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Abstract
With the development of deep learning, hardware accelerators represented by GPUs have been used to accelerate the 
execution of deep learning applications. A key problem in GPU cluster is how to schedule various deep learning applica-
tions, including training applications and latency-critical inference applications, to achieve optimal system performance. In 
cloud datacenters, inference applications often require fewer resources, and the exclusive GPU execution of one inference 
application can result in a significant waste of GPU resources. Existing work mainly focuses on the co-location execution 
of multiple inference applications in datacenters using MPS (Multi-Process Service). There are several problems with this 
execution pattern, datacenters may be in low-workload state for long periods of time due to the diurnal pattern of inference 
applications, MPS-based data sharing can lead to interaction errors between contexts, and resource contention may cause 
Quality of Service (QoS) violations. To solve above problems, we propose ArkGPU, a runtime system that dynamically 
allocates resources. ArkGPU can improve the resource utilization of the cluster, while guaranteeing the QoS of inference 
applications. ArkGPU is comprised of a performance predictor, a scheduler, a resource limiter, and an adjustment unit. We 
conduct extensive experiments on the NVIDIA V100 GPU to verify the effectiveness of ArkGPU. We achieve High-Goodput 
for latency-critical applications which have an average throughput increase of 584.27% compared to MPS. We deploy mul-
tiple applications simultaneously on ArkGPU, and in this case, goodput is improved by 94.98% compared to k8s-native and 
38.65% compared to MPS.

Keywords  Goodput · GPU sharing · Co-location · Latency critical jobs scheduling · QoS guarantee

1  Introduction

With the rapid development of deep learning technology, 
recent applications often rely on (Artificial Intelligence) AI 
accelerators such as GPUs, to improve computational effi-
ciency and accuracy. In addition to this, tens of thousands 
of information devices are generating a magnitude increase 
in concurrent tasks. A key problem in GPU cluster is how 
to schedule a large number of deep learning applications, 
including training applications and (Latency-Critical) LC 
inference applications, to achieve optimal system perfor-
mance. The current practice is to deploy a single service on 
one GPU to meet the QoS target of the application (Burns 
et al. 2016). However, the model of exclusive GPU resources 
for one application can often result in wasted resources, 
reducing GPU utilization. As a result, how to share GPU 
resources among different applications is an issue worth 
investigating. After the sharing problem has been resolved, 
High-Goodput computing must be implemented to increase 
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the number of quality-assured tasks completed per unit time 
(Xu et al. 2022).

Operating system containerization in datacenters allows 
different applications from different users to run on physical 
servers. At present, cloud service providers such as Amazon, 
Google, Tencent, Baidu, and others are using Kubernetes 
(Burns et al. 2016) as a container orchestration platform to 
centrally manage various resources in the cluster. However, 
Kubernetes can only assign a GPU to a pod and doesn’t 
support sharing GPU resources among multiple pods. To 
improve the utilization of GPU, co-location execution of 
applications needs to be implemented. However, execut-
ing multiple applications simultaneously on a single GPU 
increases the response time of queries, destroying the QoS 
target of the application. We need to guarantee the QoS tar-
get while improving resource utilization.

In this work, we present the ArkGPU, a runtime sys-
tem that solves the following problems: allocating GPU 
resources accurately for applications to meet their demand 
while ensuring the QoS target of LC applications, co-locat-
ing LC applications with (Best-Effort) BE applications while 
maximizing BE application performance. ArkGPU consists 
of a resource limiter, a two-level performance predictor, a 
two-level scheduler, and a performance adjustment unit. The 
main contributions of ArkGPU are as follows:

•	 Enable accurate predictions of applications resource 
utilization and execution time. We determine the 
features of the deep learning application and train the 
predictive model. The model predicts the application’s 
resource requirements and ensures that the application 
meets QoS targets when it executes within that resource 
quota.

•	 Enable precise resource allocation. We divide GPU 
computing resources and storage by percentage to avoid 
error sharing among contexts generated by MPS while 
improving the granularity of that resource division.

•	 Provide a runtime system that guarantees high good-
put. We achieve increased cluster utilization and guaran-
teed task throughput by predicting and limiting resource 
usage. Furthermore, we provide performance adjustment 
unit to prevent QoS violations caused by resource conten-
tion and insufficient resource limits. Application aborts 
and migrations are achieved through a checkpointing 
mechanism provided by the deep learning framework.

•	 We conduct extensive experiments on four NVIDIA 
V100 GPUs to verify the effectiveness of ArkGPU. We 
achieve High-Goodput for LC inference applications 
which have an average throughput increase of 584.27% 
compared to MPS. We deploy multiple applications 
simultaneously on ArkGPU, and in this case, goodput 
is improved by 94.98% compared to Kubernetes-native 
(k8s-native) and 38.65% compared to MPS.

2 � Related work

There has been some research that focuses on improving 
resource utilization while guaranteeing applications’ QoS 
targets. Bubble-up (Mars et al. 2011) is a work imple-
mented on the CPU. It improves resource utilization in 
CPU-based datacenters by predicting interference between 
co-located applications. Bubble-flux(Yang et al. 2013) 
uses dynamic interference measurements and enables safe 
co-locations. SMiTe (Zhang et al. 2014) implements inter-
ference prediction on simultaneous multithreading archi-
tectures, extending Bubble-up. Dirigent (Zhu and Erez 
2016) analyzes the performance model of LC applications 
to accurately control the QoS of LC applications at a fine 
time scale. PARTIES (Chen et al. 2019) proposes a solu-
tion on the CPU to evaluate the performance by adding 
fewer resources each time for LC applications to meet QoS 
targets. CLITE (Patel and Tiwari 2020) uses a black-box 
model to maximize the throughput of the BE applications 
while meeting the QoS targets of the LC applications. 
These works are implemented on the CPU platforms and 
can’t be directly migrated to the GPU, which has different 
interference factors.

