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Abstract
For complex problems in scientific computing, parallel computing is almost the only way to solve them, in which global 
reduction is one of the most frequently used operations. Due to the existence of floating-point rounding errors, the existing 
global reduction algorithm may result in inaccurate or different between two runs, which are difficult to meet the needs of 
complex applications. Since the communication cost of RingAllreduce is a constant, independent of the number of 
processes, it is an effective algorithm when a large amount of data needs to be communicated. However, it faces the same 
problem as the general global reduction operation, and it is necessary to develop a high-precision RingAllreduce algo-
rithm. In this paper, by combining double-double arithmetic and RingAllreduce algorithm, we propose a high-precision 
RingAllreduce algorithm, called ddRingAllreduce algorithm. The theoretical error of the proposed algorithm is 
analyzed and the compact error bounds are derived. We have carried out a large number of parallel numerical experiments 
and obtained numerical results consistent with the theoretical analysis, and ddRingAllreduce is accurate in the case that 
RingAllreduce is inaccurate or miscalculated. At the same time, we also analyze the relationship between the problem 
size and the cost of using double-double arithmetic through experiments, at a small scale, the ddRingAllreduce algo-
rithm can achieve higher accuracy with relatively less time overhead.

Keywords  RingAllreduce · ddRingAllreduce · Collective communication · Double-double arithmetic · High precision

1 � Introduction and motivation

In the past decade or so, there has been rapid development 
in high-performance computing. The number of supercom-
puters has been increasing and their computing speeds have 
been getting faster. High-performance computing has been 
widely used in fields such as laser fusion, oil exploration and 

weather forecasting (Xiaowen etal. 2009; Dogru etal. 2011; 
Kimura 2002), etc.

Parallel computing uses high-performance computers 
as hardware platforms to solve scientific computing prob-
lems by utilizing multiple computers working together in a 
coordinated manner. Compared to serial computing, paral-
lel computing can solve problems of the same scale in a 
shorter time without losing accuracy, or solve larger-scale 
problems in the same amount of time. In large-scale paral-
lel processing computers, MPI (The MPI 2008) (message 
passing interface) is currently the most widely used parallel 
programming interface.

Message passing interface is a message-passing paral-
lel programming technique. The MPI standard defines a set 
of portable programming interfaces, and there are several 
major implementations of MPI interfaces, such as OpenMPI, 
MPICH, IntelMPI and MVAPICH. They are implemented 
according to the MPI interface standard with different inter-
nal implementations. MPI_Allreduce is a global reduction 
operation in MPI, which is equivalent to first performing 
MPI_Reduce, and then performing MPI_Bcast. MPI-defined 
reduction operations include sum, dot product, maximum 
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value, minimum value, maximum value and its position, 
minimum value and its position, etc. MPI_Reduce allows 
all processes in a communication group to participate in 
the reduction operation on the same variable and output 
the reduced result to a specified process. Generally, the 
master process has the reduced result. MPI_Scatter distrib-
utes vector data to each process. Therefore, compared to 
MPI_Reduce, MPI_Allreduce has reduced results for each 
process, while MPI_Reduce has reduced results only for the 
specified process.

When using computers with floating-point operations, 
some numerical problems arise. First, computers use binary 
to store floating-point numbers, and floating-point opera-
tions produce rounding errors, so the calculated results devi-
ate from the real results, especially when the results of the 
previous operation are used in subsequent operations, there 
is an accumulation of rounding errors, which can lead to 
unreliable results in some cases. Second, the floating-point 
addition does not satisfy the associative law, and when par-
allel computation uses different number of processes to do 
the reduction operation, it may produce different results, i.e., 
non-reproducible results. To address the above phenomena, 
it is a proven way to study the numerical algorithms and 
implementations for high precision.

