
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing (2023) 5:245–257
https://doi.org/10.1007/s42514-023-00150-2

REGULAR PAPER

ddRingAllreduce: a high‑precision RingAllreduce algorithm

Xiaojun Lei1 · Tongxiang Gu2 · Xiaowen Xu2,3

Received: 8 March 2023 / Accepted: 24 April 2023 / Published online: 5 July 2023
© China Computer Federation (CCF) 2023

Abstract
For complex problems in scientific computing, parallel computing is almost the only way to solve them, in which global
reduction is one of the most frequently used operations. Due to the existence of floating-point rounding errors, the existing
global reduction algorithm may result in inaccurate or different between two runs, which are difficult to meet the needs of
complex applications. Since the communication cost of RingAllreduce is a constant, independent of the number of
processes, it is an effective algorithm when a large amount of data needs to be communicated. However, it faces the same
problem as the general global reduction operation, and it is necessary to develop a high-precision RingAllreduce algo-
rithm. In this paper, by combining double-double arithmetic and RingAllreduce algorithm, we propose a high-precision
RingAllreduce algorithm, called ddRingAllreduce algorithm. The theoretical error of the proposed algorithm is
analyzed and the compact error bounds are derived. We have carried out a large number of parallel numerical experiments
and obtained numerical results consistent with the theoretical analysis, and ddRingAllreduce is accurate in the case that
RingAllreduce is inaccurate or miscalculated. At the same time, we also analyze the relationship between the problem
size and the cost of using double-double arithmetic through experiments, at a small scale, the ddRingAllreduce algo-
rithm can achieve higher accuracy with relatively less time overhead.

Keywords RingAllreduce · ddRingAllreduce · Collective communication · Double-double arithmetic · High precision

1 Introduction and motivation

In the past decade or so, there has been rapid development
in high-performance computing. The number of supercom-
puters has been increasing and their computing speeds have
been getting faster. High-performance computing has been
widely used in fields such as laser fusion, oil exploration and

weather forecasting (Xiaowen etal. 2009; Dogru etal. 2011;
Kimura 2002), etc.

Parallel computing uses high-performance computers
as hardware platforms to solve scientific computing prob-
lems by utilizing multiple computers working together in a
coordinated manner. Compared to serial computing, paral-
lel computing can solve problems of the same scale in a
shorter time without losing accuracy, or solve larger-scale
problems in the same amount of time. In large-scale paral-
lel processing computers, MPI (The MPI 2008) (message
passing interface) is currently the most widely used parallel
programming interface.

Message passing interface is a message-passing paral-
lel programming technique. The MPI standard defines a set
of portable programming interfaces, and there are several
major implementations of MPI interfaces, such as OpenMPI,
MPICH, IntelMPI and MVAPICH. They are implemented
according to the MPI interface standard with different inter-
nal implementations. MPI_Allreduce is a global reduction
operation in MPI, which is equivalent to first performing
MPI_Reduce, and then performing MPI_Bcast. MPI-defined
reduction operations include sum, dot product, maximum

 * Tongxiang Gu
 txgu@iapcm.ac.cn

 Xiaojun Lei
 leixiaojun19@gscaep.ac.cn

 Xiaowen Xu
 xwxu@iapcm.ac.cn

1 Graduate School of Chinese Academy of Engineering
Physics, 6 Huayuan Rd, Beijing 100193, China

2 Laboratory of Computational Physics, Institute of Applied
Physics and Computational Mathematics, 6 Huayuan Rd,
Beijing 100088, China

3 CAEP Software Center for Numerical Simulation, 6 Huayuan
Rd, Beijing 100088, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00150-2&domain=pdf

246 X. Lei et al.

1 3

value, minimum value, maximum value and its position,
minimum value and its position, etc. MPI_Reduce allows
all processes in a communication group to participate in
the reduction operation on the same variable and output
the reduced result to a specified process. Generally, the
master process has the reduced result. MPI_Scatter distrib-
utes vector data to each process. Therefore, compared to
MPI_Reduce, MPI_Allreduce has reduced results for each
process, while MPI_Reduce has reduced results only for the
specified process.

When using computers with floating-point operations,
some numerical problems arise. First, computers use binary
to store floating-point numbers, and floating-point opera-
tions produce rounding errors, so the calculated results devi-
ate from the real results, especially when the results of the
previous operation are used in subsequent operations, there
is an accumulation of rounding errors, which can lead to
unreliable results in some cases. Second, the floating-point
addition does not satisfy the associative law, and when par-
allel computation uses different number of processes to do
the reduction operation, it may produce different results, i.e.,
non-reproducible results. To address the above phenomena,
it is a proven way to study the numerical algorithms and
implementations for high precision.

