
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2023) 5:390–415
https://doi.org/10.1007/s42514-022-00134-8

1 3

REGULAR PAPER

ExaLB: a mathematical framework for load balancing to support
distributed exascale computing environments

Faezeh Mollasalehi1 · Ehsan Mousavi Khaneghah1  · Amirhosein Reyhani Showkatabadi2 ·
Seyed Alireza Seyednejad2 · Faeze Gholamrezaie3

Received: 19 February 2022 / Accepted: 28 December 2022 / Published online: 13 February 2023
© China Computer Federation (CCF) 2023

Abstract
The dynamic and interactive nature of Distributed Exascale Computing System leads to a situation where the load balancer
lacks the proper pattern for the solution. In addition to analyzing and reviewing the dynamic and interactive nature and its
effect on load balancing, this article introduces a framework for managing load balancing that does not need to study the
dynamic and interactive nature. This framework proposes a mathematical scheme for the functionality of load-balancing
elements and redefines its functions and components. The redefinition makes it possible to determine the constituent parts
of the framework and their functionality without the need to analyze the dynamic and interactive nature of the system. The
proposed framework can manage and control dynamic and interactive events by reviewing changes in the functionality of
resources, the pattern of data collection to execute processes related to the load balancer, and a Scalable tool. In addition to
performing the load balancer’s functionality, our framework can continue to function under dynamic and interactive events
in distributed exascale systems. On average, this framework has a 43% improvement, unable to respond to dynamic and
interactive requests.

Keywords  Distributed exascale computing system · Load balancing · Functionality · Resource description · Request
description

1  Introduction

In high performance computing systems, the load balancer
is responsible for adjusting computing processes, demands,
and computing capabilities of the existing resources (defined
in the computing environment) (Wang et al. 2014; Ghomi
et al. 2017; Jyoti and Shrimali 2020; Amelina et al. 2015).
Therefore, the load balancer should be able to manage
computing processors in the existing system so that (A)
the response time of any processor should exceed what is
expected and (B) no computing resource should be idle
while executing a scientific or practical application (Doma-
nal et al. 2014; Thakur and Goraya 2017). The load balancer
needs precise information about the requirements of comput-
ing processors and features of the existing resources in the
computing system to achieve this (Khaneghah et al. 2018).
If the element has accurate information about computing
processors and resources, it can adjust between processor
requirements and computing resources and features (Mondal
et al. 2016; Mondal et al. 2017; Mondal et al. 2016). Proper
adjustment between the two mentioned characteristics leads

 *	 Ehsan Mousavi Khaneghah
	 EMousavi@Shahed.ac.ir

	 Faezeh Mollasalehi
	 Faezeh.mollasalehi@shahed.ac.ir

	 Amirhosein Reyhani Showkatabadi
	 ah.reyhani@ut.ac.ir

	 Seyed Alireza Seyednejad
	 Seyednejad1993@ut.ac.ir

	 Faeze Gholamrezaie
	 faeze.gholamrezaie@shahed.ac.ir

1	 Department of Computer Engineering, Faculty
of Engineering, Shahed University, Tehran, Iran

2	 College of Engineering, School of ECE, University
of Tehran, Tehran, Iran

3	 Department of Computer Science, Shahed University,
Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-022-00134-8&domain=pdf
http://orcid.org/0000-0002-4692-8010

391ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

to a better response time for computation processes, which
increases the system's performance (Kołodziej et al. 2014;
Qureshi et al. 2014).

Load balancer conventionally has to collect data, decide
about the resources and computing processes, and also pro-
cess transmission (Khan et al. 2017; Pate Ahmadian et al.
2018; Jain and Saxena 2016). The element must describe
the status of the processes, process requirements to perform
these tasks, and system resources, using specific metrics
(Bok et al. 2018; Rao et al. 2003). The element could per-
form the mentioned tasks in the case of proper and exact
definitions for descriptions of processes and resources.

Based on these metrics, the load balancer decides whether
it can continue executing the process in a processing ele-
ment. In its view, the continuation of performing a process
depends on the process's requirements, conditions, and time
limitations and whether the processing elements can meet
them (Mousavi Khaneghah et al. 2018). If these condi-
tions are not met, the component uses process migration to
transfer the process from one processing element to another
(Khan et al. 2017; Rathore et al. 2020; Rathore and Chana
2016). Suppose the system's processing elements cannot
respond to the process demands. In that case, the aspect
calls on resource discovery to find the processing capable of
meeting the requirements of the process (Pourqasem 2018).

The load-balancer establishes the structure of responding
patterns created during design at the runtime (Khaneghah
et al. 2018). In traditional computing systems, the selected
mechanisms for load balancing, such as Cluster or Grid,
are designed to make them compatible with the structure
of response control and management related to process
demands (Ramezani et al. 2014; Heidsieck et al. 2019; Teylo
et al. 2017; Khaneghah and Sharifi 2014). System design-
ers know the computing process’s needs in such traditional
computing systems. Based on this information, proceed to
define mechanisms for load balancing or resource discovery
(Pate Ahmadian et al. 2018; Milani and Navimipour 2016).

The primary assumption in designing a traditional load
balancer such as a Cluster or Grid is based on the fact that
nothing violates the structure of the designed response dur-
ing the execution of a scientific application (Khaneghah and
Sharifi 2014). Based on this, if a process or processes require
computing resources, the load balancer tries to use process
migration or resource discovery to choose the resource
which can respond to the process (Pate Ahmadian et al.
2018). Since resource allocation is based on the load bal-
ancer’s mechanism, it has been considered part of the policy
related to the structure of responding patterns in scientific
applications (Khaneghah and Sharifi 2014).

The occurrence of dynamic and interactive events in
executing computing processes in DECS leads to processes
performing operations or requests that were not considered
in the primary responding pattern (Khaneghah and Sharifi

2014; Milani and Navimipour 2016; Fiore et al. 2018; Gharb
et al. 2019; Dongarra et al. 2011). This event causes the
system not to be capable of responding based on the pre-
liminary responding design during the execution of scientific
applications. In case of such events, the load balancer must
be able to analyze the event and create a proper responding
structure based on its nature to continue executing the sci-
entific application (Wang et al. 2016a). These events might
need different response patterns (Shahrabi et al. 2018; Alo-
wayyed et al. 2017; Innocenti et al. 2017). The load bal-
ancers should be able to create the response structure for
such events in an appropriate period. Due to changes in the
characteristics of resources and the response structure of
processes, traditional systems either cannot be used in DECS
or provide the minimum performance possible (Alowayyed
et al. 2017; Innocenti et al. 2017; Khaneghah et al. 2018).

In distributed Exascale computing systems, the occur-
rence of dynamic and interactive events from the point of
view of the system manager means the formation of a par-
ticular type of request related to the process (or processes)
that has not been analyzed in the primary response structure.
The occurrence of dynamic and interactive events causes
the state of requests in the computing system to change in a
way unknown to the load balancer. The load balancer should
either stop the system, and the system designer explains
the mentioned situation for the load balancer to execute
the request, or it must manage the said request based on a
mechanism at the time of execution.

When a dynamic and interactive event occurs in a
large-scale distributed system, in addition to changing
the status of requests in the system, as described in the
previous paragraph, it can cause a change in the working
process of the distributed load balancer as a central unit
of the activities in a large-scale distributed system. The
functional nature of the distributed load balancer in com-
puting systems, both traditional and Distributed Exascale
systems, is based on collecting information and using a
decision-making mechanism for redistributing the load,
in addition to creating a mechanism for implementing
the program in the shortest time and achieve the system's
goal. The load balancer collects the information related
to the system (or a part of the system), and based on the
analysis obtained by a mechanism in the load balancer, it
performs redistribution activities. The way the processes
are executed by the operating system, keeping in mind
that this is a distributed system, causes the set of activi-
ties related to the distributed management unit not to be
executed automatically and continuously, instead these
activities are performed at different times considering the
corrections of the information in the previous step. The
consideration of the corrections to the information in the
previous stage is conventionally established in traditional
computing systems, and the existence of benchmarking

392	 F. Mollasalehi et al.

1 3

tools and data structure information related to the process
and, most importantly, the definition of specific situations
to carry out the activities of the load balancer, makes it
possible to decide on the continuation or discontinuation
of it.

In Distributed Exascale systems, at any moment of the
execution of distributed load balancer's activities, dynamic
and interactive events can affect the load balancer's func-
tioning and sub-activities. A dynamic and interactive
event may occur in the large-scale distributed system,
which causes (a) the distributed load balancer not to be
able to decide on the assumption about the correctness of
the information of the previous stage and the status of the
large-scale distributed system regarding the correctness
of the information to be unknown to the load balancer. (b)
The status of the beneficiary elements in the activities of
the distributed load balancer should be changed in such a
way that the set of activities of the load balancer becomes
invalid in terms of redistribution and the mechanism used.
(c) The mechanism used by the load balancer cannot man-
age and redistribute the load for the large-scale distributed
computing system. (d) The descriptive and benchmark-
ing indicators used by the distributed management unit
become invalid after the dynamic and interactive event
occurs.

In each or all of the mentioned situations, the distrib-
uted management unit in Distributed Exascale systems
must be able to manage the impacts of dynamic and inter-
active events on its functionality. This article, introduc-
ing the ExaLB, presents a mathematical model to manage
caused by dynamic and interactive events on the load bal-
ancer in distributed Exascale computing systems without
the need to stop the execution of system activities.

This paper introduces a mathematical framework to
describe the load balancer's performance in DECS. The
descriptive function of the load distribution management
element in distributed computing systems is investigated
to achieve this framework. Based on the review and analy-
sis of the mentioned descriptive function, the framework
describing the load balancer operation in the distributed
Exascale systems obtained in this article makes it possible
to analyze the concept of the event that leads to the call
of the load balancer in the distributed computing system.
Did Consider this issue in this article, the events leading
to the call of the load balancer are considered in two cat-
egories, formal events, and dynamic and interactive events.
The mentioned two classifications and the analysis of the
management of the mentioned events can be used as a
criterion for the analysis of dynamic events and how to
manage them in the middle of the proposed mathemati-
cal framework for the load balancer, taking into account
the conditions and limitations imposed by dynamic and
interactive events.

2 � Related works

Currently, many scientific applications are developed for
DECS. In this system, computing resources are connected
in an autonomous, transparent, and integrated manner and
usually support scalability (Jiang 2016). In high perfor-
mance computing and distributed systems, a load balancer
is used to distribute the tasks fairly to execute the applica-
tion in the shortest time possible (Chatterjee and Setua
2015).

There are multiple definitions proposed for the scal-
ability of distributed systems. In Domanal et al. (2014),
scalability is considered a function of changes in the
system performance when a new processing element is
added. In Mirtaheri et al. (2013), the system's scalabil-
ity is introduced as a function with parameters such as
the cost of adding a new computing element and system
performance when it is being expanded. Determining the
relation between load balance and the system's scalability
is highly important if this relation is not selected correctly.
Scalability would not be capable of improving the perfor-
mance and also adds to the load balancer's execution time,
leading to decreased system efficiency.

In Distributed Exascale systems, scheduling existing
tasks to improve performance is vital (Chatterjee and
Setua 2015; Mukherjee et al. 2016). In Mukherjee et al.
(2016), a method for efficient load balancing in large-scale
systems is introduced in which equivalent Markov models
describe parallel servers. This computing system uses a
threshold-based load-balancing scheme.

The challenges of DECS consist of managing processes
in parallel, the procedure of executing scientific applica-
tions, usable processing power, flexibility, and scalability
(Wang et al. 2016b). Many computing system management
schemes, such as load balancing mechanisms, are designed
based on centralized paradigms and have to define a cen-
tralized server. This state creates challenges for DECS,
such as scalability and single-point-of-failure problems
(Wang et al. 2016b). In Wang et al. (2016b), a classifica-
tion for system management in DECS is proposed that
considers the proportion between the server's response
time and the client's tolerance. In this categorization, there
is a discussion about what pattern of reliability is created
by system scalability in the procedure of execution. Based
on Wang et al. (2016b), using an architecture based on
distributed systems to support extreme parallelism, cover-
ing delay time, and creating mechanisms for a reliable and
scalable load balancer, are necessary.

The nature of scientific applications requires DECS to
use computing systems to reduce the response time and
discover the laws governing natural phenomena (http://​
www.​deep-​proje​ct.​EU; Reylé et al. 2016). Fields such as

http://www.deep-project.EU
http://www.deep-project.EU

393ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

human brain simulation, weather simulation, fluid engi-
neering computations, simulating superconduction in
high temperatures, and earthquake imaging are some of
the applications that require DECS (http://​www.​deep-​proje​
ct.​EU; Reylé et al. 2016). The nature of these applications
(in contradiction to traditional computing applications) is a
way in which, during the execution of processes, dynamic
and interactive requests are made by them that their struc-
tures are not considered during the design (Lieber et al.
2016; Mirtaheri et al. 2014; Straatsma et al. 2017; Don-
garra et al. 2014). This event causes DECS to use dynamic
mechanisms for load balancers (Milani and Navimipour
2016; Khaneghah 2017). Therefore, computing systems
should have the flexibility and compatibility with such
variant conditions in these applications to achieve optimal
system performance.

In Alowayyed et al. (2017), there has been a discussion
on how to improve the capabilities of multiscale comput-
ing systems to execute scientific applications that require
Petascale and DECS. In Jeannot et al. (2016), a dynamic
mechanism for the load balancer in the Charm++ applica-
tion is proposed.

