
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2023) 5:102–115
https://doi.org/10.1007/s42514-023-00149-9

1 3

REGULAR PAPER

Improved parallel matrix multiplication using Strassen
and Urdhvatiryagbhyam method

Y. R. Annie Bessant1 · J. Grace Jency2 · K. Martin Sagayam3 · A. Amir Anton Jone3 · Digvijay Pandey4  ·
Binay Kumar Pandey5

Received: 7 June 2022 / Accepted: 24 April 2023 / Published online: 24 May 2023
© China Computer Federation (CCF) 2023

Abstract
The current milieu, encourages rapid growth of wireless communication, multimedia applications, robotics and graphics to
have efficient utilization of resources with high throughput and low power digital signal processing (DSP) systems. In an
aggregate DSP system ranging from audio/video signal processing to wireless sensor networks, floating point matrix multi-
plication is used in wide scale in most of the fundamental processing units. Hardware implementation of floating-point matrix
multiplication demands a colossal number of arithmetic operations that alter speed and consuming more area and power. DSP
systems essentially uses two techniques to reduce dynamic power consumption:—they are pipelining and parallel processing
that needs high performance processing element with less area and low power in diverse scientific computing applications.
However, number of adders and multipliers used in the design of floating-point unit also increases subsequently. The adders
and multipliers are the most area, delay and power consuming data path elements in the processing unit. The arithmetic level
reduction of delay, power and area in the processing element is performed by the selection of appropriate adders and multi-
pliers. This article proposes a parallel multiplication architecture using Strassen and UrdhvaTiryagbhyam multiplier, which
involves design of efficient parallel matrix multiplication with flexible implementation of FPGA (Field Programmable Gate
Array) device to analyse the computation and area. The design incorporates scheduling of blocks, operations on processing
elements, block size determination, parallelization and double buffering for storage of matrix elements.

Keywords  Floating point · Double precision · Pipelining · Block matrix multiplication · Parallel processing

1  Introduction

Floating point matrix multiplication is a building block
for many linear algebra kernels (Zhou and Prassana 2008).
Multiplication is a complex arithmetic operation which
is reflected in its relatively high power dissipation, high

signal propagational delay, and large area requirement.
Hence an efficient multiplier design has become a sig-
nificant part in VLSI (Very Large Scale Integration) sys-
tem design (Chetan et al. 2020; Singh and Tarunkumar
2015). The overall performance of the processing system
is determined by the performance of the multiplier. By

 *	 Digvijay Pandey
	 Digit11011989@gmail.com

	 Y. R. Annie Bessant
	 annieben08@gmail.com

	 J. Grace Jency
	 gracejency.ece@gmail.com

	 K. Martin Sagayam
	 martinsagayam.k@gmail.com

	 A. Amir Anton Jone
	 amiranton8787@gmail.com

	 Binay Kumar Pandey
	 binaydece@gmail.com

1	 Department of Electronics and Communication Engineering,
St. Xavier’s Catholic College of Engineering, Nagercoil,
Tamilnadu, India

2	 GEMS Educational Institutions, SBTE, Patna, India
3	 Department of ECE, Karunya Institute of Technology

and Sciences, Coimbatore, India
4	 Department of Technical Education, IET, Dr. A.P.J. Abdul

Kalam Technical University, Govt. of U.P, Lucknow,
Uttar Pradesh, India

5	 Department of Information Technology, College
of Technology, Govind Ballabh Pant University
of Agriculture and Technology, Pantnagar, Uttarakhand,
India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00149-9&domain=pdf
http://orcid.org/0000-0003-0353-174X

103Improved parallel matrix multiplication using Strassen and Urdhvatiryagbhyam method﻿	

1 3

using an efficient architecture for floating point matrix
multiplication improves the computation complexity of
the system (Sonawane et al. 2009). Multipliers are the
elemental processing elements hardly in all DSP systems
(Palacios et al. 1992) from multimedia (Kalaiselvi 2010)
to high-speed wireless communication systems (Shen and
Chen 2008). Implementations of high performance matrix
operations are required in many complex algorithms in
video processing applications (Kang 2007), image (Prab-
hune et al. 2017) and digital signal processing (Qasim
et al. 2010). Based on the computational applications
and performance of the system, many algorithms have
been designed for matrix multiplication (Thabet and
Al-Ghuribi 2012). Though there are two techniques to
reduce dynamic power consumption wherein, pipelining
technique reduces critical path delay and parallel pro-
cessing technique replicates the hardware components to
increase the performance (Li and Pan 2001).There has
been wide work for matrix multiplication on parallel algo-
rithms. Two classical algorithms Cannon’s (Cannon 1969)
and Fox’s (Fox and Otto 1987) are designed in which,
each processor holds consecutive blocks of data based
on a square processor grid with a block data distribution.
input matrices are partitioned into square blocks. All sub
blocks are processed by rolling and step upward procedure
(Amrutha et al. 2015). The blocks on one processor are
either broad cast to the other processor or transferred to
its adjacent processors in the same row throughout the
iteration (Sajish et al. 2005). Blocking refers to the parti-
tioning the matrices into smaller sub matrices. The design
decision includes schedules operations, determining block
sizes and determining which operations are performed in
parallel (Khayyat and Manjikian 2014). Parallel universal
matrix multiplication algorithm (PUMMA) which pro-
vides two-dimensional block cyclic data decomposition
for Fox’s algorithm (Choi et al. 1994). Distribution–Inde-
pendent Matrix Multiplication Algorithm (DIMMA)
(Choi 1997) combines pipeline communication and LCM
block concept to achieve the maximum performance and
the Scalable Universal Matrix Multiplication Algorithm
(SUMMA) for distributed memory concurrent comput-
ers (Geijn and Watts 1998a). The blocks are broadcast
based on flexible broadcast- multiply- roll algorithm; the
computation and communication on the processor are
overlapped. Cache-based architecture (Matam et al. 2013)
and Dynamic Random Access Memory (DRAM) model
(Matam and Prasanna 2013) improve the performance
with respect to Energy × Area × Time (EAT). A paral-
lelized sequential algorithm on a linear array of proces-
sors, which supports massive volume of data transfer on
a pipeline optical bus (Li and Pan 2001).In rank-1 update

algorithm, the sub block of matrices are obtained by
multiplying two panels of matrices and handle arbitrary
sizes matrices (Kumar et al. 2010).A brief discussion on
various techniques and its implementation to improve the
performance in block matrix multiplication is shown in
Table 1

Concisely, it is observed that the execution time and
area are two impediments that are to be looked out to
enhance the overall performance of the system. The main
aim of this work is to form a novel architecture for floating
point matrix multiplication known as block matrix multi-
plication based on Strassen and UrdhvaTiryagbhyam mul-
tiplier using parallel processing. In the above said tech-
nique, the computation unit reads its inputs to perform
the matrix block multiplication and writes its output to
the memory. The block multiplication is executed in the
computation unit where the parallelism is implemented.
Scheduling assigns multiple arithmetic operations to the
processing unit over a same time slot. The system effi-
ciency is augmented by reusing the data for the ensuing
operation.

