parameters can be obtained before the model is executed.
For each inference application to be executed, we use its input
data size, batch size, and the operators mentioned above as
parameters. If there is no operator of the corresponding kind in
the network model, the value of this item is 0, otherwise, it is
the input size of the operator. We implemented the prediction
model using multilayer perceptron (MLP, which has 6 hidden

Fig. 7   The relationship between utilization and input size (Conv2D)

Fig. 8   The relationship between utilization and batch size (Conv2D)

Fig. 9   Linear order of execution of network operators

311ArkGPU: enabling applications’ high‑goodput co‑location execution on multitasking GPUs﻿	

1 3

layers with sizes 32, 64, 128, 128, 128, 128, 128 respectively)
(Gardner and Dorling 1998), linear regression (LR) (Seber and
Lee 2012) and decision tree (DT) (Myles et al. 2004). To obtain
training and test data, we test a large number of neural networks
and use NVML to collect and record the resource utilization of
the networks. We collected 1000 samples using different inputs,
batch sizes, and operators mentioned in Section 4.1.3, and ran-
domly selected 800 for training and the rest 200 for evaluation
and testing. We evaluate the prediction results using the test set
on each of the three models, as shown in Fig. 10. This figure
shows the prediction errors for the 13 networks (N1 to N13).
The prediction error is calculated by Eq. 1.

For the prediction of computing resources, we can find that
the prediction accuracy of LR and DT is poor, while MLP
has better results. For the prediction of storage, the predic-
tion accuracy of the three is maintained at the same level.
To further evaluate the differences among the models, we
also tested the execution times of the LR, DT, and MLP
models, respectively, as shown in Fig. 11. the time taken
for LR and DT is around 1 ms, while MLP is longer than 3

(1)Error =
‖Predicted value −Measured value‖

Measured value
.

ms. Considering above results, we use the MLP model to
implement the prediction of computing resources, use the
LR model to implement the prediction of storage.

When scheduling a BE application, the secondary sched-
uler needs to predict its execution time with a specified share
of resources in order to select the most suitable GPU for the
application. We used a similar approach as above to con-
struct the prediction model. We collect the execution time
of the network under different resource shares to extend the
training set. Figure 12 shows the results of our predictions
for the execution time. Since the accuracy of LR and DT is
very poor, we only list the prediction results implemented
using MLP. Based on our measurements, we chose the MLP
model to construct our secondary predictor.

4.2 � Scheduler design

The scheduler uses the results of the predictor to allocate
execution resources for different kinds of applications. It
can assign appropriate resources to the inference and train-
ing applications separately to improve resource utilization,
guarantee the QoS of LC applications, and increase the

Fig. 10   Errors of predicting the computing resources and storage

Fig. 11   Prediction overhead for predicting using LR, DT, and MLP

312	 J. Lou et al.

1 3

execution efficiency of BE applications as much as possible.
The scheduler is a two-level architecture.

4.2.1 � Scheduling of LC application

As shown in Fig. 5, when a user submits a task for an LC
application (in this case, an inference application), ArkGPU
accepts the prediction result from the first-level scheduler
and allocates resources to the task according to the predicted
resource request amount. The specific scheduling process is
shown in Algorithm 1.

When the predictor predicts the maximum resources that
a task may occupy, the first-level scheduler (line 1–8) selects
a suitable host for it. Computepre and Memorypre indicate the
predicted computing resources occupancy and storage occu-
pancy. The algorithm traverses all hosts in the cluster, deter-
mines whether the remaining resources of the hosts satisfy the
application execution, and filters out the nodes that do not satisfy
the QoS (line 1–4). If all the nodes do not meet the resource
requirements, select a suitable node and release the resources
of the BE task on the node (line 6–8). In order for the LC appli-
cation to get enough resources, all candidate nodes are sorted
and the node with the most remaining resources is selected (line
9–10). Subsequently, the scheduling process is taken over by the
second-level scheduler (line 11–15). The scheduler holds a copy
on each host and it traverses all the GPUs on the host, scoring
each GPU (line 13). If there are not enough resources to satisfy
the task execution, the score of this node is set to -1 (line 19–24).
Otherwise, the score is positively correlated with the remaining
resources and inversely correlated with the number of LC tasks
executing simultaneously on current GPU (line 26). The sched-
uling algorithm selects the GPU node with the highest score and
binds the task to the selected GPU (line 16).

