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Abstract
With the rapid development of supercomputers, large-scale computing has become increasingly widespread in various sci-
entific research and engineering fields. Meanwhile, the precision and efficiency of large-scale floating-point arithmetic have 
always been a research hotspot in high-performance computing. This paper studies the numerical method to solve large-scale 
sparse linear equations, in which the accumulation of rounding errors during the solution process leads to inaccurate results, 
and large-scale data makes the solver produce a long running time. For the above issues, we use error-free transformation 
technology and mixed-precision ideas to construct a reliable parallel numerical algorithm framework based on HYPRE, 
which solves large-scale sparse linear equations to improve accuracy and accelerate numerical calculations. Moreover, we 
illustrate the implementation details of our technique by implementing two cases. One is that we use error-free transformation 
technology to design high-precision iterative algorithms, such as GMRES, PCG, and BICGSTAB, which reduce rounding 
errors in the calculation process and make the result more accurate. The other is that we propose a mixed-precision iterative 
algorithm that utilizes low-precision formats to achieve higher computing power and reduce computing time. Experimental 
results demonstrate that XHYPRE has higher reliability and effectiveness  . Our XHYPRE is on average 1.3x faster than 
HYPRE and reduces the number of iterations to 87.1% on average.

Keywords  High-performance computing · Rounding errors · Error-free transformation technology · Mixed-precision

1  Introduction

With the rapid development of high-performance computing 
and the vigorous popularization of supercomputers, more 
and more scientific computing applications in the current 
computing environment can no longer meet the needs of fast 
computing and higher precision. These applications usually 
exist in various fields of academia and industry, including 
aerospace, nuclear simulation, artificial intelligence, bio-
medicine, and information security (Bailey et al. 2012; Wei 
et al. 2022). Although the development of high-performance 
computing hardware devices is booming, the exploitation of 
corresponding software libraries is still underway for differ-
ent scientific problems. For example, there will be inaccurate 
calculation results and slow computing speed when solving 
sparse linear algebraic equations in floating-point arithmetic 
(Muller et al. 2018).

Although double-precision arithmetic can get more 
accurate results in current high-performance computers, 
the speed of 64-bit floating-point operations (double-preci-
sion) is usually half that of 32-bit floating-point operations 

 *	 Hao Jiang 
	 haojiang@nudt.edu.cn

	 Chuanying Li 
	 lichuanying@hnu.edu.cn

	 Stef Graillat 
	 stef.graillat@sorbonne-universite.fr

	 Zhe Quan 
	 quanzhe@hnu.edu.cn

	 Tong‑Xiang Gu 
	 txgu@iapcm.ac.cn

	 Kenli Li 
	 lkl@hnu.edu.cn

1	 College of Computer Science and Electronic Engineering, 
Hunan University, Changsha 410082, China

2	 Sorbonne Université, CNRS, LIP6, 10587, F‑75005 Paris, 
France

3	 College of Computer, National University of Defense 
Technology, Changsha 410073, China

4	 Laboratory of Computationary Physics, Institute of Applied 
Physics and Computational Mathematics, Beijing 100094, 
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00141-3&domain=pdf
http://orcid.org/0000-0003-3849-6745


192	 C. Li et al.

1 3

(float-precision). The reason is that the lower precision can 
perform more operations per second on traditional proces-
sors (Baboulin et al. 2009). Therefore, efficiently improving 
the parallel execution efficiency of numerical calculations 
while improving the accuracy of the results is the focus of 
current research. Although some scholars have used hetero-
geneous parallel accelerators to accelerate numerical calcu-
lations (Tan et al. 2021; Yang et al. 2017), designing effi-
cient and reliable parallel numerical algorithm libraries can 
significantly impact the current scientific computing field.

Currently, most high-performance computing platforms 
perform scientific calculations under the IEEE 754-2019 
floating-point arithmetic standard. Previous works proved 
that inaccurate results could occur in numerical calculations 
(Mascarenhas and de Camargo 2017) (Cools et al. 2018; 
Du et al. 2017; Delgado Gracia 2020). Because rounding 
errors are unavoidable in floating-point operations (Stummel 
1980), and it represents the numerical difference between the 
exact and approximate values calculated through floating-
point operations. The cumulative effect of rounding errors 
can make the numerical computation results inaccurate and 
unreliable (Cools et al. 2018; Benz et al. 2012; Connolly 
et al. 2021), which leads to meaningless final calculation 
results. Especially solving the issue of numerical calcula-
tions based on large-scale and long-term, or solving some 
ill-conditioned problems of small-scale numerical calcu-
lations. Therefore, controlling the rounding error in float-
ing-point operations has become the key issue to research. 
Error-Free Transformation (EFT) techniques showed reli-
able performance in solving this problem (Du et al. 2017; 
Delgado Gracia 2020; Graillat and Jézéquel 2020; Jiang 
et al. 2013), which compensates the rounding error of an 
individual operation back to the original calculated result 
through accumulation.

Although the calculation result’s accuracy is improved, 
the cost will increase accordingly. The reason is that EFT 
will increase many calculation steps in the solution process 
when reducing the rounding error. Generally, some meth-
ods that incorporate the idea of mixed-precision are used to 
reduce the calculation time without reducing the accuracy 
(Kurzak et al. 2008; Abdelfattah et al. 2021; Abdulah et al. 
2022). They usually use higher precision for calculation at 
critical parts and use lower precision in other regions in 
iterations to ensure the accuracy of global computing. The 
lower precision can perform more operations per second on 
traditional processors, and these methods have demonstrated 
reliability in maintaining high-precision calculations and 
reducing the overall running time, ultimately improving the 
peak performance (Carson and Higham 2018; Li et al. 2022; 
Lindquist et al. 2022). Motivated by this, we develop a reli-
able and efficient parallel numerical algorithm library called 
XHYPRE. We use EFT to reduce the rounding error during 
calculation to improve the accuracy of the calculation result 

and utilize the potential performance advantages of mixed 
precision to speed up and decrease the calculation time.