In this paper, an improved algorithm for block matrix
multiplication is developed to reduce the area. For this
a fusion of Strassen and UrdhvaTiryagbhyam multiplier
is used through parallel processing. The Parameters such
area, delay, PEs, GFLOPs, LUTs, computation time, slices,
IOBs and frequency have been studied using Xilinx 13.5
simulating tool and implemented in virtex-5 FPGA.

1.1 � Conventional method

The standard method to achieve matrix multiplication
involves O(N3) arithmetic operation. In 1969, Volker
Strassen proposed matrix multiplication algorithm based
on divide and conquer approach, which divides the matri-
ces into sub matrices of equal size (Strassen 1969). How-
beit, it is faster than classical matrix multiplication scheme
but necessitates fewer multiplication of matrix elements.
A 2 × 2 matrix multiplication requires solely ‘7’ multi-
plications and ‘18’ additions or subtraction in lieu of ‘8’
multiplications and ‘4’ additions to have in the classical
method. The algorithm is applied recursively for large
matrices on four blocks at a time, yielding a complexity of
O (Nlog

2
7) ~ O (N2.81) which serves as a main algorithm to

break the N3 barrier.
Let X and Y be two input matrices of size 4 × 4 with

‘Z’ as the output matrix of dimension 4 × 4. Matrix X is
divided into sub matrices X0, X1.X2 and X3 of dimension
2 × 2 and matrix Y is divided into sub-matrices Y0, Y1, Y2
and Y3 of size 2 × 2. Let the product matrix be subdivided
into Z0, Z1, Z2 and Z3 of dimension 2 × 2.

104	 Y. R. A. Bessant et al.

1 3

Ta
bl

e 
1  

D
et

ai
le

d
lit

er
at

ur
e

su
rv

ey
 o

n
bl

oc
k

m
at

rix
 m

ul
tip

lic
at

io
n

A
ut

ho
r n

am
e

Te
ch

ni
qu

e
Im

pl
em

en
ta

tio
n

Fe
at

ur
es

Fo
x

an
d

O
tto

 (1
98

7)
A

ux
ili

ar
y

te
ch

ni
qu

e
D

ire
ct

 m
at

rix
 m

ul
tip

lic
at

io
n

w
ith

 so
m

e
sh

ift
in

g
te

ch
ni

qu
es

 to
 in

cr
ea

se
 th

e
co

m
pu

ta
tio

na
l s

pe
ed

of

 th
e

sy
ste

m

–

St
oj

ce
v

et
 a

l.
(1

98
5)

M
at

rix
 m

ul
tip

lic
at

io
n

w
ith

 sh
ift

in
g

m
et

ho
d

It
us

es
 ro

ta
tio

n
of

 a
ll

ro
w

s a
nd

 c
ol

um
ns

 in
 th

e
m

at
ric

es
–

Pa
n

(1
98

7)
B

ro
ad

ca
st-

br
oa

dc
as

t t
ec

hn
iq

ue
It

ha
s a

n
or

de
r o

f r
an

k-
k

up
da

te
s i

s c
on

ne
ct

ed
 in

pa

ra
lle

l t
o

pe
rfo

rm
 C

 =
 A

B
–

Li
 (1

99
7)

Pa
ra

lle
l m

at
rix

 m
ul

tip
lic

at
io

n
on

 L
in

ea
r A

rr
ay

 w
ith

Re

co
nfi

gu
ra

bl
e

Pi
pe

lin
ed

 B
us

 S
ys

te
m

 (L
A

R
PB

S)
In

 L
A

R
PU

S,
 th

e
pr

oc
es

so
rs

 a
re

 in
te

rc
on

ne
ct

ed

by
 a

n
op

tic
al

 b
us

. W
he

n
th

e
in

pu
t v

al
ue

s a
re

la

rg
e,

 th
e

LA
R

PB
S

di
vi

de
s i

nt
o

su
b

ar
ra

ys
 a

nd

ea
ch

 su
b

ar
ra

y
pe

rfo
rm

s c
om

pu
ta

tio
n

ta
sk

 in

st
an

da
lo

ne

In
 L

A
R

PB
S

th
e

pe
rfo

rm
an

ce
s a

re
 e

nh
an

ce
d

by

m
ea

ns
 o

f b
ro

ad
ca

sti
ng

 a
nd

 m
ul

tic
as

tin
g

te
ch

ni
qu

es

Va
n

D
e

G
ei

jn
 a

nd
 W

at
ts

 (1
99

8b
)

Po
ly

 a
lg

or
ith

m
It

in
tro

du
ce

s C
an

no
n’

s b
ro

ad
ca

st-
m

ul
tip

ly
-ro

ll
an

d
br

oa
dc

as
t-b

ro
ad

ca
st

ap
pr

oa
ch

Th
e

hi
gh

 p
er

fo
rm

an
ce

s a
re

 o
bt

ai
ne

d
by

 e
xp

an
di

ng

th
e

m
at

rix
 si

ze
D

ou
 e

t a
l.

(2
00

5)
M

at
rix

 m
ul

tip
lic

at
io

n,
 b

as
ed

 o
n

cu
sto

m
 fl

oa
tin

g
po

in
t

It
co

ns
ist

s o
f a

 m
as

te
r p

ro
ce

ss
or

 a
nd

 ‘p
’ s

la
ve

pr

oc
es

so
rs

 (p
ro

ce
ss

in
g

el
em

en
ts

) i
n

pa
ra

lle
l.

It
ha

s t
w

o
X

ili
nx

 F
PG

A
 d

ev
ic

es
 a

nd
 2

56
 M

B
 o

f
SD

R
A

M
, p

lu
gg

ed
 o

n
a

64
-b

it,
 6

6-
M

H
z

PC
I P

C

ca
rd

Fu
lly

 p
ip

el
in

ed
 d

ou
bl

e
pr

ec
is

io
n

Fl
oa

tin
g

Po
in

t
U

ni
ts

 a
re

 u
se

d
fo

r M
at

rix
 M

ul
tip

lic
at

io
n.

 T
he

ou

tp
ut

 o
f t

he
 fl

oa
tin

g-
po

in
t m

ul
tip

lie
r i

s o
ne

 o
f t

he

in
pu

ts
 to

 th
e

flo
at

in
g-

po
in

t a
dd

er
 a

nd
 th

e
ou

tp
ut

 o
f

th
e

flo
at

in
g-

po
in

t a
dd

er
 is

 fe
ed

ba
ck

 a
s i

ts
 se

co
nd

in

pu
t t

o
im

pr
ov

e
th

e
pe

rfo
rm

an
ce

Pa
n

et
 a

l.
(2

00
7)

Sc
al

ab
le

 U
ni

ve
rs

al
 M

at
rix

 M
ul

tip
lic

at
io

n
A

lg
o-

rit
hm

 (S
U

M
M

A
)

It
im

pl
em

en
ts

 C
 =

 A
B

T a
nd

 C
 =

 A
T B

 a
s a

 se
qu

en
ce

of

 m
at

rix
-p

an
el

 o
f v

ec
to

rs
 m

ul
tip

lic
at

io
ns

, a
nd

C

 =
 A

T B
T a

s a
 se

qu
en

ce
 o

f r
an

k-
k

up
da

te
s

It
m

ai
nl

y
fo

cu
se

s o
n

sq
ua

re
 m

at
rix

Pe
dr

am
 e

t a
l.