In order to enable applications’ co-location on GPUs, 
NVIDIA has proposed MPS (Multi xxx), which can share 
GPUs among multiple applications concurrently. MPS 
doesn’t have the flexibility to adjust resource limits based 
on GPU state, and a fatal GPU exception generated by a 
kernel may affect all kernels that share GPU resources 
(Multi xxx). rCUDA (Duato et  al. 2019) implements 
GPU pooling and sharing through API interception, but 
its main purpose is to make remote calls to GPUs with-
out strict restrictions on resource usage. KubeShare (Yeh 
et al. 2020) and GaiaGPU (Gu et al. 2018) implement the 
division of GPUs through API interception, with the dif-
ference that KubeShare isolates applications through time-
division multiplexing and GaiaGPU limits the resources 
percentage used by each pod through monitoring-adjust-
ment. However, the co-location of LC and BE applica-
tions on the GPU can cause interference that affects the 
QoS of these applications. Baymax (Chen et al. 2016) 
implements applications’ co-location using time-division 
of GPU, which predicts the duration to reorder the LC 
applications. Themis (Zhao et al. 2019) can predict the 
slowdown of co-located applications, but it is based on the 
work of the simulator and various statistics are not avail-
able on real GPUs. C-Laius (Zhang et al. 2021) guarantees 
the QoS target by dividing the task types and allocating 
sufficient resources to LC application. Unfortunately, pre-
vious works are based on MPS, and as previously stated, 
errors from different kernels can interfere with each other. 
What’s worse, they can’t strictly limit the GPU resources 
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available to the application. Fine-grained GPU allocation 
to different applications to guarantee the QoS target while 
improving GPU utilization is a new challenge.

In current implementations, inference jobs and train-
ing jobs are often deployed separately. Inference jobs are 
executed in a dedicated inference cluster. The inference job, 
as a user-oriented job, has a diurnal pattern. The inference 
cluster can only be kept at full workload during peak hours 
and is relatively idle during the rest of the day. This diurnal 
pattern for datacenters shows the possibility of co-locating 
processing of user-oriented applications and batch applica-
tions without QoS targets. Therefore, co-located execution 
of training and inference jobs has the potential to improve 
the resource utilization of the cluster. There has been already 
some works considering a hybrid of training and infer-
ence jobs. Kube-Knots (Thinakaran et al. 2019) performs 
co-scheduling of inference jobs and offline batch jobs. It 
constructs a scheduler by correlation prediction and peak 
prediction to solve the problem that inference jobs can’t fully 
utilize GPU. Aryl (Li et al. 2022) enables the inference clus-
ter to deploy training jobs on idle GPUs during low-traffic 
periods, enabling improved cluster resource utilization.

3 � Background and motivation

3.1 � GPU sharing solutions

GPU sharing refers to running multiple tasks concurrently 
on the same GPU. With GPU sharing, more tasks can be 
executed simultaneously, improving resource utilization 
and reducing total tasks end time. NVIDIA’s latest GPUs 
now add physical support for multitasking shared resources 
(named MIG NVIDIA yyy). For previous GPUs, resource 
sharing can be achieved using MPS (Multi xxx) provided 
by NVIDIA. (MPS has some problems, a fatal GPU excep-
tion generated by an MPS client process will be contained 
within the subset of GPUs shared between all clients with 
the fatal exception-causing GPU.). Due to the numerous 
problems caused by MPS, API interception is commonly 
used to achieve resource isolation. Figure 1 shows the soft-
ware stack of DNN application. The isolation layer generally 
sits on top of the CUDA driver API layer and replaces the 

CUDA library through the LD_LIBRARY_PATH mecha-
nism. Using LD_LIBRARY_PATH, we can intercept the 
relevant APIs in the CUDA library to achieve resource 
limits. Currently, there are two main sharing schemes 
based on API interception: time-division multiplexing and 
monitoring-adjustment.

For time-division multiplexing, the runtime of GPU is 
usually divided into several fixed-length time slices, and 
tasks request services from the GPU by requesting a share 
of the time slice. Within one time slice, only the task that 
occupy the slice can emit instructions. A typical time-divi-
sion multiplexing pattern is shown in Fig. 2(a). KubeShare 
(Yeh et al. 2020) uses a token-based approach for time slice 
allocation. The token is circulated among all tasks and only 
the task holding the token currently can use the GPU.

For monitoring-adjustment, a fixed monitoring period 
is set to monitor the status of tasks and make adjustments. 
The monitored objects can be states of GPUs, such as GPU 
utilization and memory utilization. It can also be DNN appli-
cations, such as the execution time of each iteration. The 
speed of task delivery is adjusted by slow delivery according 
to the change of task status. A typical monitoring-adjust-
ment pattern is shown in Fig. 2(b). Tencent’s GaiaGPU (Gu 
et al. 2018) uses this model to share GPU resources, moni-
tor GPU utilization and memory utilization, and adjust the 
resource usage of each task. Our implementation is similar 
to GaiaGPU and also based on a monitor-tune approach for 
GPU sharing.

Resource sharing based on API interception requires 
consideration of the mechanism of memory sharing. Some 
works (Yeh et al. 2020, Gu et al. 2018) allow all tasks on the 
same GPU to share memory, while other work (Xiao et al. 
2018) keeps swapping memory in and out and optimizing it 
for task characteristics.

