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Abstract
The current milieu, encourages rapid growth of wireless communication, multimedia applications, robotics and graphics to 
have efficient utilization of resources with high throughput and low power digital signal processing (DSP) systems. In an 
aggregate DSP system ranging from audio/video signal processing to wireless sensor networks, floating point matrix multi-
plication is used in wide scale in most of the fundamental processing units. Hardware implementation of floating-point matrix 
multiplication demands a colossal number of arithmetic operations that alter speed and consuming more area and power. DSP 
systems essentially uses two techniques to reduce dynamic power consumption:—they are pipelining and parallel processing 
that needs high performance processing element with less area and low power in diverse scientific computing applications. 
However, number of adders and multipliers used in the design of floating-point unit also increases subsequently. The adders 
and multipliers are the most area, delay and power consuming data path elements in the processing unit. The arithmetic level 
reduction of delay, power and area in the processing element is performed by the selection of appropriate adders and multi-
pliers. This article proposes a parallel multiplication architecture using Strassen and UrdhvaTiryagbhyam multiplier, which 
involves design of efficient parallel matrix multiplication with flexible implementation of FPGA (Field Programmable Gate 
Array) device to analyse the computation and area. The design incorporates scheduling of blocks, operations on processing 
elements, block size determination, parallelization and double buffering for storage of matrix elements.

Keywords  Floating point · Double precision · Pipelining · Block matrix multiplication · Parallel processing

1  Introduction

Floating point matrix multiplication is a building block 
for many linear algebra kernels (Zhou and Prassana 2008). 
Multiplication is a complex arithmetic operation which 
is reflected in its relatively high power dissipation, high 

signal propagational delay, and large area requirement. 
Hence an efficient multiplier design has become a sig-
nificant part in VLSI (Very Large Scale Integration) sys-
tem design (Chetan et al. 2020; Singh and Tarunkumar 
2015). The overall performance of the processing system 
is determined by the performance of the multiplier. By 
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using an efficient architecture for floating point matrix 
multiplication improves the computation complexity of 
the system (Sonawane et al. 2009). Multipliers are the 
elemental processing elements hardly in all DSP systems 
(Palacios et al. 1992) from multimedia (Kalaiselvi 2010) 
to high-speed wireless communication systems (Shen and 
Chen 2008). Implementations of high performance matrix 
operations are required in many complex algorithms in 
video processing applications (Kang 2007), image (Prab-
hune et al. 2017) and digital signal processing (Qasim 
et al. 2010). Based on the computational applications 
and performance of the system, many algorithms have 
been designed for matrix multiplication (Thabet and 
Al-Ghuribi 2012). Though there are two techniques to 
reduce dynamic power consumption wherein, pipelining 
technique reduces critical path delay and parallel pro-
cessing technique replicates the hardware components to 
increase the performance (Li and Pan 2001).There has 
been wide work for matrix multiplication on parallel algo-
rithms. Two classical algorithms Cannon’s (Cannon 1969) 
and Fox’s (Fox and Otto 1987) are designed in which, 
each processor holds consecutive blocks of data based 
on a square processor grid with a block data distribution. 
input matrices are partitioned into square blocks. All sub 
blocks are processed by rolling and step upward procedure 
(Amrutha et al. 2015). The blocks on one processor are 
either broad cast to the other processor or transferred to 
its adjacent processors in the same row throughout the 
iteration (Sajish et al. 2005). Blocking refers to the parti-
tioning the matrices into smaller sub matrices. The design 
decision includes schedules operations, determining block 
sizes and determining which operations are performed in 
parallel (Khayyat and Manjikian 2014). Parallel universal 
matrix multiplication algorithm (PUMMA) which pro-
vides two-dimensional block cyclic data decomposition 
for Fox’s algorithm (Choi et al. 1994). Distribution–Inde-
pendent Matrix Multiplication Algorithm (DIMMA) 
(Choi 1997) combines pipeline communication and LCM 
block concept to achieve the maximum performance and 
the Scalable Universal Matrix Multiplication Algorithm 
(SUMMA) for distributed memory concurrent comput-
ers (Geijn and Watts 1998a). The blocks are broadcast 
based on flexible broadcast- multiply- roll algorithm; the 
computation and communication on the processor are 
overlapped. Cache-based architecture (Matam et al. 2013) 
and Dynamic Random Access Memory (DRAM) model 
(Matam and Prasanna 2013) improve the performance 
with respect to Energy × Area × Time (EAT). A paral-
lelized sequential algorithm on a linear array of proces-
sors, which supports massive volume of data transfer on 
a pipeline optical bus (Li and Pan 2001).In rank-1 update 