(2
01

2)
D

ou
bl

e
Pr

ec
is

io
n

G
en

er
al

 M
at

rix
 –

M
at

rix

(D
G

EM
M

) m
ul

tip
lic

at
io

n
I T

he
 in

pu
t m

at
ric

es
 a

re
 a

llo
tte

d
on

 a
 a

rr
ay

 o
f P

Es

(P
ro

ce
ss

in
g

El
em

en
ts

) i
n

a
2D

 c
yc

lic
 ro

un
d-

ro

bi
n

fa
sh

io
n

on
 d

ist
rib

ut
ed

 m
em

or
y

ar
ch

ite
c-

tu
re

s
It

is
 d

on
e

on
 a

 P
ro

to
ty

pe
 L

in
ea

r A
lg

eb
ra

 P
ro

ce
ss

or

(L
A

P)

Fi
ne

 a
dj

us
tm

en
ts

 o
n

m
em

or
y

hi
er

ar
ch

y
co

nfi
gu

ra
-

tio
n

an
d

m
od

er
at

e
si

m
pl

e
cu

sto
m

iz
at

io
ns

 m
ay

im

pr
ov

e
th

e
m

ag
ni

tu
de

 o
f e

ffi
ci

en
cy

.It
 y

ie
ld

s g
oo

d
G

FL
O

Ps
 (B

ill
io

ns
 o

f F
lo

at
in

g
Po

in
t O

pe
ra

tio
n

pe
r

Se
co

nd
)

Ti
w

ar
i e

t a
l.

(2
01

3)
Pa

ra
lle

l-P
ar

al
le

l I
np

ut
 a

nd
 M

ul
tip

le
- O

ut
pu

t (
PP

I-
M

O
) a

rc
hi

te
ct

ur
e

Th
e

nu
m

be
r o

f m
ul

tip
lie

rs
 a

nd
 re

gi
ste

rs
 p

er
fo

rm
-

in
g

th
e

m
at

rix
 m

ul
tip

lic
at

io
n

op
er

at
io

ns
 a

re

in
cr

ea
se

d
to

 a
cc

om
m

od
at

e
la

rg
e

m
at

rix
 si

ze

Th
e

pr
oc

es
si

ng
 e

le
m

en
t e

nh
an

ce
s t

he
 p

er
fo

rm
an

ce

of
 th

e
ar

ch
ite

ct
ur

e
by

 c
on

su
m

in
g

le
ss

 p
ow

er
/

en
er

gy
K

ha
yy

at
 a

nd
 M

an
jik

ia
n

(2
01

4)
M

od
ifi

ab
le

 p
ar

al
le

l m
at

rix
 m

ul
tip

lic
at

io
n

ar
ch

ite
c-

tu
re

 fo
r F

PG
A

 d
ev

ic
es

To
 p

er
fo

rm
 e

ac
h

bl
oc

k
m

ul
tip

lic
at

io
n,

 a
 p

ar
al

le
l-

iz
ed

 m
ul

tip
le

 p
ip

el
in

ed
 a

rit
hm

et
ic

 u
ni

t i
s u

se
d

Th
is

 b
en

efi
ts

 th
e

bl
oc

k
si

ze
s a

nd
 th

e
us

ag
e

of
 d

ou
bl

e
bu

ffe
rs

 to
 o

ve
rla

p
th

e
tra

ns
fe

r p
ha

se
 a

nd
 c

om
pu

te

ph
as

e
A

ris
h

an
d

Sh
ar

m
a

(2
01

6)
Tw

o-
le

ve
l a

lg
or

ith
m

Th
e

to
p

le
ve

l i
s S

tra
ss

en
’s

 a
lg

or
ith

m
 fo

r m
at

rix

m
ul

tip
lic

at
io

n
an

d
th

e
bo

tto
m

 le
ve

l i
s a

 ru
n

tim
e

re
co

nfi
gu

ra
bl

e
flo

at
in

g-
po

in
t m

ul
tip

lie
r f

or

m
at

rix
 e

le
m

en
t m

ul
tip

lic
at

io
n

Th
e

po
w

er
 a

nd
 d

el
ay

 re
qu

ire
m

en
t c

an
 b

e
ad

ju
ste

d
by

re

co
nfi

gu
rin

g
its

el
f d

ur
in

g
ru

n
tim

e.
 T

he
 e

ffi
ci

en
cy

is

 in
cr

ea
se

d
by

 re
du

ci
ng

 th
e

nu
m

be
r o

f m
ul

tip
lic

a-
tio

ns
 in

 S
tra

ss
en

 a
lg

or
ith

m
Si

lv
a

et
 a

l.
(2

01
8)

St
ra

ss
en

 re
cu

rs
iv

e
al

go
rit

hm
 fo

r m
at

rix
–m

at
rix

m

ul
tip

lic
at

io
n

It
is

 u
se

d
to

 o
bt

ai
n

er
ro

r b
ou

nd
s f

or
 fl

oa
tin

g
po

in
t

co
m

pu
ta

tio
ns

 b
as

ed
 o

n
an

 im
pl

em
en

ta
tio

n
of

U

nu
m

 a
rit

hm
et

ic

Th
e

th
re

e
te

ch
ni

qu
es

 in
 S

tra
ss

en
 re

cu
rs

iv
e

al
go

rit
hm

im

pr
ov

e
nu

m
er

ic
al

 sa
fe

ty
 w

ith
 lo

w
 o

ve
rh

ea
d

105Improved parallel matrix multiplication using Strassen and Urdhvatiryagbhyam method﻿	

1 3

L e t

X =

⎛
⎜⎜⎜⎝

X
11

X
12

X
13

X
14

X
21

X
22

X
23

X
24

X
31

X
41

X
32

X
42

X
33

X
43

X
34

X
44

⎞
⎟⎟⎟⎠
Y =

⎛
⎜⎜⎜⎝

Y
11

Y
12

Y
13

Y
14

Y
21

Y
22

Y
23

Y
24

Y
31

Y
41

Y
32

Y
42

Y
33

Y
43

Y
34

Y
44

⎞
⎟⎟⎟⎠

Z =

⎛
⎜⎜⎜⎝

Z
11

Z
12

Z
13

Z
14

Z
21

Z
22

Z
23

Z
24

Z
31

Z
41

Z
32

Z
42

Z
33

Z
43

Z
34

Z
44

⎞
⎟⎟⎟⎠

Using Strassen algorithm, the above matrix is divided
into sub matrices as follows:

X=
(

X0 X1

X2 X3

)
 ; Y=

(
Y0 Y1
Y2 Y3

)
 and Z = 

(
Z0 Z1
Z2 Z3

)

where X0 =

(
X11 X12

X21 X22

)
 ; Y0 =

(
Y11 Y12
Y21 Y22

)
 and Z0

=

(
Z11 Z12
Z21 Z22

)

X1 =

(
X13 X14

X23 X24

)
 ; Y1 =

(
Y13 Y14
Y23 Y24

)
 a n d Z 1

=

(
Z13 Z14
Z23 Z24

)

X2 =

(
X31 X32

X41 X42

)
 ; Y2 =

(
Y31 Y32
Y41 Y42

)
 a n d Z 2

=

(
Z13 Z14
Z23 Z24

)

X3 =

(
X33 X34

X43 X44

)
 ; Y3 =

(
Y33 Y34
Y43 Y44

)
 a n d Z 3

=

(
Z33 Z34
Z43 Z44

)

Consider that the partial product matrix P is obtained
as, from Eq. (1)

P = X0. Y0,where P = 
(

P11 P12

P21 P22

)
i.e.