The authors of Mirtaheri and Grandinetti (2017) have also
proposed a distributed dynamic mechanism for the load bal-
ancer in DECS. This mechanism uses multiple parameters,
such as load transmission and connection delay, to estimate
nodes' excessive load. The proposed approach supports
dynamic and interactive events. Even though this mecha-
nism for load balancing has a good scalability feature com-
pared to other methods, its performance in Petascale systems
has multiple challenges. In Alowayyed et al. (2017), multi-
dimensional computing algorithms are proposed for load-
balancing functionality. Besides, these algorithms provide
fault tolerance and energy management in distributed com-
puting systems to redistribute the load. This paper presents
three multi-dimensional models: Extreme Scaling, Hetero-
geneous Multiscale Computing, and Replica Computing. In
this paper, the manner of multi-axis Constance, Falkon is a
centralized task scheduler that uses simple sequential sched-
uling for Multi-Task Computing (MTC) (Wang et al. 2014).

In Bakhishoff et al. (2020), the authors present a math-
ematical model for managing dynamic and interactive events
affecting the operation of the distributed load balancer based
on the Discrete-Time Hidden Markov Model. The mathemat-
ical model presented in this article provides such a capability
for the load balancer that, after analyzing each dynamic and
interactive event, manages the activity based on the changes
that cause the functionality of the distributed load balancer
to be violated. In this article, the concept of the system state
is considered to describe the function of the distributed load
balancer and the return of the system’s state to a stable con-
dition after the dynamic and interactive event occurs as a
method to manage the effects of the dynamic and interactive

event on the functionality of the distributed load balancer.
The most critical challenge governing the aforementioned
mathematical model is in creating the state of the system
corresponding to the functionality of the distributed load
balancer. If the distributed load balancer uses more vari-
ables than the traditional one to describe its state, creating
the system's state becomes complicated. Another challenge
of this solution is the inability to change the system's state
to a stable condition concerning the functionality of the dis-
tributed load balancer.

In Wylie (2020), the authors investigate the issue that if
the processes are not correctly allocated to the resources,
especially the computing resources defined in the Distrib-
uted Exascle systems, there is a possibility of the failure of
the activities related to the distributed load balancer. In this
article, in addition to this challenge of not correctly assign-
ing processes to computing resources, other influential fac-
tors for breaking down the function of the distributed load
balancer have been investigated. This solution, using the
dynamic distributed load balancer (HemeLB) based on pro-
cess analysis and feature extraction, has managed the effects
of dynamic and interactive events on the functionality of the
distributed load balancer.

In Lehman et al. (2019), based on the XQueue concept, a
dynamic and interactive load-balancing mechanism is con-
sidered. This load-balancing mechanism uses a developed
model based on the XQueue concept because it must con-
sider dynamic and interactive events and their effects on
the operation of the distributed load balancer. The effort of
the article is that the proposed solution should be in such a
way that the functionality of the distributed load balancer,
considering the development of XQueue, is equivalent to
the functionality of the distributed load balancer based on
XQueue without considering dynamic and interactive events.

The centrality of the work is based on the fact that the
load balancer analyzes the state of the computing elements
based on an index which is conventionally the state of the
CPU usage. This indicator can take more complex forms.
The load balancer redistributes the load based on skill pro-
cessing mechanisms if the state of the calculation element
description index changes beyond a specific limit. In these
mechanisms, a dynamic and interactive concept is not usu-
ally considered.

In the mechanisms that consider dynamic and interactive
events, the design of the load balancer is based on consider-
ing the unique situation. In these mechanisms, an attempt
is made to analyze the impacts of the dynamic and inter-
active events on the functionality of the distributed load
balancer in one or more specific and determined situations.
The mentioned conditions describe the constraints and limi-
tations governing the load balancer function in a specific
and confident way. A specific and detailed description of
the function of the load balancer makes the situations that

http://www.deep-project.EU
http://www.deep-project.EU

394	 F. Mollasalehi et al.

1 3

can be described for the function of the load balancer after
the dynamic and interactive event occurs. If, at the time of
the dynamic and interactive event, the load balancer is in
a state other than the one described in the proposed solu-
tion, then the proposed solution cannot respond and man-
age the impacts of the dynamic and interactive event on the
functionality of the distributed load balancer. This event is
because the functional nature of the load balancer is based
on the implementation of logical sets of activities to imple-
ment activities related to the load balancer. In this article,
we want to focus on the management of a load balancer in its
specific and defined functional state, the activities and func-
tions of the load balancer to implement the load balancer
activities, and how to manage the effects of dynamic and
interactive events on each of the activities constituting the
function. This event makes it possible to provide a general
solution for managing the effects of dynamic and interactive
events on the functionality of the distributed load balancer.

3 � Basic concepts

3.1 � Load balancing definition

In traditional computing systems, from a load-balancing
point of view, what describes the status of the process is
time. The load-balancing element could consider the pro-
cess three times <execution time, total time, idle time>.
Execution time signifies the time allocated for a procedure.
Full-time shows the time the process needs to complete its
tasks. Idle time indicates when the process is not controlling
the central processor. Defining the related elements to load
balancing was also created based on the time-based man-
agement mentioned. Therefore, determining the processing
element from a load-balancing point of view is based on the
time it can provide processing power for computing pro-
cesses. Thus, in computing systems, the adaptability of pro-
cess requests over resource characteristics is defined by load
balancing as a mapping between resource status descriptor
and process variables, as shown in Eq. 1.

As shown in Eq. 1, the functionality of the load bal-
ancer is a mapping of the process required for accessing

Load Distribution ∶

dependence space

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[Processrequirment]

mapping

⏞⏞⏞

→

independence space

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
ResourceSpace

]
Therefore

(1)
BestLoad−Distribution =

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

�
∄Process

�
∈ HPCProcess

SoMeans

⏞⏞⏞

∴ ∋
�
HPCProcess−Scheduling

�⎤⎥⎥⎥⎦
and

�
ResourceActivityEqual or near 100%

�⎤⎥⎥⎥⎦

the central process to compute resource space in the system
(Khaneghah et al. 2018). This mapping should allow the
computing process to gain resources quickly and complete
its task. Secondly, resource allocation between processes by
load balancing should be done in a way that takes advantage
of the maximum computing resource capabilities of the sys-
tem. The definition of load distribution in Eq. 1 shows that
it has based on two spaces process computing requests and
computing resources capabilities. If only time is considered
as the descriptor of resource and process elements in the
simplest form, then the mapping in Eq. 1 forms Eq. 2.

The second part of Eq. 1 is also the actual for this equa-
tion. In Eq. 2, the definition of load distribution is based on
the concept of time. Suppose, at any point, load distribu-
tion is activated, and there exists a process that requires a
time limit for accessing the central processor. In that case,
the load distribution element allocates the resources to the
computing process based on the idle time of computing
resources. As shown in Eq. 2, in this condition, the load
distribution element should be able to allocate resources to
processes so that the time requirements of the process are
met by the idle time of computing resources. Both constitu-
ent variables in Eq. 2 are scalar.

(2)
Load Distribution ∶

main depended variable

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

TimeRequestProcess ∈

basic space for HPC

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Available TimeResource

Fig. 1   Framework of load balancer with other constituent elements of
the computing system manager

395ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

Load distribution elements can include other characteris-
tics for describing processes and computing resources. If the
load distribution considers n dimensions for the description,
then Eq. 1 turns into a mapping of n × n . Determining the
number of dimensions in Eq. 1 depends on how the space of
the computing process and its requests is defined. For each
computing system, a need exists to represent the computing
process from the load distribution point of view.

The relation of load distribution in computing systems to
other constituent elements of system management is defined
based on the framework, as shown in Fig. 1.

As shown in Fig. 1, load balancing is the main element
in the management of computing systems. The nature of the
system management element is such that load balancing is
responsible for the responding structure of the system. The
load distribution element should do its responsibilities per-
fectly in any computing system based on the system’s con-
dition so that the system holds its maximum performance.
Since load balancing connects to processes and computing
resources of the system, it has precise information about the
current condition. This event holds for both centralized and
also decentralized distributed computing systems. In dis-
tributed systems, since load balancing is connected to the
scheduling element, it has complete information about the
local resources of the computing system. Also, because of
load balancing’s connection to Inter Processing Communi-
cation (IPC), the possibility of interaction with other com-
puting resources in the system is defined. Load balancing
uses migration and resource discovery elements as manage-
ment tools. It uses the migration element for process migra-
tion and resource discovery to find system resources. The
monitoring element, as the tool for monitoring the status of
processes and resources of the system, and the allocation
element, as the resource allocator for processes, have direct
connections to the load balancer. Job management tools are
also defined at the highest level in the framework presented
in Fig. 1. The architecture of the load balancer shown in
Fig. 1 is based on the architecture illustrated in Fig. 2.

In Fig. 2, load balancing has three tasks: collecting data
about the resources and processes, analyzing that informa-
tion, and deciding on process transmission in computing
systems (Khaneghah et al. 2018; Mirtaheri and Grandinetti
2017). This element uses existing databases in scheduling,
IPC, and allocation units for data collection. On the other
hand, load balancing uses databases for data gathering,
resource discovery, and monitoring units to analyze the
information. The migration management unit does the task
of process migration.

In traditional computing systems, load balancing does
not gain information about the request nature during the
execution of the scientific application. It only collects data
about the metrics of resource and process request status.
This event is due to the nature of the programs executed
in traditional computing systems. The computing system
designer views the requests' character and the computing
processes' requirements. Therefore, this makes it pos-
sible to select the appropriate mechanism for the load
balancer by looking at the nature of the requests and the
conditions that may occur during the execution of the
scientific application. This mechanism should be able to
describe the status of the process based on indicators to
make decisions about the requirements of the process. The
mechanism should also have indicators to tell the status
of the resource, based on which it can decide whether the
resource is capable of responding to a process request.
In traditional computing systems, the patterns of request
process events are a definite set. The computing system
designer can describe a specific collection at the time of
system design, called the Computing Process Request Pat-
tern Set (CPRPS). The mechanism of the load balancer
is determined on the basis that it can respond to this set
during the execution of the scientific program. At the time
of determining the mechanism of the load balancer, the
following should be specified: (a) pattern of process and
resource status, (b) mechanism of how to collect informa-
tion, (c) determining which event patterns in the process
status description indicate one of the events in existing
patterns of CPRPS, (d) what pattern in the source sta-
tus description state can respond to the pattern formed in
CPRPS.

In traditional computing systems, the CPRPS sets and
the response pattern to process requests are specified for
the system designer based on the Resource State for Pro-
cess Request Set (RSPRS). Therefore, the tasks of the load
balancer consist of (a) collecting process status description
information, (b) adapting the process status description to
the CPRPS set, (c) determining pattern occurrence, (d)
collecting source status information, (e) matching source
status information with RSPRS and finally (f) transmission
of the process using the process migration management

Scheduling

Migra�on
Pa�ern

Inter Process Communica�on

Data Gathering Unit Analysis Resource
Discovery

Alloca�on Analysis Monitoring

Data Gathering Unit

Job Management Tools

Fig. 2   Constituent elements of load balancer in the system manager
framework

396	 F. Mollasalehi et al.

1 3

unit of the source processing element to the processing
element that can respond to the process request.

3.2 � Request B is a traditional request

The request is first sent to the local operating system in this
case. The local operating system cannot respond to request
B, so B is sent to the computing system’s management unit.
The management unit sends the process request to the load
balancer. The load balancing creates a CPRPS set for request
Β. After the formation of the CPRPS set, the load balancing
according to its implementation pattern (centralized, semi-
centralized, or distributed), as well as the mechanisms used
to collect data, decision making, and process migration, tries
to create its own RSPRS set. The data collection mechanism
of the load balancer can make its RSPRS set either after the
CPRPS collection, at specific intervals, or before the forma-
tion of the CPRPS set. The decision-making mechanism for
the load balancing seeks to find a processing element at the
system level that can respond to request B by adapting the
CPRPS set to the RSPRS. Based on its process migration
mechanism, the load balancer transmits the process respon-
sible for request B to the destination processing element.
Traditional Cluster and Grade computing systems differ in
the RSPRS set's pattern. The RSPRS set is formed as shown
in Formula 3.

As shown in Formula 3, the set, RSPRS, is a set
of m elements in which each element is in the form
< Resource,ResourceAttributevector > . In this set, Rm rep-
resents the mth source, which the load balancer collects its
data. For each element Rm A vector containing n attributes
is considered (the number n can be a different value for each
source). In this vector, Am,j represents the status, or value
of the descriptor of the jth attribute of the Rm source. In
Formula 3, Am,j can be a numerical or descriptive value. In
traditional cluster computing systems, the number of ele-
ments that make up the RSPRS set is a numerical constant.
In such systems, for each source Rm , the number of attrib-
utes describing the state of the source Rm is a fixed number,
and only during the program's execution do the values of
the vector describing the state of the source change. The
number of elements that make up the RSPRS suite varies in
peer-to-peer computing systems. In these types of systems,
the number of vector properties for description associated
with each source Rm does not change. The lack of change in
the number of properties related to the descriptor vector of
each source Rm is due to the precise control and management
structure related to responding to request B.

(3)
RSPRS

define

⏞⏞⏞

∶∶
{{

R1,
[
A1,1,…A1,i,… ,A1,n

]}
,… ,

{
Rm,

[
Am,1,… ,Am,j,…Am,n

]}}

Suppose the constituent elements of the RSPRS set are
specific. The computing system is a traditional cluster sys-
tem; when designing the computing system, all the elements
of the RSPRS suite are known. Another condition is that
the system design provides all RSPRS members' suites to
the system management unit. If the designer cannot decide
what elements are part of the RSPRS suite during the global
activity process, then the computing system is DECS. Still,
the designer at the time could not provide all members of
the RSPRS set to the system management unit, even though
the mechanism and pattern of finding these resources by the
computing system management were precise. In that case,
this computing system is a peer-to-peer computing system.