The all-reduce operation combines values from all pro-
cesses and distributes the results to all processes. It is com-
monly used in parallel computing. In the MPI standard (The
MPI 2008), the routine for this operation is MPI_Allreduce.
Currently, the most widely used all-reduce scheme is the
butterfly-like algorithm (Rabenseifner 2004; Rabenseifner
and Traff 2004; van de Geijn 1994). When the network can
support the butterfly communication pattern without conten-
tion, this algorithm is optimal both in the latency term (using
the minimum number of communication rounds needed) and
in the bandwidth term. The problem with the butterfly-like
algorithm is that the butterfly communication pattern can
cause network contention in many contemporary clusters.
Therefore, Patarasuk and Xin implement an effective all-
reduce operation for large data sizes. The ring-based all-
reduce operation they proposed is bandwidth-optimal (Pata-
rasuk and Yuan 2009), the communication overhead of the
RingAllreduce algorithm is a constant and independ-
ent of the number of processes. However, in the presence
of rounding errors, the reduction result of the RingAll-
reduce algorithm may cause the above-mentioned accu-
racy problems.

Zhou (1980) proposed a calculation formula for the rela-
tionship between computer word length, speed, and mem-
ory matching by establishing a probability model for the
accumulation of computer rounding errors, which was an
early research on floating-point rounding errors in China. If

the high-precision summation algorithm is not used, some
applications will be inaccurate or incorrect. Demmel et al.
proposed a fast and accurate floating-point summation algo-
rithm in Demmel and Hida (2004) and applied it to computa-
tional geometry. They proposed a fast reproducible floating-
point summation algorithm in Demmel and Nguyen (2013),
after which they proposed a parallel reproducible summation
algorithm in Demmel and Nguyen (2015) based on the algo-
rithm of Demmel and Nguyen (2013). Higham’s monograph
(Higham 2002) made a very comprehensive introduction to
the accuracy and stability of numerical algorithms. They
proposed a class of fast and accurate high-precision floating-
point summation algorithms in Blanchard et al. (2020), and
also performed some theoretical analysis. Rump proposed a
variety of high-precision summation algorithms, and made
a very detailed theoretical analysis of them, such as (Rump
et al. 2008a, b; Rump 2009). Muller’s monograph (Muller
etal. 2010) introduces the relevant knowledge of floating-
point arithmetic in great detail. We published an article (Lei
et al. 2021) with reference to Rump’s work, proposing a new
fast parallel high-precision summation algorithm, which is
based on MPI_Allreduce high-precision, and carried out the-
oretical analysis and experimental verification on it. We also
implemented a reproducible BiCGSTAB (Lei etal. 2023)
based on Demmel’s ReproBLAS (Ahrens etal. 2020) and
Riakymch’s ExBLAS (Iakymchuk etal. 2015).

The remaining sections of this paper are structured as
follows: In Sect. 1, we provide an explanation of the sym-
bolic representation and introduce the RingAllreduce
algorithm. In Sect. 3, we introduce the double-double format
and its basic operations (Li et al. 2002; Hida etal. 2001).
Next, we propose our high-precision RingAllreduce
algorithm, which combines the double-double format and
the RingAllreduce algorithm. We also analyzed the
error bounds of the proposed algorithm, which allows us to
confirm that it achieves approximate double-double preci-
sion results. In Sect. 4, we present the experimental results,
compare the accuracy and performance of the RingAll-
reduce algorithm, and verify that the theoretical error
bound is tight. Finally, we conclude the paper in Sect. 5 and
suggest some future work.

2 RingAllreduce algorithm

2.1 Notation

In this section, the meaning of the symbols used in the paper
is introduced, as shown in Table 1, which the first column is
the symbol, and the second column indicates the meaning
it represents.

247ddRingAllreduce: a high-precision RingAllreduce algorithm

1 3

2.2 RingAllreduce algorithm

In the RingAllreduce algorithm, the processes are
arranged in a logical ring. Each process should have a left
neighbor and a right neighbor, it will only ever send data to
its right neighbor, and receive data from its left neighbor.
The algorithm proceeds in two steps: first, a scatter-reduce,
and then, an allgather. In the scatter-reduce step, the pro-
cesses will exchange data such that every process ends up
with a chunk of the final result. In the allgather step, the
processes will exchange those chunks such that all processes
end up with the complete final result.

Let the N processes be P0,P1,… ,PN−1 , using the
RingAllreduce algorithm, the scatter-reduce opera-
tion is performed as follows: Assuming each process has
K values, first, the K values in each process is partitioned
into N chunks, all chunks having ⌈K

N
⌉ values except the last

chunk, which has a chunk size of K − (N − 1)⌈K

N
⌉ . Let us

number the chunks by chunk0, chunk1,… , chunkN−1 . The
scatter-reduce operation is carried out by performing the
logical ring pattern N − 1 iterations.

We use a specific example to illustrate the scatter-
reduce step: Suppose we have three processes, in the first
iteration, the chunks sent and received by the three pro-
cesses are shown in Table 2. After each process receives
the data, it performs a reduction operation on the received
data chunk with its corresponding data chunk (the chunk
with the same chunk index), and replaces its own data
with the (partial) reduction results. Figure 1 shows that
the scatter-reduce step is implemented using three logical
rings of processes.

After the scatter-reduce step is complete, every pro-
cess has a chunk are the final results which include con-
tributions from all the processes. In order to complete the
all-reduce operation, the processes must exchange those
chunks, so that all processes have all the necessary results.

The allgather proceeds identically to the scatter-reduce
(with N − 1 iterations of sends and receives), except
instead of accumulating values the processes receive, they
simply overwrite the chunks.