(
P11 P12

P21 P22

)
 = (

X11 X12

X21 X22

)
 .
(

Y11 Y12
Y21 Y22

)

The partial products are generated using Eq. (2)

(
X0 X1

X2 X3

)
×

(
Y0 Y1
Y2 Y3

)
=

(
X0Y0 + X1Y2 X0Y1 + X1Y3
X2Y0 + X3Y2 X2Y1 + X3Y3

)

(1)

Z0 = X0.Y0 + X1.Y2

Z1 = X0.Y1 + X1.Y3

Z2 = X2.Y0 + X3.Y2

Z3 = X2.Y1 + X3.Y3

⎫⎪⎬⎪⎭

Final matrix multiplication products are obtained as fol-
low using Eq. (2)

From Eq. (2) its observed, to compute the result for a
second- order matrix, Strassen’s algorithm needs only ‘7’
multiplication tasks, at the same time the conventional
algorithm comprises ‘8’ multiplications.

According to Strassen algorithm for a nth order matrix,
the number of multiplications required is given by,

where ‘7’ is the number of multiplication operation and
P
(

n

2

)
 is the multiplication function of sub matrices of

dimension n
2
×

n

2
The time complexity of Strassen algorithm is represented as

Adding matrix, yields n2 steps, where c is a fixed constant
value. By applying Masters Theorem Eq. (5) it is rewritten
as,

The time complexity of Strassen algorithm is O ( n2.81 ),
which is better than conventional algorithm. For a common
method to work out the product of ‘2’ 2 × 2 matrices, it takes
‘8’ multiplication process. The time complexity of nth order
matrix is given as,

1.2 � UrdhvaTiryagbhyam method

The word “Vedic” is imitated from the word “Veda” which
means the store house of all knowledge (Jagadguru Swami
Sri Bharati KrsnaTirthaji Maharaja 1985). Application
of sutras saves lot of time and effort in solving problems,

(2)

P1 =
�
X11 + X22

�
.
�
Y11 + Y22

�
P2 =

�
X21 + X22

�
.Y11

P3 = X11.
�
Y12 − Y22

�
P4 = X22.

�
Y21 − Y11

�
P5 =

�
X11 + X12

�
.Y22

P6 =
�
X21 − X11

�
.
�
Y11 + Y12

�
P7 =

�
X12 − X22

�
.
�
Y21 + Y22

�

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

(3)

P11 = P1 + P4 − P5 + P7
P12 = P3 + P5
P21 = P2 + P4
P22 = P1 − P2 + P3 + P6

⎫⎪⎬⎪⎭

(4)P(n) = 7P
(
n

2

)

(5)T(n) = 7P

(
n

2

)
+ mn2for n ≥ 2

(6)T(n) = O
(
7log2n

)
= O

(
nlog27

)
= O(n2.81)

(7)O
(
nlog28

)
= O(n3)

106	 Y. R. A. Bessant et al.

1 3

compared to the formal method.The utmost significant and
multifaceted portion in the floating point multiplication is
mantissa multiplication. Compared to addition operation
multiplication requires more time. It consumes more area
and time as the number of bits increases. In terms of area
and delay UrdhvaTiryagbhyam algorithm is the best algo-
rithm for binary multiplication. The partial products gener-
ated are added in ripple fashion using carry save adder. This

reduces the delay with minimal increase in hardware. In this
algorithm the number of steps required for multiplication is
reduced and hence the speed of multiplication is increased.
Figure 1 illustrates the steps for computing the product of
two 6-bit numbers using UrdhvaTiryagbhyam algorithm.
The two inputs are x5x4x3x2x1x0 and y5y4y3y2y1y0 and the
products are z10z9z8z7z6z5z4z3z2z1z0. The temporary partial
products are t0t1t2t3t4t5t6t7t8t9.

Fig. 1   Line diagram for 6-bit Urdhva Tiryagbhyam Multiplication

107Improved parallel matrix multiplication using Strassen and Urdhvatiryagbhyam method﻿	

1 3

All the partial products are generated in parallel and the
delay accompanying is generally the time engaged by the
carry to broadcast through the adders which forms the mul-
tiplication arrays. Carry save adder is used to add the par-
tial products from t2 to t7, since more than two operands in
adders are there. While adding, the final product is obtained
by adding the partial products in Eq. (8) as follows.

The partial products are obtained as follow

The output product is generated by adding the partial
product with the generated carry in the previous steps using
the following equation.

(8)

Step 1 ∶ t0 = x0y0
Step 2 ∶ t1 = x0y1 + x1y0
Step 3 ∶ t2 = x0y2 + x2y0 + + x1y1
Step 4 ∶ t3 = x0y3 + x3y0 + x2y1 + x1y2
Step 5 ∶ t4 = x0y4 + x4y0 + x3y1 + x1y3 + x2y2
Step 6 ∶ t5 = x0y5 + x5y0 + x4y1 + x1y4 + x2y3 + x3y2
Step 7 ∶ t6 = x1y5 + x2y4 + x43y3 + x4y2 + x5y1
Step 8 ∶ t7 = x2y5 + x5y2 + x3y4 + x4y3
Step 9 ∶ t8 = x3y5 + x5y3 + x4y4
Step 10 ∶ t9 = x5y4 + x4y5
Step 11 ∶ t10 = x5y5

⎫
⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

where t0, t1………​……….., t9 be the partial products in
Eq. (8), c0, c1…….…, c9 are the carry generated while add-
ing the partial products. Let c0 be the carry generated from
t0, c1 be the carry generated by adding t1 and c1 and so on

2 � Implementation

2.1 � Proposed method

The proposed parallel matrix multiplication architecture
aims to achieve significant performance by reusing the
on-chip memory data. The computation is divided into
blocks, and several arithmetic units execute discrete opera-
tions within each block in parallel. The Strassen algorithm
is applied to divide the input matrices into sub blocks and

(9)

Z0 = t0
Z1 = Sum

�
t1
�

Z2 = Sum
�
t2
�
+ C0

�
generated in adding Z1 or previous carry

�
Z3 = Sum

�
t3
�
+ C1

�
generated in adding Z2 or previous carry

�
Z4 = Sum

�
t4
�
+ C2

Z5 = Sum
�
t5
�
+ C3

Z6 = Sum
�
t6
�
+ C4

Z7 = Sum
�
t7
�
+ C5

Z8 = Sum
�
t8
�
+ C6

Z9 = Sum
�
t9
�
+ C7

Z10 = Sum
�
t10

�
+ C8

Z11 = C9

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 2   Block diagram of the
proposed Strassen based
Method

108	 Y. R. A. Bessant et al.

1 3

the multiplication is performed using Urdhva Tiryagbhyam
multiplier and the execution unit executes the MAC opera-
tions in parallel. The study includes the utilization of storage
memory and the methods for processing in blocking and
scheduling. The block diagram for the proposed method is
shown in Fig. 2.