Taking the above factors into account, in this paper, we 
propose XHYPRE, which mainly uses EFT and mixed-
precision ideas, constructing a reliable and efficient parallel 
numerical algorithm framework for large-scale sparse lin-
ear equations. It belongs to lightweight software. To further 
demonstrate the effectiveness of the above idea, we have 
conducted multiple sets of experiments on the supercom-
puter platform, and we have solved the ill-conditioned prob-
lems that the classic parallel algorithm library cannot solve. 
Experimental results demonstrate that our XHYPRE is on 
average 1.3x faster than HYPRE and reduces the number 
of iterations to 87.1% on average. To summarize, our main 
contributions are shown in the following four-fold:

•	 We propose high-precision algorithms, such as high-pre-
cision SpMV, GMRES, PCG, and BiCGSTAB, which 
reduce rounding errors in the calculation process and 
make the final results more accurate.

•	 We propose mixed-precision algorithms, such as mixed-
precision GMRES, PCG, and BiCGSTAB, and utilize 
low-precision formats to achieve higher computing 
power, ultimately accelerating scientific computing.

•	 We propose a reliable parallel numerical algorithm algo-
rithm library XHYPRE for large-scale sparse linear equa-
tions, it integrates a variety of algorithms, which show 
advantages in multiple performance indicators.

•	 Extensive experimental analyses are conducted to dem-
onstrate that our XHYPRE can significantly improve 
the computational accuracy and speed in floating-point 
calculations, and XHYPRE can solve the ill-conditioned 
problems that HYPRE and PETSc cannot solve.

The remainder of this article are organized as follows. The 
Sect. 2 mainly discusses the background information of the 
relevant literature. The Sect. 3 mainly introduces rounding 
error and error-free transformation techniques. In Sect. 4, 
we describe our parallel numerical algorithm library of 
large-scale sparse linear equations in detail. We show the 
performance results of our XHYPRE in Sect. 5. Finally, we 
conclude the full paper and plan the subsequent research 
work in Sect. 6.

2 � Related work

In this part, we mainly introduce relevant background knowl-
edge and corresponding comments. The first is High Per-
formance Preconditioners HYPRE (Sect. 2.1), the second 
is rounding errors and the error-free transformation tech-
niques (Sect. 2.2), and the last is numerical methods utilizing 
mixed-precision (Sect. 2.3).
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2.1 � HYPRE

HYPRE (High Performance Preconditioners) is a parallel 
numerical calculation library used to solve large sparse 
linear algebraic equations. HYPRE has a parallel multi-
grid method, which is aimed at structured and unstructured 
grid problems and can be used for large-scale scientific 
simulations (Falgout et al. 2002). Some prior works (Fal-
gout et al. 2006, 2006) has introduced HYPRE in detail. 
At present, HYPRE is one of the world’s most popular 
numerical software packages, which is used to solve large-
scale sparse linear equations on massively parallel com-
puters. Some researchers have extended multi-grid solvers 
in HYPRE to millions of cores and even solved more than 
one trillion unknown problems (Baker et al. 2012). Jin 
and Mellor-Crummey (2002) used HYPRE semi-coarse 
multi-grid for SMG98 and optimized the node perfor-
mance of SMG98. Reference (Engwer et al. 2017) studied 
the stencils with different complexity, and showed how to 
use them in HYPRE to enable more complex problems to 
perform stencil calculations. In addition, HYPRE can be 
used with other libraries to solve some specific problems 
(Schmidt et al. 2013).

Although HYPRE is very powerful, handling specific 
problems still falls short of expectations. Therefore, many 
researchers began to further improve HYPRE. Gershman 
and Strichman (2005) proposed an improved Hyper pre-
processing algorithm. When HYPRE is combined with 
modern SAT solvers to solve a specified type of problem, 
Gershman’s algorithm generates less information than 
HYPRE but is more efficient. It can spend less total run-
ning time, including the SAT solvers, especially in large-
scale experiments. For the symmetric eigenvalue problem, 
Lashuk et al. developed the LOBPCG code for the HYPRE 
and PETSc software packages (Lashuk et al. 2007). The 
combination of HYPRE preconditioners and PTESc can 
facilitate a quick comparison of algorithms (Zhang et al. 
2008). For the performance problem of the parallel pre-
conditioned algorithm, Knyazev et  al. used HYPRE’s 
algebraic multigrid and preconditioners to solve it and 
later developed the software package Xolvers (BLOPEX), 
which can be used as an independent serial library or built 
into HYPRE (Knyazev et al. 2007). The same preprocessor 
can be effectively used for symmetric eigenvalue prob-
lems by BLOPEX. Sahasrabudhe et al. (2021) optimized 
the HYPRE solver for the core and GPU architectures. 
They combined OpenMP and HYPRE to reduce overheads 
while increasing execution speed (Sahasrabudhe and Ber-
zins 2020). However, most of these studies are related to 
solvers, and they are only partially optimized. They did 
not take into account the accuracy of the calculations, nor 
the rounding errors that may occur during the calculations.

2.2 � Rounding errors and error‑free transformation 
techniques

In processing floating-point operations, rounding errors 
will inevitably occur, and they nearly appear in all elemen-
tary operations, significantly when solving ill-conditioned 
problems. After the rounding errors continue to accumu-
late, the calculation result will become inaccurate or even 
completely incorrect (Mascarenhas and de Camargo 2017; 
Cools et al. 2018; de Camargo 2020). Menon et al. proposed 
ADAPT (Menon et al. 2018), which uses algorithmic differ-
entiation for mixed precision analysis for HPC workloads, 
and estimates rounding errors, then accurately estimates 
the output error. Connolly et al. (2021) analyzed stochastic 
characteristics and explained the process of rounding errors 
well. Moreover, Higham and Mary (2019) proposed a novel 
analysis method of probabilistic rounding error, which has 
been applied to a variety of algorithms. Ozaki et al. (2021) 
designed a method to verify the numerical computation of a 
large-scale linear system and obtained the error range of the 
numerical results. Nevertheless, they are limited to verifying 
the numerical calculation of linear systems, and they did not 
use an effective method to solve the problem of inaccurate 
calculations caused by rounding errors.