3.2 � Real system setup

We use NVIDIA V100 as our experimental platform. In this 
work, we use both user-oriented LC applications (inference 
tasks) and throughput-oriented BE applications (training 
tasks). Our work doesn’t rely on any specific features of 

Fig. 1   DNN application layering structure Fig. 2   Time-division multiplexing and monitoring-adjustment
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V100 and is therefore applicable to other GPUs as well. 
In our experiments, we execute the LC application and BE 
application together to obtain their execution performance. 
We gather LC workloads using MLperf (Reddi et al. 2020), 
which is designed for the evaluation of inference applica-
tions. We use single-stream mode. This mode is a stream 
of inference queries of query size 1, which measures the 
response performance of the LC application. We select five 
inference tasks in MLperf as LC workloads, including three 
CV models and two NLP models.

Table  1 shows the detailed model information. For the 
BE workloads, we selected the training tasks of the cor-
responding models. The specific network types are listed 
in Table  2.

3.3 � Execute inference application on real systems

In this subsection, we explore the execution characteristics 
of inference tasks by executing a single inference task on 
GPU. In this experiment, we executed the inference appli-
cation in MLperf on NVIDIA V100 and report its resource 
usage in Fig. 3. As can be seen from the figure, when a 
GPU is assigned exclusively to an inference application, the 

GPU utilization is relatively low, wasting a large amount of 
computational and storage resources. Moreover, for different 
applications, they have different occupancy of computational 
and storage resources. For example, the dlrm-based imple-
mentation of the recommended application has a fairly high 
demand for memory resources, while consuming almost no 
computational resources. In this work, we implement co-
location of applications to improve resource utilization. In 
the meantime, we analyze the resource requirements of the 
applications and allocate appropriate resources for different 
applications.

3.4 � MPS‑based co‑location execution

To explore the QoS violation due to co-location, we imple-
ment co-location execution of inference and training tasks 
using MPS. Similar to the previous work (Shen et al. 2019), 
the QoS target for the inference application is set to twice 
the latency of this application execute exclusively on GPU. 
Figure 4 shows the results of the experiment. In Fig. 4, the 
x-axis shows the co-located application pairs and the y-axis 
shows the 99%-ile latency of the inference application, 
normalized to the QoS target. Among these 30 co-located 
execution pairs, 12 sets of applications showed QoS viola-
tions. For example, When the resnet50-based classification 
and detection application and the vgg16-based neural style 
application are co-located, QoS violation will occur for the 
LC application. The main reason for QoS violation is the 
competition for resources between two applications. When 

Table 1   The benchmarks used 
as the LC applications

Scenario Neural model Dataset

Classification and detection resnet50-v1.5 imagenet2021
Classification and detection ssd-mobilenet 300×300 coco resized to 300×300
Classification and detection ssd-resnet34 1200x1200 coco resized to 1200x1200
Language bert squad−1.1
Recommendation dlrm Criteo Terabyte

Table 2   The models used as the BE applications

Models

Resnet50, Resnet101, Resnet152, VGG16, VGG19, Inception_v4

Fig. 3   Time-division multiplexing and monitoring-adjustment
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the BE application and the LC application are co-located, 
the BE application competes for the computing resource and 
storage of the LC application, leading to QoS violation. As 
a result, we need to predict the resource requirements of the 
LC execution in advance to ensure that the LC application 
receives enough resources to guarantee its QoS target.

3.5 � Challenges for applications co‑location 
execution

The above experiments show that there exists severe wasting 
of resources when the application executes exclusively on 
the GPU. However, when using MPS-based GPU sharing 
mechanism to implement co-located execution of applica-
tions, it can cause serious QoS violations. These facts show 
that there are several key challenges in achieving QoS goals 
for applications while sharing GPU resources. 

(1)	 Applications have different network models and 
different resource requirements. Different applica-
tions usually consist of different network models, and 
the operators that make up the models are therefore 
quite different. It is difficult to determine the resource 
requirements for each LC application.

(2)	 Using MPS to implement co-location enforcement 
can cause serious QoS violations. The main reason for 
the poor performance is the contention for resources, 
and the QoS of LC applications can be ensured by lim-
iting the maximum resource request of the application. 
MPS can’t manage computing resources and storage at 
a granular level based on the execution characteristics 
of the application, and a new approach is needed to 
place limits on the application’s resource usage.

(3)	 The QoS violation of LC application still occurs, 
due to the overhead of resource constraints. To 
prevent QoS violations, the resources allocated to LC 
applications need to be dynamically adjusted to satisfy 
the resource requests of LC applications at different 
moments.

4 � Design of ArkGPU

In this section, we present the basics of ArkGPU, which 
guarantees the QoS targets of LC applications while improv-
ing the resource utilization of GPU. To address above chal-
lenges, we adopt the following scheme.

•	 ArkGPU should include a performance predictor to pre-
dict the resource requirements of LC applications, based 
on the network model structure and workload, thus guar-
anteeing the QoS targets of the applications.

•	 ArkGPU should implement a new resource sharing 
scheme to achieve precise resource allocation and limits 
to prevent QoS violations.

•	 ArkGPU should be able to sense the interference of LC 
applications during execution, and if QoS targets cannot 
be guaranteed, they should be handled accordingly.

Figure 5 shows the overview of ArkGPU. It consists of a 
two-level performance predictor, a two-level scheduler that 
makes decisions based on the predicting results, a resource 
limiter, and a performance adjustment unit. The perfor-
mance predictor consists of two levels, one in the control 
plane and the other in the work plane, which accurately pre-
dicts the maximum resource request and the corresponding 

Fig. 4   The 99%-ile latency of LC applications normalized to the QoS target with MPS
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processing time during task execution. The two-level sched-
uler receives the prediction results from the two-level predic-
tor and assigns the appropriate host and GPU to the appli-
cation. The resource limiter monitors the resource usage of 
each task and defers the task’s API when resource requests 
exceed the limit. The performance adjustment unit monitors 
the execution progress of tasks and adjusts resource alloca-
tion in case of possible QoS violations.