The elements of the input matrices ‘X’ and ‘Y’ are stored
within the input buffer. Strassen matrix multiplication algo-
rithm, divides Matrix X into sub block X0, X1, X2, X3 of
dimension 2 × 2 and Matrix Y into sub block Y0, Y1, Y2,
Y3 of dimension 2 × 2. and the resultant Matrix Z. The sub
blocks of the resultant matrix are Z0, Z1, Z2, Z3with the size
2 × 2. The values of Z0, Z1, Z2, Z3 are calculated by applying
Eq. (1). The sequence of scheduling is achieved as follows,
the computation of matrix multiplication is parallelized by
means of multiple processing elements to execute each block
multiplication. The processing element comprises of pipe-
lined arithmetic units with a floating point Urdhva Tiryag-
bhyam multiplier and an adder. The sub blocks transfer to
the processing element blocks internal buffer and the results
are stored in the output buffers. They are constructed using
the device memory accessible in the FPGA. Nevertheless,
the control logic generates control signal for data transaction
with storage device and processing element. In reference
the signal received from the control logic the input –output
address generator generates the address for the input and
output data.

	 (i)	 Parallelization algorithm
		  The processing elements in Fig. 2 perform the

operations based on parallelization algorithm. A

pipelined processing unit comprises of a floating-
point adder and a multiplier. To perform block mul-
tiplication, the matrix multiplication is parallelized
using several arithmetic units. The process involves
computing ‘nmr’ multiplication with ‘nr’ sets of ‘m’
addition that add ‘m’ products to the actual values in
the Z block. Figure 3 individual cell is a product, and
the highlighted values are elements of sole sum.

		  Parallelism is performed at various levels; each
matrix multiplication is accelerated by paralleliz-
ing each block which in turn increases the system
throughput. Several matrices or blocks multiples
abruptly on the same chip decreasing the utilization
of memory. The three block sizes in matrices X, Y,
Z are calculated as three dimensions of parallelism,
as parallelism is achieved as individual. Paralleliz-
ing over ‘n’ includes operating on rows of matrices
X and Z one by one in parallel. Parallelizing over
‘r’ includes operating on columns of matrices Y and
Z independently in parallel. Parallelizing over ‘m’
includes running columns of ‘X’ matrix with row of
matrix ‘Y’, and matrix Z in standalone.

		  To achieve parallelism along each dimension the
block data allots uniform dimension over various
processing units. If u1, u2 and u3 are blocks with
dimension n, m and r respectively, then the paral-
lelism p = u1u2u3. Each block of matrix X is parti-
tioned along the dimension n/u1 × m /u2 resulting in
u1u2 partition. Similarly block of matrix Y is parti-
tioned along the dimension m/ u2 × r /u3 resulting
in u2u3 partition and u1u3 partitions of dimension
n/u1 × r /u3 for block of matrix Z. Each partition of
X and Y block is linked to ‘u3’ and ‘u1’ multiply
add units respectively. For the Z block, the partition
is obtained by adding outputs of ‘u2’tomultiply add
unit.

	 (ii)	 Scheduling
		  Scheduling denotes the way in which the multipli-

cation and addition operations are performed. Matrix
multiplication involves nmr multiplication and addi-
tion. In a single time slot, when a schedule assigns
multiple arithmetic operations, it is a parallel sched-
ule. In linear algebra three vector operations such
as inner product, the middle product and the outer
product are used to implement matrix multiplica-
tion. The proposed work processes the outer product
which is obtained by multiplying the column element
of matrix X by the row element of matrix Y. Each
outer product of a column element and a row element
produces the final value of the entire Z matrix. In two
ways the outer product schedule are implemented. In
the first case, the column major matrix X elements
are reused and to produce a complete layer of matrix Fig. 3   Block multiplication scheming

109Improved parallel matrix multiplication using Strassen and Urdhvatiryagbhyam method﻿	

1 3

Z by multiplying each elements of a given column
by the same row of matrix Y. In the second case,
matrix Y elements are reused in a row major order,
where every given row elements are multiplied by
the similar column matrix X elements to produce a
final value of matrix Z. In both the cases, the sched-
ule reuses the column of matrix X elements, row of
matrix Y elements and entire matrix Z elements.

		  In matrix multiplication, column and row element
multiplications are independent but addition depends
on multiplication and other addition process, the
update form of matrix multiplication is given below.

		  Computing an element zij of matrix Z requires
adding M products to the initial value of zij. Accu-
mulating the sum of M + 1 numbers involves M inter-
dependent additions. In pipelining operations, Read
After Write (RAW) data hazards occur when using
the same pipelined adder to accomplish two inter
dependent additions i.e., the value is read earlier it
has been written. To prevent data hazards the inter-
dependent tasks must be separated by more clock
cycles. In matrix multiplication, add-after-multiply
and add-after-add are the two data dependencies. By
enforcing the following measure the data hazards can
be prevented.

	(i) Create a long multiply add pipeline by performing
addition after the multiplication.	 (ii) Ensure
that at appropriate cycle, when the product
reaches the adder, the second operand to addi-
tion is provided.

		  The above measures confirm that the two opera-
tions are provided with enough clock cycles for the
first operation of multiplication to complete, thus
avoids data hazard.

	 (iii)	 Block size
		  Three parameters that define the block size are

n, m, and r. For larger blocks, during each compute
phase it takes longer time to transfer. Moreover, the
number of computation in compute phase is also
affected by the shape of the blocks, which may be
square or rectangle. For a matrix multiplication com-
putation, the number of multiply add operations is
given by

		  Block dimensions can be optimized to reduce the
data transfer time by reducing the transfer rate. The
optimizations result in the following constraints.

(10)zij =

M∑
k=1

xik.ykj + zij

(11)Number of multiply add operations = nmr

wheren ≥ 1, m ≥ 1, r ≥ 1 andS be the used on-chip
memory.