Algorithm 1 Scheduling of LC jobs

Require: Computepre, Memorypre
Ensure: GPUk

1: for host in cluster[N] do
2: if isAvailable(host, Computepre,

Memorypre) then
3: All Available Hosts.append(host)
4: end if
5: end for
6: if All Available Hosts.isNULL() then
7: All Available Hosts(Release Resource(cluster[N]))
8: end if
9: Host List← Sort by Resource(All Available Hosts)

10: Selected Host ← Head(Host List)
11: gpu nodes[M] ← getAllGPU(Selected Host)
12: for gpu node in gpu nodes[M] do
13: score[m] ← getScore(gpu node,

Computepre, Memorypre)
14: end for
15: GPU List ← Sort by Score(gpu nodes)
16: return Head(gpu nodes)
17:

18: function getScore(gpu node, Computepre,
Memorypre)

19: if getCompute(gpu node) <Computepre
then

20: return -1
21: end if
22: if getMemory(gpu node) <Memorypre

then
23: return -1
24: end if
25: Num of LC ← getLCNum(gpu node)
26: return (getCompute(gpu node) + get-

Memory(gpu node)) / Num of LC
27: end function

Fig. 12   Errors of predicting the execution time

313ArkGPU: enabling applications’ high‑goodput co‑location execution on multitasking GPUs﻿	

1 3

4.2.2 � Scheduling of LC applications

After completing the resource allocation for the LC
application, we then consider allocating the remain-
ing resources for the BE application. When allocating
resources for BE applications, ArkGPU wants to achieve
optimal execution performance for the BE tasks, while
avoiding QoS violations for LC tasks. To achieve this
goal, we also use the prediction results of the predictor.
When a BE application is submitted, it first enters the
waiting queue and waits until there are no LC applica-
tions to process and the system has free resources before
executing the scheduling process. The scheduling flow of
the BE application is shown in Algorithm 2. Computepre
and Memorypre request are the resources that need to be
used by the BE application, and Q is the characteristic
parameter of the BE application. In the first-level sched-
uler, when the available resources are not enough, the
scheduling is directly exited and the task returns to the
waiting queue (line 7). To improve resource utilization,
the node with the least resources that meets the resource
requirements is selected (line 9–10). In the second-level
scheduler, the getPredict() function calls the second-level
predictor to predict the execution time of the application
under this resource configuration (line 13). To maximize
the performance of BE application, ArkGPU will choose
the GPU with the least amount of execution time (line
15–16).

Algorithm 2 Scheduling of BE jobs

Require: Computepre, Memorypre, Q
Ensure: GPUk

1: for host in cluster[N] do
2: if isAvailable(host, Computepre,

Memorypre) then
3: All Available Hosts.append(host)
4: end if
5: end for
6: if All Available Hosts.isNULL() then
7: return
8: end if
9: Host List← Sort by Resource(All Available Hosts)

10: Selected Host ← Head(Host List)
11: gpu nodes[M] ← getAllGPU(Selected Host)
12: for gpu node in gpu nodes[M] do
13: score[m] ← getPredict(Q, gpu node)
14: end for
15: GPU List ← Sort by Score(gpu nodes)
16: return Head(gpu nodes)

4.3 � Limits and adjustments of GPU resources

4.3.1 � Resource limiter

After allocating resources to tasks, it is necessary to limit
their resource usage, so as to realize the sharing of GPU
resources among multiple tasks. However, on the cloud envi-
ronment, NVIDIA does not provide a shared interface other
than MPS, which has a series of problems. We implement
GPU sharing using a monitoring-adjustment scheme. The
resource limiter uses the API provided by the NVML library
to query the state of GPU and obtain the processes executing
on the GPU and their resource utilization.

