
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2023) 5:390–415
https://doi.org/10.1007/s42514-022-00134-8

1 3

REGULAR PAPER

ExaLB: a mathematical framework for load balancing to support 
distributed exascale computing environments

Faezeh Mollasalehi1 · Ehsan Mousavi Khaneghah1   · Amirhosein Reyhani Showkatabadi2 · 
Seyed Alireza Seyednejad2 · Faeze Gholamrezaie3

Received: 19 February 2022 / Accepted: 28 December 2022 / Published online: 13 February 2023 
© China Computer Federation (CCF) 2023

Abstract
The dynamic and interactive nature of Distributed Exascale Computing System leads to a situation where the load balancer 
lacks the proper pattern for the solution. In addition to analyzing and reviewing the dynamic and interactive nature and its 
effect on load balancing, this article introduces a framework for managing load balancing that does not need to study the 
dynamic and interactive nature. This framework proposes a mathematical scheme for the functionality of load-balancing 
elements and redefines its functions and components. The redefinition makes it possible to determine the constituent parts 
of the framework and their functionality without the need to analyze the dynamic and interactive nature of the system. The 
proposed framework can manage and control dynamic and interactive events by reviewing changes in the functionality of 
resources, the pattern of data collection to execute processes related to the load balancer, and a Scalable tool. In addition to 
performing the load balancer’s functionality, our framework can continue to function under dynamic and interactive events 
in distributed exascale systems. On average, this framework has a 43% improvement, unable to respond to dynamic and 
interactive requests.

Keywords  Distributed exascale computing system · Load balancing · Functionality · Resource description · Request 
description

1  Introduction

In high performance computing systems, the load balancer 
is responsible for adjusting computing processes, demands, 
and computing capabilities of the existing resources (defined 
in the computing environment) (Wang et al. 2014; Ghomi 
et al. 2017; Jyoti and Shrimali 2020; Amelina et al. 2015). 
Therefore, the load balancer should be able to manage 
computing processors in the existing system so that (A) 
the response time of any processor should exceed what is 
expected and (B) no computing resource should be idle 
while executing a scientific or practical application (Doma-
nal et al. 2014; Thakur and Goraya 2017). The load balancer 
needs precise information about the requirements of comput-
ing processors and features of the existing resources in the 
computing system to achieve this (Khaneghah et al. 2018). 
If the element has accurate information about computing 
processors and resources, it can adjust between processor 
requirements and computing resources and features (Mondal 
et al. 2016; Mondal et al. 2017; Mondal et al. 2016). Proper 
adjustment between the two mentioned characteristics leads 
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to a better response time for computation processes, which 
increases the system's performance (Kołodziej et al. 2014; 
Qureshi et al. 2014).

Load balancer conventionally has to collect data, decide 
about the resources and computing processes, and also pro-
cess transmission (Khan et al. 2017; Pate Ahmadian et al. 
2018; Jain and Saxena 2016). The element must describe 
the status of the processes, process requirements to perform 
these tasks, and system resources, using specific metrics 
(Bok et al. 2018; Rao et al. 2003). The element could per-
form the mentioned tasks in the case of proper and exact 
definitions for descriptions of processes and resources.

Based on these metrics, the load balancer decides whether 
it can continue executing the process in a processing ele-
ment. In its view, the continuation of performing a process 
depends on the process's requirements, conditions, and time 
limitations and whether the processing elements can meet 
them (Mousavi Khaneghah et al. 2018). If these condi-
tions are not met, the component uses process migration to 
transfer the process from one processing element to another 
(Khan et al. 2017; Rathore et al. 2020; Rathore and Chana 
2016). Suppose the system's processing elements cannot 
respond to the process demands. In that case, the aspect 
calls on resource discovery to find the processing capable of 
meeting the requirements of the process (Pourqasem 2018).

The load-balancer establishes the structure of responding 
patterns created during design at the runtime (Khaneghah 
et al. 2018). In traditional computing systems, the selected 
mechanisms for load balancing, such as Cluster or Grid, 
are designed to make them compatible with the structure 
of response control and management related to process 
demands (Ramezani et al. 2014; Heidsieck et al. 2019; Teylo 
et al. 2017; Khaneghah and Sharifi 2014). System design-
ers know the computing process’s needs in such traditional 
computing systems. Based on this information, proceed to 
define mechanisms for load balancing or resource discovery 
(Pate Ahmadian et al. 2018; Milani and Navimipour 2016).

The primary assumption in designing a traditional load 
balancer such as a Cluster or Grid is based on the fact that 
nothing violates the structure of the designed response dur-
ing the execution of a scientific application (Khaneghah and 
Sharifi 2014). Based on this, if a process or processes require 
computing resources, the load balancer tries to use process 
migration or resource discovery to choose the resource 
which can respond to the process (Pate Ahmadian et al. 
2018). Since resource allocation is based on the load bal-
ancer’s mechanism, it has been considered part of the policy 
related to the structure of responding patterns in scientific 
applications (Khaneghah and Sharifi 2014).

The occurrence of dynamic and interactive events in 
executing computing processes in DECS leads to processes 
performing operations or requests that were not considered 
in the primary responding pattern (Khaneghah and Sharifi 

2014; Milani and Navimipour 2016; Fiore et al. 2018; Gharb 
et al. 2019; Dongarra et al. 2011). This event causes the 
system not to be capable of responding based on the pre-
liminary responding design during the execution of scientific 
applications. In case of such events, the load balancer must 
be able to analyze the event and create a proper responding 
structure based on its nature to continue executing the sci-
entific application (Wang et al. 2016a). These events might 
need different response patterns (Shahrabi et al. 2018; Alo-
wayyed et al. 2017; Innocenti et al. 2017). The load bal-
ancers should be able to create the response structure for 
such events in an appropriate period. Due to changes in the 
characteristics of resources and the response structure of 
processes, traditional systems either cannot be used in DECS 
or provide the minimum performance possible (Alowayyed 
et al. 2017; Innocenti et al. 2017; Khaneghah et al. 2018).

In distributed Exascale computing systems, the occur-
rence of dynamic and interactive events from the point of 
view of the system manager means the formation of a par-
ticular type of request related to the process (or processes) 
that has not been analyzed in the primary response structure. 
The occurrence of dynamic and interactive events causes 
the state of requests in the computing system to change in a 
way unknown to the load balancer. The load balancer should 
either stop the system, and the system designer explains 
the mentioned situation for the load balancer to execute 
the request, or it must manage the said request based on a 
mechanism at the time of execution.

When a dynamic and interactive event occurs in a 
large-scale distributed system, in addition to changing 
the status of requests in the system, as described in the 
previous paragraph, it can cause a change in the working 
process of the distributed load balancer as a central unit 
of the activities in a large-scale distributed system. The 
functional nature of the distributed load balancer in com-
puting systems, both traditional and Distributed Exascale 
systems, is based on collecting information and using a 
decision-making mechanism for redistributing the load, 
in addition to creating a mechanism for implementing 
the program in the shortest time and achieve the system's 
goal. The load balancer collects the information related 
to the system (or a part of the system), and based on the 
analysis obtained by a mechanism in the load balancer, it 
performs redistribution activities. The way the processes 
are executed by the operating system, keeping in mind 
that this is a distributed system, causes the set of activi-
ties related to the distributed management unit not to be 
executed automatically and continuously, instead these 
activities are performed at different times considering the 
corrections of the information in the previous step. The 
consideration of the corrections to the information in the 
previous stage is conventionally established in traditional 
computing systems, and the existence of benchmarking 
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tools and data structure information related to the process 
and, most importantly, the definition of specific situations 
to carry out the activities of the load balancer, makes it 
possible to decide on the continuation or discontinuation 
of it.

In Distributed Exascale systems, at any moment of the 
execution of distributed load balancer's activities, dynamic 
and interactive events can affect the load balancer's func-
tioning and sub-activities. A dynamic and interactive 
event may occur in the large-scale distributed system, 
which causes (a) the distributed load balancer not to be 
able to decide on the assumption about the correctness of 
the information of the previous stage and the status of the 
large-scale distributed system regarding the correctness 
of the information to be unknown to the load balancer. (b) 
The status of the beneficiary elements in the activities of 
the distributed load balancer should be changed in such a 
way that the set of activities of the load balancer becomes 
invalid in terms of redistribution and the mechanism used. 
(c) The mechanism used by the load balancer cannot man-
age and redistribute the load for the large-scale distributed 
computing system. (d) The descriptive and benchmark-
ing indicators used by the distributed management unit 
become invalid after the dynamic and interactive event 
occurs.