Traditional computing systems used a single pattern for
the CPRPS set. In Eq. 4, the general form of the CPRPS set
is introduced:

in which we have:

1.	 The Requesttype variable indicates the type of request.
The computing system management unit can define
acceptable values ​​for the Requesttype variable based on

the resource definition pattern, the process requirement
pattern, and the nature of the program (or programs)
running on the computing system. In traditional com-
puting systems, the acceptable values ​​for the Requesttype
variables are specified at design time and do not change
during the execution of the scientific program in the sys-
tem; for example, processes always request access to the
CPU source. This state causes the variable Requesttype
to accept only the CPU value. The Requesttype a vari-
able can not be limited to the resource type, and the
system management unit can define any other value for
it (Khaneghah 2017; Bakhishoff et al. 2020). The value
defined for the Requesttype a variable must have a struc-
ture that responds to requests of the type specified by
the Requesttype variable. One of the most critical features
of the Requesttype a variable is an ability to define it at
design time or the ability to define it at execution time.
Using either of these methods constitutes the use of
pre-embedded response structures or runtime response
structures.

2.	 The Requestdomain variable indicates in which domain
the system management unit should answer the pro-

(4)CPRPS

define
⏞⏞⏞

::
{

Requesttype,Requestdomain,
Requestdependency, Requestinfluence,

[

R1,… .,Rz
]}

397ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

cess request. Acceptable values ​​for this variable, such
as the Requesttype the system management unit speci-
fies a variable. Typically, this variable can include local,
Region, System, Global, or Representation (Bakhishoff
et al. 2020). Based on the value of this variable, the load
balancer in traditional computing systems decides what
processing elements the RSPRS should contain. Accept-
able values ​​for the Requestdomain variable, in traditional
computing systems, are specified by the designer at the
design time. This variable's value affects the system's
structure, whether Centralized, Decentralized or Distrib-
uted. The variable's value always equals the system in
traditional Cluster computing systems. In this comput-
ing system, the load balancer uses the information of
all processing elements to calculate the RSPRS set. The
load balancer in peer-to-peer Grid computing systems
uses Requestdomain variable to decide on the maximum
acceptable amount for the scalability of the comput-
ing system. Scalability of computing systems means
changing the processing elements that can be members
of the RSPRS set. Creating the RSPRS set means col-
lecting information and specifying the time to manage
the load distribution. Conversely, data collection using
load balancing is time-consuming, and the computing
system must execute more tasks for the load balancer
rather than running the target application. On the other
hand, choosing a value for Requestdomain variable leads
to fewer members in the RSPRS set. The load balancer
has to create an appropriate proportion between the two
concepts of time that is acceptable for the execution of
the load balancer and acceptable values ​​for Requestdomain
variable. Without going into the details of resource dis-
covery in peer-to-peer computing systems, the concept
of scalability in these systems is to add processing ele-
ments (or elements) to the RSPRS suite that leads to a
response to request B.

3.	 Requestinfluence and Requestdependency variables: When in
a computing system, request B is generated by the com-
puting process, it may cause changes in the units, or con-
cepts of the computing system, in global activities, and
especially in the local computing system. In the process
of creating request B, elements and concepts may influ-
ence the formation of the request. In traditional cluster
computing systems, the susceptibility of the request
from the system is at the lowest level, and even it can be
said that in this type of computing system, the effect of
request B from the system is close to zero. In this type
of computing system, when request B is generated in a
process, the request is necessary for the CPU type, so the
CPU queue of the local processing element is affected
by this request. The nature of request B may be such
that the processes connected to the process with request
B need to be synchronized, which affects the connected

processes. The load balancer must change the RSPRS
and CPRPS sets under the influence of this process if the
time requirements of the requested B are not met in the
local processing element and consequently has to use the
process migration unit. In peer-to-peer computing sys-
tems, the effect occurs in traditional cluster computing
systems when request B is generated in a process. The
most important effect of request B from the computing
system is the ability to perform more than one global
activity in the computing system. In this case, request B
may be affected by requests from other global activity
processes running concurrently on the local processing
element. This influence can be due to requesting access
to a shared resource in the local processing element.
What makes the concept of the influence and suscep-
tibility of request B on the elements and concepts of
the computing system to be wholly controlled in tradi-
tional systems is the existence of management and con-
trol structures created at the time of system design for
responding to request B.

4.	 The matrix
[
R1,… .,Rz

]
 is a matrix Z × 1 , each of which

is a part of the request Β. Dividing request B into Z
sub-requests, using a load balancer at the computing or
operating system level, allows each processing element
of the system to execute part (or parts) of the request
separately. There are different patterns for dividing
each request B into Z sub-requests. In Bakhishoff et al.
(2020), as a peer-to-peer computing system, it uses the
operating system model to separate request B into four
sub-requests. Each request can generally contain one
(or more than one) of the four I / O, Memory, File, or
Process requests at the operating system level. In tra-
ditional computing systems, typically, each request B
only includes a request to access the CPU or process.
Therefore, request B can be described by a 1 × 1 matrix
in traditional computing systems.

3.3 � Dynamic and interactive events

Due to its direct relationship with the process and the
resource, the load balancer is entirely dependent on the
concept of system complexity and the complexity of sci-
entific applications in need of high performance comput-
ing systems. The distributed system manager needs to use
more complex patterns if the scientific program becomes
complex or the state of the system elements (source or pro-
cess) changes. The load balancer must use information (both
in its simple form and complex form) to create an optimal
match between the processes' requests and the resources'
characteristics, to maintain the system's structure to continue
operating.

In complex computing systems, events may change the
status of processes and computing resources in the system.

398	 F. Mollasalehi et al.

1 3

In the management and control of the mentioned events, the
load balancing should be in such a way that at any moment
when the load balancing is activated, it must be able to main-
tain the structure of the system to continue operating. Load
balancing matches the processing requests and resources in
the system. Changing the status of processes and computing
resources in complex computing systems affects the con-
cepts, functionality, and relationship of the load balancer
with the other system management components. DECS is
one of the implementations of complex computing systems.

DECS are computational systems designed to execute
applications that are dynamic and interactive. In this type
of computing system, both processing elements and com-
puting resources can be changed during program execution.
The nature of computational processes is such that during
the execution of the computational process, an event may
occur in the system that leads to the definition and creation
of a new requirement in the system. Such a requirement is
not taken into account while designing the system.

In this computing system, the purpose of executing scien-
tific applications is to reduce response time and use process-
ing power to discover the laws governing natural events. In
DECS, the program is a set of basic rules governing a natural
event and uses these rules to discover other (or primary) laws
governing a natural event.

This state allows processes running on a DECS to execute
events that create dynamic and interactive events. In Inno-
centi et al. (2017), it is stated that dynamic and interactive
events can be due to new request formation of new interac-
tions (and communications) within or outside the system.
These events cause the system to face a request it cannot
respond it. This requirement was not considered in the initial
responding structure for executing the application on this
system.

To investigate the effect of dynamic and interactive events
on the function of the load balancer, assume that the peer-
to-peer distributed computing system in Bakhishoff et al.
(2020) is running a scientific application of a dynamic and
interactive nature (http://​www.​deep-​proje​ct.​EU). At the
moment t = � , in the � processing element, request Β is
generated. Depending on the nature of the request Β, one of
the following two scenarios occurs. Request Β can be either
a request with a temporal nature or a request for access to the
resource (either a processing resource or any other resource
defined in system management).

4 � Request B of dynamic and interactive
nature

In DECS, in addition to changing the number of constituent
elements of the RSPRS set, each source Rm , the number of
constituent properties of the description vector of the source

Rm It also varies during system runtime. Since this request is
of dynamic and interactive nature, the load balancer encoun-
ters a request that nature is unknown to the unit. The unclear
nature of the request may cause the load balancer to need
to receive information other than the set of information col-
lected about a particular source to respond to it. Therefore,
in Exascale distributed computing systems, both the number
of constituent elements of the RSPRS set and the number
of constituent properties of the vector describe the state of
each Rm source change over time.

In distributed Exascale systems, not all of the Requesttype
variable’s values can be specified at design time, and accept-
able values for it change during the execution of the scien-
tific application. Also, in this type of computing system,
three elements of the system designer, management unit, as
well as processes with dynamic and interactive nature can
define the value for the Requesttype variable.

To have explicit knowledge of the acceptable values
for the Requesttype the variable allows the load balancer
to decide on the concept of computing system zoning and
also on which element (or elements) has a higher ability to
respond to requests with a specific value in Requesttype vari-
able. If the acceptable values ​​for the Requesttype a variable
is known, and if an acceptable amount of time of the pro-
cess’s life has elapsed, the load balancer can decide on the
continuation of execution in the process as soon as a request
occurs by observing the value for the Requesttype variable. In
DECS, the possibility of defining an acceptable new value
for the Requesttype variable by the system management unit,
as well as processes of interactive and dynamic nature, leads
to the creation of new control and management structures
for continuing the execution of applications. Creating new
management and control structures based on the Requesttype
variable causes the load balancer to change the RSPRS set.

In Exascale computing systems, the Requestdomain a vari-
able can take on new values ​​due to the possibility of defin-
ing a new global activity. This state expands the concept
of the computing system. In peer-to-peer computing sys-
tems, the primary purpose of scalability is to obtain new
computing resources to continue implementing activities
related to scientific applications. While in DECS, the pur-
pose of scalability, in addition to the mentioned concept,
is the need for the load balancer to create new control and
management structures to respond to dynamic and interac-
tive requests. In DECS, the Requestdomain a variable must
be able to consider these conditions as acceptable values.
This event makes it possible for the load balancer to define
the concept of Scalability + if the nature of the request is
distributed Exascale systems are of dynamic and interactive
nature. Scalability + is an expansion over the concept of scal-
ability in which the goal of scalability. Scalability + primar-
ily accesses new resources and creates a responsive structure
to execute request B.

http://www.deep-project.EU

399ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

The two variables Requestinfluence and Requestdependency
DECS assigns different values ​​during runtime, depending
on request B's dynamic and interactive nature. A request B
with dynamic and interactive nature inevitably leads to the
creation of a new process, either an administrative process or
a process of managing new interaction and communication
within or outside the system. This process is fully correlated
with the process with request B, which causes the CPRPS
set, Requestdomain , Requestdependency , Requestinfluence As well as
R1,… .,Rz vector to change. In distributed Exascale systems,
creating global activity responsive to request B is dynamic
and interactive, creating a new set of influences and sus-
ceptibilities on other global activities. To analyze the effect
and susceptibility of request B and the processes created to
respond to it on other elements and concepts in the com-
puting system (and especially other global activities,) each
global activity can be described based on the Affine page so
that the intersection of the pages with each other shows the
influence and susceptibility of any global activity on other
global activities (Mirtaheri et al. 2013).

In DECS, the members of the vector R1,… .,Rz may
change during the procedure of responding to request B.
Also, the number of constituent elements of the descriptive
vector may change during the response to request B. This
change is due to the interactions of the process that owns
request B with the newly created process or other processes
in the system and environment. Changing the components
of the vector R1,… .,Rz means changing the requirements,
which is the answer to request Β. The load balancer should
be able to take into account changes in the vector R1,… .,Rz
during the response procedure.

5 � ExaLB framwork

According to the discussion above, a framework similar to
the framework shown in Fig. 3 can be considered a frame-
work for the definition and function of the load balancer in
distributed Exascale systems.

As seen in Fig. 3, the load balancer requires the consid-
eration of units that can address the decisions over the nature
of the request. The load balancer needs units such as creating
appropriate response structures to continue the global exe-
cution, considering the effects of executing more than one
global activity, and the concept of the system environment.

6 � RSPRS/CPRPS rewriting

As stated in Sect. 3.2, the request B type effectively forms
the RSPRS set. The analyzer section of the load balancer
makes decisions about the condition of the RSPRS set based
on the following model, given the nature of request B.

1.	 If B is of the traditional type and responding to it does
not change the number of resources in the system. In
this situation, the number of resources that make up the
system is constant. The characteristics that describe the
status of resources are also fixed. The fact that the above
two values are constant causes the two variables m and n
to have fixed and definite values in Formula 3. This state
allows the existing RSPRS set to be used to respond to
request B without the need for any modifications.

2.	 Request B is of the traditional type, but it is impossible
to respond to it using the resources available in the sys-
tem. In this situation, by calling the resource discovery,
the load balancer first expands the system intending to
find a suitable resource to respond to the process request.
Then, by examining the new set of RSPRS, which has
been obtained from the addition of the mentioned
resource to the previous set, it maps the two sets of the
request pattern and the response pattern to each other
and tries to establish the balance of load in the system.
In this case, in formula 3, the variable m has a non-fixed
value, and the variable n has a fixed value.

3.	 Request B is dynamic and interactive. In Formula 3,
neither of the variables m and n have a constant value
due to the system's need for scalability and the lack of
information about the cause and nature of request B,
respectively. In this condition, the load balancer must
first identify the nature of the request and then explore
the characteristics of the resources with which it is pos-
sible to respond. In this case, the RSPRS set can respond
to request B after making fundamental changes.

The task of the Nature Request unit is to determine the
nature of the request. This event causes the need to define
the request Nature unit in the load balancer in DECS. This
unit must determine whether the request formed is of type
(a) or (b). This element can decide whether the nature of
the request is traditional or due to the dynamic and inter-
active occurrences based on the processor's behavior, the

Inter Process Communication Units

R
SPR

S/C
PR

PS
R

ew
riter

Data Gathering

Scalability + Unit

Fig. 3   Framework for defining the load balancer in DECS

400	 F. Mollasalehi et al.

1 3

history of the activities, and the concept of annihilating
polynomials (Wylie 2020). Due to the multi-dimensional
nature of the process requests and the type of resources
required to respond to requests in DECS, Formula 1 can
be rewritten into Formula 5 based on the vector pattern.

Formula 5 is the vector form of the load balancer’s
functionality. According to Formula 5:

Each process can be described as a 1 × N vector in
which N is the number of process requests executed in
each processing element �.
Each source in the processing element � can is
described based on a 1 ×M vector in which M is
the number of responses provided by the computing
resource to the global computing processes.
Each process request is executed in the process-
ing element � based on the 2 × 2 matrix in the form [
ReqtypeReqBehaviorReqhistoryReqNULL

]
.