We choose the API interception solution to implement
resource limiter, which is a GPU vendor-independent solu-
tion. The API isolation layer generally sits on top of the
CUDA driver API layer and replaces the CUDA library
through the LD_LIBRARY_PATH mechanism. Using
LD_LIBRARY_PATH, the relevant CUDA APIs can be
intercepted to achieve resource restriction. When the GPU
program calls the relevant API, it will load our own API
implementation. Before calling the API, the resource limiter
will check whether current program is using more comput-
ing resources than the limit. If the limit is not exceeded, it
will continue to execute the API call. If not, nonosleep()
is called to suspend the execution of the API. The role of
nanosleep() is to make the current task suspend for a period
of time, during which its usage of GPU will be reduced, thus
achieving the purpose of limiting resource usage. After that,
the limiter polls the GPU for computing resource usage, and
once the computing resource usage is below the limit, the
API call will be executed. The specific restriction method is
shown in Fig. 13 (a).

When an application consumes much more resources
than the limit, no extra resources will be allocated for it. To
further improve task execution efficiency, current applica-
tion is allowed to overuse resources when there is no other
application on the same GPU. When another application is
scheduled to that GPU, the over-allocated resources will be
reclaimed. A formal description of this process is given in
Fig. 13(b).

4.3.2 � Resource adjustment

Since co-located applications may compete for resources,
the LC application needs to be dynamically adjusted to pre-
vent QoS violations. When the LC application is executed,
the current execution time is recorded for each query exe-
cuted. Since the neural network structure and inputs are the
same for each query, it can be approximated that the time is
the same for each query. Suppose there are N tasks in total,
n tasks are currently executed, and the execution time is t.
Then the predicted execution time t’ is N

n
t . If t’ is larger than

314	 J. Lou et al.

1 3

the QoS target, it means that the first n queries are slower
than expected and may generate a QoS violation. Once this
happens, the resources of the BE application that is co-
located and executed with the LC application are released.

Since the deep learning framework has a checkpointing
mechanism, it is possible to save the current states when BE
application exits. When the system resources are sufficient,
the released BE application is restarted and its execution
continues from the checkpoint. While if there is only one
LC application on the GPU after the BE application exits,
the LC application will be automatically expanded. If there
are other LC applications present, the resource share of the
process where the QoS violation is going to occur is modi-
fied in the resource limiter (That is, GPUconfig in Fig. 13 and
additional resources are allocated for it. In this way, we can
guarantee that LC applications will not have QoS violations.

5 � Evaluation

5.1 � Experimental setup

We have implemented ArkGPU on native Kubernetes. Our
experiments were conducted on a machine equipped with 4
NVIDIA V100, and the specific configurations are listed in
Table 3. As shown in Table 1, we choose 5 applications from
MLperf inference as LC applications. We selected 6 DNN
training models, which are widely used in the image field
and natural language processing field, as BE applications,
shown in Table 2. In our experiments, we describe the qual-
ity of service using a 99%-ile delay and define the QoS for
co-located execution twice as high as when executed alone.

The evaluations are performed using the single-stream
of MLPerf inference, which is a stream of inferring que-
ries with query size 1, reflecting the response timeliness
of multi-clients applications. It gives various performance
metrics, including 99%-ile delay, which is the upper bound
of delay satisfying 99% of queries. The multi-stream con-
tains a series of queries, but each query contains multiple
inferences. The multi-stream is primarily used to measure
the maximum number of streams supported by the system
for a given QoS target and is therefore not used. Offline rep-
resents a batch application where all data is immediately

available, and latency is not limited. Offline is mainly used
to test throughput and is not a suitable benchmark for LC
queries. Given this, we choose single-stream.

5.2 � QoS and throughput

We evaluated the effectiveness of ArkGPU in improving
GPU utilization while meeting the QoS for LC applications.
Figure 14 shows the 99%-ile latency when the LC applica-
tion and the BE application are co-located for execution.
We used a total of 5 × 6 = 30 co-location pairs to compare
the normalized 99%-ile latency using ArkGPU and MPS
(Non-ArkGPU) as comparison. As can be seen in Fig. 14,
the co-location pairs using ArkGPU all ensure user-oriented
QoS requirements. We also measure the average latency of
user-oriented queries and find that they all meet the QoS
target when using ArkGPU. The results are shown in Fig. 15.
Here, 99%-ile latency is the latency at the 99th percentile of
a set of queries, i.e., 99% of all queries have latency less than
this value, and it measures how well the system performs at
high latencies that are rarely seen. The average latency is the
arithmetic average of all query latencies and indicates the
general condition of the system.