		  Each compute phase execute one block multipli-
cation, which include nmr scalar multiplication and
additions. Thus, the function to maximize the num-
ber of multiply add operations per compute phase is
given by

		  If the blocks are of equal size, maximizing the
function f result in

		  The total number of elements transfer for reusing
block of matrix X is given by

		  The first term, NM represents the number of trans-
fer for matrix X. Each block is transferred and reused
exactly once. So the amount of elements is equal to
the amount of data transfer. The number of transfer
for matrix Y elements is given in the second term.
A block of matrix Y has mr elements. There are
R/r × M/m blocks in matrix Y. Each block is trans-
ferred and multiplied N/n times in a column of matrix
X. Hence the number of transfers of matrix Y ele-
ments is

		  The third term in Eq. (13) is the number of transfer
of matrix Y elements. A block of matrix Z has nr ele-
ments and N/n × R/r blocks. Each block is transferred
twice and updated M/m times. Hence the number of
transfers of matrix Y elements is

		  The total number of elements transfer for reusing
block of matrix Y is given by

		  The first term, represents the number of transfer
for matrix X elements. Each block is transferred and
multiplied R/r times in a row of matrix Y. There are
nm elements in a block of matrix X and there are

(12)nm + mr + nr ≤ S

(13)f(n, m, r) = nmr

(14)n = m = r =

√
S

3

(15)fX(n,m, r) = NM +
NMR

n
+

2NMR

m

(16)mr ×
R

r
×
M

m
×
N

n
=

NMR

n

(17)nr ×
N

n
×
R

r
×
M

m
× 2 =

2NMR

m

(18)fY (n,m, r) =
NMR

r
+MR +

2NMR

m

110	 Y. R. A. Bessant et al.

1 3

N/n × M/m blocks. The number of transfer for matrix
X elements is

		  The second term in Eq. (16) represents the num-
ber of transfer for matrix Y elements. Each block is
transferred and reused exactly once. So the number
of elements transfer is equal to the number of ele-
ments in the matrix Y. The third term in Eq. (16) is
the number of transfer of matrix Z elements. When
blocks of either of matrices X or Y are reused the
number of elements transfer is same.

		  The total number of elements transfer for reusing
block of matrix Z is given by

		  The first term, represents that NM elements of
matrix X is transferred R/r times, whereas for the
second term in Eq. (18) each of the MR elements of
matrix Y is transferred N/n times. Each element of
matrix Z is transferred twice which is shown as third
term.

	 (iv)	 Double buffering
		  Double buffering means assigning enough stor-

age for two blocks of each matrix, for the purpose

(19)nm ×
N

n
×
M

m
×
R

r
=

NMR

r

(20)fZ(n,m, r) =
NMR

r
+

NMR

n
+ 2NR

of permitting the data fetch stage and compute stage
to execute overlapping. The overlapping operation
reduces the total computation time. With double
buffering, the compute phase starts when the first
block of each matrix is transferred into the buffer.
While the compute stage is processing the first buffer,
the fetch phase starts replacing the content of second
buffers. For all block multiplication, the total com-
pute time in cycles is given by

where P is the number of multiply add units. For
example, multiplying block size of 256 × 256 using
40 multiply add unit takes 419,430 cycles.

(21)TCompute =
NMR

P

0

0.5

1

1.5

2

2.5

32 64 128 192 256

C
om

pu
te

 T
im

e
 (m

ill
io

ns
 o

f c
yc

le
)

Matrix size

Fig. 4   Compute time vs matrix size

0

100

200

300

400

8 16 24 32 40

f m
ax

 (M
H

Z)

Number of PEs

Fig. 5   Operating frequency vs. number of PEs

0

5

10

15

20

25

8 16 24 32 40

G
FL

O
PS

Number of PEs

Fig. 6   Performance vs. number of PEs

Table 4   Performance measures for multiplier units

Multiplier design Frequency (MHz) Area (LUT) Delay

Dou et al. (2005) 200 2184 –
Zhang et al. (2013) 262.95 1559 –
Arish and Sharma (2016) 255.213 3983 12.785
Proposed Design 265.31 758 12.576

Table 2   Performance analysis of block matrix multiplication

Parameters 53- bit multiplier
Arish and Sharma
(2016)

Double precision
multiplier
Arish and Sharma
(2016)

Proposed

LUT 4587 4587 4325
Slices 3891 3983 3725
IOBs 213 193 179
Delays(ns) 10.213 12.785 12.176
fmax(MHZ) 252.213 255.213 265.31

111Improved parallel matrix multiplication using Strassen and Urdhvatiryagbhyam method﻿	

1 3

3 � Result and discussion

The proposed block matrix multiplication using Strassen
and Urdhva Tiryagbhyam multiplier is experimented using

Xilinx 13.5 simulating tool and implemented in virtex-5
xc5vsx240t FPGA. The matrix multiplication algorithm
exploits parallelism at various levels and by proper schedul-
ing matrix elements are reused. Figure 4 shows the compute
cycle vs matrix size. As the matrix size increases, the com-
putation time also increases. The number of processing ele-
ment performs arithmetic operations can be used to calculate
the time spent in the computation cycle. Each PE produces
a new output in every clock cycle.

Figure 5, shows the operating frequency vs number
of PEs. As the number of PEs increases, the frequency
decreases.The performance of the architecture depends on
the speed of the processing element. The parallelization
strategy allows the use of many processing elements in par-
allel. Each PEs consist of an arithmetic units which contains
a floating point UrdhvaTiryagbhyam multiplier and an adder.

Table 3   Comparison of the performance measures for block matrix
multiplication

Matrix design PEs Frequency(MHz) GFLOPS

Dou et al. (2005) 39 200 15.6
Khayyat and Manjikian (2014) 40 160 16
Arish and Sharma (2016) – 255 –
Proposed design 40 265 20.6

Table 5   Block dimension vs performance time

Block
dimension

Compute time
(millions of cycle)

Transfer time
(millions of cycle)

Total time (mil-
lions of cycle)

32 0.02 0.005 0.025
64 0.07 0.017 0.087
128 0.20 0.05 0.25
256 2.05 0.49 2.54

Table 6   Block dimension vs
size of memory

Block dimen-
sion

Size of
on chip
memory(bits)

32 0.2 M
64 0.5 M
128 3.1 M
256 12.5 M

39 40 40

200

160

265

15.6 16 20.6

Dou et al. (2005) Khayyat & Manjikian
(2014)

Proposed Design

PEs Frequency (MHz) GFLOPS

Fig. 7   Comparison of parameter measures between the proposed and
existing methods for block matrix multiplication

Fig. 8   Wave form of the proposed Strassen matrix multiplication

112	 Y. R. A. Bessant et al.

1 3

The data in the sub blocks are transferred to the PEs internal
buffer and the results are stored in the output buffers.

Figure 6 shows the performance vs. number of PEs. The
performance of the architecture increases linearly with the
processing elements. For floating point computation, the
performance is measured in terms of number of floating
point computation performed per second, designated as
FLOPS (Floating Point Operations).

Table 2 compares the performance of multiplier unit.
The overall performance of the architecture is based on the

performance of the multiplier units. When compared with
(Dou et al. 2005) and (Zhang et al. 2013) the proposed mul-
tiplier unit occupies less area and the delay is also reduced
when compared with Arish and Sharma (2016).