Therefore, how to control the rounding error in floating-
point arithmetic has become a research focus. The compen-
sated algorithm based on EFT shows reliable performance 
in solving rounding errors (Delgado Gracia 2020; Hermes 
2019). For the tensor product functions, Delgado Gracia 
(2020) designed the compensation algorithm of de Casteljau, 
which is very effective in ill-conditioned situations. By using 
EFT techniques, Graillat and Jézéquel (2020) proposed the 
new approach that used compensated algorithms to obtain 
tight interval inclusions, then used to study the compen-
sated algorithms. Du et al. (2017) proposed a compensated 
quotient-difference (Compqd) algorithm, which combines 
traditional QD algorithm and EFT to make the numerical 
results more stable. Jiang et al. (2013) and Graillat et al. 
(2018) evaluated and verified the compensated algorithm 
using EFT. Jiang et al. evaluated the compensated algorithm 
for the k-th derivative of a polynomial, Graillat et al. used 
stochastic arithmetic to verify the result of the compensated 
algorithm, and the experiment results of the two proved the 
accuracy of the compensated algorithm based on EFT. In 
our XHYPRE, we use the EFT design algorithm to make 
XHYPRE’s results more accurate and stable.

2.3 � Numerical methods utilizing mixed‑precision

Almost all numerical calculations are performed utilizing 
floating-point data types. The accuracy of these data types 
must reduce overall rounding errors while emphasizing 
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performance improvements. Generally, mixed-precision 
can achieve this excellent effect. Mixed-precision uses 
higher precision calculations for key operations when 
working low-precision, accelerating computations while 
maintaining high-precision output. Carson and Higham 
(2018) combined the three precisions for iterative refine-
ment. Li et al. (2023, 2021) utilized mixed precision to 
design a calculation framework with adjustable precision 
to solve singular values, so as to improve the calculation 
speed and enhance the overall performance. Sorna et al. 
(2018) designed the mixed-precision Fast Fourier Trans-
form algorithm, which committed to accelerating calcula-
tions while maintaining their calculation accuracy.

In addition, linear solvers can also apply mixed-pre-
cision ideas to improve performance (Sun et al. 2008; 
McCormick et al. 2021). Blanchard et al. (2020) designed 
a mixed-precision block FMA and applied it to matrix 
multiplication and LU factorization. Haidar et al. (2020) 
designed mixed-precision LU factorization and Gener-
alized Minimal Residual Method (GMRES) using low 
precision on NVIDIA GPUs to speed up the equation 
solving while maintaining numerical stability. Lindquist 
et al. (2022) designed a mixed-precision GMRES, which 
achieved the same convergence and increased speed com-
pared with double-precision GMRES. The Multiple Rela-
tively Robust Representations algorithm using mixed-pre-
cision methods can also improve the accuracy and reduce 
the calculation time (Petschow et al. 2014). Based on the 
current advantages of mixed-precision, we also utilize the 
mixed-precision idea to design a parallel numerical algo-
rithm library to solve large-scale sparse linear equations 
efficiently.

3 � Preliminary

At present, the floating-point arithmetic strategy is cur-
rently the most widely used approximate real number 
algorithm. The computer uses IEEE Standard for Binary 
Floating-Point Arithmetic for scientific calculations, and 
rounding errors will inevitably occur in the floating-point 
operations. Meanwhile, during the execution of large-
scale calculations, even a minimal error after a consid-
erable accumulation will make the result inaccurate or 
completely incorrect. Especially in a parallel numerical 
algorithm library of large-scale sparse linear equations, 
the algorithm is changed by fusing arithmetic strategies 
and mixed_precision ideas to control the accumulation of 
rounding errors, thereby improving the accuracy of the 
numerical algorithm. In this section, we first introduce 

rounding errors in floating-point arithmetic (Sect. 3.1), and 
then introduce error-free transformation techniques that 
effectively control rounding errors (Sect. 3.2)).

3.1 � Rounding errors

The difference between the exact value and the approximate 
value obtained by floating-point operations is the rounding 
error, which causes the instability of the numerical result. 
In the IEEE-754 floating-point standard, the unit roundoff 
for binary32 is approximately equal to 10−8 , and the unit 
roundoff for binary64 is approximately equal to 10−16.

Within the scope of floating-point numbers, a standard 
model of floating-point operation is denoted as follow:

where x ∈ ℝ , y ∈ ℝ , and op indicates the floating-point 
addition, subtraction, multiplication, and division operations 
inside the computer, fl represents floating-point operation, 
and ◦ ∈ {+,−,×,÷} , |�1| ≤ u

1+u
 , ||�2|| ≤ u

1+u
 . Here u is the work-

ing precision of the machine used in basic arithmetic opera-
tions, which is the unit roundoff. Some documents regard u 
as machine epsilon, abbreviated as ��� . For rounding to 
nearest mode, there is u = ���∕� . For the other three round-
ing modes, eps = u . In IEEE standard 754, double-precision 
rounding to nearest mode, eps = 2 −52 , and u = 2−53.

Without the situation of underflow, the error bounds of 
the basic floating-point operations model are obtained by 
the following equation:

This is the basic process of rounding errors in calculations 
due to the limited word length of the computer.

3.2 � Error‑free transformation techniques

Oishi, Ogita, and Rump formally proposed the concept of 
Error-Free Transformation (EFT) in 2005 (Ogita et al. 2005). 
It becomes an important tool for the later design of compen-
sated algorithms. An increasing number of compensation 
algorithms have thus flourished. For example, Graillat and 
Ménissier-Morain (2008) proposed a compensated Horner 
scheme for accurately calculating the polynomial evaluation.

Suppose ◦ ∈ {+,−,×} , two floating-point numbers 
(x, y) ∈ �  , and a = fl(x◦y) ∈ �  , b ∈ �  . When there is no 
situation of overflow and underflow, the rounding mode is 

(1)x op y = f l (x◦y) = (x◦y)(1 + �1) = (x◦y)∕(1 + �2),

(2)
|x◦y − fl(x◦y)| ≤ u|x◦y|, and

|x◦y − fl(x◦y)| ≤ u|fl(x◦y)|.
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set to rounding to nearest, and then the equation is denoted 
as follows:

where a represents the best floating-point approximation of 
the calculation result, and b represents the exact rounding 
error. The focus of EFT techniques is to calculate the value 
of b accurately. The process of satisfying the above expres-
sion is the EFT of a pair of floating-point number addition, 
subtraction and multiplication operations.