In each or all of the mentioned situations, the distrib-
uted management unit in Distributed Exascale systems 
must be able to manage the impacts of dynamic and inter-
active events on its functionality. This article, introduc-
ing the ExaLB, presents a mathematical model to manage 
caused by dynamic and interactive events on the load bal-
ancer in distributed Exascale computing systems without 
the need to stop the execution of system activities.

This paper introduces a mathematical framework to 
describe the load balancer's performance in DECS. The 
descriptive function of the load distribution management 
element in distributed computing systems is investigated 
to achieve this framework. Based on the review and analy-
sis of the mentioned descriptive function, the framework 
describing the load balancer operation in the distributed 
Exascale systems obtained in this article makes it possible 
to analyze the concept of the event that leads to the call 
of the load balancer in the distributed computing system. 
Did Consider this issue in this article, the events leading 
to the call of the load balancer are considered in two cat-
egories, formal events, and dynamic and interactive events. 
The mentioned two classifications and the analysis of the 
management of the mentioned events can be used as a 
criterion for the analysis of dynamic events and how to 
manage them in the middle of the proposed mathemati-
cal framework for the load balancer, taking into account 
the conditions and limitations imposed by dynamic and 
interactive events.

2 � Related works

Currently, many scientific applications are developed for 
DECS. In this system, computing resources are connected 
in an autonomous, transparent, and integrated manner and 
usually support scalability (Jiang 2016). In high perfor-
mance computing and distributed systems, a load balancer 
is used to distribute the tasks fairly to execute the applica-
tion in the shortest time possible (Chatterjee and Setua 
2015).

There are multiple definitions proposed for the scal-
ability of distributed systems. In Domanal et al. (2014), 
scalability is considered a function of changes in the 
system performance when a new processing element is 
added. In Mirtaheri et al. (2013), the system's scalabil-
ity is introduced as a function with parameters such as 
the cost of adding a new computing element and system 
performance when it is being expanded. Determining the 
relation between load balance and the system's scalability 
is highly important if this relation is not selected correctly. 
Scalability would not be capable of improving the perfor-
mance and also adds to the load balancer's execution time, 
leading to decreased system efficiency.

In Distributed Exascale systems, scheduling existing 
tasks to improve performance is vital (Chatterjee and 
Setua 2015; Mukherjee et al. 2016). In Mukherjee et al. 
(2016), a method for efficient load balancing in large-scale 
systems is introduced in which equivalent Markov models 
describe parallel servers. This computing system uses a 
threshold-based load-balancing scheme.

The challenges of DECS consist of managing processes 
in parallel, the procedure of executing scientific applica-
tions, usable processing power, flexibility, and scalability 
(Wang et al. 2016b). Many computing system management 
schemes, such as load balancing mechanisms, are designed 
based on centralized paradigms and have to define a cen-
tralized server. This state creates challenges for DECS, 
such as scalability and single-point-of-failure problems 
(Wang et al. 2016b). In Wang et al. (2016b), a classifica-
tion for system management in DECS is proposed that 
considers the proportion between the server's response 
time and the client's tolerance. In this categorization, there 
is a discussion about what pattern of reliability is created 
by system scalability in the procedure of execution. Based 
on Wang et al. (2016b), using an architecture based on 
distributed systems to support extreme parallelism, cover-
ing delay time, and creating mechanisms for a reliable and 
scalable load balancer, are necessary.

The nature of scientific applications requires DECS to 
use computing systems to reduce the response time and 
discover the laws governing natural phenomena (http://​
www.​deep-​proje​ct.​EU; Reylé et al. 2016). Fields such as 

http://www.deep-project.EU
http://www.deep-project.EU
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human brain simulation, weather simulation, fluid engi-
neering computations, simulating superconduction in 
high temperatures, and earthquake imaging are some of 
the applications that require DECS (http://​www.​deep-​proje​
ct.​EU; Reylé et al. 2016). The nature of these applications 
(in contradiction to traditional computing applications) is a 
way in which, during the execution of processes, dynamic 
and interactive requests are made by them that their struc-
tures are not considered during the design (Lieber et al. 
2016; Mirtaheri et al. 2014; Straatsma et al. 2017; Don-
garra et al. 2014). This event causes DECS to use dynamic 
mechanisms for load balancers (Milani and Navimipour 
2016; Khaneghah 2017). Therefore, computing systems 
should have the flexibility and compatibility with such 
variant conditions in these applications to achieve optimal 
system performance.

In Alowayyed et al. (2017), there has been a discussion 
on how to improve the capabilities of multiscale comput-
ing systems to execute scientific applications that require 
Petascale and DECS. In Jeannot et al. (2016), a dynamic 
mechanism for the load balancer in the Charm++ applica-
tion is proposed.

The authors of Mirtaheri and Grandinetti (2017) have also 
proposed a distributed dynamic mechanism for the load bal-
ancer in DECS. This mechanism uses multiple parameters, 
such as load transmission and connection delay, to estimate 
nodes' excessive load. The proposed approach supports 
dynamic and interactive events. Even though this mecha-
nism for load balancing has a good scalability feature com-
pared to other methods, its performance in Petascale systems 
has multiple challenges. In Alowayyed et al. (2017), multi-
dimensional computing algorithms are proposed for load-
balancing functionality. Besides, these algorithms provide 
fault tolerance and energy management in distributed com-
puting systems to redistribute the load. This paper presents 
three multi-dimensional models: Extreme Scaling, Hetero-
geneous Multiscale Computing, and Replica Computing. In 
this paper, the manner of multi-axis Constance, Falkon is a 
centralized task scheduler that uses simple sequential sched-
uling for Multi-Task Computing (MTC) (Wang et al. 2014).

In Bakhishoff et al. (2020), the authors present a math-
ematical model for managing dynamic and interactive events 
affecting the operation of the distributed load balancer based 
on the Discrete-Time Hidden Markov Model. The mathemat-
ical model presented in this article provides such a capability 
for the load balancer that, after analyzing each dynamic and 
interactive event, manages the activity based on the changes 
that cause the functionality of the distributed load balancer 
to be violated. In this article, the concept of the system state 
is considered to describe the function of the distributed load 
balancer and the return of the system’s state to a stable con-
dition after the dynamic and interactive event occurs as a 
method to manage the effects of the dynamic and interactive 

event on the functionality of the distributed load balancer. 
The most critical challenge governing the aforementioned 
mathematical model is in creating the state of the system 
corresponding to the functionality of the distributed load 
balancer. If the distributed load balancer uses more vari-
ables than the traditional one to describe its state, creating 
the system's state becomes complicated. Another challenge 
of this solution is the inability to change the system's state 
to a stable condition concerning the functionality of the dis-
tributed load balancer.

In Wylie (2020), the authors investigate the issue that if 
the processes are not correctly allocated to the resources, 
especially the computing resources defined in the Distrib-
uted Exascle systems, there is a possibility of the failure of 
the activities related to the distributed load balancer. In this 
article, in addition to this challenge of not correctly assign-
ing processes to computing resources, other influential fac-
tors for breaking down the function of the distributed load 
balancer have been investigated. This solution, using the 
dynamic distributed load balancer (HemeLB) based on pro-
cess analysis and feature extraction, has managed the effects 
of dynamic and interactive events on the functionality of the 
distributed load balancer.

In Lehman et al. (2019), based on the XQueue concept, a 
dynamic and interactive load-balancing mechanism is con-
sidered. This load-balancing mechanism uses a developed 
model based on the XQueue concept because it must con-
sider dynamic and interactive events and their effects on 
the operation of the distributed load balancer. The effort of 
the article is that the proposed solution should be in such a 
way that the functionality of the distributed load balancer, 
considering the development of XQueue, is equivalent to 
the functionality of the distributed load balancer based on 
XQueue without considering dynamic and interactive events.

The centrality of the work is based on the fact that the 
load balancer analyzes the state of the computing elements 
based on an index which is conventionally the state of the 
CPU usage. This indicator can take more complex forms. 
The load balancer redistributes the load based on skill pro-
cessing mechanisms if the state of the calculation element 
description index changes beyond a specific limit. In these 
mechanisms, a dynamic and interactive concept is not usu-
ally considered.