The RingAllreduce algorithm pseudocode is shown
in Listing 1.

Table 1 Notation meaning

Symbol Meaning

N Total number of processes
P
i

ith process
K Actual array length per process
n Number of sums
ℕ Set of natural numbers
p Vector of sums

Table 2 Scatter-reduce data
transfers

Process Send Receive

P
0

chunk
0

chunk
2

P
1

chunk
1

chunk
1

P
2

chunk
2

chunk
0

Fig. 1 Logical ring scatter-
reduce algorithm

248 X. Lei et al.

1 3

1 const size_t segment_size = length / size;
2 const size_t recv_from = (rank - 1 + size) % size;
3 const size_t send_to = (rank + 1) % size;
4 //scatter -reduce
5 for (int i = 0; i < size - 1; i++) {
6 int recv_chunk = (rank - i - 1 + size) % size;
7 int send_chunk = (rank - i + size) % size;
8 datatype* segment_send = &(output[segment_ends[

send_chunk] - segment_sizes[send_chunk]]);
9

10 MPI_Irecv(buffer , segment_sizes[recv_chunk],
datatype , recv_from , 0, MPI_COMM_WORLD , &recv_req)
;

11

12 MPI_Send(segment_send , segment_sizes[send_chunk],
datatype , send_to , 0, MPI_COMM_WORLD);

13

14 datatype *segment_update = &(output[segment_ends[
recv_chunk] - segment_sizes[recv_chunk]]);

15

16 MPI_Wait (&recv_req , &recv_status);
17

18 reduce(segment_update , buffer , segment_sizes[
recv_chunk]);

19 }
20 // allgather
21 // allgather is similar to scatter -reduce except

without reduce

Listing 1: RingAllreduce.

Next we analyze the communication cost of RingAll-
reduce algorithm. We assume that the number of data
owned by each process is K, in the RingAllreduce
algorithm, each of the N processes will send and receive
values N − 1 times for the scatter-reduce, and N − 1 times
for the allgather. Each time, the processes will send ⌈K

N
⌉

values. Therefore, the total amount of data transferred to
and from every process is

which, crucially, is independent of the number of processes.
Baidu has successfully applied the RingAllreduce

algorithm to deep learning training, they also released
their RingAllreduce algorithm implementation as a
library https:// github. com/ baidu- resea rch/ baidu- allre duce.

Next, we analyze the error bounds of the RingAll-
reduce algorithm, following (Higham 2002), we define
�n as

Data Transferred = 2(N − 1)
⌈
K

N

⌉
,

when using �n , we implicitly assume that n� < 1.
Let p = (p1,… , pn)

T ∈ �
n . Then it holds that (Higham

2002)

Note that (1) is valid for any order of addition in the
summation.

Let us denote s and S by

The condition number of the summation of the vector p is
defined by

�n ∶=
n�

1 − n�
, n ∈ ℕ,

(1)s̃ ∶= fl

(
n∑

i=1

pi

)
⇒∣ s̃ −

n∑

i=1

pi ∣≤ 𝛾n−1

n∑

i=1

∣ pi ∣.

s ∶=

n∑

i=1

pi, S ∶=

n∑

i=1

∣ pi ∣.

https://github.com/baidu-research/baidu-allreduce

249ddRingAllreduce: a high-precision RingAllreduce algorithm

1 3

The error bounds of the result ��� by RingAllreduce
are given as follows:

Theorem 1 Let ��� be the result obtained by
������������� , then

Moreover, if s ≠ 0 , then

From the error bounds, we can see that the relative error
of a summation problem is related to both the number of
summations and the condition number of the problem. This
theorem allows us to assess the accuracy of the RingAll-
reduce algorithm. Assuming that we need to find the sum
of 100 numbers, if the condition number of the summation
problem is 1013 order of magnitude, then the relative error
between the result given by the algorithm and the exact solu-
tion is 1.

3 ddRingAllreduce algorithm

3.1 Double‑double formats

In this section, we use the same notation as in Yamanaka
et al. (2008). Let � be a set of floating-point numbers.
Throughout this paper, we assume floating-point arith-
metic adhering to IEEE standard 754 (ANSI 2019). Let

cond

(
n∑

i=1

pi

)
∶=

S

∣ s ∣
, s ≠ 0.

(2)��� − s ≤ �n−1S.

(3)
��� − s

s
≤ �n−1cond

(∑
pi

)
.

p = (pi) ∈ �
n and let fl(⋅) be the result of floating-point oper-

ations, where all operations inside parentheses are executed
by ordinary floating-point arithmetic in rounding-to-nearest.
We denote by u the machine epsilon. In IEEE standard 754
double precision � = 2−53.

The basic double-double precision arithmetic operation
is composed of some algorithms in the QD multi-part for-
mat software library (Hida etal. 2001) developed by Hida,
Li and Bailey. It can make the numerical calculation result
approximate to double-double precision.