However, resource sharing using MPS can result in a 2.5x
QoS violation in some cases. When the resource request of
LC applications or BE applications increases, the schedul-
ing using MPS can’t be aware of their resource usage, which
causes resource contention and leads to severe QoS viola-
tions. By limiting the resource occupation of the BE appli-
cation, we can ensure the QoS of the LC application, and
the above experiments prove this conclusion. As shown in
Figs. 14 and 15, QoS violations do not occur using Ark-
GPU. Nevertheless, some LC applications in ArkGPU have
slightly higher latency than applications using MPS (e.g.,
ssd-mob+res101). This is because the process of monitoring
and adjusting causes some performance loss.

To further determine the impact of ArkGPU on appli-
cation performance, we also tested the Queries-per-
second(QPS) during tasks execution, and the results are
shown in Fig. 16. We conduct separate experiments on k8s-
native, on system using MPS, and on system using Ark-
GPU. It can be found that in some cases (e.g., when the LC

(a) (b)

Fig. 13   Method of limiting GPU resource usage

Table 3   Hardware and software specifications

Specification

Hardware Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz
NVIDIA Tesla V100

Software CentOS Linux release 7.9.2009 (Core)
CUDA Driver Version: 460.106.00
CUDA Version: 11.1
CUDNN 7.6.5

315ArkGPU: enabling applications’ high‑goodput co‑location execution on multitasking GPUs﻿	

1 3

application co-locates with VGG16 or VGG19), the QPS of
the LC application increases significantly, which is because
those BE training applications consume a large amount
of GPU resources and competes with LC applications for
resources. In ArkGPU, we limit BE applications’ resource
usage, which can improve the QPS of LC applications. The
QPS of the LC application is more than doubled on average
compared to the scheme using MPS. In some other cases,
ArkGPU has some performance loss compared to the solu-
tion using MPS. For example, when the BE application
(such as dlrm) requests fewer GPU computing resources, the
LC application can get enough resources. At this point, the

reduction in QPS caused by the resource limiter is typically
around 5%. We consider this loss to be acceptable.

As shown in Fig. 17, the co-location execution of applica-
tions increased GPU utilization. The GPU utilization with
MPS increased by an average of 36.1%, and ArkGPU was
building on this by a further increase of 11.5%. Due to the
reduction in resource contention, the application can make
full use of the GPU’s resources.

Fig. 14   99%-ile latency for each co-location pair with Non-ArkGPU and ArkGPU

Fig. 15   Average latency for each co-location pair with Non-ArkGPU and ArkGPU

316	 J. Lou et al.

1 3

5.3 � High‑goodput

Our ArkGPU implements High-Goodput computing for
the evaluation of throughput and QoS, proposed by Qiao
et al. [29]. They use goodput to describe the quality of tasks
completed per unit of time. The definition of goodput is
described using Eq. 2.

We use the QPS of the query to describe the throughput, and
the yield is expressed with the proportion of queries that
meet the QoS target. We counted the proportion of queries
that met the QoS target in the total query and showed the
results in Fig. 18. Then we measured the goodput during co-
located applications execution, and the results were shown
in Fig. 19.

(2)Goodput = throughput × yield.

In most cases, High-Goodput can be achieved using Ark-
GPU, which improves the query execution yield while main-
taining almost the same QPS as the k8s-native, thus achieving
better goodput compared to the MPS case. Our experiments
demonstrate that ArkGPU can effectively improve the goodput
of the cluster. Classification and detection applications based
on the resnet50, ssd-mobilenet, and ssd-resnet34 networks are
improved by an average of 111.21%, 200.86%, and 759.96%
over MPS using ArkGPU, respectively. ArkGPU achieves
High-Goodput for these networks by improving the QPS and
yield of queries. For the recommendation application, the use
of ArkGPU improves only 9.62% over the use of MPS. This is
because the recommendation application requests fewer GPU
computing resources, which doesn’t cause serious resource
competition even when using MPS for resource sharing.
For the NLP application using Bert model, using ArkGPU
improves 1839.70% goodput over using MPS. Such a huge