In the mechanisms that consider dynamic and interactive 
events, the design of the load balancer is based on consider-
ing the unique situation. In these mechanisms, an attempt 
is made to analyze the impacts of the dynamic and inter-
active events on the functionality of the distributed load 
balancer in one or more specific and determined situations. 
The mentioned conditions describe the constraints and limi-
tations governing the load balancer function in a specific 
and confident way. A specific and detailed description of 
the function of the load balancer makes the situations that 

http://www.deep-project.EU
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can be described for the function of the load balancer after 
the dynamic and interactive event occurs. If, at the time of 
the dynamic and interactive event, the load balancer is in 
a state other than the one described in the proposed solu-
tion, then the proposed solution cannot respond and man-
age the impacts of the dynamic and interactive event on the 
functionality of the distributed load balancer. This event is 
because the functional nature of the load balancer is based 
on the implementation of logical sets of activities to imple-
ment activities related to the load balancer. In this article, 
we want to focus on the management of a load balancer in its 
specific and defined functional state, the activities and func-
tions of the load balancer to implement the load balancer 
activities, and how to manage the effects of dynamic and 
interactive events on each of the activities constituting the 
function. This event makes it possible to provide a general 
solution for managing the effects of dynamic and interactive 
events on the functionality of the distributed load balancer.

3 � Basic concepts

3.1 � Load balancing definition

In traditional computing systems, from a load-balancing 
point of view, what describes the status of the process is 
time. The load-balancing element could consider the pro-
cess three times <execution time, total time, idle time>. 
Execution time signifies the time allocated for a procedure. 
Full-time shows the time the process needs to complete its 
tasks. Idle time indicates when the process is not controlling 
the central processor. Defining the related elements to load 
balancing was also created based on the time-based man-
agement mentioned. Therefore, determining the processing 
element from a load-balancing point of view is based on the 
time it can provide processing power for computing pro-
cesses. Thus, in computing systems, the adaptability of pro-
cess requests over resource characteristics is defined by load 
balancing as a mapping between resource status descriptor 
and process variables, as shown in Eq. 1.

As shown in Eq. 1, the functionality of the load bal-
ancer is a mapping of the process required for accessing 

Load Distribution ∶

dependence space

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[Processrequirment]

mapping

⏞⏞⏞

→

independence space

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
ResourceSpace

]
Therefore

(1)
BestLoad−Distribution =

⎡
⎢⎢⎢⎣

⎡
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�
∄Process

�
∈ HPCProcess

SoMeans
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∴ ∋
�
HPCProcess−Scheduling

�⎤⎥⎥⎥⎦
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ResourceActivityEqual or near 100%

�⎤⎥⎥⎥⎦

the central process to compute resource space in the system 
(Khaneghah et al. 2018). This mapping should allow the 
computing process to gain resources quickly and complete 
its task. Secondly, resource allocation between processes by 
load balancing should be done in a way that takes advantage 
of the maximum computing resource capabilities of the sys-
tem. The definition of load distribution in Eq. 1 shows that 
it has based on two spaces process computing requests and 
computing resources capabilities. If only time is considered 
as the descriptor of resource and process elements in the 
simplest form, then the mapping in Eq. 1 forms Eq. 2.

The second part of Eq. 1 is also the actual for this equa-
tion. In Eq. 2, the definition of load distribution is based on 
the concept of time. Suppose, at any point, load distribu-
tion is activated, and there exists a process that requires a 
time limit for accessing the central processor. In that case, 
the load distribution element allocates the resources to the 
computing process based on the idle time of computing 
resources. As shown in Eq. 2, in this condition, the load 
distribution element should be able to allocate resources to 
processes so that the time requirements of the process are 
met by the idle time of computing resources. Both constitu-
ent variables in Eq. 2 are scalar.

(2)
Load Distribution ∶

main depended variable

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

TimeRequestProcess ∈

basic space for HPC

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Available TimeResource

Fig. 1   Framework of load balancer with other constituent elements of 
the computing system manager
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Load distribution elements can include other characteris-
tics for describing processes and computing resources. If the 
load distribution considers n dimensions for the description, 
then Eq. 1 turns into a mapping of n × n . Determining the 
number of dimensions in Eq. 1 depends on how the space of 
the computing process and its requests is defined. For each 
computing system, a need exists to represent the computing 
process from the load distribution point of view.

The relation of load distribution in computing systems to 
other constituent elements of system management is defined 
based on the framework, as shown in Fig. 1.

As shown in Fig. 1, load balancing is the main element 
in the management of computing systems. The nature of the 
system management element is such that load balancing is 
responsible for the responding structure of the system. The 
load distribution element should do its responsibilities per-
fectly in any computing system based on the system’s con-
dition so that the system holds its maximum performance. 
Since load balancing connects to processes and computing 
resources of the system, it has precise information about the 
current condition. This event holds for both centralized and 
also decentralized distributed computing systems. In dis-
tributed systems, since load balancing is connected to the 
scheduling element, it has complete information about the 
local resources of the computing system. Also, because of 
load balancing’s connection to Inter Processing Communi-
cation (IPC), the possibility of interaction with other com-
puting resources in the system is defined. Load balancing 
uses migration and resource discovery elements as manage-
ment tools. It uses the migration element for process migra-
tion and resource discovery to find system resources. The 
monitoring element, as the tool for monitoring the status of 
processes and resources of the system, and the allocation 
element, as the resource allocator for processes, have direct 
connections to the load balancer. Job management tools are 
also defined at the highest level in the framework presented 
in Fig. 1. The architecture of the load balancer shown in 
Fig. 1 is based on the architecture illustrated in Fig. 2.

In Fig. 2, load balancing has three tasks: collecting data 
about the resources and processes, analyzing that informa-
tion, and deciding on process transmission in computing 
systems (Khaneghah et al. 2018; Mirtaheri and Grandinetti 
2017). This element uses existing databases in scheduling, 
IPC, and allocation units for data collection. On the other 
hand, load balancing uses databases for data gathering, 
resource discovery, and monitoring units to analyze the 
information. The migration management unit does the task 
of process migration.

In traditional computing systems, load balancing does 
not gain information about the request nature during the 
execution of the scientific application. It only collects data 
about the metrics of resource and process request status. 
This event is due to the nature of the programs executed 
in traditional computing systems. The computing system 
designer views the requests' character and the computing 
processes' requirements. Therefore, this makes it pos-
sible to select the appropriate mechanism for the load 
balancer by looking at the nature of the requests and the 
conditions that may occur during the execution of the 
scientific application. This mechanism should be able to 
describe the status of the process based on indicators to 
make decisions about the requirements of the process. The 
mechanism should also have indicators to tell the status 
of the resource, based on which it can decide whether the 
resource is capable of responding to a process request. 
In traditional computing systems, the patterns of request 
process events are a definite set. The computing system 
designer can describe a specific collection at the time of 
system design, called the Computing Process Request Pat-
tern Set (CPRPS). The mechanism of the load balancer 
is determined on the basis that it can respond to this set 
during the execution of the scientific program. At the time 
of determining the mechanism of the load balancer, the 
following should be specified: (a) pattern of process and 
resource status, (b) mechanism of how to collect informa-
tion, (c) determining which event patterns in the process 
status description indicate one of the events in existing 
patterns of CPRPS, (d) what pattern in the source sta-
tus description state can respond to the pattern formed in 
CPRPS.

In traditional computing systems, the CPRPS sets and 
the response pattern to process requests are specified for 
the system designer based on the Resource State for Pro-
cess Request Set (RSPRS). Therefore, the tasks of the load 
balancer consist of (a) collecting process status description 
information, (b) adapting the process status description to 
the CPRPS set, (c) determining pattern occurrence, (d) 
collecting source status information, (e) matching source 
status information with RSPRS and finally (f) transmission 
of the process using the process migration management 

Scheduling

Migra�on 
Pa�ern

Inter Process Communica�on

Data Gathering Unit Analysis Resource 
Discovery

Alloca�on Analysis Monitoring

Data Gathering Unit

Job Management Tools

Fig. 2   Constituent elements of load balancer in the system manager 
framework
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unit of the source processing element to the processing 
element that can respond to the process request.