As shown in Fig. 5, ArkGPU handles inference applica-
tions (LC applications) and training applications (BE appli-
cations), separately. Specifically, when ArkGPU receives 
a scheduling request from LC application, it performs the 
scheduling process in the following steps.

(1) ArkGPU predicts the maximum resource request for 
task q by receiving the network model structure and input 
size. Based on the predicting results, the GPU resources 
which are sufficient to meet the QoS goals are determined.

(2) The scheduler allocates GPUs for task q based on the 
predicting results. When performing the allocation, the first-
level scheduler selects the host for q and the second-level 
scheduler selects the GPU for q based on the specifics of 
the GPU. When allocating resources, ArkGPU performs the 
allocation according to the maximum resource requirements 
based on the results of the predictor.

(3) The scheduler allocates the remaining resources for 
the BE application. During the allocation process, a second-
level predictor predicts the execution time of the BE applica-
tion on each GPU, aiming at maximizing the performance of 
the BE application. The resource limiter monitors both LC 
applications and BE applications running on the same GPU 
and limits the over-used applications.

(4) Due to the incomplete restriction, the BE application 
may overuse the resources and cause the slowdown of task 
q. ArkGPU checks the execution of q regularly, and if it is 

judged that it cannot meet the QoS, the performance adjust-
ment unit will reallocate resources for the LC application. 
The reallocation of resources involves the suspension and 
restart of tasks, which can be achieved through the check-
point mechanism of the deep learning framework.

4.1 � Performance prediction

In order to obtain the execution of a deep learning applica-
tion in advance, we train a performance prediction model. 
The model can predict the resource requirements and dura-
tion of the application.

Figure 6 shows a network model of a DNN application, 
which network structure can be described using a data flow 
graph (DFG). Each node in the DFG represents an operator 
that is processed in certain topological order. Rather than call-
ing large functions, DNN applications are processed by execut-
ing operators one by one in sequence. During the execution, 
the two operators connected by the directed edge need to be 
executed in order. The basic set of operators is very small, 
and some operator libraries (e.g., cuBLAS (cuB zzz), OpenAI 
(Open aaaaa), etc.) implement GPU Kernels for common oper-
ators. Frameworks such as TensorFlow parse models written in 
Python and build DFGs from them, mapping the DFG nodes 
to kernel implementations in the operator libraries.

We use performance predictors to predict the maxi-
mum resource requirements of LC application and thus 
allocate sufficient resources to them. In order to build the 

Fig. 5   Design overview of 
ArkGPU

Fig. 6   Network model for a DNN application
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performance prediction model, we need to gather the per-
formance parameters of the application.

4.1.1 � Impact of input size on resource utilization

Each operation in a deep learning application has to run on 
specific input data, so the size of the input data affects the 
resource utilization of the application. Figure 7 shows the vari-
ation of resource utilization for different input sizes. The input 
data is a square with side length n. The information of GPU 
utilization is obtained using the NVML API(Nvml bbbb). We 
implemented the Conv2D operator using TensorFlow, with a 
special setting since TensorFlow requests as much memory 
as possible by default. Obviously, the GPU resource usage 
depends on the size of the input data, and with the increase of 
input data size, the GPU utilization also increases.

We performed a similar analysis for other operations (e.g., 
ReLU, MaxPool, etc.), and the resource utilization all behaved 
as related to the input size. Except the size of the input data, 
resource utilization may also be related to other factors.

4.1.2 � Impact of batch size on resource utilization

Usually, deep learning inference applications use batch pro-
cessing to obtain a higher degree of parallelism. In a single 
execution, multiple queries are organized into the same batch 
and packaged for execution on the network. Figure 8 shows 
the Conv2D operator executed at different batch sizes. It can 
be seen that the batch size also affects the GPU resource uti-
lization. As the batch size increases, more data needs to be 
processed during one execution of the neural network, which 
requires extra memory footprint and therefore increases the 
requested storage. The increase of batch size also requires extra 
computing resources, thus increasing GPU utilization as well.

4.1.3 � Impact of operator types

We further analyze the way that the DNN model is processed 
to understand the impact of operators on application execu-
tion. The DNN network, as shown in Fig. 6, is executed by 

executing each operator in topological order. The specific pro-
cessing is shown in Fig. 9.

Under the circumstances, the resource usage of the whole 
application depends on the resource usage of each operator. 
That is, the maximum resource usage of the application should 
be the resource usage of the operator with the maximum 
resource requirements. Obviously, some operators that occupy 
fewer resources can be ignored. With reference to prior work 
(Hafeez and Gandhi 2020), we select operators with relatively 
higher resource requirements. We select following operators: 
Pad, AddV2, ConcatV2, Slice, AddN, BiasAdd, Mul, Relu, 
FusedBatchNormV3, L2Loss, Conv2D, MaxPool, AvgPool. 
If the same operator exists in the network model, the one with 
higher operations is kept. For the Bert-like model, we also 
used sequence length of execution as a parameter feature.

4.1.4 � Predictive model implementation

For one application, we need to predict its GPU utilization 
(GPU util.) and memory utilization (Memory util.), where 
GPU utilization is a value between 0 and 100 using NVML 
(Nvml bbbb) queries.