The all-reduce operation combines values from all pro-
cesses and distributes the results to all processes. It is com-
monly used in parallel computing. In the MPI standard (The 
MPI 2008), the routine for this operation is MPI_Allreduce. 
Currently, the most widely used all-reduce scheme is the 
butterfly-like algorithm (Rabenseifner 2004; Rabenseifner 
and Traff 2004; van de Geijn 1994). When the network can 
support the butterfly communication pattern without conten-
tion, this algorithm is optimal both in the latency term (using 
the minimum number of communication rounds needed) and 
in the bandwidth term. The problem with the butterfly-like 
algorithm is that the butterfly communication pattern can 
cause network contention in many contemporary clusters. 
Therefore, Patarasuk and Xin implement an effective all-
reduce operation for large data sizes. The ring-based all-
reduce operation they proposed is bandwidth-optimal (Pata-
rasuk and Yuan 2009), the communication overhead of the 
RingAllreduce algorithm is a constant and independ-
ent of the number of processes. However, in the presence 
of rounding errors, the reduction result of the RingAll-
reduce algorithm may cause the above-mentioned accu-
racy problems.

Zhou (1980) proposed a calculation formula for the rela-
tionship between computer word length, speed, and mem-
ory matching by establishing a probability model for the 
accumulation of computer rounding errors, which was an 
early research on floating-point rounding errors in China. If 

the high-precision summation algorithm is not used, some 
applications will be inaccurate or incorrect. Demmel et al. 
proposed a fast and accurate floating-point summation algo-
rithm in Demmel and Hida (2004) and applied it to computa-
tional geometry. They proposed a fast reproducible floating-
point summation algorithm in Demmel and Nguyen (2013), 
after which they proposed a parallel reproducible summation 
algorithm in Demmel and Nguyen (2015) based on the algo-
rithm of Demmel and Nguyen (2013). Higham’s monograph 
(Higham 2002) made a very comprehensive introduction to 
the accuracy and stability of numerical algorithms. They 
proposed a class of fast and accurate high-precision floating-
point summation algorithms in Blanchard et al. (2020), and 
also performed some theoretical analysis. Rump proposed a 
variety of high-precision summation algorithms, and made 
a very detailed theoretical analysis of them, such as (Rump 
et al. 2008a, b; Rump 2009). Muller’s monograph (Muller 
etal. 2010) introduces the relevant knowledge of floating-
point arithmetic in great detail. We published an article (Lei 
et al. 2021) with reference to Rump’s work, proposing a new 
fast parallel high-precision summation algorithm, which is 
based on MPI_Allreduce high-precision, and carried out the-
oretical analysis and experimental verification on it. We also 
implemented a reproducible BiCGSTAB (Lei etal. 2023) 
based on Demmel’s ReproBLAS (Ahrens etal. 2020) and 
Riakymch’s ExBLAS (Iakymchuk etal. 2015).

The remaining sections of this paper are structured as 
follows: In Sect. 1, we provide an explanation of the sym-
bolic representation and introduce the RingAllreduce 
algorithm. In Sect. 3, we introduce the double-double format 
and its basic operations (Li et al. 2002; Hida etal. 2001). 
Next, we propose our high-precision RingAllreduce 
algorithm, which combines the double-double format and 
the RingAllreduce algorithm. We also analyzed the 
error bounds of the proposed algorithm, which allows us to 
confirm that it achieves approximate double-double preci-
sion results. In Sect. 4, we present the experimental results, 
compare the accuracy and performance of the RingAll-
reduce algorithm, and verify that the theoretical error 
bound is tight. Finally, we conclude the paper in Sect. 5 and 
suggest some future work.

2 � RingAllreduce algorithm

2.1 � Notation

In this section, the meaning of the symbols used in the paper 
is introduced, as shown in Table 1, which the first column is 
the symbol, and the second column indicates the meaning 
it represents.
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2.2 � RingAllreduce algorithm

In the RingAllreduce algorithm, the processes are 
arranged in a logical ring. Each process should have a left 
neighbor and a right neighbor, it will only ever send data to 
its right neighbor, and receive data from its left neighbor. 
The algorithm proceeds in two steps: first, a scatter-reduce, 
and then, an allgather. In the scatter-reduce step, the pro-
cesses will exchange data such that every process ends up 
with a chunk of the final result. In the allgather step, the 
processes will exchange those chunks such that all processes 
end up with the complete final result.

Let the N processes be P0,P1,… ,PN−1 , using the 
RingAllreduce algorithm, the scatter-reduce opera-
tion is performed as follows: Assuming each process has 
K values, first, the K values in each process is partitioned 
into N chunks, all chunks having ⌈K

N
⌉ values except the last 

chunk, which has a chunk size of K − (N − 1)⌈K

N
⌉ . Let us 

number the chunks by chunk0, chunk1,… , chunkN−1 . The 
scatter-reduce operation is carried out by performing the 
logical ring pattern N − 1 iterations.