3.2 � Request B is a traditional request

The request is first sent to the local operating system in this 
case. The local operating system cannot respond to request 
B, so B is sent to the computing system’s management unit. 
The management unit sends the process request to the load 
balancer. The load balancing creates a CPRPS set for request 
Β. After the formation of the CPRPS set, the load balancing 
according to its implementation pattern (centralized, semi-
centralized, or distributed), as well as the mechanisms used 
to collect data, decision making, and process migration, tries 
to create its own RSPRS set. The data collection mechanism 
of the load balancer can make its RSPRS set either after the 
CPRPS collection, at specific intervals, or before the forma-
tion of the CPRPS set. The decision-making mechanism for 
the load balancing seeks to find a processing element at the 
system level that can respond to request B by adapting the 
CPRPS set to the RSPRS. Based on its process migration 
mechanism, the load balancer transmits the process respon-
sible for request B to the destination processing element. 
Traditional Cluster and Grade computing systems differ in 
the RSPRS set's pattern. The RSPRS set is formed as shown 
in Formula 3.

As shown in Formula 3, the set, RSPRS, is a set 
of m elements in which each element is in the form 
< Resource,ResourceAttributevector > . In this set, Rm rep-
resents the mth source, which the load balancer collects its 
data. For each element Rm A vector containing n attributes 
is considered (the number n can be a different value for each 
source). In this vector, Am,j represents the status, or value 
of the descriptor of the jth attribute of the Rm source. In 
Formula 3, Am,j can be a numerical or descriptive value. In 
traditional cluster computing systems, the number of ele-
ments that make up the RSPRS set is a numerical constant. 
In such systems, for each source Rm , the number of attrib-
utes describing the state of the source Rm is a fixed number, 
and only during the program's execution do the values of 
the vector describing the state of the source change. The 
number of elements that make up the RSPRS suite varies in 
peer-to-peer computing systems. In these types of systems, 
the number of vector properties for description associated 
with each source Rm does not change. The lack of change in 
the number of properties related to the descriptor vector of 
each source Rm is due to the precise control and management 
structure related to responding to request B.

(3)
RSPRS

define

⏞⏞⏞

∶∶
{{

R1,
[
A1,1,…A1,i,… ,A1,n

]}
,… ,

{
Rm,

[
Am,1,… ,Am,j,…Am,n

]}}

Suppose the constituent elements of the RSPRS set are 
specific. The computing system is a traditional cluster sys-
tem; when designing the computing system, all the elements 
of the RSPRS suite are known. Another condition is that 
the system design provides all RSPRS members' suites to 
the system management unit. If the designer cannot decide 
what elements are part of the RSPRS suite during the global 
activity process, then the computing system is DECS. Still, 
the designer at the time could not provide all members of 
the RSPRS set to the system management unit, even though 
the mechanism and pattern of finding these resources by the 
computing system management were precise. In that case, 
this computing system is a peer-to-peer computing system.

Traditional computing systems used a single pattern for 
the CPRPS set. In Eq. 4, the general form of the CPRPS set 
is introduced:

in which we have:

1.	 The Requesttype variable indicates the type of request. 
The computing system management unit can define 
acceptable values ​​for the Requesttype variable based on 

the resource definition pattern, the process requirement 
pattern, and the nature of the program (or programs) 
running on the computing system. In traditional com-
puting systems, the acceptable values ​​for the Requesttype 
variables are specified at design time and do not change 
during the execution of the scientific program in the sys-
tem; for example, processes always request access to the 
CPU source. This state causes the variable Requesttype 
to accept only the CPU value. The Requesttype a vari-
able can not be limited to the resource type, and the 
system management unit can define any other value for 
it (Khaneghah 2017; Bakhishoff et al. 2020). The value 
defined for the Requesttype a variable must have a struc-
ture that responds to requests of the type specified by 
the Requesttype variable. One of the most critical features 
of the Requesttype a variable is an ability to define it at 
design time or the ability to define it at execution time. 
Using either of these methods constitutes the use of 
pre-embedded response structures or runtime response 
structures.

2.	 The Requestdomain variable indicates in which domain 
the system management unit should answer the pro-

(4)CPRPS

define
⏞⏞⏞

::
{

Requesttype,Requestdomain,
Requestdependency, Requestinfluence,

[

R1,… .,Rz
]}
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cess request. Acceptable values ​​for this variable, such 
as the Requesttype the system management unit speci-
fies a variable. Typically, this variable can include local, 
Region, System, Global, or Representation (Bakhishoff 
et al. 2020). Based on the value of this variable, the load 
balancer in traditional computing systems decides what 
processing elements the RSPRS should contain. Accept-
able values ​​for the Requestdomain variable, in traditional 
computing systems, are specified by the designer at the 
design time. This variable's value affects the system's 
structure, whether Centralized, Decentralized or Distrib-
uted. The variable's value always equals the system in 
traditional Cluster computing systems. In this comput-
ing system, the load balancer uses the information of 
all processing elements to calculate the RSPRS set. The 
load balancer in peer-to-peer Grid computing systems 
uses Requestdomain variable to decide on the maximum 
acceptable amount for the scalability of the comput-
ing system. Scalability of computing systems means 
changing the processing elements that can be members 
of the RSPRS set. Creating the RSPRS set means col-
lecting information and specifying the time to manage 
the load distribution. Conversely, data collection using 
load balancing is time-consuming, and the computing 
system must execute more tasks for the load balancer 
rather than running the target application. On the other 
hand, choosing a value for Requestdomain variable leads 
to fewer members in the RSPRS set. The load balancer 
has to create an appropriate proportion between the two 
concepts of time that is acceptable for the execution of 
the load balancer and acceptable values ​​for Requestdomain 
variable. Without going into the details of resource dis-
covery in peer-to-peer computing systems, the concept 
of scalability in these systems is to add processing ele-
ments (or elements) to the RSPRS suite that leads to a 
response to request B.

3.	 Requestinfluence and Requestdependency variables: When in 
a computing system, request B is generated by the com-
puting process, it may cause changes in the units, or con-
cepts of the computing system, in global activities, and 
especially in the local computing system. In the process 
of creating request B, elements and concepts may influ-
ence the formation of the request. In traditional cluster 
computing systems, the susceptibility of the request 
from the system is at the lowest level, and even it can be 
said that in this type of computing system, the effect of 
request B from the system is close to zero. In this type 
of computing system, when request B is generated in a 
process, the request is necessary for the CPU type, so the 
CPU queue of the local processing element is affected 
by this request. The nature of request B may be such 
that the processes connected to the process with request 
B need to be synchronized, which affects the connected 

processes. The load balancer must change the RSPRS 
and CPRPS sets under the influence of this process if the 
time requirements of the requested B are not met in the 
local processing element and consequently has to use the 
process migration unit. In peer-to-peer computing sys-
tems, the effect occurs in traditional cluster computing 
systems when request B is generated in a process. The 
most important effect of request B from the computing 
system is the ability to perform more than one global 
activity in the computing system. In this case, request B 
may be affected by requests from other global activity 
processes running concurrently on the local processing 
element. This influence can be due to requesting access 
to a shared resource in the local processing element. 
What makes the concept of the influence and suscep-
tibility of request B on the elements and concepts of 
the computing system to be wholly controlled in tradi-
tional systems is the existence of management and con-
trol structures created at the time of system design for 
responding to request B.

4.	 The matrix 
[
R1,… .,Rz

]
 is a matrix Z × 1 , each of which 

is a part of the request Β. Dividing request B into Z 
sub-requests, using a load balancer at the computing or 
operating system level, allows each processing element 
of the system to execute part (or parts) of the request 
separately. There are different patterns for dividing 
each request B into Z sub-requests. In Bakhishoff et al. 
(2020), as a peer-to-peer computing system, it uses the 
operating system model to separate request B into four 
sub-requests. Each request can generally contain one 
(or more than one) of the four I / O, Memory, File, or 
Process requests at the operating system level. In tra-
ditional computing systems, typically, each request B 
only includes a request to access the CPU or process. 
Therefore, request B can be described by a 1 × 1 matrix 
in traditional computing systems.

3.3 � Dynamic and interactive events

Due to its direct relationship with the process and the 
resource, the load balancer is entirely dependent on the 
concept of system complexity and the complexity of sci-
entific applications in need of high performance comput-
ing systems. The distributed system manager needs to use 
more complex patterns if the scientific program becomes 
complex or the state of the system elements (source or pro-
cess) changes. The load balancer must use information (both 
in its simple form and complex form) to create an optimal 
match between the processes' requests and the resources' 
characteristics, to maintain the system's structure to continue 
operating.