Fig. 16   QPS for each co-location pair with Non-ArkGPU and ArkGPU

Fig. 17   GPU Utilization for each co-location pair with K8s-native, Non-ArkGPU and ArkGPU

317ArkGPU: enabling applications’ high‑goodput co‑location execution on multitasking GPUs﻿	

1 3

improvement is due to the fact that Bert requires the use of a
large amount of computing resources. Without the combined
effect of ArkGPU’s predictor and resource limiter, a rather
severe resource competition would occur, resulting in a query
yield close to 0. Since ArkGPU achieves a better resource
limitation, we improve the query yield and achieve a balance
between QPS and yield.

To further test the representation of High-Goodput on Ark-
GPU, we deploy multiple LC and BE applications simulta-
neously and test their performance under different execution
environments. Based on the definition of goodput mentioned
above, the overall system goodput can be defined as the sum of
the system’s throughput within a time slice multiplied by the
proportion of queries that satisfy the latency requirement. The
goodput of the system is calculated as shown in Equation 3,
where n is the number of LC applications in this time slice.

We use the number of queries within a time slice to represent
the throughput of the application, and the yield is expressed
with the proportion of queries in the task that meet the QoS
target. We submit four BE applications and four LC applica-
tions to the cluster with four NVIDIA V100s and calculate
their goodputs. We combine the applications in Table 1
into five groups of app-mixes, and the execution results
are shown in Fig. 20, where the horizontal coordinates are
the five groups of app-mixes. The specific configuration is
shown in Table 4. The figure plots goodput for all app-mixes
of LC and BE applications for the three configurations.

It can be noticed that the goodput of the system is
improved by allowing resource sharing. There are still

(3)Goodput =

n∑

i

throughputi × yieldi.

Fig. 18   Yield for each co-location pair with Non-ArkGPU and ArkGPU

Fig. 19   Goodput for each co-location pair with Non-ArkGPU and ArkGPU

318	 J. Lou et al.

1 3

special cases, for example, the goodput using MPS sharing
in app-mix 1 is lower than that of k8s-native. K8s-native
brings low yield because some LC applications can’t exe-
cute on time due to the lack of support for resource sharing.
MPS can support resource sharing, but frequent resource
contention may reduce the throughput and yield of queries
thus bring poor goodput. As can be seen from the figure,
the goodput of MPS is lower in app-mix 1. Considering all
the cases, the goodput of ArkGPU is improved by 94.98%
on average compared to k8s-native and 38.65% on average
compared to MPS.

5.4 � Effectiveness of ArkGPU

The core of the monitoring and adjusting scheme is a mora-
torium when the requested resources of a task exceed the
limit. This limiting approach can cause a lag in tuning and
thus affect the efficiency of task execution. Given these

things, we have designed the performance adjustment unit.
In this section, we paused the work on the adjustment unit
and reran the test as shown in Fig. 21. We conduct experi-
ments on system using MPS, GaiaGPU, and ArkGPU,
respectively.

In GaiaGPU, QoS violation occurs for some co-loca-
tion pairs. Among the 30 co-location pairs in GaiaGPU,
9 pairs are affected by QoS violation. For example, when
ssd-mobilenet and resnet50 co-location is executed, a QoS
violation of 1.76x is reached. Using MPS does not cause
intolerable performance impairment when co-located appli-
cations take up fewer resources and the accelerator has suf-
ficient remaining resources. In our example, the normalized
99%-ile latency using MPS (Non-ArkGPU) is only 0.54x.
At this point, the dynamic adjustment of the resource limiter
becomes the bottleneck of the whole system, and different
applications are frequently tuned during execution, which
leads to serious QoS conflicts. Under the circumstances, the
resource limiter will not improve the execution performance
of the application, and it could actually cause serious perfor-
mance disruptions. Therefore, the optimization implemented
by ArkGPU is effective. Compared to GaiaGPU, the stand-
ardized 99%-ile delay is dropped about 0.55x, meeting QoS
targets. As can be seen from the Fig. 21, no more QoS viola-
tions occur.