We use a specific example to illustrate the scatter-
reduce step: Suppose we have three processes, in the first 
iteration, the chunks sent and received by the three pro-
cesses are shown in Table 2. After each process receives 
the data, it performs a reduction operation on the received 
data chunk with its corresponding data chunk (the chunk 
with the same chunk index), and replaces its own data 
with the (partial) reduction results. Figure 1 shows that 
the scatter-reduce step is implemented using three logical 
rings of processes.

After the scatter-reduce step is complete, every pro-
cess has a chunk are the final results which include con-
tributions from all the processes. In order to complete the 
all-reduce operation, the processes must exchange those 
chunks, so that all processes have all the necessary results.

The allgather proceeds identically to the scatter-reduce 
(with N − 1 iterations of sends and receives), except 
instead of accumulating values the processes receive, they 
simply overwrite the chunks.

The RingAllreduce algorithm pseudocode is shown 
in Listing 1.

Table 1   Notation meaning

Symbol Meaning

N Total number of processes
P
i

ith process
K Actual array length per process
n Number of sums
ℕ Set of natural numbers
p Vector of sums

Table 2   Scatter-reduce data 
transfers

Process Send Receive

P
0

chunk
0

chunk
2

P
1

chunk
1

chunk
1

P
2

chunk
2

chunk
0

Fig. 1   Logical ring scatter-
reduce algorithm
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1 const size_t segment_size = length / size;
2 const size_t recv_from = (rank - 1 + size) % size;
3 const size_t send_to = (rank + 1) % size;
4 //scatter -reduce
5 for (int i = 0; i < size - 1; i++) {
6 int recv_chunk = (rank - i - 1 + size) % size;
7 int send_chunk = (rank - i + size) % size;
8 datatype* segment_send = &( output[segment_ends[

send_chunk] - segment_sizes[send_chunk ]]);
9

10 MPI_Irecv(buffer , segment_sizes[recv_chunk],
datatype , recv_from , 0, MPI_COMM_WORLD , &recv_req)
;

11

12 MPI_Send(segment_send , segment_sizes[send_chunk],
datatype , send_to , 0, MPI_COMM_WORLD);

13

14 datatype *segment_update = &( output[segment_ends[
recv_chunk] - segment_sizes[recv_chunk ]]);

15

16 MPI_Wait (&recv_req , &recv_status);
17

18 reduce(segment_update , buffer , segment_sizes[
recv_chunk ]);

19 }
20 // allgather
21 // allgather is similar to scatter -reduce except

without reduce

Listing 1: RingAllreduce.

Next we analyze the communication cost of RingAll-
reduce algorithm. We assume that the number of data 
owned by each process is K, in the RingAllreduce 
algorithm, each of the N processes will send and receive 
values N − 1 times for the scatter-reduce, and N − 1 times 
for the allgather. Each time, the processes will send ⌈K

N
⌉ 

values. Therefore, the total amount of data transferred to 
and from every process is

which, crucially, is independent of the number of processes.
Baidu has successfully applied the RingAllreduce 

algorithm to deep learning training, they also released 
their RingAllreduce algorithm implementation as a 
library https://​github.​com/​baidu-​resea​rch/​baidu-​allre​duce.

Next, we analyze the error bounds of the RingAll-
reduce algorithm, following (Higham 2002), we define 
�n as

Data Transferred = 2(N − 1)
⌈
K

N

⌉
,

when using �n , we implicitly assume that n� < 1.
Let p = (p1,… , pn)

T ∈ �
n . Then it holds that (Higham 

2002)

Note that (1) is valid for any order of addition in the 
summation.