In complex computing systems, events may change the 
status of processes and computing resources in the system. 
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In the management and control of the mentioned events, the 
load balancing should be in such a way that at any moment 
when the load balancing is activated, it must be able to main-
tain the structure of the system to continue operating. Load 
balancing matches the processing requests and resources in 
the system. Changing the status of processes and computing 
resources in complex computing systems affects the con-
cepts, functionality, and relationship of the load balancer 
with the other system management components. DECS is 
one of the implementations of complex computing systems.

DECS are computational systems designed to execute 
applications that are dynamic and interactive. In this type 
of computing system, both processing elements and com-
puting resources can be changed during program execution. 
The nature of computational processes is such that during 
the execution of the computational process, an event may 
occur in the system that leads to the definition and creation 
of a new requirement in the system. Such a requirement is 
not taken into account while designing the system.

In this computing system, the purpose of executing scien-
tific applications is to reduce response time and use process-
ing power to discover the laws governing natural events. In 
DECS, the program is a set of basic rules governing a natural 
event and uses these rules to discover other (or primary) laws 
governing a natural event.

This state allows processes running on a DECS to execute 
events that create dynamic and interactive events. In Inno-
centi et al. (2017), it is stated that dynamic and interactive 
events can be due to new request formation of new interac-
tions (and communications) within or outside the system. 
These events cause the system to face a request it cannot 
respond it. This requirement was not considered in the initial 
responding structure for executing the application on this 
system.

To investigate the effect of dynamic and interactive events 
on the function of the load balancer, assume that the peer-
to-peer distributed computing system in Bakhishoff et al. 
(2020) is running a scientific application of a dynamic and 
interactive nature (http://​www.​deep-​proje​ct.​EU). At the 
moment t = � , in the � processing element, request Β is 
generated. Depending on the nature of the request Β, one of 
the following two scenarios occurs. Request Β can be either 
a request with a temporal nature or a request for access to the 
resource (either a processing resource or any other resource 
defined in system management).

4 � Request B of dynamic and interactive 
nature

In DECS, in addition to changing the number of constituent 
elements of the RSPRS set, each source Rm , the number of 
constituent properties of the description vector of the source 

Rm It also varies during system runtime. Since this request is 
of dynamic and interactive nature, the load balancer encoun-
ters a request that nature is unknown to the unit. The unclear 
nature of the request may cause the load balancer to need 
to receive information other than the set of information col-
lected about a particular source to respond to it. Therefore, 
in Exascale distributed computing systems, both the number 
of constituent elements of the RSPRS set and the number 
of constituent properties of the vector describe the state of 
each Rm source change over time.

In distributed Exascale systems, not all of the Requesttype 
variable’s values can be specified at design time, and accept-
able values for it change during the execution of the scien-
tific application. Also, in this type of computing system, 
three elements of the system designer, management unit, as 
well as processes with dynamic and interactive nature can 
define the value for the Requesttype variable.

To have explicit knowledge of the acceptable values 
for the Requesttype the variable allows the load balancer 
to decide on the concept of computing system zoning and 
also on which element (or elements) has a higher ability to 
respond to requests with a specific value in Requesttype vari-
able. If the acceptable values ​​for the Requesttype a variable 
is known, and if an acceptable amount of time of the pro-
cess’s life has elapsed, the load balancer can decide on the 
continuation of execution in the process as soon as a request 
occurs by observing the value for the Requesttype variable. In 
DECS, the possibility of defining an acceptable new value 
for the Requesttype variable by the system management unit, 
as well as processes of interactive and dynamic nature, leads 
to the creation of new control and management structures 
for continuing the execution of applications. Creating new 
management and control structures based on the Requesttype 
variable causes the load balancer to change the RSPRS set.

In Exascale computing systems, the Requestdomain a vari-
able can take on new values ​​due to the possibility of defin-
ing a new global activity. This state expands the concept 
of the computing system. In peer-to-peer computing sys-
tems, the primary purpose of scalability is to obtain new 
computing resources to continue implementing activities 
related to scientific applications. While in DECS, the pur-
pose of scalability, in addition to the mentioned concept, 
is the need for the load balancer to create new control and 
management structures to respond to dynamic and interac-
tive requests. In DECS, the Requestdomain a variable must 
be able to consider these conditions as acceptable values. 
This event makes it possible for the load balancer to define 
the concept of Scalability + if the nature of the request is 
distributed Exascale systems are of dynamic and interactive 
nature. Scalability + is an expansion over the concept of scal-
ability in which the goal of scalability. Scalability + primar-
ily accesses new resources and creates a responsive structure 
to execute request B.

http://www.deep-project.EU
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The two variables Requestinfluence and Requestdependency 
DECS assigns different values ​​during runtime, depending 
on request B's dynamic and interactive nature. A request B 
with dynamic and interactive nature inevitably leads to the 
creation of a new process, either an administrative process or 
a process of managing new interaction and communication 
within or outside the system. This process is fully correlated 
with the process with request B, which causes the CPRPS 
set, Requestdomain , Requestdependency , Requestinfluence As well as 
R1,… .,Rz vector to change. In distributed Exascale systems, 
creating global activity responsive to request B is dynamic 
and interactive, creating a new set of influences and sus-
ceptibilities on other global activities. To analyze the effect 
and susceptibility of request B and the processes created to 
respond to it on other elements and concepts in the com-
puting system (and especially other global activities,) each 
global activity can be described based on the Affine page so 
that the intersection of the pages with each other shows the 
influence and susceptibility of any global activity on other 
global activities (Mirtaheri et al. 2013).

In DECS, the members of the vector R1,… .,Rz may 
change during the procedure of responding to request B. 
Also, the number of constituent elements of the descriptive 
vector may change during the response to request B. This 
change is due to the interactions of the process that owns 
request B with the newly created process or other processes 
in the system and environment. Changing the components 
of the vector R1,… .,Rz means changing the requirements, 
which is the answer to request Β. The load balancer should 
be able to take into account changes in the vector R1,… .,Rz 
during the response procedure.

5 � ExaLB framwork

According to the discussion above, a framework similar to 
the framework shown in Fig. 3 can be considered a frame-
work for the definition and function of the load balancer in 
distributed Exascale systems.

As seen in Fig. 3, the load balancer requires the consid-
eration of units that can address the decisions over the nature 
of the request. The load balancer needs units such as creating 
appropriate response structures to continue the global exe-
cution, considering the effects of executing more than one 
global activity, and the concept of the system environment.

6 � RSPRS/CPRPS rewriting

As stated in Sect. 3.2, the request B type effectively forms 
the RSPRS set. The analyzer section of the load balancer 
makes decisions about the condition of the RSPRS set based 
on the following model, given the nature of request B.

1.	 If B is of the traditional type and responding to it does 
not change the number of resources in the system. In 
this situation, the number of resources that make up the 
system is constant. The characteristics that describe the 
status of resources are also fixed. The fact that the above 
two values are constant causes the two variables m and n 
to have fixed and definite values in Formula 3. This state 
allows the existing RSPRS set to be used to respond to 
request B without the need for any modifications.

2.	 Request B is of the traditional type, but it is impossible 
to respond to it using the resources available in the sys-
tem. In this situation, by calling the resource discovery, 
the load balancer first expands the system intending to 
find a suitable resource to respond to the process request. 
Then, by examining the new set of RSPRS, which has 
been obtained from the addition of the mentioned 
resource to the previous set, it maps the two sets of the 
request pattern and the response pattern to each other 
and tries to establish the balance of load in the system. 
In this case, in formula 3, the variable m has a non-fixed 
value, and the variable n has a fixed value.

3.	 Request B is dynamic and interactive. In Formula 3, 
neither of the variables m and n have a constant value 
due to the system's need for scalability and the lack of 
information about the cause and nature of request B, 
respectively. In this condition, the load balancer must 
first identify the nature of the request and then explore 
the characteristics of the resources with which it is pos-
sible to respond. In this case, the RSPRS set can respond 
to request B after making fundamental changes.