algorithm, the sub block of matrices are obtained by 
multiplying two panels of matrices and handle arbitrary 
sizes matrices (Kumar et al. 2010).A brief discussion on 
various techniques and its implementation to improve the 
performance in block matrix multiplication is shown in 
Table 1

Concisely, it is observed that the execution time and 
area are two impediments that are to be looked out to 
enhance the overall performance of the system. The main 
aim of this work is to form a novel architecture for floating 
point matrix multiplication known as block matrix multi-
plication based on Strassen and UrdhvaTiryagbhyam mul-
tiplier using parallel processing. In the above said tech-
nique, the computation unit reads its inputs to perform 
the matrix block multiplication and writes its output to 
the memory. The block multiplication is executed in the 
computation unit where the parallelism is implemented. 
Scheduling assigns multiple arithmetic operations to the 
processing unit over a same time slot. The system effi-
ciency is augmented by reusing the data for the ensuing 
operation.

In this paper, an improved algorithm for block matrix 
multiplication is developed to reduce the area. For this 
a fusion of Strassen and UrdhvaTiryagbhyam multiplier 
is used through parallel processing. The Parameters such 
area, delay, PEs, GFLOPs, LUTs, computation time, slices, 
IOBs and frequency have been studied using Xilinx 13.5 
simulating tool and implemented in virtex-5 FPGA.

1.1 � Conventional method

The standard method to achieve matrix multiplication 
involves O(N3) arithmetic operation. In 1969, Volker 
Strassen proposed matrix multiplication algorithm based 
on divide and conquer approach, which divides the matri-
ces into sub matrices of equal size (Strassen 1969). How-
beit, it is faster than classical matrix multiplication scheme 
but necessitates fewer multiplication of matrix elements. 
A 2 × 2 matrix multiplication requires solely ‘7’ multi-
plications and ‘18’ additions or subtraction in lieu of ‘8’ 
multiplications and ‘4’ additions to have in the classical 
method. The algorithm is applied recursively for large 
matrices on four blocks at a time, yielding a complexity of 
O (Nlog

2
7) ~ O (N2.81) which serves as a main algorithm to 

break the N3 barrier.
Let X and Y be two input matrices of size 4 × 4 with 

‘Z’ as the output matrix of dimension 4 × 4. Matrix X is 
divided into sub matrices X0, X1.X2 and X3 of dimension 
2 × 2 and matrix Y is divided into sub-matrices Y0, Y1, Y2 
and Y3 of size 2 × 2. Let the product matrix be subdivided 
into Z0, Z1, Z2 and Z3 of dimension 2 × 2.
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Using Strassen algorithm, the above matrix is divided 
into sub matrices as follows:

X= 
(

X0 X1

X2 X3

)
  ; Y= 

(
Y0 Y1
Y2 Y3

)
  and Z = 

(
Z0 Z1
Z2 Z3

)

where X0 =

(
X11 X12

X21 X22

)
 ;  Y0 =

(
Y11 Y12
Y21 Y22

)
 and Z0 

=

(
Z11 Z12
Z21 Z22

)