3.2.1 � EFT of the sum of two floating‑point numbers

Suppose two floating-point numbers (x, y) ∈ �  , and sum of 
floating-point numbers is a = fl(x◦y) ∈ �  , rounding error is 
b ∈ �  . The TwoSum algorithm requires six floating-point 
operations, which was proposed by Knuth (2014). The com-
putational details are presented in Algorithm 1. The Two-
Sum algorithm does not require a prior condition, and it still 
holds when underflow occurs. And it is the best algorithm 
known so far.

(3)(x◦y) = a + b,

3.2.2 � EFT of the product of two floating‑point numbers

We use the TwoProd algorithm (Dekker 1971), but the 
Fused-Multiply-and-Add (FMA) (Muller et al. 2010) unit 
shows a smaller area and higher accuracy than a separate 
multiplier and adder, which can execute floating-point mul-
tiplication and addition operations simultaneously. Specifi-
cally, the FMA is a floating-point multiply-add operation 
that performs n + p × q in one step, where n, p, q ∈ �  . It is a 
common arithmetic operation that only performs rounding 
once. The non-FMA operation is to first calculate the result 
of p × q , round the result to M significant bits, then add the 
result to n, and finally round the added result to M significant 
bits. The FMA calculates the value of n + p × q with full 
precision, and then rounds the final result to M significant 
bits. It can be seen that FMA has the advantages of fast cal-
culation speed and high calculation precision compared with 
the traditional floating-point adder and floating-point mul-
tiplier to perform floating-point multiplication and addition 
operations. Therefore, we changed the TwoProd algorithm 
to the TwoProdFMA algorithm and applied it to our parallel 
numerical algorithm library to reduce the impact of round-
ing errors. The TwoProdFMA algorithm only costs 2 flops, 
as shown in Algorithm 2.
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4 � A reliable and efficient numerical 
algorithm library

XHYPRE is a reliable and efficient parallel numerical 
algorithm framework designed and implemented based on 
HYPRE [54]. The central idea of XHYPRE is EFT tech-
nology and mixed-precision strategy. In what follows, we 
first introduce the general design of our proposed parallel 
numerical algorithm library (Sect. 4.1). Then give an exam-
ple of how to use EFT technology to improve the accuracy of 
the calculation in Sect. 4.2, and Sect. 4.3 shows an example 
of how to utilize the idea of mixed precision to speed up.

4.1 � Overview

In the following part, we introduce a reliable and efficient 
iterative refinement numerical algorithm framework. In par-
ticular, the original method is not feasible when solving ill-
conditioned problems.

The core strategy of this framework is to refine the algo-
rithm’s solving process, use EFT technology to improve the 
calculation accuracy, and utilize the idea of mixed preci-
sion to accelerate the calculation process. Therefore, we per-
form performance analysis of the application and analyze 
the implementation process of many algorithms in HYPRE. 

Fig. 1   The execution flow chart 
of the hotspot function

Fig. 2   The execution flow of SpMV



197XHYPRE: a reliable parallel numerical algorithm library for solving large‑scale sparse linear…

1 3

We select one of the hotspot functions as an example to show 
the execution flow of the function, as shown in Fig. 1. This 
hotspot function uses the GMRES algorithm of the Krylov 
subspace, adopts the SStruct interface, and has two differ-
ent implementations according to the difference of the Data 
Layout. It can be seen from the Fig. 1 that there are two 
kinds of Data Layout, structured and CSR. In our analysis 
of the iterative refinement of the algorithm, we find that the 
algorithm’s dot product and sparse matrix–vector multiplica-
tion (SpMV) during loop iteration are computationally inten-
sive and require high computational accuracy. Meanwhile, 
we can see from Fig. 1 that the dot product and SpMV are 
the bottom-level computation functions of the hotspot func-
tion. And according to different judgment conditions, their 
implementation methods are also other. We take one of the 
SpMV as an example, and its execution flow is shown in 
Fig. 2. Note that calculation ∗ represents different calcula-
tion methods according to different judgment conditions, 
where ∗∈ [1 ∶ 10].

When we change the dot product and SpMV and do not 
make changes to other parts, we find that they significantly 
impact the algorithm’s overall number of iterations and 
running time after experimental verification. Especially 
in floating-point arithmetic, due to the increase of the data 
scale, which dramatically increases the calculation time, the 
accumulated rounding error will cause the calculation result 
to seriously deviate from expectations and fail to achieve the 
best convergence state. Therefore, we improve the overall 

performance by decreasing the rounding error of the dot 
product and SpMV.

Firstly, we analyze the cumulative effect of rounding 
errors. We use EFT technology to compensate for the round-
ing error back to the previous computation result for dot 
product and SpMV, which improves the calculation accu-
racy and reduces the number of iterations. Although we can 
directly utilize a higher precision data format to calculate 
dot product and SpMV, it is not suitable for all machines. 
So, we choose to use EFT technology to make our XHYPRE 
universality while ensuring calculation accuracy. Then we 
adopt the mixed-precision idea, which is running the algo-
rithm at reduced precision while maintaining high preci-
sion for critical operations, as far as possible to utilize the 
lower precision data format to obtain higher performance. 
Specifically, the dot product and SpMV are used with full-
precision, while other parts are used with reduced-precision. 
The reduced-precision part reduces the runtime, and the 
full-precision part ensures the accuracy of the final result. 
Finally, we construct a reliable and efficient parallel numeri-
cal algorithm library named XHYPRE. The XHYPRE soft-
ware library is shown in Fig. 3.

In XHYPRE, we design new algorithms to provide new 
interfaces for the solver, which can solve large sparse linear 
equations and ill-conditioned problems on a massively par-
allel machine. It includes parallel implementations of sev-
eral types of typical iteration methods (such as Krylov sub-
space iteration methods). We take Krylov subspace iteration 

Fig. 3   The Framework of XHYPRE
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methods as an example to show the calculation process of 
XHYPRE in Fig. 3. We first select the algorithm that can 
solve the problem, then transfer the data through the function 
interface, and finally calculate the final result.