The task of the Nature Request unit is to determine the 
nature of the request. This event causes the need to define 
the request Nature unit in the load balancer in DECS. This 
unit must determine whether the request formed is of type 
(a) or (b). This element can decide whether the nature of 
the request is traditional or due to the dynamic and inter-
active occurrences based on the processor's behavior, the 
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Fig. 3   Framework for defining the load balancer in DECS
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history of the activities, and the concept of annihilating 
polynomials (Wylie 2020). Due to the multi-dimensional 
nature of the process requests and the type of resources 
required to respond to requests in DECS, Formula 1 can 
be rewritten into Formula 5 based on the vector pattern.

Formula 5 is the vector form of the load balancer’s 
functionality. According to Formula 5:

Each process can be described as a 1 × N  vector in 
which N is the number of process requests executed in 
each processing element �.
Each source in the processing element � can is 
described based on a 1 ×M  vector in which M is 
the number of responses provided by the computing 
resource to the global computing processes.
Each process request is executed in the process-
ing element � based on the 2 × 2 matrix in the form [
ReqtypeReqBehaviorReqhistoryReqNULL

]
.

In the 2 × 2 matrix mentioned, Reqtype Indicates the type 
of request, which tells what source the process request is 
available. The load balancer must be able to classify the 
resources in the computing system to extract the Reqtype 
data. In the case of traditional computing systems, such as 
cluster, Grid, and peer-to-peer computing systems, Reqtype 
In Exascale peer-to-peer computing system (Khaneghah 
2017), each process request can be for one of four resource 
types of file, input/output, memory, or processing element 
is always of CPU type. In DECS, the request type can be 
sources other than the process resource.

Listed in the 2 × 2 matrix mentioned above, Reqhistory 
indicates the history of the request. From the point of 
view of the load balancer, each request for a computa-
tional process is either an independent request created for 
the first time or a follow-up request that has resulted from 
responding to another request. Maintaining a request his-
tory allows the load balancer to extract information about 
the resources required by the process and processing ele-
ments connected to the processing element � and respond 

(5)

F(Load Balancing) ∶

independence variable define

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞�
Req

1
… ,ReqN

�
→

dependence variable define

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞�
Resource

1
… ,ResourceM

�
it means that

⏞⏞⏞

�
⎡⎢⎢⎢⎣
∀i ∈

�
{1,… ,N},Reqi

�
in such away that

⏞⏞⏞

∴
�
ReqtypeReqBehaviorReqhistoryReqNULL

�⎤⎥⎥⎥⎦
and

⎡
⎢⎢⎢⎣
∀j ∈ {1,… ,M},Resourcej

in such away that

⏞⏞⏞

∴
�
ResourcetypeResourcefuctionalityResourcehistoryResourceNULL

�⎤⎥⎥⎥⎦

to the request. From the point of view of the load balancer, 
the rule stated in formula six is held for each element of 
the data structure of the link list in Reqhistory.

According to Formula 6, for each element defined in the 
Reqhistory a data structure, there must be a corresponding 
member in the Resourcehistoryomega a data structure that repre-
sents the source by which the request was answered. This 
resource can be one of the local resources of the omega 
computing system or a source outside the omega computing 
element. Considering Formula 6, the Reqhistory data becomes 
a linked list structure in which two pointers are defined. The 
first pointer refers to the subsequent subordinate request 
resulting from the response to the request, and the second 
pointer to a corresponding element in the data structure, 
Resourcehistoryomega.

In the 2 × 2 matrix mentioned, Reqbehavior represents the 
request behavior. The load balancer can consider different 
states for Reqbehavior . The primary purpose of this element 
is to investigate whether the behavior of global activity’s 
processes follows a particular pattern. This knowledge is 
implemented as a link list in which each node represents the 
unique properties of a process. From the point of view of 
the load balancer, a process can have a unique attribute (or 
attributes) regarding the three concepts of time, location, and 
dependency. These unique attributes of the request process 
define the request’s behavior. The behavior of each process 
request that constitutes the global activity follows formula 7.

In Formula 7, the request behavior of a global activ-
ity process consists of three concepts: the time limita-
tion (or limitations) governing the request, the location 
limitation (or limitations) governing the request, and the 
dependence of the request on any other concept. The two 
limitations of location and dependency are discrete. Time 

(6)∀Reqhistory∃!� ⋮ � ∈ Resourcehistoryomega

(7)
f
(

Reqprocess
)

defined
⏞⏞⏞

�

⎛

⎜

⎜

⎜

⎝

[Time ∈ [A,B]]

undefinedoperator
⏞⏞⏞

▪
∑
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⎞

⎟
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limitations are of continuous interval type. In the case of 
a global activity constituent process, some of these attrib-
utes may have NULL values. The value of NULL means 
no limitation on that particular feature. The relationship 
and impact of these attributes on each other are deter-
mined for each process request. In the case of a particu-
lar request, certain limitations may be more critical and 
affect the value of other limitations. Ideally, the result of 
these three features on each other indicates the behavior 
of the process request.

Conventionally, the T, L, and D limitations must be 
independent. Reqbehavior is maintained as a linked list in 
which each element is of the form < T , L,D > . In the pro-
cedure of global computing process execution, if during 
each execution of the process, one of the three elements of 
the Reqbehavior changes, one element is added to the linked 
list. The load balancer has access to the data set related to 
the three variables < T , L,D > at each process execution 
time. It can use the expected value of this data to decide 
on the independence or interdependence of one another. If 
Formula 8 is valid for each execution of the process, then 
two of the variables in < T , L,D > are of the independent 
type, and otherwise, they are interdependent.

In Formula 8, two variables' dependence and independ-
ence, are a time function. This event causes a) the load bal-
ancer to use regression if not independent for calculating 
the operator between two variables, and B) two variables 
can be independent of each other for a particular time and 
then interdependent, or vice versa.

In the 2 × 2 matrix mentioned in formula 5, ReqNULL is 
the main request and the reason for the formation of global 
activity. Each global activity is formed in a computational 
element, such as � , to respond to a specific request. This 
specific request can be described in the form shown in 
Formula 9.

Formula 9 states that each element of ResourceNULL Is 
a linear polynomial in which xi represents the resources 
required to meet the main request of the global activity, 
Ai represents the weight and importance of the resources 
requested, yj represents the limitations, Application limi-
tations, and Bj indicates the weight and importance of 
the limitations. Formula 9 can be rewritten for each B 
request.

(8)

[
∀i, j ∈ {D,L, T}

]
∶∶

[
E(i + j) = E(i) + E(j)

]
i, j is independence

(9)ReqNull =
(
Aixi + Bjyj

)

(10)

ReqNULL + Req� (T) =
(

ReqNULL(T) + Req� (T)andReqNULL ∗ Req� (T)
)

=
(

ReqNULL(T) ∗ Req� (T)andReqNULL(T)
)

= 0

In Formula 10, T is a linear conversion on the request 
space. This linear conversion represents responding to the 
request, which is answered under the linear T conversion. 
If Formula 10 is true, request B is a formal request; other-
wise, request B is of dynamic and interactive nature.

4.	 Each response provided by the source in the processing ele-
ment � is defined based on a 2 × 2 matrix in the form of 
[

ResourcetypeResourcefuctionalityResourcehistoryResourceNULL
].

In the 2 × 2 matrix mentioned, the Resourcetype element 
refers to the responding source to the request. The com-
puting system manager can use any pattern to classify 
the resources in the computing system. This classifica-
tion must match the Reqtype classification defined in the 
request matrix but does not have to be done as one by one 
adaption. The manager of the computing system, based on 
any function (or even, in some cases, based on any rela-
tions), can establish a match between the two mentioned 
concepts. In the computing system manager of Khaneghah 
(2017), a one-to-one match between the process request 
for resources and the manageable resources by the system 
manager is used based on the operating system’s pattern 
for the classification of resources. The load balancer uses 
Resourcetype Information to define the concept of resource 
attributes. In this situation, the load balancer defines a 
set of indicators for each type of resource defined in the 
system manager unit. Any data structure at the operat-
ing system’s kernel can maintain information about these 
indicators.

One of the most important differences between various 
load balancer implementations is determining indicators 
of resource descriptors. The higher the number of indi-
cators the load balancer uses, the more accurate it is in 
resource status. A clear view enables the load balancer 
to create an optimal match between the process request 
and the responding resource. On the other hand, using 
more indicators to describe the resource increase the time 
required to gather information about them. In traditional 
computing systems, the Resourcetype In DECS, there may 
be a process request that (A) does not relate to the type of 
CPU resource and (B) can not be analyzed by the conven-
tional attributes of resources that the load balancer uses to 
describe the resource. Typically includes the CPU comput-
ing resource. Indicators describing the CPU resource are 
idle and busy times, or the resource is either available or 
unavailable.