Let us denote s and S by

The condition number of the summation of the vector p is 
defined by

�n ∶=
n�

1 − n�
, n ∈ ℕ,

(1)s̃ ∶= fl

(
n∑

i=1

pi

)
⇒∣ s̃ −

n∑

i=1

pi ∣≤ 𝛾n−1

n∑

i=1

∣ pi ∣.

s ∶=

n∑

i=1

pi, S ∶=

n∑

i=1

∣ pi ∣.

https://github.com/baidu-research/baidu-allreduce
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The error bounds of the result ��� by RingAllreduce 
are given as follows:

Theorem  1  Let ��� be the result  obtained by 
������������� , then

Moreover, if s ≠ 0 , then

From the error bounds, we can see that the relative error 
of a summation problem is related to both the number of 
summations and the condition number of the problem. This 
theorem allows us to assess the accuracy of the RingAll-
reduce algorithm. Assuming that we need to find the sum 
of 100 numbers, if the condition number of the summation 
problem is 1013 order of magnitude, then the relative error 
between the result given by the algorithm and the exact solu-
tion is 1.

3 � ddRingAllreduce algorithm

3.1 � Double‑double formats

In this section, we use the same notation as in Yamanaka 
et  al. (2008). Let �  be a set of floating-point numbers. 
Throughout this paper, we assume floating-point arith-
metic adhering to IEEE standard 754 (ANSI 2019). Let 

cond

(
n∑

i=1

pi

)
∶=

S

∣ s ∣
, s ≠ 0.

(2)��� − s ≤ �n−1S.

(3)
��� − s

s
≤ �n−1cond

(∑
pi

)
.

p = (pi) ∈ �
n and let fl(⋅) be the result of floating-point oper-

ations, where all operations inside parentheses are executed 
by ordinary floating-point arithmetic in rounding-to-nearest. 
We denote by u the machine epsilon. In IEEE standard 754 
double precision � = 2−53.

The basic double-double precision arithmetic operation 
is composed of some algorithms in the QD multi-part for-
mat software library (Hida etal. 2001) developed by Hida, 
Li and Bailey. It can make the numerical calculation result 
approximate to double-double precision.

Suppose a double-double precision number is x, which 
is represented by the combination of two non-overlapping 
double precision floating-point numbers xh and xl , that is, 
x = xh + xl , and satisfies ∣ xl ∣≤

1

2
ulp(xh) ≤ � ∣ xh ∣ , the defi-

nition of ulp(xh) is the gap between the two nearest floating-
point numbers around a real number xh (Jiang 2013).

The following describes the addition of double-double 
precision. We first introduce the error-free transformation 
algorithm for the addition of two floating-point numbers, 
assuming that a and b are two floating-point numbers and 
fl(a op b) ∈ �  , according to the fundamental properties of 
floating-point arithmetic, the error of a floating-point num-
ber is still a floating-point number. Therefore, we can obtain:

An error-free transformation is a transformation that con-
verts a floating-point number pair (a, b) into another float-
ing-point number pair (x, y), where y is the error. After accu-
mulating the errors, the result is compensated back to its 
original value.

x = f l (a ± b) ⇒ a ± b = x + y, y ∈ � ,

x = f l (a × b) ⇒ a × b = x + y, y ∈ � .

Algorithm 1 FastTwoSum [5]

Input: a, b
Output: x, y
x = fl(a+ b)
q = fl(x− a)
y = fl(b− q)
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FastTwoSum is an error-free transformation used for 
adding two floating-point numbers, which requires the con-
dition ∣ a ∣≥∣ b ∣ to be satisfied.

Algorithm 2 TwoSum [11]

Input: a, b
Output: x, y
x = fl(a+ b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

TwoSum has no conditional requirements and is still valid 
in the case of underflow.

Algorithm 3 Split [5]:

Input: a
Output: x, y
c = factor × a %factor = 2s + 1
x = c− (c− a)
y = a− x

The Split algorithm divides a floating-point number a 
with a precision of m into two floating-point numbers with a 
precision of up to s − 1 digits, where s ∶= ⌈m∕2⌉.

Algorithm 4 TwoProd [5]

Input: a, b
Output: x, y
x = a× b
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = a2 × b2 − (((x− a1 × b1)− a2 × b1)− a1 × b2)

TwoProd is an error-free transformation algorithm for 
floating-point number multiplication proposed by Dekker 
(1971).