Suppose a double-double precision number is x, which
is represented by the combination of two non-overlapping
double precision floating-point numbers xh and xl , that is,
x = xh + xl , and satisfies ∣ xl ∣≤

1

2
ulp(xh) ≤ � ∣ xh ∣ , the defi-

nition of ulp(xh) is the gap between the two nearest floating-
point numbers around a real number xh (Jiang 2013).

The following describes the addition of double-double
precision. We first introduce the error-free transformation
algorithm for the addition of two floating-point numbers,
assuming that a and b are two floating-point numbers and
fl(a op b) ∈ � , according to the fundamental properties of
floating-point arithmetic, the error of a floating-point num-
ber is still a floating-point number. Therefore, we can obtain:

An error-free transformation is a transformation that con-
verts a floating-point number pair (a, b) into another float-
ing-point number pair (x, y), where y is the error. After accu-
mulating the errors, the result is compensated back to its
original value.

x = f l (a ± b) ⇒ a ± b = x + y, y ∈ � ,

x = f l (a × b) ⇒ a × b = x + y, y ∈ � .

Algorithm 1 FastTwoSum [5]

Input: a, b
Output: x, y
x = fl(a+ b)
q = fl(x− a)
y = fl(b− q)

250 X. Lei et al.

1 3

FastTwoSum is an error-free transformation used for
adding two floating-point numbers, which requires the con-
dition ∣ a ∣≥∣ b ∣ to be satisfied.

Algorithm 2 TwoSum [11]

Input: a, b
Output: x, y
x = fl(a+ b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

TwoSum has no conditional requirements and is still valid
in the case of underflow.

Algorithm 3 Split [5]:

Input: a
Output: x, y
c = factor × a %factor = 2s + 1
x = c− (c− a)
y = a− x

The Split algorithm divides a floating-point number a
with a precision of m into two floating-point numbers with a
precision of up to s − 1 digits, where s ∶= ⌈m∕2⌉.

Algorithm 4 TwoProd [5]

Input: a, b
Output: x, y
x = a× b
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = a2 × b2 − (((x− a1 × b1)− a2 × b1)− a1 × b2)

TwoProd is an error-free transformation algorithm for
floating-point number multiplication proposed by Dekker
(1971).

Algorithm 5 add dd dd [5]

Input: a = (ah, al), b = (bh, bl)
Output: r = (rh, rl)

[sh, sl] = TwoSum(ah, bh)
[th, tl] = TwoSum(al, bl)
sl = sl + th
[th, sl] = FastTwoSum(sh, sl)
tl = tl + sl
rh, rl] = FastTwoSum(th, tl)

251ddRingAllreduce: a high-precision RingAllreduce algorithm

1 3

add_dd_dd is the accumulation of 2 double-double type
numbers. The application of double-double arithmetic can
approximate a floating-point number with a precision (man-
tissa) of 106 bits, which satisfies the following properties (Li
et al. 2002):

where a and b are in double-double format, op ∈ {+,−,×,÷} ,
satisfy

where �dd = 2�2 = 2−105.

3.2 ddRingAllreduce algorithm

In the RingAllreduce algorithm, we use double-
double arithmetic for the reduce operation, so we get a
high-precision RingAllreduce algorithm, called
ddRingAllreduce. First, we convert the input data
to double-double type. In the scatter-reduce stage, we use
Algorithm 5 to add the two numbers of the adjacent pro-
cess, and then send the obtained double-double result to
the next process, which is say, we add the input data in the
double-double format. After the final round of iteration
is completed, we round the double-double result to the
double type and then enter the allgather stage.

fl (a op b) = (a op b)(1 + �),

∣ � ∣⩽ udd, op ∈ {+,−}; ∣ � ∣⩽ 2udd, op ∈ {×,÷},

Theorem 2 Let ��� be the result obtained by
������������� , then

Moreover, if s ≠ 0 , then

Proof The sum of two numbers in p is denoted as
Ti = pk + pj , the sum T̂i of floating-point calculations
satisfies

The local error introduced in calculating T̂i is 𝛿iT̂i , the over-
all error is the sum of the local errors (since summation is
a linear process), therefore, we can get the overall error as

Since ∣ �i ∣⩽ �dd , we can get

and have ∣ T̂i ∣⩽
∑n

j=1
∣ pj ∣ + O(�dd) for each i, therefore, we

can get the upper bound

(4)∣ ��� − s ∣⩽
(n − 1)�dd

1 − (n − 1)�dd
S.

(5)∣
��� − s

s
∣⩽

(n − 1)�dd

1 − (n − 1)�dd
cond

(∑
pi

)
.

T̂i =
pk + pj

1 + 𝛿i
, ∣ 𝛿i ∣⩽ �dd, i = 1 ∶ n − 1.

En ∶= ��� − s =

n−1∑

i=1

𝛿iT̂i.

∣ En ∣⩽ �dd

n−1∑

i=1

∣ T̂i ∣,

100 1010 1020 1030 1040

cond

10-20

10-15

10-10

10-5

100

105

R
el

at
iv

e
E

rr
or

RingAllreduce
ddRingAllreduce

50 100 150 200 250

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

tim
e(

s)

RingAllreduce
ddRingAllreduce

Fig. 2 Left: a Relative error image. Right: b CPU time image

252 X. Lei et al.

1 3

Then according to the series expansion, we can get

Dividing both sides by s yields formula (5). ◻

∣ En ∣⩽ (n − 1)�dd

n∑

i=1

∣ pi ∣ + O(�dd
2).