In distributed Exascale systems, the load balancer typi-
cally uses the concept of response history to examine the 
number of indicators and whether the indicators can respond 
to process requests. For this purpose, the load balancer uti-
lizes a function as one in Eq. 11.
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As can be seen in Formula 11, the load balancer in dis-
tributed Exascale systems is a binomial function to check 
whether the defined indicators are capable of respond-
ing to process requests. This function is a two-variable 
function of time and request, independent variables. The 
mechanism of function 11 is based on the fact that in the 
case of a specific request ReqA Examines how successfully 
the request has been answered locally. The local response 
level means that the process is initially created locally or 
is part of a global activity intended to run locally in the 
processing element. If this amount is more than a certain 
number, the defined indicators are appropriate, and the 
load balancer does not need to change the defined indi-
cators. If less, it means there is a need for defining new 
indicators for the resources in the computing system.

In Formula 11, according to the model presented 
in Khaneghah (2017), since only the number of global 
processes is known, to calculate the number of locally 
responded processes, the difference between the number 
of global processes responses and the number of all pro-
cesses responses is used.

The Resourcehistory indicates the history of resource 
usage. The load balancer for each resource defined in the 
computing system maintains two types of source informa-
tion related to the resource (with its descriptive indicators) 
and historical information related to the responses of the 
resource to requests. The second type leads to the crea-
tion of a shared data structure between the Resourcehistory 
and Reqhistory . Historical information about descriptive 
indicators represents the model the load balancer uses to 
describe the resource for the processes in the system. The 
more dynamic and interactive the processes in the system, 
the more varied the patterns used by the load balancer to 
describe the resource.

Resourcefunctionality indicates the functionality of the 
resource. This knowledge can be described based on vari-
ables such as time, cost, and type of response to existing 
requests. In traditional computing systems, the resource's 
function is considered time-independent. In such systems, 
the load balancer assumes that (A) the function of the 
resource � is fixed during the execution of the scientific 
application, and (B) the independent variable describing 
the resource � is constant and equal to the measurable indi-
cator of the resource’s operating time. In DECS, (A) the 
function of the resource � changes during the execution of 
the scientific application, and (B) more than one independ-
ent variable can be defined to describe the resource � , and, 
consequently, the measurable indicator of the resource. 
In this type of computing system, the finite vector of 

(11)P(t, req) =

(
Acceptable − Acceptableglobal

#Req(t)

) V_Alpha can be defined for the resource � , whose indices 
represent evaluation indicators or independent variables 
that describe the function of the resource. The load bal-
ancer uses a formula similar to Eq. 12 to determine what 
the function of the resource � is at the moment t  , for the 
process Fi (which is itself part of a global activity).

In Eq. 12, T is a linear operation on the finite vector space 
of V_Alpha. If f  is equal to the polynomials defining the 
state of the resource functionality, f  is necessarily a type 
of indicator describing the functionality of the resource 
Alpha if f (T) = 0 . In this case, the function f  represents 
the functionality of the resource Alpha at the moment t from 
the point of view of the resource management unit for the 
process Fi . In distributed Exascale systems, each resource 
Alpha can have different functions in terms of the elements 
that make up the system manager unit. In Eq. 12, the linear 
function T is the operator representing the function of the 
load balancer on the resource Alpha. This operator indicates 
what activities the load balancer considers to be definable 
and applicable to the resource Alpha. Based on Eq. 12, we 
can define an ordered base such as {VAlpha1

,… ,VAlpham
} for 

the V_Alpha vector, matrix U can be defined to represent 
T  based on that. By considering the existing assumption, 
Equation No. 13 can be defined.

Equation 12 is calculated based on formula 14 in the case 
where m is a finite number greater than 2.

Equation  13 solves Eq.  12 in the condition that the 
resource Alpha is described based on two indicators in 
which their definition is not a function of a time-independent 
variable. Equation 14 solves Eq. 12 in the condition that the 
resource Alpha is based on the m indicators and is a function 
of the time-independent variable.

The matrix U is a description of the activity in time and is 
defined based on K, the displacement loop with the identical 
element consisting of all polynomials of T. In general, the 
definition of the U matrix is ​​Uij = �ijT − AijI . Equations 13 
and 14 are solutions to find f (T) at the definite moment t  . 
In the most general case, to determine f (T), it is necessary 
to calculate the matrix U . The general concept defines the 
matrix U that any resource can be defined based on two sets 
of Z, which represents the resource type, and X, which rep-
resents the activities that can be performed on the resource. 
These two sets create K displacement rings with an identical 
element consisting of all definable polynomials of T. The 

(12)f (TAlphaFi(t)) = 0

(13)
m∑
j=1

Bij
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(�jiT − AjiI) �j=0|Whenm = 2 then B =

[
T − A11I −A21I

−A12I T − A22I

]

(14)det det(U)t = f (T)t



403ExaLB: a mathematical framework for load balancing to support distributed exascale computing…

1 3

identical element consists of all definable polynomials of T, 
which embodies the concept of resource execution (serving) 
time. This concept can be defined as a familiar concept for 
all resources. Therefore, in Eqs. 13 and 14, an element I am 
equal to Busy Time. Two operations of and can are defined 
for two sets of Z and X. Action ⊗ is the possibility of act-
ing on a specific resource type, and action ⊕ represents the 
element that performs the task. For example, in the case of 
the CPU resource type, the possible operations of allocation, 
reallocation, and the executing element for the scheduler.

In the 2 × 2 matrix mentioned, ResourceNULL is the coef-
ficient of resource importance in the execution of global 
activity. For each activity Fi , each resource Alpha has a coef-
ficient that can be expressed according to Formula 15.

In Formula 15, each element of ResourceNULL Is a lin-
ear polynomial in which xi denotes global activities that 

(15)ResourceNULL =
(
Aixi + Bjyj

)

it causes the load balancer to be activated, in which case 
the load balancer creates an image of the system status at 
the moment t = V  . Creating an image by the load balancer 
means creating the CPRPS and RSPRS sets associated with 
the request β and the process Z. Dynamic and interactive 
events may occur at any point in the system’s execution. 
Consequently, CPRPS and RSPRS may change. However, 
the load balancer, from the moment t = V  to the moment of 
responding to the β request, considers the system status of 
the request β based on the dual pair RI:: <RSPRS, CPRPS>. 
Dynamic and interactive events can cause a significant dif-
ference between the real RI and the RI at the starting time of 
the distribution task. Sometimes, it violates the cause of the 
load balancer’s activation (Khaneghah et al. 2018). For this 
purpose, RI must be converted from its traditional state to 
RI (t), which means that the two sets of CPRPS and RSPRS 
change from time-independent to time-dependent variables.

Rewriting RI based on the variable time means rewrit-
ing Eq. 5 with the independent time variable in Eq. 17.

Equation 17 shows that taking a partial derivative of the [
ResourcetypeResourcefuctionalityResourcehistoryResourceNULL

]
 

and 
[
ReqtypeReqBehaviorReqhistoryReqNULL

]
 matrices in terms 

of the independent variable of time allow each of the 
two sets of CPRPS and RSPR to be rewritten using the 
time variable. The independent axial variable of matrices [
ResourcetypeResourcefuctionalityResourcehistoryResourceNULL

]
 , 

and 
[
ReqtypeReqBehaviorReqhistoryReqNULL

]
 are the resource 

and the request variables, respectively. According to the 
definition of axial variables and the need to rewrite based 
on the independent variable of time, Eq. 17 can be rewrit-
ten to Forms 18 and 19.

RI(t) ∶∶
[
∀i ∈ {1,… ,N},Reqi∴

[
ReqtypeReqBehaviorReqhistoryReqNULL

]
[
∀j ∈ {1,… ,M},Resourcej∴

[
ResourcetypeResourcefuctionalityResourcehistoryResourceNULL

]]]
(t)

(17)

RI(t)::

(

�[ReqtypeReqBehaviorReqhistoryReqNULL
]

�t

→
�[ResourcetypeResourcefuctionalityResourcehistoryResourceNULL

]

�t

)

(18)

JF(resource, time) ∶

=
�
(
Resourcetype,Resourcehistory,Resourcefuctionality,ResourceNULL

)
�(resource, time)

∶

=

[
�Resourcetype

�resource

�Resourcetype

�time

�Resourcehistory

�resource

�Resourcehistory

�time

�Resourcefuctionality

�resource

�ResourceNULL

�resource

�Resourcefuctionality

�time

�ResourceNULL

�time

]

use the resource Alpha, Ai denotes the time each global 
activity uses the resource Alpha, yj denotes limitations over 
resources, and Bj indicates the weight and importance of 
the limitations.