We only have access to a small amount of information before 
the task is officially executed. For user-oriented inference appli-
cations, according to above analysis, their resource utilization 
is related to the input data size, batch size, and operator type. 
These parameters can be obtained before the model is executed. 
For each inference application to be executed, we use its input 
data size, batch size, and the operators mentioned above as 
parameters. If there is no operator of the corresponding kind in 
the network model, the value of this item is 0, otherwise, it is 
the input size of the operator. We implemented the prediction 
model using multilayer perceptron (MLP, which has 6 hidden 

Fig. 7   The relationship between utilization and input size (Conv2D)

Fig. 8   The relationship between utilization and batch size (Conv2D)

Fig. 9   Linear order of execution of network operators
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layers with sizes 32, 64, 128, 128, 128, 128, 128 respectively) 
(Gardner and Dorling 1998), linear regression (LR) (Seber and 
Lee 2012) and decision tree (DT) (Myles et al. 2004). To obtain 
training and test data, we test a large number of neural networks 
and use NVML to collect and record the resource utilization of 
the networks. We collected 1000 samples using different inputs, 
batch sizes, and operators mentioned in Section 4.1.3, and ran-
domly selected 800 for training and the rest 200 for evaluation 
and testing. We evaluate the prediction results using the test set 
on each of the three models, as shown in Fig. 10. This figure 
shows the prediction errors for the 13 networks (N1 to N13). 
The prediction error is calculated by Eq. 1.

For the prediction of computing resources, we can find that 
the prediction accuracy of LR and DT is poor, while MLP 
has better results. For the prediction of storage, the predic-
tion accuracy of the three is maintained at the same level. 
To further evaluate the differences among the models, we 
also tested the execution times of the LR, DT, and MLP 
models, respectively, as shown in Fig. 11. the time taken 
for LR and DT is around 1 ms, while MLP is longer than 3 

(1)Error =
‖Predicted value −Measured value‖

Measured value
.

ms. Considering above results, we use the MLP model to 
implement the prediction of computing resources, use the 
LR model to implement the prediction of storage.

When scheduling a BE application, the secondary sched-
uler needs to predict its execution time with a specified share 
of resources in order to select the most suitable GPU for the 
application. We used a similar approach as above to con-
struct the prediction model. We collect the execution time 
of the network under different resource shares to extend the 
training set. Figure 12 shows the results of our predictions 
for the execution time. Since the accuracy of LR and DT is 
very poor, we only list the prediction results implemented 
using MLP. Based on our measurements, we chose the MLP 
model to construct our secondary predictor.

4.2 � Scheduler design

The scheduler uses the results of the predictor to allocate 
execution resources for different kinds of applications. It 
can assign appropriate resources to the inference and train-
ing applications separately to improve resource utilization, 
guarantee the QoS of LC applications, and increase the 

Fig. 10   Errors of predicting the computing resources and storage

Fig. 11   Prediction overhead for predicting using LR, DT, and MLP
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execution efficiency of BE applications as much as possible. 
The scheduler is a two-level architecture.

4.2.1 � Scheduling of LC application

As shown in Fig. 5, when a user submits a task for an LC 
application (in this case, an inference application), ArkGPU 
accepts the prediction result from the first-level scheduler 
and allocates resources to the task according to the predicted 
resource request amount. The specific scheduling process is 
shown in Algorithm 1.

When the predictor predicts the maximum resources that 
a task may occupy, the first-level scheduler (line 1–8) selects 
a suitable host for it. Computepre and Memorypre indicate the 
predicted computing resources occupancy and storage occu-
pancy. The algorithm traverses all hosts in the cluster, deter-
mines whether the remaining resources of the hosts satisfy the 
application execution, and filters out the nodes that do not satisfy 
the QoS (line 1–4). If all the nodes do not meet the resource 
requirements, select a suitable node and release the resources 
of the BE task on the node (line 6–8). In order for the LC appli-
cation to get enough resources, all candidate nodes are sorted 
and the node with the most remaining resources is selected (line 
9–10). Subsequently, the scheduling process is taken over by the 
second-level scheduler (line 11–15). The scheduler holds a copy 
on each host and it traverses all the GPUs on the host, scoring 
each GPU (line 13). If there are not enough resources to satisfy 
the task execution, the score of this node is set to -1 (line 19–24). 
Otherwise, the score is positively correlated with the remaining 
resources and inversely correlated with the number of LC tasks 
executing simultaneously on current GPU (line 26). The sched-
uling algorithm selects the GPU node with the highest score and 
binds the task to the selected GPU (line 16).

Algorithm 1 Scheduling of LC jobs

Require: Computepre, Memorypre
Ensure: GPUk

1: for host in cluster[N] do
2: if isAvailable(host, Computepre,

Memorypre) then
3: All Available Hosts.append(host)
4: end if
5: end for
6: if All Available Hosts.isNULL() then
7: All Available Hosts(Release Resource(cluster[N]))
8: end if
9: Host List← Sort by Resource(All Available Hosts)

10: Selected Host ← Head(Host List)
11: gpu nodes[M] ← getAllGPU(Selected Host)
12: for gpu node in gpu nodes[M] do
13: score[m] ← getScore(gpu node,

Computepre, Memorypre)
14: end for
15: GPU List ← Sort by Score(gpu nodes)
16: return Head(gpu nodes)
17:

18: function getScore(gpu node, Computepre,
Memorypre)

19: if getCompute(gpu node) <Computepre
then

20: return -1
21: end if
22: if getMemory(gpu node) <Memorypre

then
23: return -1
24: end if
25: Num of LC ← getLCNum(gpu node)
26: return (getCompute(gpu node) + get-

Memory(gpu node)) / Num of LC
27: end function

Fig. 12   Errors of predicting the execution time
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4.2.2 � Scheduling of LC applications

After completing the resource allocation for the LC 
application, we then consider allocating the remain-
ing resources for the BE application. When allocating 
resources for BE applications, ArkGPU wants to achieve 
optimal execution performance for the BE tasks, while 
avoiding QoS violations for LC tasks. To achieve this 
goal, we also use the prediction results of the predictor. 
When a BE application is submitted, it first enters the 
waiting queue and waits until there are no LC applica-
tions to process and the system has free resources before 
executing the scheduling process. The scheduling flow of 
the BE application is shown in Algorithm 2. Computepre 
and Memorypre request are the resources that need to be 
used by the BE application, and Q is the characteristic 
parameter of the BE application. In the first-level sched-
uler, when the available resources are not enough, the 
scheduling is directly exited and the task returns to the 
waiting queue (line 7). To improve resource utilization, 
the node with the least resources that meets the resource 
requirements is selected (line 9–10). In the second-level 
scheduler, the getPredict() function calls the second-level 
predictor to predict the execution time of the application 
under this resource configuration (line 13). To maximize 
the performance of BE application, ArkGPU will choose 
the GPU with the least amount of execution time (line 
15–16).