∣ ��� − s ∣⩽
(n − 1)�dd

1 − (n − 1)�dd
S.

4 Numerical results

The following experiment are performed on Sugon HPC
cluster with 172 compute nodes (16 accelerator nodes), con-
sisting of two 12-core processors each (24 cores per node).
The MPI library used for this experiment is OpenMPI.
Accuracy is evaluated by relative error e =∣ ��� − s ∣ ∕ ∣ s ∣ ,
where ��� is an estimate of s. s is the exact value calculated

n

10
-15

10
-10

10-5

100

R
el

at
iv

e
E

rr
or

RingAllreduce
ddRingAllreduce

50 100 150 200 250 50 100 150 200 250
n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

tim
e(

s)

RingAllreduce
ddRingAllreduce

Fig. 3 Left: a Relative error image. Right: b CPU time image

10
0

10
20

10
40

10
60

10
80

10
100

cond

10-20

10-15

10-10

10-5

100

R
el

at
iv

e
E

rr
or

RingAllreduce
ddRingAllreduce
FP128RingAllreduce

50 100 150 200 250

n

0

0.5

1

1.5

2

2.5

tim
e(

s)

RingAllreduce
ddRingAllreduce
FP128RingAllreduce

Fig. 4 Left: a Relative error image. Right: b CPU time image

253ddRingAllreduce: a high-precision RingAllreduce algorithm

1 3

by the MPFR library (Fousse etal. 2007) or known, MPFR
is an arbitrary precision numerical library written in C lan-
guage. The following are some explanations for the three
calculation examples. In the three calculation examples, the
data to be summed are serious positive and negative can-
cellations, and the final accurate values are all small. Such
problems are prone to large condition numbers. It can be
seen from the definition of the condition number that for
this type of problem, the denominator in the calculation for-
mula of the condition number for the summation problem is
small while the numerator is relatively large. Therefore, the
condition number is large, and ordinary recursive summa-
tion algorithms may not be able to provide accurate results.
High-precision algorithms are needed instead.

4.1 Example 1

We use Algorithm 6.1 in Ogita et al. (2005) to generate
arbitrarily ill-conditioned sum data. First generating ill-
conditioned dot product data, the ill-conditioned sum data
length is 2n generated from the dot product data of length
n, and then the algorithm TwoProd is used to convert the
ill-conditioned dot product data of length n to the ill-condi-
tioned sum data of length 2n through error-free transforma-
tion. Finally, randomly disturbing 2n summation data can
generate ill-conditioned sum data with different condition
numbers.

The following are some experimental results and analysis
of experimental results.

Figure 2a shows the relative error graph for a total data
size of 200, using 200 processes, with each process having

only one number. The reason for doing this is that it allows
us to calculate the exact values of these 200 numbers, and
thus we can calculate the relative error between the results
obtained by our algorithm and the exact values. In practical
applications, each process has multiple chunks, and each
chunk has multiple values. Then each chunk performs a
global reduction operation. Our algorithm and implementa-
tion can perform this operation, but we cannot calculate the
exact value after each chunk reduction, so we cannot calcu-
late the relative error of our proposed algorithm. Therefore,
we use one number per process to verify the accuracy of
our algorithm. In the later examples comparing accuracy,
we use this approach.

Figure 2a shows the relative error graph for two algo-
rithms. The horizontal axis represents the condition number
of the summation problem, while the vertical axis represents
the relative error. The exact value of the summation problem
is calculated using the MPFR library. From Fig. 2a, it can
be observed that the ddRingAllreduce algorithm pro-
vides results of the same order of magnitude as the machine
precision, and numerical calculations cannot be expected
to yield results more accurate than the machine precision.
However, the relative error of the RingAllreduce algo-
rithm increases as the condition number of the summation
problem increases. When the condition number of the sum-
mation problem is around 1015 , the RingAllreduce algo-
rithm gives completely incorrect results. Based on Fig. 2a,
we can conclude that the ddRingAllreduce algorithm is
more accurate than the RingAllreduce algorithm when
the condition number of the summation problem is large.

10
0

10
20

10
40

10
60

10
80

10
100

cond

10 -20

10 0

10 20

10 40

10 60

10 80

10 100

R
el

at
iv

e
E

rr
or

RingAllreduce(exp.)

RingAllreduce(est.)

10
0

10
20

10
40

10
60

10
80

10
100

cond

10-20

100

1020

1040

1060

1080

10100

R
el

at
iv

e
E

rr
or

ddRingAllreduce(exp.)

ddRingAllreduce(est.)

Fig. 5 Error bounds and true relative errors left: a RingAllreduce, right: b ddRingAllreduce

254 X. Lei et al.

1 3

Figure 2b shows the CPU time graph, with 5 runs aver-
aged for each summation scale. In subsequent examples
comparing CPU time, 5 runs are also performed and aver-
aged. The vertical axis represents CPU time. When the
data volume exceeds 100, ddRingAllreduce is slower
than RingAllreduce. This is because when the data
size is less than 100, the extra computational overhead
brought by double-double precision in ddRingAll-
reduce is overlapped by communication time, so the
additional floating-point operation overhead does not
increase CPU time. In Fig. 2b, for the five summation
scales, ddRingAllreduce algorithm is on average
1.0656 times slower than RingAllreduce algorithm.