X1 =

(
X13 X14

X23 X24

)
 ;  Y1 =

(
Y13 Y14
Y23 Y24

)
 a n d  Z 1 

=

(
Z13 Z14
Z23 Z24

)

X2 =

(
X31 X32

X41 X42

)
 ;  Y2 =

(
Y31 Y32
Y41 Y42

)
 a n d  Z 2 

=

(
Z13 Z14
Z23 Z24

)

X3 =

(
X33 X34

X43 X44

)
 ;  Y3 =

(
Y33 Y34
Y43 Y44

)
 a n d  Z 3 

=

(
Z33 Z34
Z43 Z44

)

Consider that the partial product matrix P is obtained 
as, from Eq. (1)

P = X0. Y0,where P = 
(

P11 P12

P21 P22

)
i.e.

(
P11 P12

P21 P22

)
 = (

X11 X12

X21 X22

)
 . 
(

Y11 Y12
Y21 Y22

)

The partial products are generated using Eq. (2)

(
X0 X1

X2 X3

)
×

(
Y0 Y1
Y2 Y3

)
=

(
X0Y0 + X1Y2 X0Y1 + X1Y3
X2Y0 + X3Y2 X2Y1 + X3Y3

)

(1)

Z0 = X0.Y0 + X1.Y2

Z1 = X0.Y1 + X1.Y3

Z2 = X2.Y0 + X3.Y2

Z3 = X2.Y1 + X3.Y3

⎫⎪⎬⎪⎭

Final matrix multiplication products are obtained as fol-
low using Eq. (2)

From Eq. (2) its observed, to compute the result for a 
second- order matrix, Strassen’s algorithm needs only ‘7’ 
multiplication tasks, at the same time the conventional 
algorithm comprises ‘8’ multiplications.

According to Strassen algorithm for a nth order matrix, 
the number of multiplications required is given by,

where ‘7’ is the number of multiplication operation and  
P
(

n

2

)
 is the multiplication function of sub matrices of 

dimension n
2
×

n

2
The time complexity of Strassen algorithm is represented as

Adding matrix, yields n2 steps, where c is a fixed constant 
value. By applying Masters Theorem Eq. (5) it is rewritten 
as,

The time complexity of Strassen algorithm is O ( n2.81 ), 
which is better than conventional algorithm. For a common 
method to work out the product of ‘2’ 2 × 2 matrices, it takes 
‘8’ multiplication process. The time complexity of nth order 
matrix is given as,

1.2 � UrdhvaTiryagbhyam method

The word “Vedic” is imitated from the word “Veda” which 
means the store house of all knowledge (Jagadguru Swami 
Sri Bharati KrsnaTirthaji Maharaja 1985). Application 
of sutras saves lot of time and effort in solving problems, 

(2)

P1 =
�
X11 + X22

�
.
�
Y11 + Y22

�
P2 =

�
X21 + X22

�
.Y11

P3 = X11.
�
Y12 − Y22

�
P4 = X22.

�
Y21 − Y11

�
P5 =

�
X11 + X12

�
.Y22

P6 =
�
X21 − X11

�
.
�
Y11 + Y12

�
P7 =

�
X12 − X22

�
.
�
Y21 + Y22

�

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

(3)

P11 = P1 + P4 − P5 + P7
P12 = P3 + P5
P21 = P2 + P4
P22 = P1 − P2 + P3 + P6

⎫⎪⎬⎪⎭

(4)P(n) = 7P
(
n

2

)

(5)T(n) = 7P

(
n

2

)
+ mn2for n ≥ 2

(6)T(n) = O
(
7log2n

)
= O

(
nlog27

)
= O(n2.81)