In the 2 × 2 matrix mentioned, Reqtype Indicates the type
of request, which tells what source the process request is
available. The load balancer must be able to classify the
resources in the computing system to extract the Reqtype
data. In the case of traditional computing systems, such as
cluster, Grid, and peer-to-peer computing systems, Reqtype
In Exascale peer-to-peer computing system (Khaneghah
2017), each process request can be for one of four resource
types of file, input/output, memory, or processing element
is always of CPU type. In DECS, the request type can be
sources other than the process resource.

Listed in the 2 × 2 matrix mentioned above, Reqhistory
indicates the history of the request. From the point of
view of the load balancer, each request for a computa-
tional process is either an independent request created for
the first time or a follow-up request that has resulted from
responding to another request. Maintaining a request his-
tory allows the load balancer to extract information about
the resources required by the process and processing ele-
ments connected to the processing element � and respond

(5)

F(Load Balancing) ∶

independence variable define

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞�
Req

1
… ,ReqN

�
→

dependence variable define

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞�
Resource

1
… ,ResourceM

�
it means that

⏞⏞⏞

�
⎡⎢⎢⎢⎣
∀i ∈

�
{1,… ,N},Reqi

�
in such away that

⏞⏞⏞

∴
�
ReqtypeReqBehaviorReqhistoryReqNULL

�⎤⎥⎥⎥⎦
and

⎡
⎢⎢⎢⎣
∀j ∈ {1,… ,M},Resourcej

in such away that

⏞⏞⏞

∴
�
ResourcetypeResourcefuctionalityResourcehistoryResourceNULL

�⎤⎥⎥⎥⎦

to the request. From the point of view of the load balancer,
the rule stated in formula six is held for each element of
the data structure of the link list in Reqhistory.

According to Formula 6, for each element defined in the
Reqhistory a data structure, there must be a corresponding
member in the Resourcehistoryomega a data structure that repre-
sents the source by which the request was answered. This
resource can be one of the local resources of the omega
computing system or a source outside the omega computing
element. Considering Formula 6, the Reqhistory data becomes
a linked list structure in which two pointers are defined. The
first pointer refers to the subsequent subordinate request
resulting from the response to the request, and the second
pointer to a corresponding element in the data structure,
Resourcehistoryomega.

In the 2 × 2 matrix mentioned, Reqbehavior represents the
request behavior. The load balancer can consider different
states for Reqbehavior . The primary purpose of this element
is to investigate whether the behavior of global activity’s
processes follows a particular pattern. This knowledge is
implemented as a link list in which each node represents the
unique properties of a process. From the point of view of
the load balancer, a process can have a unique attribute (or
attributes) regarding the three concepts of time, location, and
dependency. These unique attributes of the request process
define the request’s behavior. The behavior of each process
request that constitutes the global activity follows formula 7.

In Formula 7, the request behavior of a global activ-
ity process consists of three concepts: the time limita-
tion (or limitations) governing the request, the location
limitation (or limitations) governing the request, and the
dependence of the request on any other concept. The two
limitations of location and dependency are discrete. Time

(6)∀Reqhistory∃!� ⋮ � ∈ Resourcehistoryomega

(7)
f
(

Reqprocess
)

defined
⏞⏞⏞

�

⎛

⎜

⎜

⎜

⎝

[Time ∈ [A,B]]

undefinedoperator
⏞⏞⏞

▪
∑

Location ▪
∑

Dependency

⎞

⎟

⎟

⎟

⎠

401ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

limitations are of continuous interval type. In the case of
a global activity constituent process, some of these attrib-
utes may have NULL values. The value of NULL means
no limitation on that particular feature. The relationship
and impact of these attributes on each other are deter-
mined for each process request. In the case of a particu-
lar request, certain limitations may be more critical and
affect the value of other limitations. Ideally, the result of
these three features on each other indicates the behavior
of the process request.

Conventionally, the T, L, and D limitations must be
independent. Reqbehavior is maintained as a linked list in
which each element is of the form < T , L,D > . In the pro-
cedure of global computing process execution, if during
each execution of the process, one of the three elements of
the Reqbehavior changes, one element is added to the linked
list. The load balancer has access to the data set related to
the three variables < T , L,D > at each process execution
time. It can use the expected value of this data to decide
on the independence or interdependence of one another. If
Formula 8 is valid for each execution of the process, then
two of the variables in < T , L,D > are of the independent
type, and otherwise, they are interdependent.

In Formula 8, two variables' dependence and independ-
ence, are a time function. This event causes a) the load bal-
ancer to use regression if not independent for calculating
the operator between two variables, and B) two variables
can be independent of each other for a particular time and
then interdependent, or vice versa.

In the 2 × 2 matrix mentioned in formula 5, ReqNULL is
the main request and the reason for the formation of global
activity. Each global activity is formed in a computational
element, such as � , to respond to a specific request. This
specific request can be described in the form shown in
Formula 9.

Formula 9 states that each element of ResourceNULL Is
a linear polynomial in which xi represents the resources
required to meet the main request of the global activity,
Ai represents the weight and importance of the resources
requested, yj represents the limitations, Application limi-
tations, and Bj indicates the weight and importance of
the limitations. Formula 9 can be rewritten for each B
request.

(8)

[
∀i, j ∈ {D,L, T}

]
∶∶

[
E(i + j) = E(i) + E(j)

]
i, j is independence

(9)ReqNull =
(
Aixi + Bjyj

)

(10)

ReqNULL + Req� (T) =
(

ReqNULL(T) + Req� (T)andReqNULL ∗ Req� (T)
)

=
(

ReqNULL(T) ∗ Req� (T)andReqNULL(T)
)

= 0

In Formula 10, T is a linear conversion on the request
space. This linear conversion represents responding to the
request, which is answered under the linear T conversion.
If Formula 10 is true, request B is a formal request; other-
wise, request B is of dynamic and interactive nature.

4.	 Each response provided by the source in the processing ele-
ment � is defined based on a 2 × 2 matrix in the form of
[

ResourcetypeResourcefuctionalityResourcehistoryResourceNULL
].

In the 2 × 2 matrix mentioned, the Resourcetype element
refers to the responding source to the request. The com-
puting system manager can use any pattern to classify
the resources in the computing system. This classifica-
tion must match the Reqtype classification defined in the
request matrix but does not have to be done as one by one
adaption. The manager of the computing system, based on
any function (or even, in some cases, based on any rela-
tions), can establish a match between the two mentioned
concepts. In the computing system manager of Khaneghah
(2017), a one-to-one match between the process request
for resources and the manageable resources by the system
manager is used based on the operating system’s pattern
for the classification of resources. The load balancer uses
Resourcetype Information to define the concept of resource
attributes. In this situation, the load balancer defines a
set of indicators for each type of resource defined in the
system manager unit. Any data structure at the operat-
ing system’s kernel can maintain information about these
indicators.

One of the most important differences between various
load balancer implementations is determining indicators
of resource descriptors. The higher the number of indi-
cators the load balancer uses, the more accurate it is in
resource status. A clear view enables the load balancer
to create an optimal match between the process request
and the responding resource. On the other hand, using
more indicators to describe the resource increase the time
required to gather information about them. In traditional
computing systems, the Resourcetype In DECS, there may
be a process request that (A) does not relate to the type of
CPU resource and (B) can not be analyzed by the conven-
tional attributes of resources that the load balancer uses to
describe the resource. Typically includes the CPU comput-
ing resource. Indicators describing the CPU resource are
idle and busy times, or the resource is either available or
unavailable.

In distributed Exascale systems, the load balancer typi-
cally uses the concept of response history to examine the
number of indicators and whether the indicators can respond
to process requests. For this purpose, the load balancer uti-
lizes a function as one in Eq. 11.

402	 F. Mollasalehi et al.

1 3

As can be seen in Formula 11, the load balancer in dis-
tributed Exascale systems is a binomial function to check
whether the defined indicators are capable of respond-
ing to process requests. This function is a two-variable
function of time and request, independent variables. The
mechanism of function 11 is based on the fact that in the
case of a specific request ReqA Examines how successfully
the request has been answered locally. The local response
level means that the process is initially created locally or
is part of a global activity intended to run locally in the
processing element. If this amount is more than a certain
number, the defined indicators are appropriate, and the
load balancer does not need to change the defined indi-
cators. If less, it means there is a need for defining new
indicators for the resources in the computing system.

In Formula 11, according to the model presented
in Khaneghah (2017), since only the number of global
processes is known, to calculate the number of locally
responded processes, the difference between the number
of global processes responses and the number of all pro-
cesses responses is used.

The Resourcehistory indicates the history of resource
usage. The load balancer for each resource defined in the
computing system maintains two types of source informa-
tion related to the resource (with its descriptive indicators)
and historical information related to the responses of the
resource to requests. The second type leads to the crea-
tion of a shared data structure between the Resourcehistory
and Reqhistory . Historical information about descriptive
indicators represents the model the load balancer uses to
describe the resource for the processes in the system. The
more dynamic and interactive the processes in the system,
the more varied the patterns used by the load balancer to
describe the resource.

Resourcefunctionality indicates the functionality of the
resource. This knowledge can be described based on vari-
ables such as time, cost, and type of response to existing
requests. In traditional computing systems, the resource's
function is considered time-independent. In such systems,
the load balancer assumes that (A) the function of the
resource � is fixed during the execution of the scientific
application, and (B) the independent variable describing
the resource � is constant and equal to the measurable indi-
cator of the resource’s operating time. In DECS, (A) the
function of the resource � changes during the execution of
the scientific application, and (B) more than one independ-
ent variable can be defined to describe the resource � , and,
consequently, the measurable indicator of the resource.
In this type of computing system, the finite vector of

(11)P(t, req) =

(
Acceptable − Acceptableglobal

#Req(t)

) V_Alpha can be defined for the resource � , whose indices
represent evaluation indicators or independent variables
that describe the function of the resource. The load bal-
ancer uses a formula similar to Eq. 12 to determine what
the function of the resource � is at the moment t  , for the
process Fi (which is itself part of a global activity).

In Eq. 12, T is a linear operation on the finite vector space
of V_Alpha. If f is equal to the polynomials defining the
state of the resource functionality, f is necessarily a type
of indicator describing the functionality of the resource
Alpha if f (T) = 0 . In this case, the function f represents
the functionality of the resource Alpha at the moment t from
the point of view of the resource management unit for the
process Fi . In distributed Exascale systems, each resource
Alpha can have different functions in terms of the elements
that make up the system manager unit. In Eq. 12, the linear
function T is the operator representing the function of the
load balancer on the resource Alpha. This operator indicates
what activities the load balancer considers to be definable
and applicable to the resource Alpha. Based on Eq. 12, we
can define an ordered base such as {VAlpha1

,… ,VAlpham
} for

the V_Alpha vector, matrix U can be defined to represent
T based on that. By considering the existing assumption,
Equation No. 13 can be defined.

Equation 12 is calculated based on formula 14 in the case
where m is a finite number greater than 2.

Equation 13 solves Eq. 12 in the condition that the
resource Alpha is described based on two indicators in
which their definition is not a function of a time-independent
variable. Equation 14 solves Eq. 12 in the condition that the
resource Alpha is based on the m indicators and is a function
of the time-independent variable.

The matrix U is a description of the activity in time and is
defined based on K, the displacement loop with the identical
element consisting of all polynomials of T. In general, the
definition of the U matrix is ​​Uij = �ijT − AijI . Equations 13
and 14 are solutions to find f (T) at the definite moment t  .
In the most general case, to determine f (T), it is necessary
to calculate the matrix U . The general concept defines the
matrix U that any resource can be defined based on two sets
of Z, which represents the resource type, and X, which rep-
resents the activities that can be performed on the resource.
These two sets create K displacement rings with an identical
element consisting of all definable polynomials of T. The

(12)f (TAlphaFi(t)) = 0

(13)
m∑
j=1

Bij
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(�jiT − AjiI) �j=0|Whenm = 2 then B =

[
T − A11I −A21I

−A12I T − A22I

]

(14)det det(U)t = f (T)t

403ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

identical element consists of all definable polynomials of T,
which embodies the concept of resource execution (serving)
time. This concept can be defined as a familiar concept for
all resources. Therefore, in Eqs. 13 and 14, an element I am
equal to Busy Time. Two operations of and can are defined
for two sets of Z and X. Action ⊗ is the possibility of act-
ing on a specific resource type, and action ⊕ represents the
element that performs the task. For example, in the case of
the CPU resource type, the possible operations of allocation,
reallocation, and the executing element for the scheduler.

In the 2 × 2 matrix mentioned, ResourceNULL is the coef-
ficient of resource importance in the execution of global
activity. For each activity Fi , each resource Alpha has a coef-
ficient that can be expressed according to Formula 15.

In Formula 15, each element of ResourceNULL Is a lin-
ear polynomial in which xi denotes global activities that

(15)ResourceNULL =
(
Aixi + Bjyj

)

it causes the load balancer to be activated, in which case
the load balancer creates an image of the system status at
the moment t = V  . Creating an image by the load balancer
means creating the CPRPS and RSPRS sets associated with
the request β and the process Z. Dynamic and interactive
events may occur at any point in the system’s execution.
Consequently, CPRPS and RSPRS may change. However,
the load balancer, from the moment t = V to the moment of
responding to the β request, considers the system status of
the request β based on the dual pair RI:: <RSPRS, CPRPS>.
Dynamic and interactive events can cause a significant dif-
ference between the real RI and the RI at the starting time of
the distribution task. Sometimes, it violates the cause of the
load balancer’s activation (Khaneghah et al. 2018). For this
purpose, RI must be converted from its traditional state to
RI (t), which means that the two sets of CPRPS and RSPRS
change from time-independent to time-dependent variables.

Rewriting RI based on the variable time means rewrit-
ing Eq. 5 with the independent time variable in Eq. 17.