Table 3 compares the performance of block matrix mul-
tiplication in terms of PEs, frequency and FLOPS. The
proposed architecture achieves peak performance of 20.6
GFLOPS with 40 PEs operating at 265 MHz which is better
when compared with Khayyat and Manjikian (2014) and
Dou et al. (2005). Table 4 shows the performance meas-
ures for multiplier units. The area and delay of the proposed

Fig. 9   RTL schematic of the proposed Strassen based method

Fig. 10   Technology schematic
of the proposed method

113Improved parallel matrix multiplication using Strassen and Urdhvatiryagbhyam method﻿	

1 3

multiplier is less compared to the work of Arish and Sharma
(2016).

Table 5 shows the analysis of the block dimension with
performance time. The number of clock cycles used in
the computation phase is known as compute time and the
number of cycles spent in the data transfer phase is transfer
time. Total time for computation is determined from two
mechanisms: data computation time and transfer time. From
Table 5 it is observed that the transfer time is 25% less than
the computation time. Table 6 shows the block dimension vs
size of on chip memory. As the block dimension increases
the size of on chip memory also increased.

Figure 7 shows the Comparison of parameter meas-
ures between the proposed and existing methods for block
matrix multiplication. The simulation result of block mul-
tiplication using Strassen and Urdhva Tiryagbhyam mul-
tiplier is shown in Fig. 8. The input matrix is subdivided
into sub matrices of size 2 × 2 and after multiplication the
results are stored in registers. FPGA implementation uses
LUT instead of memory element in ASIC implementation
to store the results. Based on divide and conquer method,
the input matrix A and B is subdivided into sub matrices
of size 2 × 2 ie. a11[63:0], a12[63:0], a21[63:0], a22[63:0],
a11[63:0], a12[63:0], a21[63:0], a22[63:0] and after mul-
tiplication the results are stored in registers t1(63:0),
t2(63:0), t3(63:0) and t4(63:0).

Figure 9 shows the Register Transfer Level schematic of
the proposed architecture. It is generated after the synthe-
sis process. It shows a representation of the pre-optimized
design in terms of generic symbols such as adders, multipli-
ers, counters, AND gates and OR gates. Figure 10 shows the
technology schematic of the proposed architecture.

4 � Conclusion

The architecture performs block multiplication and the mul-
tiplication is parallelized employing several arithmetic units.
Subsequently, the computation and the memory operation
are also parallelized to perform the operations simultane-
ously. Further, the scheduling assigns multiple arithmetic
operations in a single time slot in order for the data reuse
to increase the system efficiency. Also in addition, the pro-
posed architecture implements double buffering in two on-
chip memory blocks for each matrix to overlap the transfer
phase and the compute phase. The performance of the block
matrix multiplication is 20.6 GFLOPS with 40 processing
elements at a frequency of 265.31 MHz. The delay for the
proposed architecture is 12.576 ns.

Acknowledgements  This research has been funded by the research
general direction at Universidad Santiago de Cali, Colombia under

call no 01-2022. This research is collaborated with the authors in
these institutions such as St. Xavier’s Catholic College of Engineering,
Tamilnadu, India, Gems Educational Institutions, Sbte, Karunya Insti-
tute of Technology and Sciences, Coimbatore, India, and Al-nahrain
university, al-nahrain nonrenewable energy research center Baghdad,
Iraq.

Data availability  The data supporting the findings of this study are
available within the paper.

References

Amrutha, K., Ravi Kumar, M.N., Panduranga, H.T.: Implementation
of dense matrix multiplication. In: Proceedings of 2nd ASAR
International Conference, pp. 17–20 (2015)

Arish, S., Sharma, R.K.: Run time reconfigurable multi precision float-
ing point matrix multiplier intellectual property core on FPGA.
Circuits Syst. Signal Process. 36(3), 998–1026 (2016)

Cannon, L.E.: A cellular computer to implement the kalman filter algo-
rithm. PhD dissertation. Montana State University (1969)

Chetan, S., Sourabh, K.S., Lekshmi, V., Sudhakar, S., Manikandan,
J.: Design and evaluation of floating point matrix operations for
FPGA based system design. Procedia Comput. Sci. 171, 959–968
(2020)

Choi, J.: A new parallel matrix multiplication algorithm on distrib-
uted-memory concurrent computers. Concurr. Pract. Exp. 10(8),
224–229 (1997)

Choi, J., Dangarra, J.J., Pozo, R., Walker, D.W.: PUMMA: parallel
universal matrix multiplication algorithms on distributed memory
concurrent computers. Concurr. Pract. Exp. 6(7), 543–570 (1994)

Dou, Y., Vassiliadis, S., Kuzmanov, G.K., Gaydadjiev, G.N.: 64-bit
floating point FPGA matrix multiplication. In: Proceeding of the
ACM/SIGDA 13th International Symposium on Field Program-
mable Gate Arrays (FPGA). pp. 86–95 (2005)

Fox, G.C., Otto, S.W.: Matrix algorithms on a hypercube I: matrix
multiplication. Parallel Comput. 4(1), 17–31 (1987)

Geijn, R.A.V., Watts, J.: SUMMA: scalable universal matrix multi-
plication algorithm. Concurr. Pract. Exp. 9(4), 255–274 (1998)

Jagadguru Swami Sri BharatiKrsnaTirthaji Maharaja.: Vedic mathe-
matics or sixteen simple mathematical formulae from the Vedas.
MotilalBanarsidass, Delhi (1985)

Kalaiselvi, A.: Multimedia security for image encryption using trans-
formation matrix. Maejo Int. J. Sci. Technol. 1(3), 79–88 (2010)

Kang, B.-H.: A review on image and video processing. Int. J. Mul-
timed. Ubiquitous Eng. 2(2), 49–64 (2007)

Khayyat, A., Manjikian, N.: Analysis of blocking and scheduling for
FPGA based floating point matrix multiplication. Can. J. Electr.
Comput. Eng. 37(2), 65–75 (2014)

Kumar, V.B.Y., Joshi, S., Patkar, S.B., Narayanan, H.: FPGA based
high performance double precision matrix multiplication. Int. J.
Parallel Prog. 38(3), 322–338 (2010)

Li, K.: Constant time boolean matrix multiplication on a linear array
with a reconfigurable pipelined bus system. J. Supercomput.
11(4), 391–403 (1997)

Li, K., Pan, V.Y.: Parallel matrix multiplication on a linear array with a
reconfigurable pipelined bus system. IEEE Trans. Comput. 50(5),
519–525 (2001)

Matam, K.K., Prasanna, V.K.: Energy efficient large scale matrix mul-
tiplication on FPGAs. In: Proceedings of the International Con-
ference on Reconfigurable Computing and FPGAs (ReConFig).
pp. 1–8 (2013)

Matam, K.K., Le, H., Prasanna, V.K.: Evaluating energy efficiency of
floating point matrix multiplication on FPGAs. In: Proceeding

114	 Y. R. A. Bessant et al.

1 3

of the IEEE High Performance Extreme Computing Conference
(HPEC). pp. 1–6 (2013)

Palacios, I., Medina, M., Moreno, J.: Matrix multiplication on digital
signal processors and hierarchical memory systems. In: Baeza-
Yates, R., Manber, U. (eds.) Computer Science, pp. 473–483.
Springer, Boston, MA (1992)