Algorithm 5 add dd dd [5]

Input: a = (ah, al), b = (bh, bl)
Output: r = (rh, rl)

[sh, sl] = TwoSum(ah, bh)
[th, tl] = TwoSum(al, bl)
sl = sl + th
[th, sl] = FastTwoSum(sh, sl)
tl = tl + sl
rh, rl] = FastTwoSum(th, tl)
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add_dd_dd is the accumulation of 2 double-double type 
numbers. The application of double-double arithmetic can 
approximate a floating-point number with a precision (man-
tissa) of 106 bits, which satisfies the following properties (Li 
et al. 2002):

where a and b are in double-double format, op ∈ {+,−,×,÷} , 
satisfy

where �dd = 2�2 = 2−105.

3.2 � ddRingAllreduce algorithm

In the RingAllreduce algorithm, we use double-
double arithmetic for the reduce operation, so we get a 
high-precision RingAllreduce  algorithm, called 
ddRingAllreduce. First, we convert the input data 
to double-double type. In the scatter-reduce stage, we use 
Algorithm 5 to add the two numbers of the adjacent pro-
cess, and then send the obtained double-double result to 
the next process, which is say, we add the input data in the 
double-double format. After the final round of iteration 
is completed, we round the double-double result to the 
double type and then enter the allgather stage.

fl (a op b) = (a op b)(1 + �),

∣ � ∣⩽ udd, op ∈ {+,−}; ∣ � ∣⩽ 2udd, op ∈ {×,÷},

Theorem  2  Let ��� be the result  obtained by 
������������� , then

Moreover, if s ≠ 0 , then

Proof  The sum of two numbers in p is denoted as 
Ti = pk + pj , the sum T̂i of floating-point calculations 
satisfies

The local error introduced in calculating T̂i is 𝛿iT̂i , the over-
all error is the sum of the local errors (since summation is 
a linear process), therefore, we can get the overall error as

Since ∣ �i ∣⩽ �dd , we can get

and have ∣ T̂i ∣⩽
∑n

j=1
∣ pj ∣ + O(�dd) for each i, therefore, we 

can get the upper bound

(4)∣ ��� − s ∣⩽
(n − 1)�dd

1 − (n − 1)�dd
S.

(5)∣
��� − s

s
∣⩽

(n − 1)�dd

1 − (n − 1)�dd
cond

(∑
pi

)
.

T̂i =
pk + pj

1 + 𝛿i
, ∣ 𝛿i ∣⩽ �dd, i = 1 ∶ n − 1.

En ∶= ��� − s =

n−1∑

i=1

𝛿iT̂i.

∣ En ∣⩽ �dd

n−1∑

i=1

∣ T̂i ∣,
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Fig. 2   Left: a Relative error image. Right: b CPU time image
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Then according to the series expansion, we can get

Dividing both sides by s yields formula (5). 	� ◻

∣ En ∣⩽ (n − 1)�dd

n∑

i=1

∣ pi ∣ + O(�dd
2).

∣ ��� − s ∣⩽
(n − 1)�dd

1 − (n − 1)�dd
S.

4 � Numerical results

The following experiment are performed on Sugon HPC 
cluster with 172 compute nodes (16 accelerator nodes), con-
sisting of two 12-core processors each (24 cores per node). 
The MPI library used for this experiment is OpenMPI. 
Accuracy is evaluated by relative error e =∣ ��� − s ∣ ∕ ∣ s ∣ , 
where ��� is an estimate of s. s is the exact value calculated 
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Fig. 3   Left: a Relative error image. Right: b CPU time image
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by the MPFR library (Fousse etal. 2007) or known, MPFR 
is an arbitrary precision numerical library written in C lan-
guage. The following are some explanations for the three 
calculation examples. In the three calculation examples, the 
data to be summed are serious positive and negative can-
cellations, and the final accurate values are all small. Such 
problems are prone to large condition numbers. It can be 
seen from the definition of the condition number that for 
this type of problem, the denominator in the calculation for-
mula of the condition number for the summation problem is 
small while the numerator is relatively large. Therefore, the 
condition number is large, and ordinary recursive summa-
tion algorithms may not be able to provide accurate results. 
High-precision algorithms are needed instead.

4.1 � Example 1

We use Algorithm 6.1 in Ogita et al. (2005) to generate 
arbitrarily ill-conditioned sum data. First generating ill-
conditioned dot product data, the ill-conditioned sum data 
length is 2n generated from the dot product data of length 
n, and then the algorithm TwoProd is used to convert the 
ill-conditioned dot product data of length n to the ill-condi-
tioned sum data of length 2n through error-free transforma-
tion. Finally, randomly disturbing 2n summation data can 
generate ill-conditioned sum data with different condition 
numbers.