5.5 � Overhead analysis

The overhead of ArkGPU mainly includes online predic-
tion and resource limitation. During scheduling, each LC
application needs to predict its resource usage. We have
measured that this delay is usually within 5ms, which is

Table 4   Configuration of 5 app-mixes

app-mix Configuration

app-mix1 res50+ssd-mob+ssd-res34+bert
res50+res101+vgg16+vgg19

app-mix2 res50+ssd-mob+dlrm+bert
res50+res152+vgg16+incep

v4

app-mix3 res50+ssd-mob+ssd-res34+dlrm
res50+res152+vgg16+vgg19

app-mix4 ssd-mob+res34+dlrm+bert
res50+res101+vgg16+vgg19

app-mix5 res50+ssd-res34+dlrm+bert
res101+res152+vgg16+vgg19

Fig. 20   Goodput for each app-mix with k8s-native, Non-ArkGPU and ArkGPU

319ArkGPU: enabling applications’ high‑goodput co‑location execution on multitasking GPUs﻿	

1 3

acceptable. For BE applications, all GPUs on the host need
to be traversed in the secondary scheduler. For a host with
N GPUs, the complexity is O(N). Generally, there are not
too many GPUs on one host. According to the analysis in
Section 4.1.3, this delay is usually within 20 ms.

The overhead during application execution comes from
the resource limiter. It continuously detects the application
in execution and adjusts its resource usage. So we added tun-
ing mechanisms to allocate more resources to applications
when performance is affected.

5.6 � Discussion and future work

We implement ArkGPU on Kubernetes, and the implementa-
tion relies on Kubernetes’ scheduler extensions and device
plugin mechanism. One possible effort is to make ArkGPU
standalone so that it can run on universal cloud platforms.
During the execution of the prediction, we predict the maxi-
mum resources used by the application, which somewhat
causes a waste of resources. Since the resource usage of deep
learning applications follows a certain pattern, we would like
to implement a dynamic prediction of resource utilization in
order to limit resources more accurately.

6 � Conclusion

We propose ArkGPU, which improves the throughput of
the cluster, ensures High-Goodput and guarantees that the
services co-located on a single GPU can meet QoS require-
ments. To achieve this goal, ArkGPU predicts the resource
utilization of LC applications and supports LC and BE appli-
cations share the resources of the same GPU in order to

improve the system throughput while guaranteeing the good-
put on the system. It is experimentally proved that ArkGPU
achieves High-Goodput. Compared to the shared solution
using MPS, the goodput of co-located pairs implemented
using ArkGPU is improved by 584.27% on average. We
deploy multiple applications simultaneously on ArkGPU, in
this case, goodput is improved by 94.98% compared to k8s
native and 38.65% compared to MPS. As a result, ArkGPU
achieves High-Goodput.

Acknowledgements  This work was supported by National Key
Research and Development Program (Grant No. 2022YFB4501404),
the Beijing Natural Science Foundation (4232036), CAS Project for
Youth Innovation Promotion Association.

Availability of data and materials  The data that support the findings
of this study are available from the corresponding author upon reason-
able request.

Declarations 

 Conflict of interest  No potential conflict of interest was reported by
the authors

References

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg,
omega, and kubernetes. Commun. ACM 59(5), 50–57 (2016)

Chen, Q., Yang, H., Mars, J., Tang, L.: Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse
scale computers. ACM SIGPLAN Notices 51(4), 681–696 (2016)

Chen, S., Delimitrou, C., Martínez, J.F.: Parties: Qos-aware resource
partitioning for multiple interactive services. In: Proceedings of
the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems,
pp. 107–120 (2019)

Fig. 21   99%-ile latency for each co-location pair with Non-ArkGPU, GaiaGPU and ArkGPU

320	 J. Lou et al.

1 3

cuBLAS. https://​docs.​nvidia.​com/​deploy/​pdf/​CUDA_​Multi_​Proce​ss_​
Servi​ce_​Overv​iew.​pdf. Accessed 25 Dec 2022