Equation 17 shows that taking a partial derivative of the [
ResourcetypeResourcefuctionalityResourcehistoryResourceNULL

]

and
[
ReqtypeReqBehaviorReqhistoryReqNULL

]
 matrices in terms

of the independent variable of time allow each of the
two sets of CPRPS and RSPR to be rewritten using the
time variable. The independent axial variable of matrices [
ResourcetypeResourcefuctionalityResourcehistoryResourceNULL

]
 ,

and
[
ReqtypeReqBehaviorReqhistoryReqNULL

]
 are the resource

and the request variables, respectively. According to the
definition of axial variables and the need to rewrite based
on the independent variable of time, Eq. 17 can be rewrit-
ten to Forms 18 and 19.

RI(t) ∶∶
[
∀i ∈ {1,… ,N},Reqi∴

[
ReqtypeReqBehaviorReqhistoryReqNULL

]
[
∀j ∈ {1,… ,M},Resourcej∴

[
ResourcetypeResourcefuctionalityResourcehistoryResourceNULL

]]]
(t)

(17)

RI(t)::

(

�[ReqtypeReqBehaviorReqhistoryReqNULL
]

�t

→
�[ResourcetypeResourcefuctionalityResourcehistoryResourceNULL

]

�t

)

(18)

JF(resource, time) ∶

=
�
(
Resourcetype,Resourcehistory,Resourcefuctionality,ResourceNULL

)
�(resource, time)

∶

=

[
�Resourcetype

�resource

�Resourcetype

�time

�Resourcehistory

�resource

�Resourcehistory

�time

�Resourcefuctionality

�resource

�ResourceNULL

�resource

�Resourcefuctionality

�time

�ResourceNULL

�time

]

use the resource Alpha, Ai denotes the time each global
activity uses the resource Alpha, yj denotes limitations over
resources, and Bj indicates the weight and importance of
the limitations.

Formula 15 can be rewritten to Formula 16 for each
resource β.

In Formula 16, if the value of Resource
�(T)

andResource
NULL

∗ Resource
�(T) is zero, then the resource

� is a resource with a traditional pattern, and otherwise,
the resource � is a resource capable of performing activi-
ties of a dynamic and interactive nature. Formula 16, T is a
linear transformation of the resource � ’s space. This linear
conversion indicates the use of the resource. The request is
answered under the linear transformation of T .

6.1 � Data gathering

The main task of the load balancer is to establish a proper
allocation between the two sets of RSPRS and CPRPS. Ide-
ally, this unit should have a clear view of both sets to carry
out its tasks. In DECS, both the CPRPS and RSPRS sets
can change at any point in the execution of the scientific
application. If process Z in DECS has the request � at t = V  ,

(16)

ResourceNULL + Resource� (T)

=
(
ResourceNULL(T) + Resource� (T) and ResourceNULL ∗ Resource� (T)

)

=
(
ResourceNULL(T) ∗ Resource� (T) and ReqNULL(T)

)
= 0

404	 F. Mollasalehi et al.

1 3

Equations 18 and 19 are the rewrites of the matrices
that make up Eq. 5, Regarding axial variables of resource
and request and the independent variable of time. The
most critical challenge in calculating Eqs. 18 and 19 is
the time and number of times these Equations are to be
calculated. The higher the calculation frequency of these
Equations, the closer the calculated RI is to the actual RI.
Ideally, for each unit of time, the load balancer performs
Eqs. 18 and 19, where the calculated RI equals the actual
RI. This event increases the cost of executing the load
balancer, and this task would need a separate processing
element so that calculations could be performed continu-
ously. This event contradicts the nature of the DECS.
Therefore, the load balancer uses the concept of a similar
matrix in each processing element to calculate the RI
close to the actual RI.

From the point of view of the load balancer, if two RI
matrices related to the two permissible states are similar, it
means that the dynamic and interactive nature of the com-
puting system has not occurred. For this case, the load bal-
ancer uses the concept of the axial element. The axial ele-
ment of the matrix described in Eq. 18 is the [
�ResourceNULL

�resource

�ResourceNULL

�time

]
 element, and in Eq. 19, is the [

�ReqNULL

�request

�ReqNULL

�time

]
 element. The load balancer decides on the

similarity of the matrices by comparing the axial element
of matrices at the moment t = Alpha with that of the
moment t = Alpha + E . The load balancer also determines
the value of E during system execution. During this time
(and calculating the RI), the load balancer can decide on the
value of E for each activity, with which the matrices of
Eqs. 18 and 19 differ from these matrices at the moment
before E.

6.2 � Scalability

One of the main features of distributed computing systems is
the introduction to scalability. Resource discovery is the cen-
tral concept of scalability in traditional computing systems
(Lehman et al. 2019). The general mechanism governing the
scalability in this type of computing system is based on the
fact that a request occurs in the system that neither the local
operating system of the process nor the load balancer can
respond to. Therefore, the load balancer calls the resource
discovery. Based on the type of resource requested by the

(19)

JF(request, time) ∶=
�
(
Reqtype,Reqhistory,ReqBehavior ,ReqNULL

)
�(request, time)

∶

=

[
�Reqtype

�request

�Reqtype

�time

�Reqhistory

�request

�Reqhistory

�time

�ReqBehavior

�request

�ReqNULL

�request

�ReqBehavior

�time

�ReqNULL

�time

]

process and resource discovery mechanism, the resource
discovery tries to find a processing element outside the sys-
tem and can respond to the process request. The mechanism
used by the resource discovery indicates the structure of the
response to the request and is specified when designing the
computing system. Defining the resource discovery mecha-
nism at the time of system design is possible due to having
information about the response structure required for the
implementation of the scientific application by the system
designer.

The scalability mechanism in traditional computing sys-
tems increases the system's ability to respond to process
requests with the arrival of computing resources and new
computing processes. This event causes the load balancer
to redistribute when scalability occurs. The load balancer
must be able to extract the features and capabilities of each
element added to the system (or delete information of each
element removed from the system) to decide about the pos-
sibility of using that element (or the impossibility of using
the removed element) in the procedure of responding to the
process request(s).

In DECS, scalability has a different definition and func-
tionality due to the system's possibility of dynamic and inter-
active events. The most crucial difference between scalabil-
ity in traditional computing systems and DECS is that they
have information about the nature of requests, the response
structure, and the lack of events that could change the sys-
tem's state or the environment during scalability.

In traditional distributed computing systems, the nature of
the request does not affect the mechanism used to discover
the resource or the scalability. The load balancer sends the
triad of <Request type, Process, Time, and Location Limita-
tion> to the resource discovery. The resource discovery cre-
ates a response structure based on its mechanism by consid-
ering the type of request and time and location limitations.
In DECS, the nature of conventional requests differs from
that of dynamic and interactive requests.

The nature of the request in this computing system refers
to why the process has created a request that has led to the
need for scalability. In conventional requests, the scalabil-
ity response structure is created to respond to the process
request based on the centrality of the resource discovery
mechanism. On the other hand, when a request of dynamic
and interactive nature occurs, the reason for the request is
not apparent for the load balancing and, consequently, for
the resource discovery. If the load balancer fails to determine
the nature of the request, the resource discovery may cre-
ate a response structure that cannot respond to the process
request. Any situation, such as creating new processes or
the need for interactions and communications within and
outside the system, causes requests for a particular resource
to be different from others (Khaneghah and Sharifi 2014).

405ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

The focus of resource discovery in this computing sys-
tem is to find the processing element that, in addition to
providing a resource that can meet the needs of the process,
must also be in line with the nature of the request. In DECS,
the load balancer sends a quadruple of < Request Nature,
Request Type, Process, Time, and Location Limitation > to
the resource discovery. Based on the pattern of arguments
received from the load balancer, the resource discovery
decides whether to use the traditional concept of resource
discovery or the ExaScalability pattern for scalability. In
DECS, the nature of the request determines which structure
to be created for responding to the process request and which
element with what features can respond to that request. In
traditional computing systems, this is defined during system
design while defining the mechanism for resource discovery.

The resource discovery in the computing system is
affected by a set of practical factors. These factors also affect
the response to the process request. In traditional comput-
ing systems, nothing happens in the computing system that
affects the practical factors of the resource discovery during
the resource discovery procedure.

It is assumed that in the distributed system of Khaneghah
(2017), to understand the resource discovery scenario in a
DECS, an event of dynamic and interactive nature occurs at
the moment t = Alpha in one of the members of the comput-
ing system. Figure 4 shows the event status leading to scal-
ability in the system.

As seen in Fig. 4, in machine O, a member of the com-
puting system (marked with a lightning symbol), an event
of a dynamic and interactive nature occurs. This event can
be any of the situations described, the creation of a new
process T, or the new interactions and connections within
and outside a system. The computing system cannot respond
to this request. Up to this point, the system status follows
the pattern of a traditionally distributed computing system.

The difference between a traditional computing system
and a DECS begins at the moment of request analysis by

the system manager. In a traditional computing system, the
manager recognizes the nature of the request, so it calls the
resource discovery. The resource discovery discovers the
resource that can respond to requests based on the prede-
fined mechanism and policy. In DECS, when a request is
generated in the system, the system manager does not know
the nature of the request, so as shown in Fig. 4, it creates a
new global activity for managing the request.

In Fig. 4, the occurrence of a dynamic and interactive
event has caused the global activity in machine y to con-
tinue, and the manager of machine O has created a response
structure for managing the request with dynamic and inter-
active nature. As with any global activity, the request can
be answered on Machine X or transferred to other machines
on the DECS.

Scalability in DECS, in addition to its traditional role,
must have the load balancer to make decisions while call-
ing for resource discovery or creating a new response struc-
ture. The new response structure should not violate system
performance.

At the moment of load imbalance in DECS due to a
dynamic and interactive event, the load balancer can take
one of the two redistribution policies, either going to the
following equilibrium or returning to the previous stable dis-
tribution status (Khaneghah and Sharifi 2014). In this case,
we can define the Effort variable, which represents the coef-
ficient of system call by the load balancer relative to the total
system calls executed in a single unit of time. The EffortSi is
calculated by Eq. 20.

As stated in Eq. 20, the EffortSi is equal to the number
of system calls associated with the load balancer relative
to the total system calls during the interval when the load

(20)EffortSi =

�∑MACHINEZ

i=
(XLB)

NSC

�t=LB+�

t=LB

Fig. 4   Occurrence of the event leading to the activation of resource discovery in the computing system (Khaneghah 2017; Sharifi et al. 2010)

406	 F. Mollasalehi et al.

1 3

balancer is busy redistributing the load and creating a new
state of balance in the system. In Eq. 20, the MACHINEZ
is defined because there may be more than one beneficiary
machine involved. The MACHINEZ variable is equal to the
total number of beneficiary machines related to the load
balancer’s activities. In Eq. 20, the load balancer redis-
tributes the load in the time interval [LB, LB + ε]. If the
value of the MACHINEZ variable is more than one, the vari-
able StatisticSij As shown in Eq. 21, it should be used. The
StatisticSij can be calculated by Eq. 21. Note that the status
of the load balance is denoted by i for the time before the
load balancer is activated, and the status of the load balance
after it is redistributed is shown by j.

In Eq. 21, the variable effortsi represents the load balance
of state i and the effortsj represents the load balance of state
j . The reason for defining the variable StatisticSij is that the
two states i and j are independent of each other, and � is
acceptable in both effortsi and effortsj . If the value in either
i and j is very large or very small, then that state cannot be
considered a valid state, and that state can be used as the
load balance of state i or j.

The standardized variable of StandardSij can be calculated
with Eq. 22.

As can be seen in Eq. 22, to calculate the standardization
function of Statistics for both states of i and j , the load bal-
ancer needs to have information about the status of system
calls of the load balancer relative to the total system calls
in the processing element in both states i and j . The load
balancer using Eq. 23 can decide whether the distribution
status is similar in both i and j.

The variable in Eq. 23 indicates the similarity coefficient
of distribution in both states i , and j . The numerical value of

(21)

StatisticSij =

√

√

√

√

(

effortsi ∗
(

1 − effortsi
)

NSCi

)

+

(

effortsj ∗
(

1 − effortsj
)

NSCj

)

(22)

StandardSij =

[(
effortZ=Server

i
− effortZ=Server

j

)
−
(
efforti − effortj

)]

StatisticSij

(23)

P

⎡
⎢⎢⎢⎢⎢⎣

Alpha

⏞⏞⏞��
effortZ=Server

i
− effortZ=Server

j

�
−
�
StandardSij

��
�

2

� ∗ StatisticSij

�

≤
�
efforti − effortj

�

≤

Beta

⏞⏞⏞��
effortZ=Server

i
− effortZ=Server

j

�
+
�
StandardSij

��
�

2

� ∗ StatisticSij

�
⎤⎥⎥⎥⎥⎥⎦

� is between zero and 100. When in function number 23, �
is equal to 100, then from the point of view of the load bal-
ancer, the two distribution states i and j are pretty similar in
distribution. When the value of � is equal to zero, then status
i and j are entirely different. If the value of (efforti − effortj)
is in the range [Alpha, Beta], then the value of � is correct;
otherwise, the coefficient assigned to � is incorrect. The
load-balancer can use Eq. 23 to decide on the system status
similarity before and after adding a new resource.

Suppose, according to Eq. 23, the scalability reduces the
system’s performance. In that case, the load balancer should
use an alternative scalability mechanism, such as a func-
tionality change (Kayal 2009), or an extended version of
the scalability, such as proxy openness (Khaneghah 2017).

7 � Evaluation

The distributed peer-to-peer computing system of
Khaneghah (2017) has been used to evaluate the ExaLB
framework in DECS. In this system, the manager uses the
concept of regions to manage the system. This state makes
it possible to define four areas in this system that fit the
four primary resources defined by the operating system. The
concept of global activity is defined according to what is
shown in Fig. 4.