4.2 Example 2

We use the same data generation method as the
ReproBLAS library (Ahrens et al. 2015), i .e. ,
pi = sin(2.0 × � × (mpi_rank ÷ mpi_size − 0.5)) . Each pro-
cess generates a number, where mpi_rank represents the
process number and mpi_size represents the total number
of processes.

Figure 3a shows the relative error image, with the
number of summing data on the horizontal axis. ddRin-
gAllreduce provides machine-precision-level results
for all five different scales, while the results obtained
by the RingAllreduce algorithm are incorrect for
all five scales. From the image, it can be seen that the

ddRingAllreduce algorithm is more accurate than
the RingAllreduce algorithm. Figure 3b shows the
CPU time image. Similar to Example 1, when the num-
ber of summing data is less than 100, the two algorithms
have similar times. For the five different summing scales,
the average time of ddRingAllreduce algorithm is
1.0906 times slower than that of the RingAllreduce
algorithm.

4.3 Example 3

We use Algorithm 4.2 in Yamanaka et al. (2008) to generate
arbitrarily ill-conditioned sum data. Convert the ill-condi-
tioned dot product data into ill-conditioned sum data in the
same way as in Example 1.

In this example, we will incorporate the use of __float128
in the scatter-reduce phase of RingAllreduce as part of
the experiment, we refer to it as FP128RingAllreduce.

Figure 4a shows the relative error image. The accurate
result of the summing problem is cond−1 . From the image,
it can be seen that the ddRingAllreduce algorithm can
handle summing problems with larger condition numbers,
and is more accurate than the RingAllreduce algo-
rithm for summing problems with larger condition numbers.
FP128RingAllreduce is the most accurate algorithm
among these three, because FP128RingAllreduce is
128-bit while ddRingAllreduce is only 106-bit. Fig-
ure 4b shows the CPU time image. Similar to Examples 1
and 2, when the number of summing data is less than 100,

cores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
tim

e(
s)

RingAllreduce
ddRingAllreduce
FP128RingAllreduce

20 30 40 50 60 70 80 90 100 110 120 20 30 40 50 60 70 80 90 100 110 120

cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

tim
e(
s)

RingAllreduce
ddRingAllreduce
FP128RingAllreduce

Fig. 6 Performance comparison for large scale problems left: a K = 100, 000 , right: b K = 1, 000, 000

255ddRingAllreduce: a high-precision RingAllreduce algorithm

1 3

the two algorithms have similar times. For the five differ-
ent summing scales, the average time of the ddRingAll-
reduce algorithm is 1.1238 times slower than that of the
RingAllreduce algorithm. FP128RingAllreduce is
on average 1.0829 times faster than ddRingAllreduce,
but 1.0378 times slower than RingAllreduce. __float128
is supported by some compilers such as GCC, MPIC++,
while double-double is a software simulation that requires
more floating-point operations. Therefore, FP128Rin-
gAllreduce is faster than ddRingAllreduce. How-
ever, not all compilers support __float128 , for example,
NVCC does not support it. Therefore, when high precision
is required, if the compiler supports __float128 , we recom-
mend using __float128 supported by the compiler. If the
compiler does not support it, then use double-double.

Next, we evaluate how tight the error bound for ddRin-
gAllreduce in Theorem 2 is in practice. To do this, we
set n = 200 and vary the condition number cond from 1 to
10100 in Algorithm 4.2 (Yamanaka et al. 2008), the exact
result of sum is equal to cond−1 . The error bounds (3) and
true relative errors of the results obtained by RingAll-
reduce are displayed in Fig. 5a. The error bounds (5) and
true relative errors of the results obtained by ddRingAll-
reduce are displayed in Fig. 5b. In Fig. 5, the lines labeled
‘exp.’ denote the experimental error, the lines labeled ‘est.’
denote the error bounds. It can be seen from this experiment
that the theoretical error bounds of RingAllreduce and
ddRingAllreduce are tight.

4.4 Performance comparison for large‑scale
problems

In this section, we compare the performance of RingAll-
reduce, FP128RingAllreduce, and ddRingAll-
reduce on two large-scale problems. The array size of
each process is K = 100, 000 and K = 1, 000, 000 , respec-
tively. Each element value is set to 1.5, and the number
of nodes varies from 1 to 5 (i.e., the number of processes
ranges from 24 to 120).

Figure 6 shows the comparison results. Figure 6a
shows the experiment where the array size of each pro-
cess is K = 100, 000 . The average time of the ddRin-
gAllreduce algorithm is 1.3786 times slower than
that of the RingAllreduce algorithm. FP128Rin-
gAllreduce is on average 1.1130 times faster than
ddRingAllreduce , but 1.2385 times slower than
RingAllreduce . Figure 6b shows the experiment
with K = 1, 000, 000 . The average time of the ddRin-
gAllreduce algorithm is 1.5863 times slower than
that of the RingAllreduce algorithm. FP128Rin-
gAllreduce is on average 1.0438 times faster than
ddRingAllreduce , but 1.5198 times slower than

RingAllreduce. On larger-scale problems, since the
ddRingAllreduce algorithm uses double-double
arithmetic and adds more floating-point operations, it is
slower than the RingAllreduce algorithm.