Duato, J., Igual, F.D., Mayo, R., Pena, A.J., Quintana-Ortí, E.S., Silla,
F.: An efficient implementation of gpu virtualization in high per-
formance clusters. In: European Conference on Parallel Process-
ing, pp. 385–394 (2009). Springer

Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer
perceptron)-a review of applications in the atmospheric sciences.
Atmos. Environ. 32(14–15), 2627–2636 (1998)

Gu, J., Song, S., Li, Y., Luo, H.: Gaiagpu: sharing gpus in container
clouds. In: 2018 IEEE Intl Conf on Parallel & Distributed Pro-
cessing with Applications, Ubiquitous Computing & Commu-
nications, Big Data & Cloud Computing, Social Computing &
Networking, Sustainable Computing & Communications (ISPA/
IUCC/BDCloud/SocialCom/SustainCom), pp. 469–476 (2018).
IEEE

Hafeez, U.U., Gandhi, A.: Empirical analysis and modeling of compute
times of cnn operations on aws cloud. In: 2020 IEEE International
Symposium on Workload Characterization (IISWC), pp. 181–192
(2020). IEEE

Li, J., Xu, H., Zhu, Y., Liu, Z., Guo, C., Wang, C.: Aryl: an Elastic
Cluster Scheduler for Deep Learning. arXiv (2022). https://​arxiv.​
org/​abs/​2202.​07896

Mars, J., Tang, L., Hundt, R., Skadron, K., Soffa, M.L.: Bubble-up:
Increasing utilization in modern warehouse scale computers via
sensible co-locations. In: Proceedings of the 44th Annual IEEE/
ACM International Symposium on Microarchitecture, pp. 248–
259 (2011)

Multi-Process Service. https://​docs.​nvidia.​com/​deploy/​pdf/​CUDA_​
Multi_​Proce​ss_​Servi​ce_​Overv​iew.​pdf. Accessed 25 Dec 2022

Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An
introduction to decision tree modeling. J. Chemometrics 18(6),
275–285 (2004)

NVIDIA MIG. https://​www.​nvidia.​cn/​techn​ologi​es/​multi-​insta​nce-​
gpu/. Accessed 25 Dec 2022

Nvml-api. https://​docs.​nvidia.​com/​deploy/​nvml-​api/​index.​html.
Accessed 25 Dec 2022

OpenAI. https://​openai.​com/. Accessed 25 Dec 2022
Patel, T., Tiwari, D.: Clite: Efficient and qos-aware co-location of mul-

tiple latency-critical jobs for warehouse scale computers. In: 2020
IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 193–206 (2020). IEEE

Reddi, V.J., Cheng, C., Kanter, D., Mattson, P., Schmuelling, G., Wu,
C.-J., Anderson, B., Breughe, M., Charlebois, M., Chou, W., et al.:
Mlperf inference benchmark. In: 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pp.
446–459 (2020). IEEE

Seber, G.A., Lee, A.J.: Linear regression analysis. Wiley, Hoboken
(2012)

Shen, H., Chen, L., Jin, Y., Zhao, L., Kong, B., Philipose, M., Krishna-
murthy, A., Sundaram, R.: Nexus: A gpu cluster engine for accel-
erating dnn-based video analysis. In: Proceedings of the 27th
ACM Symposium on Operating Systems Principles, pp. 322–337
(2019)

Thinakaran, P., Gunasekaran, J.R., Sharma, B., Kandemir, M.T., Das,
C.R.: Kube-knots: Resource harvesting through dynamic con-
tainer orchestration in gpu-based datacenters. In: 2019 IEEE Inter-
national Conference on Cluster Computing (CLUSTER), pp. 1–13
(2019). 10.1109/CLUSTER.2019.8891040

Xiao, W., Bhardwaj, R., Ramjee, R., Sivathanu, M., Kwatra, N., Han,
Z., Patel, P., Peng, X., Zhao, H., Zhang, Q., et al.: Gandiva: Intro-
spective cluster scheduling for deep learning. In: 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 18), pp. 595–610 (2018)

Xu Z W, L.G.J., H, S.N.: Superbahn: Towards new type of cyberinfra-
structure. Bull. Chin. Acad. Sci. 37(1), 46–52 (2022)