Three types of global activities have been implemented in
the system (Khaneghah 2017). Charm +  + , MM5, and WRF
software (Steen and Tanenbaum 2016; Adibi and Khaneghah
2020; Mirtaheri et al. 2013) are three software applications
requiring high performance computing and extensive pro-
cessing power. Each of this three software uses the com-
puting resources in the system based on global activity.
Therefore, three types of global activities are running in the
system at the same time. Each system member can execute
one, two, or all three activities at any time.

The considered computing system is a large-scale com-
puting system in which the number of machines running
scientific and practical programs is higher than traditional
computing systems such as clusters. This computing system
operates in a distributed manner. A part of this system has
been used to evaluate the presented mathematical model.
Therefore, the result obtained is due to the actual implemen-
tation of the program.

The computing system's number of elements equals 120
processing elements. Forming a system of 120 processing
elements makes it possible to consider it an extensive test-
bed system for each of the three software. The applications
mentioned usually run on a smaller number of processing
elements, so their implementation of 120 elements makes it
possible to analyze the status of the software when running
in an extensive system.

407ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

Due to the nature of DECS, and the need to define the
basic computing system, 40 processing elements have been
considered for the direct computations. These 40 processing
elements correspond to the basic requirements of processes
related to the mentioned scientific application. During the
execution, if processes request new resources to continue,
the ExaLB load balancer uses the Scalability + unit to
expand the system and add new resources.

To create dynamic and interactive events, machine no.
34 uses a particular version of system management soft-
ware (Khaneghah 2017) in which the load balancer uses
the ExaLB framework. The hardware configuration of this
machine is compatible with other machines in the system.
The reason for choosing processing element no. 34 is since
this element participates in the global activities of all three
programs, most of the time executing mentioned applica-
tions. If for each global activity, one activity page is con-
sidered according to Mirtaheri et al. (2013), in most of the
applications' time, the processing element 34 is the inter-
section point of all three pages corresponding to the three
global activities. Any other processing element could also
be selected as the element under evaluation.

In element 34, the system manager unit has been changed.
This state allows the unit in this element to manage the three
situations of process creation, communication, and interac-
tion with the environment, which leads to dynamic and inter-
active events. The manager unit of processing element no.
Thirty-four can manage the relationship between the process
related to the global activity and the corresponding process
outside the computing system, which was not considered in
the initial response structure of the global activity. There-
fore, in processing element No. 34, the manager unit (A) can
manage processes that are not present in the global activity
structure at the time of system design, and (B) can manage
the communications between two processes that make up the
global activity, which was not intended for global activity,

and (C) is in communication with another machine on which
there are types of processes that make up the three scientific
applications mentioned above.

Therefore, the manager unit of element no. Thirty-four
can manage situations that lead to dynamic and interactive
events in processes related to global activity. Figure 5 shows
the occurrence of usual, dynamic, and interactive events and
the number of events in each of the three situations that can
be responded to by the ExaLB framework.

In Fig. 5, with regards to processing element no. 34,
53% of the requests leading to the activation of the load
balancer are related to dynamic and interactive process crea-
tion requests, 19% are related to dynamic and interactive
communication requests, and 6% are related to dynamic
and interactive communication requests with the system
environment. This result indicates that 22% of the requests
leading to the activation of the load balancer are of the tra-
ditional type. In this element, the ExaLB manager unit is
activated as soon as a request occurs that requires calling
the load balancer. In this unit, the RSPRS/CPRPS Rewriter
unit decides on the type of request (whether it is a standard
or a dynamic and interactive request) based on the type of
process request, request history, time and location limita-
tions, and dependency. As seen in Fig. 5, the dynamic and
interactive process request diagram has the highest adapta-
tion to the conventional request diagram, leading to the load
balancer's activation.

The frequency of change of events leading to the dynamic
and interactive process creation is almost the same as the
rate of regular events leading to the activation of the load
balancer, except for the times 11, 29, and 47. The matching
between dynamic and interactive process creation requests
with conventional requests that lead to the activation of the
load balancer is due to changes like the process requests in
processing element no. 34.

Fig. 5   Events leading to the
activation of the ExaLB load
balancer in processing element
no. 34

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ev
en

t

Time

Machine 34 Evenets

Normal Request

Fork D&I Request

Communication D&I Request

Interactive D&I Request

408	 F. Mollasalehi et al.

1 3

On average, in 50-time units, processing element no.
Thirty-four were monitored, and 53.38% of standard process
requests became dynamic and interactive process creation
requests. The 53% occurrence of dynamic and interactive
requests is the reason for the need for scalability of the com-
puting system. The number 53% means that in 53 out of 100
requests leading to the activation of the load balancer, there
is a need to create a new process that creates new global
activity. This process expands the computing system to
meet the requirements of the process running on element
no. 34. It also means that 53% of the requested resources
for the running process were not considered. This element
creates a dynamic and interactive process that creates a new
response structure through the Scalability + unit to meet the
above requirements. Suppose the system is observed for a
long time; then 53% of events lead to the activation of the
load balancer into dynamic and interactive events of process
creation. For a long time, the computing system has been
scaled to the level where there would be little need to create
new structures. The dynamic and interactive process creation
events of ExaLB are used for scalability and the creation
of new global activities to meet process requests. After a
particular time, the size of the system by these processes
reaches a stable level. In this situation, the system creates
dynamic and interactive process events at a shallow rate.

In Fig. 5, the presence of zero points in the dynamic and
interactive process diagram of processor creation means
there is no need to create a new global activity to meet the
processor's needs. Figure 6 shows the correlation status of
dynamic and interactive process creation events and the
requests leading to the activation of the ExaLB.

As seen in Fig. 6, the data of these two variables have a
second-order correlation of 0.387 with each other, which
indicates that if the system, especially element no. 34, if
examined for a long time, these two variables would be less
dependent on one another. This state indicates the independ-
ence of the computing system from scalability to meet the
requirements of processes in processing element no. 34.

As seen in Fig. 5, about 19% of requests to activate the
ExaLB result from dynamic and interactive communication
requests between processes in the system. From the point
of view of the ExaLB, this means that 19 out of 100 inter-
processes communication requests are not considered in
the basic structure of executing scientific applications. The

number of inter-processes communication requests not con-
sidered in the initial response structure leans to zero faster
than the process creation requests. If the computing system,
and in particular processing element no. 34, is examined for a
long time. According to the ExaLB, after the system reaches
balance, the inter-processes communication resulting from
the process requests reaches a stable state. This stability does
not mean that inter-processes communication requests of
dynamic and interactive nature do not occur. Instead, process
requests not turn into dynamic and interactive inter-processes
communication requests. This state is due to the considera-
tion of two concepts of history and the behavior of each
request by the ExaLB. Figure 7 shows the correlation coeffi-
cient between the number of requests leading to the activation
of the ExaLB and the requests leading to the dynamic and
interactive nature of inter-processes communication.

As seen in Fig. 7, the second-order correlation coefficient
between these two variables tends to reach zero in the long
run. This event indicates that if the system has reached sta-
bility over time, the number of requests leading to dynamic
and interactive inter-process communications does not
depend on the process requests. This event is due to the
existence of request history, especially the request history for
executing global activity, as well as request analysis, based
on three-dimensional space of time, location, and depend-
ency, which eventually leads to independence from the
number of process requests. In such cases, the occurrence
of dynamic and interactive inter-process events becomes
dependent on ReqNull . From the point of view of the ExaLB,
this means that the reasons for the occurrence of dynamic
and interactive inter-process communication events in the
state of balance are due to the formation of global activity. If
the cause of global activity formation is to discover commu-
nications, the system expects dynamic and interactive inter-
process communications to be formed in global activity.

Based on what has been said about the Scalability + unit,
after the expansion of the computing system, the perfor-
mance of ExaLB may decrease. As seen in Fig. 5, 6% of the
requests that trigger the ExaLB are dynamic and interac-
tive requests that require interaction with the system envi-
ronment. However, the number of requests that lead to a
dynamic and interactive request for interaction with the sys-
tem environment is small compared to the other two types

Model Summary
Model R R Square Adjusted R

Square
Std. Error of the
Estimate

1 .622a .387 .374 17.47062

Fig. 6   The correlation between events leading to the activation of
the ExaLB and events leading to the dynamic and interactive process
creations

Model Summary
Model R R Square Adjusted R

Square
Std. Error of the
Estimate

1 .019a .000 -.020 6.44682
a. Predictors: (Constant), Request

Fig. 7   The correlation between the events leading to the activation
of the ExaLB and the events leading to the dynamic and interactive
inter-process communications

409ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

discussed. As a result, the rate of reduction of these requests
and the independence of these requests to ones leading to
activating the load balancer is higher than the other two
types. From the point of view of ExaLB, when requests of
dynamic and interactive nature for interaction with the envi-
ronment are created, for responding to this type of request,
ExaLB should call the resource discovery to expand the sys-
tem and create a new response structure. On the other hand,
according to what is mentioned in the Scalability + unit
related to the ExaLB load balancer, the management system
is not allowed to expand the computing system to any extent.

Consequently, the performance of the computing system
may fall. This reduction in performance contrasts with the
functional nature of the DECS. Figure 8 shows the correla-
tion coefficient between the two variables of the number of
requests leading to the activation of the ExaLB and dynamic
and interactive requests for interaction with the environment.

As can be seen in Fig. 8, the second-order correlation
coefficient between these two variables is zero. In DECS,
after the formation of the region, it is expected that the load
status pattern at the time of dynamic and interactive event
occurrence for interaction with the system environment to be
very similar to the load pattern when there are no dynamic
and interactive requests. The difference in the R-value in
Figs. 7 and 8 is also due to the concept of the variable α. The
variable α causes the similarity of the distribution in the two
states i and j to be the reason for the level of dependency of

the number of D&I requests for interaction with the envi-
ronment, to have a faster rate of becoming independent
from events leading to activation of ExaLB, compared to
the level of dependency of the number of D&I requests for
inter-process communications. In this case, the D&I requests
for interaction with the system environment depend only on
the variable ReqNULL . Figure 9 shows the number of D&I
requests responded to by processing element no. 34.

As can be seen in Fig. 9, the number of forks, inter-pro-
cess communication, and interaction with environment D&I
requests that have been answered by processing element no.
Thirty-four are displayed. By comparing Figs. 5 and 9, it can
be concluded that in terms of D&I requests, ExaLB has not
been able to respond. Also, if the times in which there is no
D&I request are not considered, the results show that ExaLB
has responded to 53.70% of D&I fork requests and 44.99%
of D&I inter-process communication requests, and 33.66%
of D&I interaction with environment requests.

The lack of response to 46.30% of D&I fork requests is
due to the inability to create the parameter RI(t) in Eq. 17.
As seen in Fig. 9, in all types of D&I requests, the response
rate has increased as time has passed. This event is due to
variables Resourcehistory and Reqhistory . The more ExaLB has
information about the status of resources and requests, the
descriptors of request and resource (Eqs. 18 and 19) status
would be more accurate.

The reason for the significant difference between the
results of the D&I fork request with the other two types in
Fig. 9 is due to Reqbehavior and the response mechanism of
ExaLB to different types of D&I requests. ExaLB can use
two different mechanisms for responding to D&I events,
either by changing the functionality of the resource or by
scalability. In these experiments, the mechanism used by
the ExaLB is considered the scalability mechanism. When a
fork-type D&I event occurred, the ExaLB, using the scalabil-
ity mechanism, considering Eq. 22, created a new response
structure for managing the event. The reason for the failure

Model Summary
Model R R Square Adjusted R

Square
Std. Error of the

Estimate
1 .002a .000 -.021 25.68537
a. Predictors: (Constant), Request

Fig. 8   The correlation between events leading to the activation of the
ExaLB and events leading to the dynamic and interactive request for
interaction with the system environment

Fig. 9   Number of D&I requests
responded by processing ele-
ment no. 34

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ev
en

t

Time

D&I Events Answer

D&I Answered fork

D&I Answered Communication

D&I Answered Interactive

410	 F. Mollasalehi et al.

1 3

of the ExaLB, in the process of responding to the fork D&I
requests in units such as 19, 22, 26, and 38, has been the
need for the long time required to run the resource discovery.

In the 30th time unit, the ExaLB unit successfully
responded to 60 out of 62 fork D&I requests. The ExaLB
load balancer has analyzed the behavior of requests in exe-
cuting the application. This state, from the point of view of
the ExaLB load balancer, means that there is enough time to
extract the behavior of requests that occur in the 39th unit.
In the 4th unit, 52 fork D&I requests occurred, of which the
ExaLB answered 51 requests. By examining the status of
the application in processing element No. 34, it is clear that
the nature of the requests is such that they can be answered
using scalability. The time required to execute the resource
discovery for scalability and response to these requests, as
well as the system's state after scalability, is acceptable to
the ExaLB load balancer according to Eq. 22.

Events in the third time unit made it possible to state that
the resource discovery, and its responsibility in responding
to D&I requests, is effective over the functionality of the
ExaLB. This event occurred when the request behavior had
not been extracted or there had not been sufficient infor-
mation about the functionality of the resource. Extracting
request behavior and resource functionality and collect-
ing more information about the status of the resources and
requests reduces the dependency of the ExaLB on other
system-managing units. Typically 50% of fork D&I requests
cannot be answered by ExaLB's load balance. By examin-
ing the status of programs in number 34 and increasing the
number of iterations of the experiment, it is observed that
two factors are the most important reasons for the inability
of the ExaLB load balancer to respond to these requests.
The first factor is the inability of the resource discovery to
respond to the scalability request in an acceptable time. The
second factor is the lack of scalability due to reduced sys-
tem performance (presented in Eq. 22). Examining the test
results, especially the test results, in a situation where a fork-
type D&I event occurs, but the ExaLB load balancer cannot
respond. It made that in 38% of cases performing Eq. 22 is
the reason for the inability to respond to the requests.