Our XHYPRE software library relies on HYPRE library, 
as shown in Fig. 3. Running the script x _hypre.sh in our 
library can transform the HYPRE library into the XHYPRE 
library. Our script manages all the implementation details, 
including the method’s implementation to the function’s dec-
laration in the header file, and the complex calling relation-
ship of the function in the makefile. Users can implement 
complex code transformations by simply running x _hypre.
sh, which reduces the difficulty for users to use.

Our XHYPRE software has the following advantages. 
First, our XHYPRE belongs to lightweight software, which 
is easy to download and has high flexibility. For example, the 
programmer can still use any preconditioners and functional 
interfaces after performing the transformation or choose to 
use our method. Second, this method is less complicated 
for any user, the operation is more straightforward, and the 
choice of functions is more diverse. Giving users more free-
dom and space to utilize XHYPRE in various scenarios. 
Moreover, we support reproducible science. XHYPRE is 
available as a free open-source numerical algorithm library 
on GitHub. It contains two versions, including the version 
integrated with TwoProd algorithm (https://github.com/
compilerOpt/-XHYPRE−1.0.0) and the version integrated 
with Fused-Multiply-and-Add (FMA) (https://github.com/
compilerOpt/-XHYPRE−2.0.0).

The following numerical test introduces the performance 
of XHYPRE from the following two aspects (Sect. 5). One 
is that we use EFT technology to reduce the accumulation of 
rounding errors and design reliable numerical algorithms to 
make the output results more accurate and stable, it can be 
called high-precision XHYPRE. The other is that we lever-
age mixed-precision to speed up calculations and improve 
overall performance, it can be called mixed-precision XHY-
PRE. Furthermore, we take the GMRES and Preconditioned 
Conjugate Gradient (PCG) as an example, and the two 
aspects of XHYPRE are introduced in detail through exam-
ples in Sect. 4.2 and Sect. 4.3. Although our XHYPRE con-
tains multiple algorithms, such as the Biconjugate gradient 
stabilized method (BiCGSTAB), we will not introduce them 
one by one due to using the same implementation strategy.

4.2 � Implementation of high‑precision algorithm

We analyze the application’s code and choose the code that 
can improve the performance of the software for optimiza-
tion. The above analysis shows that the dot product and 
SpMV are the hotspot functions. We analyze the hotspots’ 
code and find that the rounding errors caused by vector 
multiplication and addition are discarded in the original 
solution process of SpMV, which makes the calculation 
have deviation, ultimately leading to inaccurate results.
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In order to improve the accuracy of the calculation, we 
use the Dot2 algorithm in reference (Ogita et al. 2005) for 
computing the dot product. Based on this, we propose a 
high-precision SpMV algorithm. The original solution is 
combined with EFT techniques to form a high-precision 
SpMV named XSpMV. The high-precision SpMV’s execu-
tion process is shown in Algorithm 3. The nrows is the 
number of rows in the matrix, vector A_value records the 
values of each non-zero element, vector A_index records 
the column indices of the non-zero elements, vector 
A_pointer records the index of the first non-zero element 
of each row in vector A_index and vector A_value.

First, we use the TwoProdFMA algorithm to obtain 
the product of each element of the matrix A and the vec-
tor x. Then, we utilize the TwoSum algorithm to sum the 
ordinary floating-point results, and add up the errors res 
they initially discarded. Finally, the floating-point result th 
obtained is added to each error res. Similarly, each row of 
matrix A is multiplied by vector x in this way. We changed 
the code for each part, including the high-precision cal-
culation of the dot product. We use the typedef keyword 
to create the data type of dd_real , which includes high-
order and low-order parts of the data, equivalent to imple-
menting 128-bit calculations. But our input and output 

are both double data, and only high-precision calculations 
are implemented internally. We tested the XSpMV, and 
the test results proved that the modification’s effect was 
obvious.

We mainly combine some algorithms with EFT tech-
niques to turn them into higher precision algorithms, ulti-
mately improving the accuracy of calculations. From the 
analysis in Sect. 4.1, we can see that the essential parts that 
affect the performance of these algorithms are dot prod-
uct and SpMV. We take the GMRES and PCG algorithms 
as examples for a brief description. The high-precision 

GMRES is shown in Algorithm 4. Its input and output keep 
unchanged. However, the dot product and SpMV use EFT 
technology to become a high-precision solution, reducing 
rounding errors and making the calculation more accu-
rate. Therefore, our HGMRES algorithm can solve the ill-
conditioned problem that HYPRE and PETSc cannot solve 
(Sect. 5.1). We also show the high-precision PCG algorithm 
in Algorithm 5. The high-precision PCG algorithm is more 
accurate in each layer iterative calculation, because the EFT 
technology compensates the accumulated rounding error 
back.
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4.3 � Implementation of mixed‑precision algorithm

As the computation scale of high-performance computing 
increases, it becomes increasingly essential to decrease runt-
ime and memory bandwidth without reducing the overall 

precision. Therefore, developing algorithms that utilize mixed-
precision algorithms to provide higher performance can sig-
nificantly impact HPC. This is equivalent to approximate 
computing that balances program accuracy and speed, and 
ultimately improves the peak performance.

Table 1   Specific information of 
the matrix

Name Order Non-zero element Application area Convergence

Solverchallenge21_01 2,097,152 14,581,760 Laser fusion <1e-10
Solverchallenge21_02 6,291,456 52,133,888 Laser fusion <1e-10
Solverchallenge21_03 83,073 2,826,927 Engineering mechanics <1e-8
Solverchallenge21_04 2,081,541 71,033,481 Engineering mechanics <1e-8
Solverchallenge21_05 225,800 3,591,872 Electronics system <1e-8
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Generally, a single-precision algorithm is used to calculate 
the start and end, and a double-precision algorithm is used 
to calculate the refinement process. The single-precision part 
reduces the runtime and saves memory bandwidth, and the 
double-precision part ensures the accuracy of the final result. 
Based on the above research, we focus on a specific mixed-
precision strategy in our XHYPRE, which has achieved suc-
cessful results in both accuracy and performance.

In XHYPRE, the accuracy of these data types must reduce 
overall rounding errors while emphasizing performance 
improvements. We use the GMRES and PCG algorithm as an 
example to illustrate the mixed-precision idea. Specifically, 
the dot product and SpMV are used with full-precision, while 
other parts are used with reduced-precision. In this paper, ulow 
stands for use float-precision computation, uhigh stands for use 
double-precision computation. Mixed precision GMRES as 
shown in Algorithm 6. We utilize low-precision data formats 
as much as possible to achieve high computing accuracy.