Pan, V.: Complexity of parallel matrix computation. Theoret. Com-
put. Sci. 54, 65–85 (1987)

Pan, Y., Li, K., Zheng, S.Q.: Fast nearest neighbor algorithms on a
linear array with a reconfigurable pipelined bus system. Parallel
Algorithms Appl. 13(1), 1–25 (2007)

Pedram, A., Geijin, R.A., Gerstlauer, A.: Co-design tradeoffs for
high-performance low power linear algebra architectures. IEEE
Trans. Comput. 61(12), 1724–1736 (2012)

Prabhune, O., Sabale, P., Sonawane, D.N., Prabhune C.L.: Image Pro-
cessing and Matrices. In: International conference on Data Man-
agement Analytics and Innovation (ICDMAI). pp. 166–171 (2017)

Qasim, S.M., Abbasi, S.A., Almashary, B.: FPGA-based design and
realization of fixed and floating point matrix multipliers: a review.
J. Active Passiv. Electron. Devices 5, 181–189 (2010)

Sajish, C., Abhyankar, Y., Ghotgalkar, S., Venkates, K.A.: Floating
point matrix multiplication on a reconfigurable computing sys-
tem. In: Current Trends in High Performance Computing and its
Applications, pp. 113–122. Springer, Berlin (2005)

Shen, H., Chen, J.: Efficient matrix multiplication on wireless sensor
networks. In: Proc of 7th International Conference on Grid and
Cooperative Computing: 331–341 (2008)

Silva, H.D., Gustafson, J.L., Wong, W.F.: Making Strassen matrix mul-
tiplication safe. In: Proceedings of the 25th International Confer-
ence on High Performance Computing, pp. 173–182 (2018)

Singh, K.N., Tarunkumar, H.: A review on various multipliers designs in
VLSI. In: Annual IEEE India Conference (INDICON), pp. 1–4 (2015)

Sonawane, D.N., Sutaone, M.S., InayatMalek: Resource efficient 64-bit
floating point matrix multiplication algorithm using FPGA. In:
IEEE Region 10 Conference TENCON, pp. 1–5 (2009)

Stojcev, M.K., Milovanovic, I.Z., Radonjic, Z.C.: Some shifting meth-
ods for matrix multiplication. IEE Proc. E-Comput. Digital Tech.
132(1), 33–44 (1985)

Strassen, V.: Gaussian elimination is not optimal. Numerischemath-
ematik 13(4), 354–356 (1969)

Thabet, K., Al-Ghuribi, S.: Matrix multiplication algorithms. Int. J.
Comput. Sci. Netw. Secur. 12(2), 74–79 (2012)

Tiwari, S., Singh, S., Meena, N.: FPGA design and implementation of
matrix multiplication architecture by PPI-MO techniques. Int. J.
Comput. Appl. 80(1), 19–22 (2013)

Van De Geijn, R.A., Watts, J.: SUMMA: scalable universal matrix mul-
tiplication algorithm. Concurr.: Pract. Exp. 9(4), 255–274 (1998)

Zhang, T., Li, C.T., Qin, Y., Nie, M.: An optimized floating point matrix
multiplication on FPGA. Inf. Technol. J. 12(9), 1832–1838 (2013)

Zhou, L., Prassana, V.K.: High performance designs for linear alge-
bra operations on reconfigurable hardware. IEEE Trans. Comput.
57(8), 1057–1071 (2008)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Y.R.Annie Bessant   was graduated
in Electronics and Communica-
tion Engineering in 2004 from
Manonmaniam Sundaranar Univer-
sity, India. She obtained her M.E
degree from Karunya Institute of
science and Technology, Coim-
batore in 2006, specializing VLSI
Design. She completed her Ph.d
under Anna University, Chennai in
the year 2019 in Information and
Communication Engineering. She
is in teaching profession for the
past sixteen years. Currently, she is
working as an Assistant Professor
in Electronics and Communication

Engineering in St Xavier's Catholic College of Engineering, Nagercoil,
Tamil Nadu, India. Her area of interest are Low Power VLSI, Machine
Learning and Networking.

J. Grace Jency   was born in 1982 in
Tamilnadu, India. She received her
Ph.D in Electronics and Communi-
cation Department in Karunya Insti-
tute of Technology and Sciences in
the field of MEMS piezoresistive
accelerometer. She was working
as a Assistant professor in Karu-
nya Institute of Technology and
Sciences, Coimbatore in the recent
past. Her areas of interest in clude
Digital Electronics, MEMS in bio-
medical applications and flexible
capacitors.

K. Martin Sagayam  received his
PhD in Electronics and Communi-
cation Engineering (Signal image
processing using machine learning
algorithms) from Karunya Univer-
sity. He received Master of Engi-
neering in Communication Systems
from Anna University, Chennai and
received Bachelor of Enigeering in
Electronics and Communication
Engineering from Anna University.
Currently, he is working as Assis-
tant Professor in the Department of
ECE, Karunya Institute Technology
and Sciences, Coimbatore, India.
He has authored/ co-authored more

number of referred International Journals. He has also presented more
than 20 papers in reputed international and national conferences. He
has authored 2 edited book and 10 book chapters with reputed inter-
national publishers like Elsevier, Springer, IGI Global and CRC press.
He has editorial board in the reputed book and book series with
reputed international publishers like IGI Global, and CRC Press. He
is an active member of professional bodies such as Engineering and
Scientific Research Groups, International Society of Promising Com-
puter Engineers, Copernicus, Scientific Engineering Research Corpora-
tion, International Association of Computer Science and Information
Technology, International Association of Engineers, Indian Society of
Electronics and Communication Engineering and Orcid. His area of
interest includes Communication systems, signal and image processing,
machine learning and virtual reality.

115Improved parallel matrix multiplication using Strassen and Urdhvatiryagbhyam method﻿	

1 3

A. Amir Anton Jone  received B.E.
degree in Electronics and Com-
munication Engineering in 2003
from Bharathidashan University,
India. He obtained his M.E degree
from Karunya Institute of science
and Technology, Coimbatore in
2006, specializing VLSI Design.
He completed his Ph.d under
Karunya Institute of Technology
and Sciences in the year 2021. He
is in teaching profession for the
past sixteen years. Currently, he is
working as an Assistant Professor
in Electronics and Communication
Engineering in Karunya Institute of

Technology and Sciences Coimbatore, India. His research/teaching
interest are analysis of specific absorption rate for detection of breast
cancer using UWB antennas, Antenna design for medical applications,
microwave and optical communication engineering, antennas and wave
propagation, antenna radiation systems, electromagnetic fields, signals
and systems, control systems, communication systems, digital electron-
ics, computer architecture, and electrical & electronics engineering.

	Improved parallel matrix multiplication using Strassen and Urdhvatiryagbhyam method
	Abstract
	1 Introduction
	1.1 Conventional method
	1.2 UrdhvaTiryagbhyam method

	2 Implementation
	2.1 Proposed method

	3 Result and discussion
	4 Conclusion
	Acknowledgements
	References