Algorithm 2 Scheduling of BE jobs

Require: Computepre, Memorypre, Q
Ensure: GPUk

1: for host in cluster[N] do
2: if isAvailable(host, Computepre,

Memorypre) then
3: All Available Hosts.append(host)
4: end if
5: end for
6: if All Available Hosts.isNULL() then
7: return
8: end if
9: Host List← Sort by Resource(All Available Hosts)

10: Selected Host ← Head(Host List)
11: gpu nodes[M] ← getAllGPU(Selected Host)
12: for gpu node in gpu nodes[M] do
13: score[m] ← getPredict(Q, gpu node)
14: end for
15: GPU List ← Sort by Score(gpu nodes)
16: return Head(gpu nodes)

4.3 � Limits and adjustments of GPU resources

4.3.1 � Resource limiter

After allocating resources to tasks, it is necessary to limit 
their resource usage, so as to realize the sharing of GPU 
resources among multiple tasks. However, on the cloud envi-
ronment, NVIDIA does not provide a shared interface other 
than MPS, which has a series of problems. We implement 
GPU sharing using a monitoring-adjustment scheme. The 
resource limiter uses the API provided by the NVML library 
to query the state of GPU and obtain the processes executing 
on the GPU and their resource utilization.

We choose the API interception solution to implement 
resource limiter, which is a GPU vendor-independent solu-
tion. The API isolation layer generally sits on top of the 
CUDA driver API layer and replaces the CUDA library 
through the LD_LIBRARY_PATH mechanism. Using 
LD_LIBRARY_PATH, the relevant CUDA APIs can be 
intercepted to achieve resource restriction. When the GPU 
program calls the relevant API, it will load our own API 
implementation. Before calling the API, the resource limiter 
will check whether current program is using more comput-
ing resources than the limit. If the limit is not exceeded, it 
will continue to execute the API call. If not, nonosleep() 
is called to suspend the execution of the API. The role of 
nanosleep() is to make the current task suspend for a period 
of time, during which its usage of GPU will be reduced, thus 
achieving the purpose of limiting resource usage. After that, 
the limiter polls the GPU for computing resource usage, and 
once the computing resource usage is below the limit, the 
API call will be executed. The specific restriction method is 
shown in Fig. 13 (a).

When an application consumes much more resources 
than the limit, no extra resources will be allocated for it. To 
further improve task execution efficiency, current applica-
tion is allowed to overuse resources when there is no other 
application on the same GPU. When another application is 
scheduled to that GPU, the over-allocated resources will be 
reclaimed. A formal description of this process is given in 
Fig. 13(b).

4.3.2 � Resource adjustment

Since co-located applications may compete for resources, 
the LC application needs to be dynamically adjusted to pre-
vent QoS violations. When the LC application is executed, 
the current execution time is recorded for each query exe-
cuted. Since the neural network structure and inputs are the 
same for each query, it can be approximated that the time is 
the same for each query. Suppose there are N tasks in total, 
n tasks are currently executed, and the execution time is t. 
Then the predicted execution time t’ is N

n
t . If t’ is larger than 
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the QoS target, it means that the first n queries are slower 
than expected and may generate a QoS violation. Once this 
happens, the resources of the BE application that is co-
located and executed with the LC application are released.

Since the deep learning framework has a checkpointing 
mechanism, it is possible to save the current states when BE 
application exits. When the system resources are sufficient, 
the released BE application is restarted and its execution 
continues from the checkpoint. While if there is only one 
LC application on the GPU after the BE application exits, 
the LC application will be automatically expanded. If there 
are other LC applications present, the resource share of the 
process where the QoS violation is going to occur is modi-
fied in the resource limiter (That is, GPUconfig in Fig. 13 and 
additional resources are allocated for it. In this way, we can 
guarantee that LC applications will not have QoS violations.

5 � Evaluation

5.1 � Experimental setup

We have implemented ArkGPU on native Kubernetes. Our 
experiments were conducted on a machine equipped with 4 
NVIDIA V100, and the specific configurations are listed in 
Table 3. As shown in Table 1, we choose 5 applications from 
MLperf inference as LC applications. We selected 6 DNN 
training models, which are widely used in the image field 
and natural language processing field, as BE applications, 
shown in Table  2. In our experiments, we describe the qual-
ity of service using a 99%-ile delay and define the QoS for 
co-located execution twice as high as when executed alone.

The evaluations are performed using the single-stream 
of MLPerf inference, which is a stream of inferring que-
ries with query size 1, reflecting the response timeliness 
of multi-clients applications. It gives various performance 
metrics, including 99%-ile delay, which is the upper bound 
of delay satisfying 99% of queries. The multi-stream con-
tains a series of queries, but each query contains multiple 
inferences. The multi-stream is primarily used to measure 
the maximum number of streams supported by the system 
for a given QoS target and is therefore not used. Offline rep-
resents a batch application where all data is immediately 

available, and latency is not limited. Offline is mainly used 
to test throughput and is not a suitable benchmark for LC 
queries. Given this, we choose single-stream.