Fig. 4   Flow chart of five modes 
of the GMRES algorithm
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At the same time, the mixed-precision PCG algorithm 
is shown in Algorithm 7. We iteratively refine the PCG 
algorithm, double precision calculation key parts, other 
parts utilize float precision to calculate, and then achieve 
better performance. Finally, we realized a set of efficient 

floating-point numerical algorithms to speed up. And we 
have verified our ideas by conducting experiments on the 
supercomputing platform.

5 � Experimental evaluation

This section comprehensively evaluates the performance 
of our XHYPRE. We conducted detailed experiments on 
the Tianhe-1 supercomputer. Tianhe-1 has 2048 nodes. The 
computing node has two Intel Xeon Westmere EP 2.50GHz 
CPUs. Each CPU has 6 cores, 48GB memory, single com-
puting node CPU peak performance 140.64 GFlops. The 
data used for calculation are all floating-point numbers. All 
numerical experiments in this paper are carried out under 
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Fig. 6   Maximum relative errors on the vector b using the SpMV and XSpMV algorithms

Table 2   Convergence results of XHYPRE (number of iterations)

Name HYPRE PETSc XHYPRE

Solverchallenge21_01 Not convergent Not convergent 4431
Solverchallenge21_02 17 69 17
Solverchallenge21_03 Not convergent Not convergent 704
Solverchallenge21_04 3 3 3
Solverchallenge21_05 1 1 1
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Fig. 7   Maximum relative errors on the vector b using the SpMV and XSpMV algorithms

the IEEE-754 standard. The software configuration includes 
GCC v8.3.0 and MPICH v3.3.2.

5.1 � Convergence verification XHYPRE

We select five ill-conditioned matrices [55] for testing to 
prove that the convergence of XHYPRE is better than that 
of HYPRE. Where the solverchallenge21_01 and the solv-
erchallenge21_02 are derived from the three-dimensional 
photon equation of radiation fluid mechanics and are a struc-
tural grid. The solverchallenge21_03 matrix is derived from 
the linear elastic equation of the contact mechanics of the 
centrifuge device and is a first-order nodal finite element. 
The solverchallenge21_04 matrix is derived from the linear 
elastic equation of contact mechanics simulated of the aero-
engine; its discretization format is first-order nodal finite 
element. And the solverchallenge21_05 comes from filter 
electromagnetic field simulation time-harmonic Maxwell 
equations; Its discretization format is a first-order Nedelec 
finite element. Table 1 shows the detailed information of 
the matrix.

PETSc (Portable, ExtensibleToolkit for Scientific Com-
putation) [56] provides almost all efficient solvers for solving 
linear equations, serial and parallel solutions, and direct and 
iterative solutions. For large-scale linear equations, PETSc 
provides many mature and effective iterative methods based 
on the Krylov subspace method and various precondition-
ers, as well as interfaces to other general programs and user 
programs.

We test PETSc, HYPRE, and XHYPRE on the Tianhe-1 
supercomputer. Table  2 shows the test results. For the 
solverchallenge21_01 matrix, HYPRE and PETSc cannot 

converge, while our XHYPRE converges after 4431 itera-
tions without preconditions. For the solverchallenge21_03 
matrix, HYPRE and PETSc cannot converge, while our 
XHYPRE can converge after 704 iterations without pre-
conditions. For the three matrices of solverchallenge21_02, 
solverchallenge21_04, and solverchallenge21_05, PETSc, 
HYPRE, and XHYPRE can all solve them successfully. 
It should be noted that for the two matrices of solverchal-
lenge21_01 and solverchallenge21_03, only XHYPRE can 
meet the accuracy requirements and converge at the same 
time. So, the XHYPRE can solve the above two linear sys-
tems, while the HYPRE and PETSc can not.

In order to fully illustrate the convergence of our algo-
rithm, we take XGMRES as an example. We change XGM-
RES in 4 different modes and conducted experiments on 
them, respectively. The flow chart of the GMRES algorithm 
in 5 different modes is shown in Fig. 4. Note: This flowchart 
only involves dot and SpMV. As shown in Algorithm 7, 
mode 1 is the flow chart of our XGMRES algorithm, mode 
2 – mode 5 is to modify the part process of the XGMRES 
algorithm and restore it to the algorithm used by GMRES. 
It can be seen from Table 2 that our XHYPRE using the 
XGMRES algorithm can solve two linear systems (mode 
1), but the original HYPRE using the GMRES algorithm 
cannot. Therefore, we conduct experiments on the GMRES 
algorithm in four modes.

After experimental verification, it can be known that 
the XGMRES algorithm can not be convergent no matter 
which module is changed. Only mode 1 can be conver-
gent, which can prove the convergence and effectiveness 
of XGMRES. So, our XHYPRE can solve ill-conditioned 
problems that HYPRE and PETSc cannot solve.
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5.2 � Precision analysis of XSpMV

This section evaluates the performance of the XSpMV 
algorithm by comparing the relative error and running 
time of ordinary SpMV (SpMV) and high-precision SpMV 
(XSpMV) at different scales. In addition, we use Symbolic 
Toolbox in Matlab to calculate the ’exact’ results as the 
criterion.

Firstly, we test 100 sparse matrix–vector multiplication 
of different sizes to demonstrate the accuracy and stability 
of the XSpMV better. We select 100 matrices and vectors 
of different sizes. The matrix size is m ∗ n (m and n are 
integers randomly obtained by rand in the interval (20, 
2000)), and the vector size is n. We use sparse matrixes 
that obey a uniform distribution. In this section, we set 
the distribution density of non-zero elements as 0.6. The 
values of matrices and vectors are generated by the Gen-
Dot algorithm (Ogita et al. 2005). In Fig. 5, we show the 
maximum relative error of all elements in each result vec-
tor bn obtained using the SpMV and XSpMV algorithm, 
respectively. The number in the figure represents the Nth 
sparse matrix–vector multiplication, the vertical axis is 
the maximum relative error of the result vector b(N)

m
 . The 

calculation formula comes from literature (Du et al. 2017), 
that is

where N = 1 ∶ 100 . MRE stands for the maximum rela-
tive error of the result vector b(N)

m
 . r(N)

m
 represents the ‘exact’ 

result calculated using the Symbolic Toolbox in Matlab, and 
b(N)
m

 represents the calculation result of the algorithm. One 
can see from Fig. 5 that the relative error computed by the 
SpMV fluctuates wildly, even reaching 10−13 . However, the 
maximum relative error of all b(N)

m
 obtained by the XSpMV 

is less than 10−15 . Therefore, the accuracy and stability of the 
XSpMV algorithm are much better than that of the SpMV 
algorithm.