(7)O
(
nlog28

)
= O(n3)
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compared to the formal method.The utmost significant and 
multifaceted portion in the floating point multiplication is 
mantissa multiplication. Compared to addition operation 
multiplication requires more time. It consumes more area 
and time as the number of bits increases. In terms of area 
and delay UrdhvaTiryagbhyam algorithm is the best algo-
rithm for binary multiplication. The partial products gener-
ated are added in ripple fashion using carry save adder. This 

reduces the delay with minimal increase in hardware. In this 
algorithm the number of steps required for multiplication is 
reduced and hence the speed of multiplication is increased. 
Figure 1 illustrates the steps for computing the product of 
two 6-bit numbers using UrdhvaTiryagbhyam algorithm. 
The two inputs are x5x4x3x2x1x0 and y5y4y3y2y1y0 and the 
products are z10z9z8z7z6z5z4z3z2z1z0. The temporary partial 
products are t0t1t2t3t4t5t6t7t8t9.

Fig. 1   Line diagram for 6-bit Urdhva Tiryagbhyam Multiplication
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All the partial products are generated in parallel and the 
delay accompanying is generally the time engaged by the 
carry to broadcast through the adders which forms the mul-
tiplication arrays. Carry save adder is used to add the par-
tial products from t2 to t7, since more than two operands in 
adders are there. While adding, the final product is obtained 
by adding the partial products in Eq. (8) as follows.

The partial products are obtained as follow

The output product is generated by adding the partial 
product with the generated carry in the previous steps using 
the following equation.

(8)

Step 1 ∶ t0 = x0y0
Step 2 ∶ t1 = x0y1 + x1y0
Step 3 ∶ t2 = x0y2 + x2y0 + + x1y1
Step 4 ∶ t3 = x0y3 + x3y0 + x2y1 + x1y2
Step 5 ∶ t4 = x0y4 + x4y0 + x3y1 + x1y3 + x2y2
Step 6 ∶ t5 = x0y5 + x5y0 + x4y1 + x1y4 + x2y3 + x3y2
Step 7 ∶ t6 = x1y5 + x2y4 + x43y3 + x4y2 + x5y1
Step 8 ∶ t7 = x2y5 + x5y2 + x3y4 + x4y3
Step 9 ∶ t8 = x3y5 + x5y3 + x4y4
Step 10 ∶ t9 = x5y4 + x4y5
Step 11 ∶ t10 = x5y5

⎫
⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

where t0, t1………​……….., t9 be the partial products in 
Eq. (8), c0, c1…….…, c9 are the carry generated while add-
ing the partial products. Let c0 be the carry generated from 
t0, c1 be the carry generated by adding t1 and c1 and so on

2 � Implementation

2.1 � Proposed method

The proposed parallel matrix multiplication architecture 
aims to achieve significant performance by reusing the 
on-chip memory data. The computation is divided into 
blocks, and several arithmetic units execute discrete opera-
tions within each block in parallel. The Strassen algorithm 
is applied to divide the input matrices into sub blocks and 

(9)

Z0 = t0
Z1 = Sum

�
t1
�

Z2 = Sum
�
t2
�
+ C0

�
generated in adding Z1 or previous carry

�
Z3 = Sum

�
t3
�
+ C1

�
generated in adding Z2 or previous carry

�
Z4 = Sum

�
t4
�
+ C2

Z5 = Sum
�
t5
�
+ C3

Z6 = Sum
�
t6
�
+ C4

Z7 = Sum
�
t7
�
+ C5

Z8 = Sum
�
t8
�
+ C6

Z9 = Sum
�
t9
�
+ C7

Z10 = Sum
�
t10

�
+ C8

Z11 = C9

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 2   Block diagram of the 
proposed Strassen based 
Method
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the multiplication is performed using Urdhva Tiryagbhyam 
multiplier and the execution unit executes the MAC opera-
tions in parallel. The study includes the utilization of storage 
memory and the methods for processing in blocking and 
scheduling. The block diagram for the proposed method is 
shown in Fig. 2.