Yang, H., Breslow, A., Mars, J., Tang, L.: Bubble-flux: Precise online
qos management for increased utilization in warehouse scale
computers. ACM SIGARCH Comput. Architecture News 41(3),
607–618 (2013)

Yeh, T.-A., Chen, H.-H., Chou, J.: Kubeshare: A framework to manage
gpus as first-class and shared resources in container cloud. In:
Proceedings of the 29th International Symposium on High-Perfor-
mance Parallel and Distributed Computing, pp. 173–184 (2020)

Zhang, Y., Laurenzano, M.A., Mars, J., Tang, L.: Smite: Precise qos
prediction on real-system smt processors to improve utilization
in warehouse scale computers. In: 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 406–418
(2014). IEEE

Zhang, W., Chen, Q., Zheng, N., Cui, W., Fu, K., Guo, M.: Towards
qos-awareness and improved utilization of spatial multitasking
gpus. IEEE Trans. Comput. 71(4), 866–879 (2022)

Zhao, W., Chen, Q., Lin, H., Zhang, J., Leng, J., Li, C., Zheng, W., Li,
L., Guo, M.: Themis: Predicting and reining in application-level
slowdown on spatial multitasking gpus. In: 2019 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS),
pp. 653–663 (2019). IEEE

Zhu, H., Erez, M.: Dirigent: Enforcing qos for latency-critical tasks
on shared multicore systems. In: Proceedings of the Twenty-first
International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 33–47 (2016)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Jie Lou  born in 1975. PhD can-
didate. Member of CCF. His
main research interests include
high throughput computing
a r ch i t e c t u r e a n d c l o u d
computing.

Yiming Sun  born in 1997. PhD
candidate. Member of CCF. His
main research interests include
cloud computing and high
t h r o u g h p u t c o m p u t i n g
architecture.

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://arxiv.org/abs/2202.07896
https://arxiv.org/abs/2202.07896
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://www.nvidia.cn/technologies/multi-instance-gpu/
https://www.nvidia.cn/technologies/multi-instance-gpu/
https://docs.nvidia.com/deploy/nvml-api/index.html
https://openai.com/

321ArkGPU: enabling applications’ high‑goodput co‑location execution on multitasking GPUs﻿	

1 3

Jie Zhang  born in 1999. She is
currently pursuing the master’s
degree in computer architecture
from Institute of Computing
Technology, Chinese Academy
of Sciences. Her main research
interests include high throughput
computing architecture and par-
alleling computing.

Yuan Zhang  born in 1990. PhD
candidate. Member of CCF. Her
main research interests include
high throughput computing
archi tecture and paral le l
computing.

 Huawei Cao  born in 1989. PhD.
Member of CCF. His main
research interests include paral-
lel computing and high through-
put computing architecture.

Ninghui Sun  born in 1968. PhD.
Member of CCF. He is the archi-
tect and main designer of Dawn-
ing2000, Dawning3000, Dawn-
ing4000, and Dawning5000
high-performance computers.
His major research interests
include computer architecture,
operating system.

	ArkGPU: enabling applications’ high-goodput co-location execution on multitasking GPUs
	Abstract
	1 Introduction
	2 Related work
	3 Background and motivation
	3.1 GPU sharing solutions
	3.2 Real system setup
	3.3 Execute inference application on real systems
	3.4 MPS-based co-location execution
	3.5 Challenges for applications co-location execution

	4 Design of ArkGPU
	4.1 Performance prediction
	4.1.1 Impact of input size on resource utilization
	4.1.2 Impact of batch size on resource utilization
	4.1.3 Impact of operator types
	4.1.4 Predictive model implementation

	4.2 Scheduler design
	4.2.1 Scheduling of LC application
	4.2.2 Scheduling of LC applications

	4.3 Limits and adjustments of GPU resources
	4.3.1 Resource limiter
	4.3.2 Resource adjustment

	5 Evaluation
	5.1 Experimental setup
	5.2 QoS and throughput
	5.3 High-goodput
	5.4 Effectiveness of ArkGPU
	5.5 Overhead analysis
	5.6 Discussion and future work

	6 Conclusion
	Acknowledgements
	References