5 Conclusions and future work

In this paper, we address the problem of inaccuracies in
the RingAllreduce algorithm, a specific algorithm
for global reduction operations. We propose a high-pre-
cision version of the RingAllreduce algorithm called
ddRingAllreduce, which we analyze and verify to
achieve higher accuracy than RingAllreduce algo-
rithm. For large condition number summation problems,
the ddRingAllreduce algorithm performs better in
terms of accuracy than that of RingAllreduce algo-
rithm, and in practice, the proposed algorithm often yields
more accurate results than the theoretical error bounds.
The ddRingAllreduce algorithm incurs less time
overhead for small-scale problems, but it requires some
overhead for large-scale problems.

For the future work, one can implement other high-
precision reduction operations based on the RingAll-
reduce algorithm, such as multiplication. Or you can
implement high-precision versions of other MPI_All-
reduce algorithms, such as the butterf ly algorithm.
Although high-precision algorithms offer higher accuracy,
they require more floating-point calculations and commu-
nication, so balancing computation speed and accuracy is
always a research direction.

Acknowledgements The second author was supported by the foun-
dation of key laboratory of computational physics, China. The third
author is financially supported by the National Natural Science Founda-
tion of China(62032023).

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

Ahrens, P., Nguyen, H., Demmel, J.: Efficient reproducible floating
point summation and BLAS. ACM Trans. Math. Softw. 46(3),
1–49 (2015)

Ahrens, P., Demmel, J., Nguyen, H.D.: Algorithms for efficient repro-
ducible floating point summation. ACM Trans. Math. Softw.
46(3), 1–49 (2020)

ANSI/IEEE.: IEEE Standard for Binary Floating Point Arithmetic, Std
754–2019. IEEE, New York (2019)

Blanchard, P., Higham, N., Mary, T.: A class of fast and accurate sum-
mation algorithms. SIAM J. Sci. Comput. 42(3), 1541–1557
(2020)

256 X. Lei et al.

1 3

Dekker, T.J.: A floating-point technique for extending the available
precision. Numer. Math. 18, 224–242 (1971)

Demmel, J., Hida, Y.: Fast and accurate floating point summation with
application to computational geometry. Numer. Algorithms 37,
101–112 (2004)

Demmel, J., Nguyen, H.D.: Fast reproducible floating-point summa-
tion. In: Prof of the 21th IEEE Symposium on Computer Arith-
metic, pp. 163–172 (2013)

Demmel, J., Nguyen, H.D.: Parallel reproducible summation. IEEE
Trans. Comput. 64(7), 2060–2070 (2015)

Dogru, A.H., Fung, L.S., Middya, U., Al-Shaalan, T.M., Tom B., Hahn
H., Werner A.H., Al-Zamel, N., Pita, J., Hemanthkumar, K., et al.:
Newfrontiers in large scale reservoir simulation. SPE (2011)

Fousse, L., Hanrot, G., Lefevre, V., Pelissier, P., Zimmermann, P.:
MPFR: a multiple-precision binary floating-point library with
correct rounding. ACM Trans. Math. Softw. 33, 13-es (2007)

Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision
floating point arithmetic. In: ARITH01, pp. 55–162 (2001)

Higham, N.: Accuracy and Stability of Numerical Algorithms, 2nd edn.
SIAM Publications, Philadelphia (2002)

Iakymchuk, R., Collange, S., Defour, D., Graillat, S.: ExBLAS: repro-
ducible and accurate BLAS library. NRE2015 (SC15) (2015)

Jiang, H.: Study on reliable computing and rounding error analysis
in floating-point arithmetic (in Chinese). PhD Thesis, Changsha,
National University of Defense Technology (2013)

Kimura, R.: Numerical weather prediction. J. Wind. Eng. Ind. Aerodyn.
90, 1403–1414 (2002)

Knuth, D.E.: The Art of Computer Programming: Seminumerical
Algorithms, vol. 2. Addison-Wesley, Reading (1969)

Lei, X., Tongxiang, G., Graillat, S., et al.: A fast parallel high-preci-
sion summation algorithm based on AccSumK. J. Comput. Appl.
Math. 406, 0377–0427 (2021)

Lei, X., Gu, T., Graillat, S., Xu, X., Meng, J.: Comparison of repro-
ducible parallel preconditioned BiCGSTAB algorithm based on
ExBLAS and ReproBLAS. In: HPC Asia’23, Association for
Computing Machinery, New York, pp 46–54 (2023)

Li, X.S., Demmel, J., Bailey, D.H., et al.: Design, implementation
and testing of extended and mixed precision BLAS. ACM Trans.
Math. Softw. 28(2), 152–205 (2002)