The elements of the input matrices ‘X’ and ‘Y’ are stored 
within the input buffer. Strassen matrix multiplication algo-
rithm, divides Matrix X into sub block X0, X1, X2, X3 of 
dimension 2 × 2 and Matrix Y into sub block Y0, Y1, Y2, 
Y3 of dimension 2 × 2. and the resultant Matrix Z. The sub 
blocks of the resultant matrix are Z0, Z1, Z2, Z3with the size 
2 × 2. The values of Z0, Z1, Z2, Z3 are calculated by applying 
Eq. (1). The sequence of scheduling is achieved as follows, 
the computation of matrix multiplication is parallelized by 
means of multiple processing elements to execute each block 
multiplication. The processing element comprises of pipe-
lined arithmetic units with a floating point Urdhva Tiryag-
bhyam multiplier and an adder. The sub blocks transfer to 
the processing element blocks internal buffer and the results 
are stored in the output buffers. They are constructed using 
the device memory accessible in the FPGA. Nevertheless, 
the control logic generates control signal for data transaction 
with storage device and processing element. In reference 
the signal received from the control logic the input –output 
address generator generates the address for the input and 
output data.

	 (i)	 Parallelization algorithm
		    The processing elements in Fig. 2 perform the 

operations based on parallelization algorithm. A 

pipelined processing unit comprises of a floating-
point adder and a multiplier. To perform block mul-
tiplication, the matrix multiplication is parallelized 
using several arithmetic units. The process involves 
computing ‘nmr’ multiplication with ‘nr’ sets of ‘m’ 
addition that add ‘m’ products to the actual values in 
the Z block. Figure 3 individual cell is a product, and 
the highlighted values are elements of sole sum.

		    Parallelism is performed at various levels; each 
matrix multiplication is accelerated by paralleliz-
ing each block which in turn increases the system 
throughput. Several matrices or blocks multiples 
abruptly on the same chip decreasing the utilization 
of memory. The three block sizes in matrices X, Y, 
Z are calculated as three dimensions of parallelism, 
as parallelism is achieved as individual. Paralleliz-
ing over ‘n’ includes operating on rows of matrices 
X and Z one by one in parallel. Parallelizing over 
‘r’ includes operating on columns of matrices Y and 
Z independently in parallel. Parallelizing over ‘m’ 
includes running columns of ‘X’ matrix with row of 
matrix ‘Y’, and matrix Z in standalone.

		    To achieve parallelism along each dimension the 
block data allots uniform dimension over various 
processing units. If u1, u2 and u3 are blocks with 
dimension n, m and r respectively, then the paral-
lelism p = u1u2u3. Each block of matrix X is parti-
tioned along the dimension n/u1 × m /u2 resulting in 
u1u2 partition. Similarly block of matrix Y is parti-
tioned along the dimension m/ u2 × r /u3 resulting 
in u2u3 partition and u1u3 partitions of dimension 
n/u1 × r /u3 for block of matrix Z. Each partition of 
X and Y block is linked to ‘u3’ and ‘u1’ multiply 
add units respectively. For the Z block, the partition 
is obtained by adding outputs of ‘u2’tomultiply add 
unit.

	 (ii)	 Scheduling
		    Scheduling denotes the way in which the multipli-

cation and addition operations are performed. Matrix 
multiplication involves nmr multiplication and addi-
tion. In a single time slot, when a schedule assigns 
multiple arithmetic operations, it is a parallel sched-
ule. In linear algebra three vector operations such 
as inner product, the middle product and the outer 
product are used to implement matrix multiplica-
tion. The proposed work processes the outer product 
which is obtained by multiplying the column element 
of matrix X by the row element of matrix Y. Each 
outer product of a column element and a row element 
produces the final value of the entire Z matrix. In two 
ways the outer product schedule are implemented. In 
the first case, the column major matrix X elements 
are reused and to produce a complete layer of matrix Fig. 3   Block multiplication scheming
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Z by multiplying each elements of a given column 
by the same row of matrix Y. In the second case, 
matrix Y elements are reused in a row major order, 
where every given row elements are multiplied by 
the similar column matrix X elements to produce a 
final value of matrix Z. In both the cases, the sched-
ule reuses the column of matrix X elements, row of 
matrix Y elements and entire matrix Z elements.