As can be seen in Fig. 9, the number of unanswered
events by the ExaLB unit is higher than other types of D&I
events when they were interactive D&I requests. The reason
is that no element inside the computing system can respond
to an interactive D&I request, and the resource managing
unit must find it in the environment outside the system.
There is no accurate information on which to form the matri-
ces in Eqs. 15 and 16. Because such a processing element
containing the resource has been outside the computing sys-
tem, there is no information about its importance in global
activities. When the resource is discovered, the ExaLB load
balancer considers the importance of this resource to be 100
out of 100.

By examining Fig. 9, it can be seen that in time units such
as 7, 28, and 43, the ExaLB load balancer has responded
to all fork D&I requests. Except for a few time units, such
as time unit 41, all events of interactive D&I nature are
responded to, or it is entirely unable to respond. It was
found that in the mentioned time units, the ExaLB load bal-
ancer encountered an event similar to similar events that
had already happened. This repetition of events caused the
ExaLB load balancer to obtain sufficient information about
the request behavior (defined in Eq. 10) and the resource dis-
covery pattern. The ExaLB load balancer, in time units, has
extracted the description of the request and resource status
using Eqs. 18 and 19, which leads to the inability to respond
to events similar to the events of the mentioned time units.
This event allowed the ExaLB load balancer to use a pattern
of complete ability or inability for interactive D&I events.

By analyzing the ExaLB unit's functionality and the appli-
cations in processing element no. 34, it can be concluded that
the main reason for such a phenomenon is not creating the
descriptive matrix of the temporal changes for the desired
resource as expressed in Eq. 18. The primary inability to cre-
ate such a structure lies in resource discovery. Interactive D&I
events strongly correlate with the load balancing function and
the response history's data structures to similar events.

We are examining the scientific applications and the sta-
tus of executing processes on processing unit no. 34, it can
be concluded that the most influential variable on the abil-
ity or inability to respond to such events is the Null vari-
ables defined in the matrices of Eq. 5. As seen in Fig. 9,
the ExaLB can respond to 45 out of 100 inter-process com-
munication D&I events during system execution for a more
extended period. The occurrence of these events from the
point of view of the ExaLB load balancer means chang-
ing the reason for the request from the non-request status
to the new request and changing the request behavior. From
the resource analysis point of view, the inter-process com-
munication resource, which had another role in the global
activity, should be changed and proposed as a communica-
tion mechanism between the two processes. The response
to inter-process D&I requests is such that scalable mecha-
nisms are not used for the responding structure. Changing
the functionality of resources and process is the method used
to manage these events.

The need to use a separate model to respond to inter-
process communication D&I events leads to time units such
as 3, 5, 9, and 12, in which the ExaLB can not respond to the
event due to the inability to change the role and functionality
of the resource or processor request. The majority of times
that the ExaLB does not respond to inter-process communi-
cation D&I requests are at system startup time. The ExaLB
must be able to manage resources and processes by extract-
ing the pattern of functionality and role by changing them
when the inter-process communication type of D&I events

411ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

occur. Based on examining Fig. 9, it can be seen that most
inter-process communication and D&I events responded to
by the ExaLB management element is around the average
line.

Figure 10 shows the number of dynamic and interac-
tive events affecting the load balancing operation in the
ExaLB framework, the DTHMM ExaLB mechanism, and
the HemeLB mechanism.

As shown in Fig. 10, on average, every time the test is
run, 37 requests are created, leading to load redistribution
in computing element No. 37, which is somehow affected
by dynamic and interactive events. This dynamic and inter-
active event can occur both in computing element number
37 and at any point of the computing system in a way that
affects the implementation of the activities of the load bal-
ancer activated in computing element 37. On average, the
HemeLB mechanism can manage the impacts of dynamic
and interactive events on the load balancing operation in
each test run five times. This issue is due to the primary con-
dition of activation of the HemeLB mechanism in comput-
ing element No. 37 to manage the impacts of dynamic and
interactive events on the operation of the resource load bal-
ancing. In a typical situation, in computing element number
37, the traditional load balancer is running. A dynamic and
interactive event impacts the operation of the load balancer
and causes the developed part of the load balancer based on
the HemeLB to be activated. Based on the HemeLB mecha-
nism, the load balancer makes a decision based on a set of
indicators regarding the occurrence or lack of occurrence
of the mentioned situation. By examining the experiments,
it was found that the allocation model is not challenged in
many cases due to the occurrence of dynamic and interactive
events and their impact on the load balancing function. How-
ever, the collecting activities and the need to create expanded
structures to manage the impacts of the dynamic event and
interaction in the system and, consequently, the functionality

of the distributed management unit have been affected. In the
distributed load balancer based on the HemeLB mechanism,
only one part of the functional tasks of the distributed load
balancer is considered the focus of the effects of dynamic
and interactive events on the operation of this element.

The distributed load balancer based on the DTHMM
ExaLB mathematical model provides the ability for the dis-
tributed load balancer to manage the activity based on the
changes that cause the function of the distributed load bal-
ancer to be violated, after analyzing each dynamic and inter-
active event. On average, in each test run, the mathematical
mechanism of DTHMM ExaLB can detect nine events affect-
ing the distributed load balancer's operation and management.
Unlike the HemeLB, this mechanism considers all the situa-
tions. This information leads to the impact of the dynamic and
interactive event on the operation of the load balancer. The
distributed load balancer to dynamic and interactive events
based on the DTHMM ExaLB mechanism can only handle
nine out of 37 events. In this mechanism, the concept of the
system state is used to describe the functionality of the dis-
tributed load balancer, and the return of the system state to a
stable condition after the occurrence of a dynamic and inter-
active event is considered a method to manage the impacts
of the dynamic and interactive event on the operation of the
distributed load balancer—the mentioned mechanism to be
unable to transfer the system to a stable state. If the distributed
load balancer uses more variables than the traditional one to
describe its state, creating the system state becomes compli-
cated. Another challenge of this solution is the possibility of
the inability to change the state of the system to a stable condi-
tion for the operation of the distributed load balancer.

As shown in Fig. 10, the ExaLB-based distributed load
balancer manages 19 dynamic and interactive event occur-
rences affecting the operation of the distributed load bal-
ancer. The ExaLB management unit uses the two concepts
of separation of dynamic and interactive events, as well as

Fig. 10   Dynamic and interac-
tive events affect the operation
of load balancing in the ExaLB
framework, ExaLB DTHMM,
and HemeLB mechanisms

0

10

20

30

40

50

60

70

80

90

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

N
um

be
r

Number

Answer D&I

ExaLB

DTHMM

HemeLB

D&I request

412	 F. Mollasalehi et al.

1 3

the separation of the structures of the execution of the activi-
ties of the distributed load balancer after the occurrence of a
dynamic and interactive event based on the framework intro-
duced in this article. Using these two concepts makes the
distributed load balancer based on ExaLB able to analyze
the event and its impacts on the operation of the distributed
load balancer based on the framework presented in Fig. 3 and
the use of RSPRS/CPRPS. The lack of possibility in creat-
ing structures related to RSPRS/CPRPS due to the lack of
detection of the incident causes the framework to be unable
to utilize its management capabilities in 49% of the cases
and experiments. This situation indicates that the framework
introduced for the ExaLB-based distributed load balancer can
manage the effects of dynamic and interactive events on the
functionality of the distributed load balancer in 51% of cases.

8 � Discussion

In DECS, the occurrence of a D&I by computing pro-
cesses causes the response structure to change. Changing
the response structure may cause the load balancer's pat-
tern (or patterns) to be unable to respond and manage the
new condition. The load balancer, as the central element of
computing systems, assigns computing process requests to
the appropriate resources during the execution of scientific
applications. The purpose of the load balancer is to execute
the allocation function, processes, and, ultimately, the sci-
entific application in the shortest possible time. Two sets
of CPRPS and RSPRS affect the functionality of the load
balancer. A D&I event may cause the RI on which the load
balancer redistributes the tasks to differ from the actual RI
of the system. This paper introduces the ExaLB framework
to address this challenge.

ExaLB framework changes the functionality of the load
balancer, which used to be the mapping form of request
space to the resource space, to the mapping form of the pro-
cess status matrix to the source description space, and also
decides on the type of request, whether it requires a standard
distribution or a D&I request requiring redistribution. The
ExaLB, unlike traditional load balancers, does not collect
resources and process information while performing activi-
ties related to redistribution. The basic premise of ExaLB
is that each process is part of global activity, so examining
the process at a given moment cannot tell the characteristics
of the process request. The development of the functional-
ity of the ExaLB load balancer, based on Eq. 5, enables
the ExaLB to retain information about the history, behavior,
type, and reason for the request in global activity and related
processes for each request. The development of Eq. 1 to
Eq. 5 by the ExaLB causes the status of each resource to be
analyzed at each moment. In traditional computing systems,
the load balancer describes the resource status at the moment

of redistribution based on the indicator(s). At the same time,
the ExaLB assumes that the functionality of resources in
DECS is determined in executing global activities. To ana-
lyze the resource, one must be able to analyze its history,
functionality, and significance in global activities.

This event causes the ExaLB to use two matrices, [
ResourcetypeResourcefuctionalityResourcehistoryResourceNULL

]

and
[
ReqtypeReqBehaviorReqhistoryReqNULL

]
 to describe the func-

tionality of the load balancer. Managing global computing
processes based on the concept of global activity allows
ExaLB to be able to gather the information needed to create
the two matrices mentioned.

From the point of view of the ExaLB, each resource
falls into one of four categories: computing and processing
resources, memory resources, input and output resources,
or file resources. Using Eq. 5 to define the functionality of
the ExaLB provides the ability to make decisions about the
nature of requests as well as the abilities of the resources.
The matrix

[
ReqtypeReqBehaviorReqhistoryReqNULL

]
 causes the

ExaLB to use the ReqNULL the concept and Eqs. 9 and 10
determine whether the request is a D&I or a conventional
request. If the request is D&I, it uses the introduced ExaLB
framework. If the request made according to Eqs. 9 and 10
is conventional, it uses the standard distribution pattern of
distributed computing systems (Khaneghah 2017).

T h e
[
ResourcetypeResourcefuctionality

ResourcehistoryResourceNULL
]
 allows the ExaLB to use

ResourceNULL Furthermore, Eqs. 15 and 16 decide whether
or not this resource can respond to the D&I request. If the
resource can respond to D&I requests, then ExaLB uses the
resource mentioned in the global activity created to respond
to D&I requests. This event is done by changing the concept
of Resourcefunctionality (Khaneghah and Sharifi 2014; Kayal
2009). This event allows the resource to modify its function-
ality according to the process requests so that it can respond
based on the new function.

Equation 17 is a derivative description of Eq. 5. Accord-
ing to Eq. 5, the function of the load balancer is to map the
matrices describing the status of the resource and the
request to one another. Equation 17 states that resource and
request status description matrices change during the execu-
tion of the scientific applications and, consequently, the
activities related to the ExaLB. This attribute enables the
ExaLB to be to perform redistribution-related activities
when D&I requests occur based on Eq. 17 to extract
�[ReqtypeReqBehaviorReqhistoryReqNULL]

�t

 ​​ a n d
�[ResourcetypeResourcefunctionalityResourcehistoryResourceNULL]

�t

 matrices at any time
during the execution of scientific applications. The men-
tioned matrices describing the status of the process and
resource in terms of time are due to the inability of the

413ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

ExaLB, related to the need to retrieve information from
resources and processes after a D&I event occurs. The dif-
ference in RI formed by data gathering of the load balancer
and the actual RI of the system after D&I events occur is
the main reason for the inability of the traditional load bal-
ancers to manage DECS. This issue has been resolved in the
ExaLB framework by the Data Gathering unit based on
Eqs. 18 and 19. Suppose the ExaLB can analyze the status
of the resource based on time according to Eq. 18. In that
case, it can decide whether it can form the resource descrip-
tion matrix of Eq. 17 based on the information and charac-
teristics of the resource. Suppose the ExaLB can create a
resource status description matrix in Eq. 17 based on
Eq. 18. In that case, it can describe changes in resource
type, history, functionality, and significance in global activi-
ties regarding time and resource status changes. If the
ExaLB has the above information set, it knows the resource
status and the variability of the four factors affecting the
resource. This information makes the state of the ExaLB of
the operating system equal to the state of the existing system
during the occurrence of a D&I request. If the ExaLB ele-
ment can analyze the request status based on time according
to Eq. 19, the description of the system status from ExaLB's
point of view should be the same as the actual system
status.

The most critical function of Eqs. 18 and 19 is to enable
the ExaLB to have accurate information about the status
of processes and computing resources in a distributed sys-
tem regarding the effects of the D&I events on them. The
mentioned information set allows the load balancer to man-
age the redistribution activities in a way that includes the
impacts of D&I requests on the entire system's status.

The ExaLB framework generates time-dependent RI
using RSPRS / CPRPS Rewriter and Data Gathering units.
The functionality of the ExaLB is not based on the RI of
the activation time but on the RI, which is time-based and
includes changes due to the occurrence of D&I events during
the execution of redistribution activities. The use of Eqs. 18
and 19, as well as the description of the function of the sys-
tem manager unit based on Eq. 5, causes the state of the
system on which the load balancer is redistributing to match
the state of the actual status of the computing system.

Funding  The authors did not receive support from any organization
for the submitted work.

Declarations 

Conflict of interest  All authors certify that they have no affiliations
with or involvement in any organization or entity with any financial
or non-financial interest in the subject matter or materials discussed
in this manuscript.

References

Adibi, E., Khaneghah, E.M.: ExaRD: introducing a framework for
empowerment of resource discovery to support distributed
exascale computing systems with high consistency. Clust. Com-
put. 23, 1–21 (2020)

Alowayyed, Saad et al. "Multiscale computing in the exascale
era." Journal of Computational Science 22 (2017): 15–25.