Furthermore, we select 50 sparse matrices from Suit-
eSparse Matrix Collection [57] randomly for testing. Fig-
ure 6 shows the maximum relative error results. It can 
be seen from Fig. 6 that the relative error generated by 
using the SpMV algorithm reaches a maximum of 10-12. 
Meanwhile, the relative error at all scales is more exten-
sive than those produced by XSpMV and is very unstable. 

(4)MRE = max
m

max
N

|
|r

(N)
m

− b(N)
m

|
|

|
|
|
r
(N)
m

|
|
|

,

Fig. 8   The number of iterations of HYPRE and High XHYPRE

Table 3   The computation time of HYPRE and High XHYPRE on the 
CPU

Matrix size HYPRE (ms) High XHYPRE 
(ms)

1×104 38.78 51.19
4×104 175.05 384.46
9×104 748.43 1275.98
16×104 1449.56 2131.64
25×104 3798.33 5787.48
36×104 7138.96 12136.52
49×104 11073.22 18472.98
64×104 20261.81 32381.51
81×104 28919.92 43746.63
100×104 42088.86 55041.13

Fig. 9   The computation time of multi-processor HYPRE and High 
XHYPRE on the CPU, matrix size is M=N=1×106

Table 4   The number of iterations of FP32 HYPRE, Mixed XHYPRE 
and HYPRE

Matrix size FP32 HYPRE Mixed XHY-
PRE

HYPRE

16×102 76 63 63
25×102 103 79 79
36×102 124 95 95
49×102 144 111 111
64×102 173 127 127
81×102 193 143 143
100×102 243 159 159
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The relative error generated by the XSpMV algorithm is 
smaller and more stable than that generated by SpMV. 
We continue to select 50 large-scale SuiteSparse matrices 
for experiments, as shown in Fig. 7. One can find that the 
XSpMV algorithm is very stable, and its relative errors are 
smaller than the working precision u , much less than the 
relative error of SpMV.

Finally, we test the calculation time of small-scale matri-
ces and large-scale matrices. The running time of the two 
algorithms also gradually increases as the scale increases. 
However, the running time of the XSpMV algorithm is only 
slightly higher than that of the SpMV algorithm because 
the computational complexity (FLOPs) of the XSpMV is 
much higher than that of the SpMV. Moreover, the increase 
in precision will inevitably increase the running time of the 
program, and such a result is acceptable. This also shows 
that the XSpMV algorithm improves the accuracy of the 
classic SpMV algorithm while having a small impact on the 
overall calculation efficiency.

5.3 � Performace analysis of high‑precision XHYPRE

In this section, we use an example that both XHYPRE and 
HYPRE can solve for detailed experiments to illustrate the 
performance of our high-precision XHYPRE. We solve the 
2-D Laplacian problem. The solver we use is PCG, and the 
convergence threshold is 1e-12.

Firstly, we test the number of iterations of high-precision 
XHYPRE and HYPRE under different matrix sizes to show 
the performance of our high-precision XHYPRE. Figure 8 
shows the number of iterations of high-precision XHYPRE 
is less than that of the original HYPRE. As the matrix size 
increases, the iteration difference becomes more appar-
ent. The number of iterations of XHYPRE is much smaller 
than that of HYPRE. But in order to obtain more accurate 
calculation results, we add many calculation steps to high-
precision XHYPRE, which will increase the running time, 
as shown in Table 3. This is acceptable.

Then, we use multiple processors to parallel execute 
high-precision XHYPRE to test its performance. Figure 9 
shows that the calculation time gradually decreases with 
the increase of processors, and the difference between High 
XHYPRE and HYPRE keeps shrinking. When the number 
of processors increases to 16, their time overhead is almost 
equal, because the reduction in the number of iterations 
reflects better performance under the current processor scale.

Therefore, our high-precision XHYPRE can better reduce 
the rounding error in the calculation process when solving 
large-scale linear problems, improve the accuracy of the 
global calculation, and obtain a lower number of iterations. 

Fig. 10   The computation time of FP32 HYPRE, Mixed XHYPRE 
and HYPRE on the CPU

Fig. 11   The computation time of multi-processor FP32 HYPRE, 
Mixed XHYPRE and HYPRE on the CPU, matrix size is 
M=N=1×104

Table 5   Example informations

Name Problem description Convergence

ex4 The convection-reaction-diffusion problem 1e-6
ex5 The 2-D Laplacian problem 1e-7
ex7 The convection-reaction-diffusion problem 1e-6

Fig. 12   The computation time of the different examples on the CPU
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This is essential when solving ill-conditioned problems (see 
Sect. 4.1). Moreover, our XHYPRE can also show better 
performance when parallel solving.

5.4 � Performace analysis of nixed‑precision XHYPRE

In this section, we adopt an example where both XHYPRE 
and HYPRE can be solved to conduct sufficient experiments 
to illustrate the performance of our mixed-precision XHY-
PRE. The example and solver we use are the same as in 
Sect. 5.3), and the convergence threshold is 1e-6.

First, we test the number of iterations of single-precision 
HYPRE (FP32 HYPRE), mixed-precision XHYPRE (Mixed 
XHYPRE), and HYPRE for different matrix sizes. It can be 
clearly found from Table 4 that our mixed-precision XHY-
PRE has fewer iterations than single-precision HYPRE, 
which is basically the same as the original HYPRE.