5.2 � QoS and throughput

We evaluated the effectiveness of ArkGPU in improving 
GPU utilization while meeting the QoS for LC applications. 
Figure 14 shows the 99%-ile latency when the LC applica-
tion and the BE application are co-located for execution. 
We used a total of 5 × 6 = 30 co-location pairs to compare 
the normalized 99%-ile latency using ArkGPU and MPS 
(Non-ArkGPU) as comparison. As can be seen in Fig. 14, 
the co-location pairs using ArkGPU all ensure user-oriented 
QoS requirements. We also measure the average latency of 
user-oriented queries and find that they all meet the QoS 
target when using ArkGPU. The results are shown in Fig. 15. 
Here, 99%-ile latency is the latency at the 99th percentile of 
a set of queries, i.e., 99% of all queries have latency less than 
this value, and it measures how well the system performs at 
high latencies that are rarely seen. The average latency is the 
arithmetic average of all query latencies and indicates the 
general condition of the system.

However, resource sharing using MPS can result in a 2.5x 
QoS violation in some cases. When the resource request of 
LC applications or BE applications increases, the schedul-
ing using MPS can’t be aware of their resource usage, which 
causes resource contention and leads to severe QoS viola-
tions. By limiting the resource occupation of the BE appli-
cation, we can ensure the QoS of the LC application, and 
the above experiments prove this conclusion. As shown in 
Figs. 14 and 15, QoS violations do not occur using Ark-
GPU. Nevertheless, some LC applications in ArkGPU have 
slightly higher latency than applications using MPS (e.g., 
ssd-mob+res101). This is because the process of monitoring 
and adjusting causes some performance loss.

To further determine the impact of ArkGPU on appli-
cation performance, we also tested the Queries-per-
second(QPS) during tasks execution, and the results are 
shown in Fig. 16. We conduct separate experiments on k8s-
native, on system using MPS, and on system using Ark-
GPU. It can be found that in some cases (e.g., when the LC 

(a) (b)

Fig. 13   Method of limiting GPU resource usage

Table 3   Hardware and software specifications

Specification

Hardware Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz
NVIDIA Tesla V100

Software CentOS Linux release 7.9.2009 (Core)
CUDA Driver Version: 460.106.00
CUDA Version: 11.1
CUDNN 7.6.5
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application co-locates with VGG16 or VGG19), the QPS of 
the LC application increases significantly, which is because 
those BE training applications consume a large amount 
of GPU resources and competes with LC applications for 
resources. In ArkGPU, we limit BE applications’ resource 
usage, which can improve the QPS of LC applications. The 
QPS of the LC application is more than doubled on average 
compared to the scheme using MPS. In some other cases, 
ArkGPU has some performance loss compared to the solu-
tion using MPS. For example, when the BE application 
(such as dlrm) requests fewer GPU computing resources, the 
LC application can get enough resources. At this point, the 

reduction in QPS caused by the resource limiter is typically 
around 5%. We consider this loss to be acceptable.

As shown in Fig. 17, the co-location execution of applica-
tions increased GPU utilization. The GPU utilization with 
MPS increased by an average of 36.1%, and ArkGPU was 
building on this by a further increase of 11.5%. Due to the 
reduction in resource contention, the application can make 
full use of the GPU’s resources.

Fig. 14   99%-ile latency for each co-location pair with Non-ArkGPU and ArkGPU

Fig. 15   Average latency for each co-location pair with Non-ArkGPU and ArkGPU



316	 J. Lou et al.

1 3

5.3 � High‑goodput

Our ArkGPU implements High-Goodput computing for 
the evaluation of throughput and QoS, proposed by Qiao 
et al. [29]. They use goodput to describe the quality of tasks 
completed per unit of time. The definition of goodput is 
described using Eq. 2.

We use the QPS of the query to describe the throughput, and 
the yield is expressed with the proportion of queries that 
meet the QoS target. We counted the proportion of queries 
that met the QoS target in the total query and showed the 
results in Fig. 18. Then we measured the goodput during co-
located applications execution, and the results were shown 
in Fig. 19.

(2)Goodput = throughput × yield.

In most cases, High-Goodput can be achieved using Ark-
GPU, which improves the query execution yield while main-
taining almost the same QPS as the k8s-native, thus achieving 
better goodput compared to the MPS case. Our experiments 
demonstrate that ArkGPU can effectively improve the goodput 
of the cluster. Classification and detection applications based 
on the resnet50, ssd-mobilenet, and ssd-resnet34 networks are 
improved by an average of 111.21%, 200.86%, and 759.96% 
over MPS using ArkGPU, respectively. ArkGPU achieves 
High-Goodput for these networks by improving the QPS and 
yield of queries. For the recommendation application, the use 
of ArkGPU improves only 9.62% over the use of MPS. This is 
because the recommendation application requests fewer GPU 
computing resources, which doesn’t cause serious resource 
competition even when using MPS for resource sharing. 
For the NLP application using Bert model, using ArkGPU 
improves 1839.70% goodput over using MPS. Such a huge 

Fig. 16   QPS for each co-location pair with Non-ArkGPU and ArkGPU

Fig. 17   GPU Utilization for each co-location pair with K8s-native, Non-ArkGPU and ArkGPU
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improvement is due to the fact that Bert requires the use of a 
large amount of computing resources. Without the combined 
effect of ArkGPU’s predictor and resource limiter, a rather 
severe resource competition would occur, resulting in a query 
yield close to 0. Since ArkGPU achieves a better resource 
limitation, we improve the query yield and achieve a balance 
between QPS and yield.

To further test the representation of High-Goodput on Ark-
GPU, we deploy multiple LC and BE applications simulta-
neously and test their performance under different execution 
environments. Based on the definition of goodput mentioned 
above, the overall system goodput can be defined as the sum of 
the system’s throughput within a time slice multiplied by the 
proportion of queries that satisfy the latency requirement. The 
goodput of the system is calculated as shown in Equation 3, 
where n is the number of LC applications in this time slice.