Muller, J.M., Brisebarre, N., Dinechin, F.D.: Handbook of Floating-
Point Arithmetic. Birkhäuser (2010)

Ogita, T., Rump, S., Oishi, S.: Accurate sum and dot product. SIAM J.
Sci. Comput. 26(6), 1955–1988 (2005)

Patarasuk, P., Xin, Y.: Bandwidth optimal all-reduce algorithms for
clusters of workstations. J. Parallel Distrib. Comput. 69(2), 117–
124 (2009)

Rabenseifner, R.: Optimization of collective reduction operations. In:
LNCS 3036: International Conference on Computational Science,
pp. 1–9 (2004)

Rabenseifner, R., Traff, J.L.: More efficient reduction algorithms for
nonpower-of-two number of processors in message-passing paral-
lel systems. In: LNCS 3241: EuroPVM/MPI, pp. 36–46 (2004)

Rump, S.: Ultimately fast accurate summation. SIAM J. Sci. Comput.
31(5), 3466–3502 (2009)

Rump, S., Ogita, T., Oishi, S.: Accurate floating-point summation I:
faithful rounding. SIAM J. Sci. Comput. 31(1), 189–224 (2008)

Rump, S., Ogita, T., Oishi, S.: Accurate floating-point summation part
II: sign K-Fold faithful and rounding to nearest. SIAM J. Sci.
Comput. 31(2), 1269–1302 (2008)

The MPI forum.: MPI: A Message-Passing Interface Standard, version
1.3 (2008). https:// www. mpi- forum. org/ docs/ mpi-1. 3/ mpi- report-
1.3- 2008- 05- 30. pdf

van de Geijn, R.: On global combine operations. J. Parallel Distrib.
Comput. 22(2), 324–328 (1994)

Xiaowen, X., Zeyao, M., Hengbin, A.: Algebraic two-level iterative
method for 2-D 3-T radiation diffusion equations. Chin. J. Com-
put. Phys. 26(1), 1 (2009)

Yamanaka, N., Ogita, T., Rump, S., Oishi, S.: A parallel algorithm for
accurate dot product. Parallel Comput. 34(6–8), 392–410 (2008)

Zhou, Y.: A discussion on the matching relations among the word
length, speed and memory space of digital electronic computer
for the use of scientific calculation (in Chinese). J. Numer. Method
Comput. Appl. 1(3), 181–192 (1980)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Xiaojun Lei is a second-year doc-
toral student at the Institute of
Applied Physics and Computa-
tional Mathematics. His research
interests are parallel computing
and machine learning. His
research direction is the theory
and method of high precision
floating-point computing, and
the reproducible Krylov sub-
space iteration method and
machine learning method Solve
PDEs.

Tongxiang Gu was born in April
21, 1964. He is a professor in
computational mathematics and
computer software. He got his
doctor degree of computational
mathematics from Chinese acad-
emy of engineering physics
(CEAP) in 2001, and completed
his postdoctoral studies in the
institute of software of Chinese
academy of sciences. Now he
works in laboratory of computa-
tional physics in institute of
applied physics and computa-
tional mathematics. He is a
member of Beijing computa-

tional mathematics society. His major research interest is parallel com-
puting and machine learning, which includes parallel algorithm,
numerical algebra, preconditioning, numerical and ML simulation of
PDEs, and development of parallel software. He has presided or par-
ticipated in several projects in China, such as National Natural Science
Foundation, National High Technology Research and Development
Program (863 Program), National Basic Research Program (973 Pro-
gram), defense basic research project, major pre-research projects of
CAEP and key laboratory foundation of CAEP. The related work has
won the second prize in scientific and technological progress of min-
isterial-level. So far, he has published three monographs, an under-
graduate textbook, and more than 100 papers about large sparse alge-
braic equations, parallel iterative algorithms, preconditioning
technologies, and machine learning for PDEs.

https://www.mpi-forum.org/docs/mpi-1.3/mpi-report-1.3-2008-05-30.pdf
https://www.mpi-forum.org/docs/mpi-1.3/mpi-report-1.3-2008-05-30.pdf

257ddRingAllreduce: a high-precision RingAllreduce algorithm

1 3

Xiaowen Xu is a Professor of
Institute of Applied Physics and
Computational Mathematics
(IAPCM), China. He is the dep-
uty director of IAPCM. He got
his B.S degree from Xiangtan
University in 2002, and his PhD
degree in computational mathe-
matics from Chinese Academy

of Engineering Physics in 2007. His research interests include high
performance numerical algorithm & software in scientific and engi-
neering fields, parallel programming framework for large-scale numeri-
cal simulations. He is member of CCF and member of SIAM and
CSIAM.

	ddRingAllreduce: a high-precision RingAllreduce algorithm
	Abstract
	1 Introduction and motivation
	2 RingAllreduce algorithm
	2.1 Notation
	2.2 RingAllreduce algorithm

	3 ddRingAllreduce algorithm
	3.1 Double-double formats
	3.2 ddRingAllreduce algorithm

	4 Numerical results
	4.1 Example 1
	4.2 Example 2
	4.3 Example 3
	4.4 Performance comparison for large-scale problems

	5 Conclusions and future work
	Acknowledgements
	References