Then, we further test their computation time on the CPU. 
The convergence speed of our mixed-precision XHYPRE is 
the fastest in Fig. 10. Because Mixed XHYPRE has fewer 
iterations compared with single-precision HYPRE, and 
Mixed XHYPRE has a lower working accuracy compared 
with the original HYPRE under the same number of itera-
tions. Hence, the running time of Mixed XHYPRE is the 
least. In addition, we run parallel experiments with multiple 
processors, and the results are shown in Fig. 11. The cal-
culation time of each HYPRE version is reducing with the 
increase of processors, but the running time of our mixed 
XHYPRE has always been the least than the other two. This 
is because we are running algorithms at reduced precision 
while maintaining high precision in crucial operations, and 
we use lower precision data formats as much as possible 
to achieve high computing accuracy. Therefore, our mixed-
precision XHYPRE can overcome the poor convergence 
of FP32 HYPRE and the long computation time of FP64 
HYPRE.

5.5 � Overall performace of XHYPRE

5.5.1 � Experimental analysis on different examples

In order to show the performance of our XHYPRE more 
comprehensively, we give a detailed description of the 

experiment in this section. The examples involved in the 
experiment are from HYPRE. We select one of the differ-
ent examples that solve the same problem and use the same 
interface for testing.

Firstly, we selected single-precision HYPRE, mixed-
precision HYPRE, double-precision HYPRE, and high-
precision HYPRE for experiments. We use the PCG solver 
and different preconditioners to solve the same example. We 
set the matrix size as 1089×1089. The detailed information 
of the example is shown in Table 5. Although ex4 and ex7 
solve the same problem, they use different interfaces. The 
comparison shows that the iterations are approximately con-
sistent between our mixed-precision XHYPRE and double-
precision HYPRE, with single-precision HYPRE needing 
more iterations.

Then, we test their computation time on the CPU, as 
shown in Fig. 12. Our mixed-precision XHYPRE has the 
fastest convergence speed. Because mixed-precision XHY-
PRE has fewer iterations than non-mixed FP32 HYPRE, it 
is faster than non-mixed FP32 HYPRE. Although the cal-
culation time of High XHYPRE is slightly higher than the 
other three, it reduces the rounding error in the calculation 
and obtains a more accurate result, which is acceptable. Our 
mixed-precision XHYPRE can overcome the poor conver-
gence of FP32 HYPRE and the long computation time of 
FP64 HYPRE. It can be used to solve large-scale scientific 
calculations when combined with specialized computer 
hardware.

From the above analysis, we can draw two conclusions. 
One is that mixed-precision XHYPRE can leverage the 
potential performance advantages of mixed precision, do 
most of the work in low-precision algorithms, successfully 
generate higher accuracy solutions, and increase conver-
gence speed. The other is that high-precision XHYPRE 
improves the calculation accuracy by reducing the rounding 

Table 6   Machine parameters

Machine Parameters description

Intel Intel(R) Xeon(R) CPU E5-2678 v3, @2.50GHz, 24T, 
125 G memory

AMD AMD Ryzen 7 2700X, @2.10 GHz, 16T, 64 G memory
Arm  FT-2000+, @2.2GHz, 16T, 124 G memory

Table 7   The computation time of different versions of HYPRE in 
Intel, AMD, and Arm

Name Intel (ms) AMD (ms) Arm 
(ms)

FP32 HYPRE 40.174 44.686 48.655
Mixed XHYPRE 25.566 26.049 28.675
HYPRE(FP64) 35.180 38.117 40.963

Table 8   Iterations of HYPRE and high-precision HYPRE in Intel, 
AMD, and Arm

Name Intel AMD Arm

HYPRE(FP64) 2698 2698 2698
High XHYPRE 2273 2273 2273
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error for the problems with higher precision requirements 
and some ill-conditioned problems. Therefore, our XHYPRE 
achieves better performance.

5.5.2 � Experimental analysis on different platforms

In this section, we conduct experiments on different plat-
forms to verify the robustness and portability of XHYPRE. 
Table 6 shows more details of machine parameters. The 
example is the 2-D Laplacian problem, and the solver is 
PCG.

Firstly, we test the calculation time of our XHYPRE on 
Intel, AMD, and Arm, respectively. We set the matrix size 
as 10000×10000, and the convergence threshold is 1e-7. 
Table 7 shows that our XHYPRE is faster than other two 
versions, no matter for which platform. Then we test the 
number of iterations for high-precision XHYPRE in Intel, 
AMD, and Arm, respectively. We increase the matrix size 
by 100 times, and the convergence threshold is set to 1e-12. 
As shown in Table 8, our high-precision XHYPRE has fewer 
iterations, which improves the calculation accuracy. There-
fore, our XHYPRE can run under various architectures while 
maintaining high performance, and it is an efficient and reli-
able parallel numerical algorithm library.

6 � Conclusion and future work

The scale of scientific computing is gradually increasing on 
the current high-performance computing platform, and the 
requirements for precision are progressively growing. In this 
paper, we utilize EFT technology and mixed-precision idea 
to implement a reliable and efficient numerical algorithm 
library XHYPRE for large sparse linear equations. It gives 
full use to the fusion advantages of the algorithm and sig-
nificantly improves the accuracy and efficiency of numeri-
cal calculations. Our XHYPRE involves two aspects. One 
is the high-precision XHYPRE, which uses EFT technology 
to reduce the accumulation of rounding errors, and designs 
reliable numerical algorithms to make the output results 
more accurate and stable. The other is the mixed-precision 
XHYPRE, which leverages mixed-precision to speed up cal-
culations and improve overall performance. A large number 
of numerical experiments prove that XHYPRE effectively 
improves the accuracy and efficiency of computing. Our 
XHYPRE is on average 1.3x faster than HYPRE and reduces 
the number of iterations to 87.1% on average. Besides, the 
proposed XHYPRE can solve the ill-conditioned problems 
that HYPRE and PETSc can’t solve.

The increase in precision will also reduce the perfor-
mance because more floating-point calculations are required. 
In addition, if the computing scale is large enough, it will 
increase a lot of time costs. XHYPRE will be compiled and 

optimized in future work to reduce the rounding error and 
the running time. Based on current research, we will com-
bine EFT and mixed-precision thought to add other func-
tions to make XHYPRE more comprehensive. Furthermore, 
we also plan to implement our library on the GPU to achieve 
higher performance.
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