		    In matrix multiplication, column and row element 
multiplications are independent but addition depends 
on multiplication and other addition process, the 
update form of matrix multiplication is given below.

		    Computing an element zij of matrix Z requires 
adding M products to the initial value of zij. Accu-
mulating the sum of M + 1 numbers involves M inter-
dependent additions. In pipelining operations, Read 
After Write (RAW) data hazards occur when using 
the same pipelined adder to accomplish two inter 
dependent additions i.e., the value is read earlier it 
has been written. To prevent data hazards the inter-
dependent tasks must be separated by more clock 
cycles. In matrix multiplication, add-after-multiply 
and add-after-add are the two data dependencies. By 
enforcing the following measure the data hazards can 
be prevented.

	(i) Create a long multiply add pipeline by performing 
addition after the multiplication.	 (ii) Ensure 
that at appropriate cycle, when the product 
reaches the adder, the second operand to addi-
tion is provided.

		    The above measures confirm that the two opera-
tions are provided with enough clock cycles for the 
first operation of multiplication to complete, thus 
avoids data hazard.

	 (iii)	 Block size
		    Three parameters that define the block size are 

n, m, and r. For larger blocks, during each compute 
phase it takes longer time to transfer. Moreover, the 
number of computation in compute phase is also 
affected by the shape of the blocks, which may be 
square or rectangle. For a matrix multiplication com-
putation, the number of multiply add operations is 
given by

		    Block dimensions can be optimized to reduce the 
data transfer time by reducing the transfer rate. The 
optimizations result in the following constraints.

(10)zij =

M∑
k=1

xik.ykj + zij

(11)Number of multiply add operations = nmr

wheren ≥ 1, m ≥ 1, r ≥ 1 andS be the used on-chip 
memory.

		    Each compute phase execute one block multipli-
cation, which include nmr scalar multiplication and 
additions. Thus, the function to maximize the num-
ber of multiply add operations per compute phase is 
given by

		    If the blocks are of equal size, maximizing the 
function f result in

		    The total number of elements transfer for reusing 
block of matrix X is given by

		    The first term, NM represents the number of trans-
fer for matrix X. Each block is transferred and reused 
exactly once. So the amount of elements is equal to 
the amount of data transfer. The number of transfer 
for matrix Y elements is given in the second term. 
A block of matrix Y has mr elements. There are 
R/r × M/m blocks in matrix Y. Each block is trans-
ferred and multiplied N/n times in a column of matrix 
X. Hence the number of transfers of matrix Y ele-
ments is

		    The third term in Eq. (13) is the number of transfer 
of matrix Y elements. A block of matrix Z has nr ele-
ments and N/n × R/r blocks. Each block is transferred 
twice and updated M/m times. Hence the number of 
transfers of matrix Y elements is

		    The total number of elements transfer for reusing 
block of matrix Y is given by

		    The first term, represents the number of transfer 
for matrix X elements. Each block is transferred and 
multiplied R/r times in a row of matrix Y. There are 
nm elements in a block of matrix X and there are 

(12)nm + mr + nr ≤ S

(13)f(n, m, r) = nmr

(14)n = m = r =

√
S

3

(15)fX(n,m, r) = NM +
NMR

n
+

2NMR

m

(16)mr ×
R

r
×
M

m
×
N

n
=

NMR

n

(17)nr ×
N

n
×
R

r
×
M

m
× 2 =

2NMR

m

(18)fY (n,m, r) =
NMR

r
+MR +

2NMR

m
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N/n × M/m blocks. The number of transfer for matrix 
X elements is

		    The second term in Eq. (16) represents the num-
ber of transfer for matrix Y elements. Each block is 
transferred and reused exactly once. So the number 
of elements transfer is equal to the number of ele-
ments in the matrix Y. The third term in Eq. (16) is 
the number of transfer of matrix Z elements. When 
blocks of either of matrices X or Y are reused the 
number of elements transfer is same.