We use the number of queries within a time slice to represent 
the throughput of the application, and the yield is expressed 
with the proportion of queries in the task that meet the QoS 
target. We submit four BE applications and four LC applica-
tions to the cluster with four NVIDIA V100s and calculate 
their goodputs. We combine the applications in Table  1 
into five groups of app-mixes, and the execution results 
are shown in Fig. 20, where the horizontal coordinates are 
the five groups of app-mixes. The specific configuration is 
shown in Table  4. The figure plots goodput for all app-mixes 
of LC and BE applications for the three configurations.

It can be noticed that the goodput of the system is 
improved by allowing resource sharing. There are still 

(3)Goodput =

n∑

i

throughputi × yieldi.

Fig. 18   Yield for each co-location pair with Non-ArkGPU and ArkGPU

Fig. 19   Goodput for each co-location pair with Non-ArkGPU and ArkGPU
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special cases, for example, the goodput using MPS sharing 
in app-mix 1 is lower than that of k8s-native. K8s-native 
brings low yield because some LC applications can’t exe-
cute on time due to the lack of support for resource sharing. 
MPS can support resource sharing, but frequent resource 
contention may reduce the throughput and yield of queries 
thus bring poor goodput. As can be seen from the figure, 
the goodput of MPS is lower in app-mix 1. Considering all 
the cases, the goodput of ArkGPU is improved by 94.98% 
on average compared to k8s-native and 38.65% on average 
compared to MPS.

5.4 � Effectiveness of ArkGPU

The core of the monitoring and adjusting scheme is a mora-
torium when the requested resources of a task exceed the 
limit. This limiting approach can cause a lag in tuning and 
thus affect the efficiency of task execution. Given these 

things, we have designed the performance adjustment unit. 
In this section, we paused the work on the adjustment unit 
and reran the test as shown in Fig. 21. We conduct experi-
ments on system using MPS, GaiaGPU, and ArkGPU, 
respectively.

In GaiaGPU, QoS violation occurs for some co-loca-
tion pairs. Among the 30 co-location pairs in GaiaGPU, 
9 pairs are affected by QoS violation. For example, when 
ssd-mobilenet and resnet50 co-location is executed, a QoS 
violation of 1.76x is reached. Using MPS does not cause 
intolerable performance impairment when co-located appli-
cations take up fewer resources and the accelerator has suf-
ficient remaining resources. In our example, the normalized 
99%-ile latency using MPS (Non-ArkGPU) is only 0.54x. 
At this point, the dynamic adjustment of the resource limiter 
becomes the bottleneck of the whole system, and different 
applications are frequently tuned during execution, which 
leads to serious QoS conflicts. Under the circumstances, the 
resource limiter will not improve the execution performance 
of the application, and it could actually cause serious perfor-
mance disruptions. Therefore, the optimization implemented 
by ArkGPU is effective. Compared to GaiaGPU, the stand-
ardized 99%-ile delay is dropped about 0.55x, meeting QoS 
targets. As can be seen from the Fig. 21, no more QoS viola-
tions occur.

5.5 � Overhead analysis

The overhead of ArkGPU mainly includes online predic-
tion and resource limitation. During scheduling, each LC 
application needs to predict its resource usage. We have 
measured that this delay is usually within 5ms, which is 

Table 4   Configuration of 5 app-mixes

app-mix Configuration

app-mix1 res50+ssd-mob+ssd-res34+bert
res50+res101+vgg16+vgg19

app-mix2 res50+ssd-mob+dlrm+bert
res50+res152+vgg16+incep

v4

app-mix3 res50+ssd-mob+ssd-res34+dlrm
res50+res152+vgg16+vgg19

app-mix4 ssd-mob+res34+dlrm+bert
res50+res101+vgg16+vgg19

app-mix5 res50+ssd-res34+dlrm+bert
res101+res152+vgg16+vgg19

Fig. 20   Goodput for each app-mix with k8s-native, Non-ArkGPU and ArkGPU
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acceptable. For BE applications, all GPUs on the host need 
to be traversed in the secondary scheduler. For a host with 
N GPUs, the complexity is O(N). Generally, there are not 
too many GPUs on one host. According to the analysis in 
Section 4.1.3, this delay is usually within 20 ms.

The overhead during application execution comes from 
the resource limiter. It continuously detects the application 
in execution and adjusts its resource usage. So we added tun-
ing mechanisms to allocate more resources to applications 
when performance is affected.

5.6 � Discussion and future work

We implement ArkGPU on Kubernetes, and the implementa-
tion relies on Kubernetes’ scheduler extensions and device 
plugin mechanism. One possible effort is to make ArkGPU 
standalone so that it can run on universal cloud platforms. 
During the execution of the prediction, we predict the maxi-
mum resources used by the application, which somewhat 
causes a waste of resources. Since the resource usage of deep 
learning applications follows a certain pattern, we would like 
to implement a dynamic prediction of resource utilization in 
order to limit resources more accurately.

6 � Conclusion

We propose ArkGPU, which improves the throughput of 
the cluster, ensures High-Goodput and guarantees that the 
services co-located on a single GPU can meet QoS require-
ments. To achieve this goal, ArkGPU predicts the resource 
utilization of LC applications and supports LC and BE appli-
cations share the resources of the same GPU in order to 

improve the system throughput while guaranteeing the good-
put on the system. It is experimentally proved that ArkGPU 
achieves High-Goodput. Compared to the shared solution 
using MPS, the goodput of co-located pairs implemented 
using ArkGPU is improved by 584.27% on average. We 
deploy multiple applications simultaneously on ArkGPU, in 
this case, goodput is improved by 94.98% compared to k8s 
native and 38.65% compared to MPS. As a result, ArkGPU 
achieves High-Goodput.
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