The following are some experimental results and analysis 
of experimental results.

Figure 2a shows the relative error graph for a total data 
size of 200, using 200 processes, with each process having 

only one number. The reason for doing this is that it allows 
us to calculate the exact values of these 200 numbers, and 
thus we can calculate the relative error between the results 
obtained by our algorithm and the exact values. In practical 
applications, each process has multiple chunks, and each 
chunk has multiple values. Then each chunk performs a 
global reduction operation. Our algorithm and implementa-
tion can perform this operation, but we cannot calculate the 
exact value after each chunk reduction, so we cannot calcu-
late the relative error of our proposed algorithm. Therefore, 
we use one number per process to verify the accuracy of 
our algorithm. In the later examples comparing accuracy, 
we use this approach.

Figure 2a shows the relative error graph for two algo-
rithms. The horizontal axis represents the condition number 
of the summation problem, while the vertical axis represents 
the relative error. The exact value of the summation problem 
is calculated using the MPFR library. From Fig. 2a, it can 
be observed that the ddRingAllreduce algorithm pro-
vides results of the same order of magnitude as the machine 
precision, and numerical calculations cannot be expected 
to yield results more accurate than the machine precision. 
However, the relative error of the RingAllreduce algo-
rithm increases as the condition number of the summation 
problem increases. When the condition number of the sum-
mation problem is around 1015 , the RingAllreduce algo-
rithm gives completely incorrect results. Based on Fig. 2a, 
we can conclude that the ddRingAllreduce algorithm is 
more accurate than the RingAllreduce algorithm when 
the condition number of the summation problem is large.
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Figure 2b shows the CPU time graph, with 5 runs aver-
aged for each summation scale. In subsequent examples 
comparing CPU time, 5 runs are also performed and aver-
aged. The vertical axis represents CPU time. When the 
data volume exceeds 100, ddRingAllreduce is slower 
than RingAllreduce. This is because when the data 
size is less than 100, the extra computational overhead 
brought by double-double precision in ddRingAll-
reduce is overlapped by communication time, so the 
additional floating-point operation overhead does not 
increase CPU time. In Fig. 2b, for the five summation 
scales, ddRingAllreduce algorithm is on average 
1.0656 times slower than RingAllreduce algorithm.

4.2 � Example 2

We use the same data generation method as the 
ReproBLAS library (Ahrens et  al.  2015), i .e. , 
pi = sin(2.0 × � × (mpi_rank ÷ mpi_size − 0.5)) . Each pro-
cess generates a number, where mpi_rank represents the 
process number and mpi_size represents the total number 
of processes.

Figure  3a shows the relative error image, with the 
number of summing data on the horizontal axis. ddRin-
gAllreduce provides machine-precision-level results 
for all five different scales, while the results obtained 
by the RingAllreduce algorithm are incorrect for 
all five scales. From the image, it can be seen that the 

ddRingAllreduce algorithm is more accurate than 
the RingAllreduce algorithm. Figure 3b shows the 
CPU time image. Similar to Example 1, when the num-
ber of summing data is less than 100, the two algorithms 
have similar times. For the five different summing scales, 
the average time of ddRingAllreduce algorithm is 
1.0906 times slower than that of the RingAllreduce 
algorithm.

4.3 � Example 3

We use Algorithm 4.2 in Yamanaka et al. (2008) to generate 
arbitrarily ill-conditioned sum data. Convert the ill-condi-
tioned dot product data into ill-conditioned sum data in the 
same way as in Example 1.

In this example, we will incorporate the use of __float128 
in the scatter-reduce phase of RingAllreduce as part of 
the experiment, we refer to it as FP128RingAllreduce.