		    The total number of elements transfer for reusing 
block of matrix Z is given by

		    The first term, represents that NM elements of 
matrix X is transferred R/r times, whereas for the 
second term in Eq. (18) each of the MR elements of 
matrix Y is transferred N/n times. Each element of 
matrix Z is transferred twice which is shown as third 
term.

	 (iv)	  Double buffering
		    Double buffering means assigning enough stor-

age for two blocks of each matrix, for the purpose 

(19)nm ×
N

n
×
M

m
×
R

r
=

NMR

r

(20)fZ(n,m, r) =
NMR

r
+

NMR

n
+ 2NR

of permitting the data fetch stage and compute stage 
to execute overlapping. The overlapping operation 
reduces the total computation time. With double 
buffering, the compute phase starts when the first 
block of each matrix is transferred into the buffer. 
While the compute stage is processing the first buffer, 
the fetch phase starts replacing the content of second 
buffers. For all block multiplication, the total com-
pute time in cycles is given by

where P is the number of multiply add units. For 
example, multiplying block size of 256 × 256 using 
40 multiply add unit takes 419,430 cycles.

(21)TCompute =
NMR

P
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Fig. 4   Compute time vs matrix size
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Table 4   Performance measures for multiplier units

Multiplier design Frequency (MHz) Area (LUT) Delay

Dou et al. (2005) 200 2184 –
Zhang et al. (2013) 262.95 1559 –
Arish and Sharma (2016) 255.213 3983 12.785
Proposed Design 265.31 758 12.576

Table 2   Performance analysis of block matrix multiplication

Parameters 53- bit multiplier
Arish and Sharma 
(2016)

Double precision 
multiplier
Arish and Sharma 
(2016)

Proposed

LUT 4587 4587 4325
Slices 3891 3983 3725
IOBs 213 193 179
Delays(ns) 10.213 12.785 12.176
fmax(MHZ) 252.213 255.213 265.31
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3 � Result and discussion

The proposed block matrix multiplication using Strassen 
and Urdhva Tiryagbhyam multiplier is experimented using 

Xilinx 13.5 simulating tool and implemented in virtex-5 
xc5vsx240t FPGA. The matrix multiplication algorithm 
exploits parallelism at various levels and by proper schedul-
ing matrix elements are reused. Figure 4 shows the compute 
cycle vs matrix size. As the matrix size increases, the com-
putation time also increases. The number of processing ele-
ment performs arithmetic operations can be used to calculate 
the time spent in the computation cycle. Each PE produces 
a new output in every clock cycle.

Figure  5, shows the operating frequency vs number 
of PEs. As the number of PEs increases, the frequency 
decreases.The performance of the architecture depends on 
the speed of the processing element. The parallelization 
strategy allows the use of many processing elements in par-
allel. Each PEs consist of an arithmetic units which contains 
a floating point UrdhvaTiryagbhyam multiplier and an adder. 

Table 3   Comparison of the performance measures for block matrix 
multiplication

Matrix design PEs Frequency(MHz) GFLOPS

Dou et al. (2005) 39 200 15.6
Khayyat and Manjikian (2014) 40 160 16
Arish and Sharma (2016) – 255 –
Proposed design 40 265 20.6

Table 5   Block dimension vs performance time

Block 
dimension

Compute time 
(millions of cycle)

Transfer time 
(millions of cycle)

Total time (mil-
lions of cycle)

32 0.02 0.005 0.025
64 0.07 0.017 0.087
128 0.20 0.05 0.25
256 2.05 0.49 2.54

Table 6   Block dimension vs 
size of memory 

Block dimen-
sion

Size of 
on chip 
memory(bits)

32 0.2 M
64 0.5 M
128 3.1 M
256 12.5 M

39 40 40

200

160

265

15.6 16 20.6

Dou et al. (2005) Khayyat & Manjikian 
(2014)

Proposed Design

PEs Frequency (MHz) GFLOPS

Fig. 7   Comparison of parameter measures between the proposed and 
existing methods for block matrix multiplication

Fig. 8   Wave form of the proposed Strassen matrix multiplication
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The data in the sub blocks are transferred to the PEs internal 
buffer and the results are stored in the output buffers.