Amelina, N., Fradkov, A., Jiang, Y., Vergados, D.J.: Approximate con-
sensus in stochastic networks with application to load balancing.
IEEE Trans. Inf. Theory 61(4), 1739–1752 (2015)

Bakhishoff, U., et al.: DTHMM ExaLB: discrete-time hidden Markov
model for load balancing in distributed exascale computing envi-
ronment. Cogent Eng. 7(1), 1743404 (2020)

Bok, K. et al.: Load Balancing with Load Threshold Adjustment in
Structured P2P. In: 2018 IEEE International Conference on Big
Data and Smart Computing (BigComp). IEEE (2018)

Chatterjee, Moumita, and S. K. Setua. "A new clustered load balancing
approach for distributed systems." Computer, Communication,
Control and Information Technology (C3IT), 2015 Third Inter-
national Conference on. IEEE, 2015.

Domanal, S.G., Reddy, G.R.M.: Optimal load balancing in cloud
computing by efficient utilization of virtual machines. In: Com-
munication Systems and Networks (COMSNETS), 2014 Sixth
International Conference on. IEEE, pp. 1–4 (2014)

Dongarra, J., et al.: The international exascale software project road-
map. Int. J. High Perform. Comput. Appl. 25(1), 3–60 (2011)

Dongarra, J., Hittinger, J., Bell, J., Chacon, L., Falgout, R., Heroux,
M. et al.: Applied Mathematics Research for Exascale Comput-
ing (No. LLNL-TR-651000). Lawrence Livermore National Lab
(LLNL), Livermore, (2014)

Fiore, S., Bakhouya, M., Smari, W.W.: On the road to exascale:
advances in high performance computing and simulations—an
overview and editorial. Future Gen. Comput. Syst. 82, 450–458
(2018)

Gharb, H., et al.: Challenges of execution trend in distributed exascale
system. JDCS 1(2), 140–151 (2019)

Ghomi, E.J., Rahmani, A.M., Qader, N.N.: Load-balancing algorithms
in cloud computing: a survey. J. Netw. Comput. Appl. 88, 50–71
(2017)

Heidsieck, G. et al.: Adaptive caching for data-intensive scientific
workflows in the cloud. In: International Conference on Database
and Expert Systems Applications. Springer, Cham (2019)

http://​www.​deep-​proje​ct.​EU. Accessed Oct 2022
Innocenti, Maria Elena et al. "Progress towards physics-based space

weather forecasting with exascale computing." Advances in Engi-
neering Software 111 (2017): 3–17.

Jain, S., Saxena, A.K.: A survey of load balancing challenges in cloud
environment. In: 2016 International conference system modeling
& advancement in research trends (SMART). IEEE (2016)

Jeannot, E., Mercier, G., Tessier, F.: Topology and affinity aware hier-
archical and distributed load-balancing in Charm++. In: Com-
munication Optimizations in HPC (COMHPC), International
Workshop on, pp. 63–72 (2016)

Jiang, Y.: A survey of task allocation and load balancing in distributed
systems. IEEE Trans. Parallel Distrib. Syst. 27(2), 585–599 (2016)

Jyoti, A., Shrimali, M.: Dynamic provisioning of resources based on
load balancing and service broker policy in cloud computing.
Clust. Comput. 23(1), 377–395 (2020)

Kayal, N.: The complexity of the annihilating polynomial. In: 2009
24th Annual IEEE conference on computational complexity. IEEE
(2009)

http://www.deep-project.EU

414	 F. Mollasalehi et al.

1 3

Khan, S., et al.: Load balancing in grid computing: taxonomy, trends
and opportunities. J. Netw. Comput. Appl. 88, 99–111 (2017)

Khaneghah, E.M.: U.S. Patent No. 9,613,312. Washington, DC: U.S.
Patent and Trademark Office (2017)

Khaneghah, E.M., Sharifi, M.: AMRC: an algebraic model for recon-
figuration of high performance cluster computing systems at runt-
ime. J. Supercomput. 67(1), 1–30 (2014)

Khaneghah, E.M., ShowkatAbad, A.R., Ghahroodi, R.N.: Challenges
of process migration to support distributed exascale computing
environment. In: Proceedings of the 2018 7th International Con-
ference on Software and Computer Applications (2018)

Khaneghah, E.M. et al.: Challenges of load balancing to support dis-
tributed exascale computing environment. In: Proceedings of the
International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA). The Steering Committee
of The World Congress in Computer Science, Computer Engineer-
ing and Applied Computing (WorldComp) (2018)

Kołodziej, J., Khan, S.U., Wang, L., Kisiel-Dorohinicki, M., Madani,
S.A., Niewiadomska-Szynkiewicz, E., et al.: Security, energy, and
performance-aware resource allocation mechanisms for computa-
tional grids. Future Gen. Comput. Syst. 31, 77–92 (2014)

Lehman, C., Nookala, P., Raicu I.: Scalable load-balancing concurrent
queues in modern many-core architectures. In: SC19. ACM (2019)

Lieber, M., Gößner, K., & Nagel, W. E.: The potential of diffusive load
balancing at large scale. In: Proceedings of the 23rd European
MPI Users' Group Meeting. ACM, pp. 154–157 (2016)

Milani, A.S., Navimipour, N.J.: Load balancing mechanisms and tech-
niques in the cloud environments: systematic literature review and
future trends. J. Netw. Comput. Appl. 71, 86–98 (2016)

Mirtaheri, S.L., Grandinetti, L.: Dynamic load balancing in distributed
exascale computing systems. Clust. Comput. 20(4), 3677–3689
(2017)

Mirtaheri, S.L., Khaneghah, E.M., Sharifi, M., Minaei-Bidgoli, B.,
Raahemi, B., Arab, M.N., Ardestani, A.S.: Four-dimensional
model for describing the status of peers in peer-to-peer distrib-
uted systems. Turk. J. Electr. Eng. Comput. Sci. 21(6), 1646–1664
(2013)

Mirtaheri, S.L., Khaneghah, E.M., Memaripour, A.S., Grandinetti, L.,
Sharifi, M., Bornaee, Z.: Multics and Plan 9: the big bangs in the
distributed computing system universe. Comput. Sci. Eng. 16(5),
76–85 (2014)

Mirtaheri, S.L. et al.: A mathematical model for empowerment of
Beowulf clusters for exascale computing. In: 2013 International
Conference on High Performance Computing & Simulation
(HPCS) (2013)

Mondal, R.K., et al.: Load balancing on selected nodes with average
tasks in cloud computing. J. Innov. Electron. Commun. Eng. 6(2),
43–45 (2016)

Mondal, R.K., Ray, P., Sarddar, D.: Load balancing. Int. J. Res. Com-
put. Appl. Inf. Technol. 4(1), 1–21 (2016)

Mondal, R.K. et al.: Load balancing with job switching in cloud com-
puting network. In: Proceedings of the 5th International Confer-
ence on Frontiers in Intelligent Computing: Theory and Applica-
tions. Springer, Singapore (2017)

Mousavi Khaneghah, E., Noorabad Ghahroodi, R., Reyhani Showka-
tAbad, A.: A mathematical multi-dimensional mechanism to
improve process migration efficiency in peer-to-peer computing
environments. Cogent Eng. 5(1), 1458434 (2018)

Mukherjee, D., Borst, S. C., Van Leeuwaarden, J. S. H., & Whiting, P.
A. (2016, March). Efficient load balancing in large-scale systems.
In Information Science and Systems (CISS), 2016 Annual Confer-
ence on (pp. 384–389). IEEE.

Pate Ahmadian, A., et al.: Resource discovery in non-structured peer
to peer grid systems using the shuffled frog leaping algorithm.
JTEC 10(4), 9–14 (2018)

Pourqasem, J.: Toward the optimization resource discovery service
in grid systems: a survey. J. Appl. Res. Ind. Eng. 5(4), 346–355
(2018)

Qureshi, M.B., Dehnavi, M.M., Min-Allah, N., Qureshi, M.S., Hussain,
H., Rentifis, I., et al.: Survey on grid resource allocation mecha-
nisms. J. Grid Comput. 12(2), 399–441 (2014)

Ramezani, F., Lu, J., Hussain, F.K.: Task-based system load balanc-
ing in cloud computing using particle swarm optimization. Int. J.
Parall. Progr. 42(5), 739–754 (2014)

Rao, A. et al.: Load balancing in structured P2P systems. In: Interna-
tional Workshop on Peer-to-Peer Systems. Springer, Berlin (2003)

Rathore, N.K., Chana, I.: Job migration policies for grid environment.
Wirel. Pers. Commun. 89(1), 241–269 (2016)

Rathore, N.K., Rawat, U., Kulhari, S.C.: Efficient hybrid load balancing
algorithm. Natl. Acad. Sci. Lett. 43(2), 177–185 (2020)

Reylé, C., Richard, J., Cambrésy, L., Deleuil, M., Pécontal, E., Tresse,
L.: Perspectives in numerical astrophysics: towards an exciting
future in the exascale era. In: Proceedings of the Annual Meeting
of the French Society of Astronomy & Astrophysics, pp. 133–137
(2016)

Shahrabi, Shirin et al. "Load Balancing in Distributed Exascale Com-
puting Based on Process Requirements." Azerbaijan Journal of
High Performance Computing, 2.1 (2018):158–167

Sharifi, M., Mirtaheri, S.L., Khaneghah, E.M.: A dynamic framework
for integrated management of all types of resources in P2P sys-
tems. J. Supercomput. 52(2), 149–170 (2010)

Straatsma, T.P., Antypas, K.B., Williams, T.J.: Exascale Scientific
Applications: Scalability and Performance Portability. Chapman
and Hall/CRC, Boca Raton (2017)

Teylo, L., et al.: A hybrid evolutionary algorithm for task schedul-
ing and data assignment of data-intensive scientific workflows on
clouds. Future Gen. Comput. Syst. 76, 1–17 (2017)

Thakur, A., Goraya, M.S.: A taxonomic survey on load balancing in
cloud. J. Netw. Comput. Appl. 98, 43–57 (2017)

van Steen, M., Tanenbaum, A.S.: A brief introduction to distributed
systems. Computing 98(10), 967–1009 (2016)

Wang, K. et al.: Optimizing load balancing and data-locality with data-
aware scheduling. In: 2014 IEEE International Conference on Big
Data (Big Data). IEEE (2014)

Wang, Ke et al. "Load‐balanced and locality‐aware scheduling for
data‐intensive workloads at extreme scales." Concurrency and
Computation: Practice and Experience 28.1 (2016a): 70–94.

Wang, K., et al.: Exploring the design tradeoffs for extreme-scale high-
performance computing system software. IEEE Trans. Parall. Dis-
trib. Syst. 27(4), 1070–1084 (2016b)

Wylie, B.J.N.: Exascale potholes for HPC: Execution performance and
variability analysis of the flagship application code HemeLB. In:
2020 IEEE/ACM International Workshop on HPC User Support
Tools (HUST) and Workshop on Programming and Performance
Visualization Tools (ProTools). IEEE (2020)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

415ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

Faezeh Mollasalehi  has a Masters
of Computer Science from
Shahed University and currently
is a member of the operating sys-
tem and network laboratory at
this university. She is interested
in the High Performance Com-
puting Systems (HPC) and has
been involved in several related
research activities over the past
few years, including in load bal-
ancing of the HPC such as grid,
P2P, and exascale computing
systems. Since 2015, she has
been involved in a research pro-
ject to improve the performance

of load balancing in distributed peer-to-peer computing systems based
on mathematical mechanisms. She is also interested to design and
develop a load balancing for exascale computing systems.

Ehsan Mousavi Khaneghah  is a
faculty member of the Computer
Engineering Department of
Shahed University. His research
interest is the design and devel-
opment of distributed computing
systems. He is researching the
development of a distributed
Exascale computing system. He
had a patent called “PMamut:
runtime flexible resource man-
agement framework in a scalable
distributed system based on
nature of the request, demand
and supply, and federalism”.
U.S. Patent No. 9,613,312. 4

Apr. 2017”. Which proposes a framework for managing the Distributed
Exascale System. His favorite research fields are operating systems,
Exascale systems, parallel and distributed systems, Cluster systems,
Grid systems, P2P computing systems, applied mathematics, optimiza-
tion, and e-commerce. He has successful experience in running indus-
trial designs in high-performance computing systems. He is also a
consultant of Master Plan designs in industrial areas like banks and
industries, which need high-performance computing systems. Now, he
is a member of the operating system and network laboratories of
Shahed University.

Amirhosein Reyhani Showka-
tabad  is an MSc Student with
five years of experience working
as a Researcher Assistant in
High Performance Computing.
Major interests are Process
migration and load balancing in
Distributed exascale computing
environments. Furthermore, he
has done plenty of projects based
on Artificial Intelligence and
Blockchain Technology. He has
received B.Sc. in computer hard-
ware and his MSc thesis is enti-
tled: “Data Storage improvement
for Scaling the Blockchain”.

S e y e d A l i r e z a S e y e d n e -
jad  received a B.Sc. degree
from Guilan University and an
M.Sc. from the University of
Tehran. He has worked on auto-
mated verification of HDL
(Hardware Description Lan-
guage) designs using artificial
intelligence methods. Major
interests include HDL design
and verification, distributed sys-
tems and high performance com-
puting techniques as well as arti-
ficial intelligence fields of study.

Faeze Gholamrezaie  i s a
researcher in the field of Artifi-
cial Intelligence with a Master's
degree in AI. She is dedicated to
exploring the latest advances in
machine learning and deep
learning, and her innovative
ideas have helped advance the
field. Faezeh is constantly push-
ing the boundaries of what is
possible and working on expand-
ing our understanding of AI.

	ExaLB: a mathematical framework for load balancing to support distributed exascale computing environments
	Abstract
	1 Introduction
	2 Related works
	3 Basic concepts
	3.1 Load balancing definition
	3.2 Request B is a traditional request
	3.3 Dynamic and interactive events

	4 Request B of dynamic and interactive nature
	5 ExaLB framwork
	6 RSPRSCPRPS rewriting
	6.1 Data gathering
	6.2 Scalability

	7 Evaluation
	8 Discussion
	References