Figure 4a shows the relative error image. The accurate 
result of the summing problem is cond−1 . From the image, 
it can be seen that the ddRingAllreduce algorithm can 
handle summing problems with larger condition numbers, 
and is more accurate than the RingAllreduce algo-
rithm for summing problems with larger condition numbers. 
FP128RingAllreduce is the most accurate algorithm 
among these three, because FP128RingAllreduce is 
128-bit while ddRingAllreduce is only 106-bit. Fig-
ure 4b shows the CPU time image. Similar to Examples 1 
and 2, when the number of summing data is less than 100, 
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the two algorithms have similar times. For the five differ-
ent summing scales, the average time of the ddRingAll-
reduce algorithm is 1.1238 times slower than that of the 
RingAllreduce algorithm. FP128RingAllreduce is 
on average 1.0829 times faster than ddRingAllreduce, 
but 1.0378 times slower than RingAllreduce. __float128 
is supported by some compilers such as GCC, MPIC++, 
while double-double is a software simulation that requires 
more floating-point operations. Therefore, FP128Rin-
gAllreduce is faster than ddRingAllreduce. How-
ever, not all compilers support __float128 , for example, 
NVCC does not support it. Therefore, when high precision 
is required, if the compiler supports __float128 , we recom-
mend using __float128 supported by the compiler. If the 
compiler does not support it, then use double-double.

Next, we evaluate how tight the error bound for ddRin-
gAllreduce in Theorem 2 is in practice. To do this, we 
set n = 200 and vary the condition number cond from 1 to 
10100 in Algorithm 4.2 (Yamanaka et al. 2008), the exact 
result of sum is equal to cond−1 . The error bounds (3) and 
true relative errors of the results obtained by RingAll-
reduce are displayed in Fig. 5a. The error bounds (5) and 
true relative errors of the results obtained by ddRingAll-
reduce are displayed in Fig. 5b. In Fig. 5, the lines labeled 
‘exp.’ denote the experimental error, the lines labeled ‘est.’ 
denote the error bounds. It can be seen from this experiment 
that the theoretical error bounds of RingAllreduce and 
ddRingAllreduce are tight.

4.4 � Performance comparison for large‑scale 
problems

In this section, we compare the performance of RingAll-
reduce, FP128RingAllreduce, and ddRingAll-
reduce on two large-scale problems. The array size of 
each process is K = 100, 000 and K = 1, 000, 000 , respec-
tively. Each element value is set to 1.5, and the number 
of nodes varies from 1 to 5 (i.e., the number of processes 
ranges from 24 to 120).

Figure  6 shows the comparison results. Figure  6a 
shows the experiment where the array size of each pro-
cess is K = 100, 000 . The average time of the ddRin-
gAllreduce algorithm is 1.3786 times slower than 
that of the RingAllreduce algorithm. FP128Rin-
gAllreduce is on average 1.1130 times faster than 
ddRingAllreduce , but 1.2385 times slower than 
RingAllreduce . Figure  6b shows the experiment 
with K = 1, 000, 000 . The average time of the ddRin-
gAllreduce algorithm is 1.5863 times slower than 
that of the RingAllreduce algorithm. FP128Rin-
gAllreduce is on average 1.0438 times faster than 
ddRingAllreduce , but 1.5198 times slower than 

RingAllreduce. On larger-scale problems, since the 
ddRingAllreduce  algorithm uses double-double 
arithmetic and adds more floating-point operations, it is 
slower than the RingAllreduce algorithm.

5 � Conclusions and future work

In this paper, we address the problem of inaccuracies in 
the RingAllreduce algorithm, a specific algorithm 
for global reduction operations. We propose a high-pre-
cision version of the RingAllreduce algorithm called 
ddRingAllreduce, which we analyze and verify to 
achieve higher accuracy than RingAllreduce algo-
rithm. For large condition number summation problems, 
the ddRingAllreduce algorithm performs better in 
terms of accuracy than that of RingAllreduce algo-
rithm, and in practice, the proposed algorithm often yields 
more accurate results than the theoretical error bounds. 
The ddRingAllreduce algorithm incurs less time 
overhead for small-scale problems, but it requires some 
overhead for large-scale problems.

For the future work, one can implement other high-
precision reduction operations based on the RingAll-
reduce algorithm, such as multiplication. Or you can 
implement high-precision versions of other MPI_All-
reduce algorithms, such as the butterf ly algorithm. 
Although high-precision algorithms offer higher accuracy, 
they require more floating-point calculations and commu-
nication, so balancing computation speed and accuracy is 
always a research direction.
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