Figure 6 shows the performance vs. number of PEs. The 
performance of the architecture increases linearly with the 
processing elements. For floating point computation, the 
performance is measured in terms of number of floating 
point computation performed per second, designated as 
FLOPS (Floating Point Operations).

Table 2 compares the performance of multiplier unit. 
The overall performance of the architecture is based on the 

performance of the multiplier units. When compared with 
(Dou et al. 2005) and (Zhang et al. 2013) the proposed mul-
tiplier unit occupies less area and the delay is also reduced 
when compared with Arish and Sharma (2016).

Table 3 compares the performance of block matrix mul-
tiplication in terms of PEs, frequency and FLOPS. The 
proposed architecture achieves peak performance of 20.6 
GFLOPS with 40 PEs operating at 265 MHz which is better 
when compared with Khayyat and Manjikian (2014) and 
Dou et al. (2005). Table 4 shows the performance meas-
ures for multiplier units. The area and delay of the proposed 

Fig. 9   RTL schematic of the proposed Strassen based method

Fig. 10   Technology schematic 
of the proposed method
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multiplier is less compared to the work of Arish and Sharma 
(2016).

Table 5 shows the analysis of the block dimension with 
performance time. The number of clock cycles used in 
the computation phase is known as compute time and the 
number of cycles spent in the data transfer phase is transfer 
time. Total time for computation is determined from two 
mechanisms: data computation time and transfer time. From 
Table 5 it is observed that the transfer time is 25% less than 
the computation time. Table 6 shows the block dimension vs 
size of on chip memory. As the block dimension increases 
the size of on chip memory also increased.

Figure 7 shows the Comparison of parameter meas-
ures between the proposed and existing methods for block 
matrix multiplication. The simulation result of block mul-
tiplication using Strassen and Urdhva Tiryagbhyam mul-
tiplier is shown in Fig. 8. The input matrix is subdivided 
into sub matrices of size 2 × 2 and after multiplication the 
results are stored in registers. FPGA implementation uses 
LUT instead of memory element in ASIC implementation 
to store the results. Based on divide and conquer method, 
the input matrix A and B is subdivided into sub matrices 
of size 2 × 2 ie. a11[63:0], a12[63:0], a21[63:0], a22[63:0], 
a11[63:0], a12[63:0], a21[63:0], a22[63:0] and after mul-
tiplication the results are stored in registers t1(63:0), 
t2(63:0), t3(63:0) and t4(63:0).

Figure 9 shows the Register Transfer Level schematic of 
the proposed architecture. It is generated after the synthe-
sis process. It shows a representation of the pre-optimized 
design in terms of generic symbols such as adders, multipli-
ers, counters, AND gates and OR gates. Figure 10 shows the 
technology schematic of the proposed architecture.

4 � Conclusion

The architecture performs block multiplication and the mul-
tiplication is parallelized employing several arithmetic units. 
Subsequently, the computation and the memory operation 
are also parallelized to perform the operations simultane-
ously. Further, the scheduling assigns multiple arithmetic 
operations in a single time slot in order for the data reuse 
to increase the system efficiency. Also in addition, the pro-
posed architecture implements double buffering in two on-
chip memory blocks for each matrix to overlap the transfer 
phase and the compute phase. The performance of the block 
matrix multiplication is 20.6 GFLOPS with 40 processing 
elements at a frequency of 265.31 MHz. The delay for the 
proposed architecture is 12.576 ns.
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