Formula 15 can be rewritten to Formula 16 for each 
resource β.

In Formula 16, if the value of Resource
�(T)

andResource
NULL

∗ Resource
�(T) is zero, then the resource 

� is a resource with a traditional pattern, and otherwise, 
the resource � is a resource capable of performing activi-
ties of a dynamic and interactive nature. Formula 16, T  is a 
linear transformation of the resource � ’s space. This linear 
conversion indicates the use of the resource. The request is 
answered under the linear transformation of T .

6.1 � Data gathering

The main task of the load balancer is to establish a proper 
allocation between the two sets of RSPRS and CPRPS. Ide-
ally, this unit should have a clear view of both sets to carry 
out its tasks. In DECS, both the CPRPS and RSPRS sets 
can change at any point in the execution of the scientific 
application. If process Z in DECS has the request � at t = V  , 

(16)

ResourceNULL + Resource� (T)

=
(
ResourceNULL(T) + Resource� (T) and ResourceNULL ∗ Resource� (T)

)

=
(
ResourceNULL(T) ∗ Resource� (T) and ReqNULL(T)

)
= 0
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Equations 18 and 19 are the rewrites of the matrices 
that make up Eq. 5, Regarding axial variables of resource 
and request and the independent variable of time. The 
most critical challenge in calculating Eqs. 18 and 19 is 
the time and number of times these Equations are to be 
calculated. The higher the calculation frequency of these 
Equations, the closer the calculated RI is to the actual RI. 
Ideally, for each unit of time, the load balancer performs 
Eqs. 18 and 19, where the calculated RI equals the actual 
RI. This event increases the cost of executing the load 
balancer, and this task would need a separate processing 
element so that calculations could be performed continu-
ously. This event contradicts the nature of the DECS. 
Therefore, the load balancer uses the concept of a similar 
matrix in each processing element to calculate the RI 
close to the actual RI.

From the point of view of the load balancer, if two RI 
matrices related to the two permissible states are similar, it 
means that the dynamic and interactive nature of the com-
puting system has not occurred. For this case, the load bal-
ancer uses the concept of the axial element. The axial ele-
ment of the matrix described in Eq.  18 is the [
�ResourceNULL

�resource

�ResourceNULL

�time

]
 element, and in Eq.  19, is the [

�ReqNULL

�request

�ReqNULL

�time

]
 element. The load balancer decides on the 

similarity of the matrices by comparing the axial element 
of matrices at the moment t = Alpha with that of the 
moment t = Alpha + E . The load balancer also determines 
the value of E during system execution. During this time 
(and calculating the RI), the load balancer can decide on the 
value of E for each activity, with which the matrices of 
Eqs. 18 and 19 differ from these matrices at the moment 
before E.

6.2 � Scalability

One of the main features of distributed computing systems is 
the introduction to scalability. Resource discovery is the cen-
tral concept of scalability in traditional computing systems 
(Lehman et al. 2019). The general mechanism governing the 
scalability in this type of computing system is based on the 
fact that a request occurs in the system that neither the local 
operating system of the process nor the load balancer can 
respond to. Therefore, the load balancer calls the resource 
discovery. Based on the type of resource requested by the 

(19)

JF(request, time) ∶=
�
(
Reqtype,Reqhistory,ReqBehavior ,ReqNULL

)
�(request, time)

∶

=

[
�Reqtype

�request

�Reqtype

�time

�Reqhistory

�request

�Reqhistory

�time

�ReqBehavior

�request

�ReqNULL

�request

�ReqBehavior

�time

�ReqNULL

�time

]

process and resource discovery mechanism, the resource 
discovery tries to find a processing element outside the sys-
tem and can respond to the process request. The mechanism 
used by the resource discovery indicates the structure of the 
response to the request and is specified when designing the 
computing system. Defining the resource discovery mecha-
nism at the time of system design is possible due to having 
information about the response structure required for the 
implementation of the scientific application by the system 
designer.

The scalability mechanism in traditional computing sys-
tems increases the system's ability to respond to process 
requests with the arrival of computing resources and new 
computing processes. This event causes the load balancer 
to redistribute when scalability occurs. The load balancer 
must be able to extract the features and capabilities of each 
element added to the system (or delete information of each 
element removed from the system) to decide about the pos-
sibility of using that element (or the impossibility of using 
the removed element) in the procedure of responding to the 
process request(s).

In DECS, scalability has a different definition and func-
tionality due to the system's possibility of dynamic and inter-
active events. The most crucial difference between scalabil-
ity in traditional computing systems and DECS is that they 
have information about the nature of requests, the response 
structure, and the lack of events that could change the sys-
tem's state or the environment during scalability.

In traditional distributed computing systems, the nature of 
the request does not affect the mechanism used to discover 
the resource or the scalability. The load balancer sends the 
triad of <Request type, Process, Time, and Location Limita-
tion> to the resource discovery. The resource discovery cre-
ates a response structure based on its mechanism by consid-
ering the type of request and time and location limitations. 
In DECS, the nature of conventional requests differs from 
that of dynamic and interactive requests.

The nature of the request in this computing system refers 
to why the process has created a request that has led to the 
need for scalability. In conventional requests, the scalabil-
ity response structure is created to respond to the process 
request based on the centrality of the resource discovery 
mechanism. On the other hand, when a request of dynamic 
and interactive nature occurs, the reason for the request is 
not apparent for the load balancing and, consequently, for 
the resource discovery. If the load balancer fails to determine 
the nature of the request, the resource discovery may cre-
ate a response structure that cannot respond to the process 
request. Any situation, such as creating new processes or 
the need for interactions and communications within and 
outside the system, causes requests for a particular resource 
to be different from others (Khaneghah and Sharifi 2014).
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The focus of resource discovery in this computing sys-
tem is to find the processing element that, in addition to 
providing a resource that can meet the needs of the process, 
must also be in line with the nature of the request. In DECS, 
the load balancer sends a quadruple of < Request Nature, 
Request Type, Process, Time, and Location Limitation > to 
the resource discovery. Based on the pattern of arguments 
received from the load balancer, the resource discovery 
decides whether to use the traditional concept of resource 
discovery or the ExaScalability pattern for scalability. In 
DECS, the nature of the request determines which structure 
to be created for responding to the process request and which 
element with what features can respond to that request. In 
traditional computing systems, this is defined during system 
design while defining the mechanism for resource discovery.

The resource discovery in the computing system is 
affected by a set of practical factors. These factors also affect 
the response to the process request. In traditional comput-
ing systems, nothing happens in the computing system that 
affects the practical factors of the resource discovery during 
the resource discovery procedure.

It is assumed that in the distributed system of Khaneghah 
(2017), to understand the resource discovery scenario in a 
DECS, an event of dynamic and interactive nature occurs at 
the moment t = Alpha in one of the members of the comput-
ing system. Figure 4 shows the event status leading to scal-
ability in the system.

As seen in Fig. 4, in machine O, a member of the com-
puting system (marked with a lightning symbol), an event 
of a dynamic and interactive nature occurs. This event can 
be any of the situations described, the creation of a new 
process T, or the new interactions and connections within 
and outside a system. The computing system cannot respond 
to this request. Up to this point, the system status follows 
the pattern of a traditionally distributed computing system.

The difference between a traditional computing system 
and a DECS begins at the moment of request analysis by 

the system manager. In a traditional computing system, the 
manager recognizes the nature of the request, so it calls the 
resource discovery. The resource discovery discovers the 
resource that can respond to requests based on the prede-
fined mechanism and policy. In DECS, when a request is 
generated in the system, the system manager does not know 
the nature of the request, so as shown in Fig. 4, it creates a 
new global activity for managing the request.

In Fig. 4, the occurrence of a dynamic and interactive 
event has caused the global activity in machine y to con-
tinue, and the manager of machine O has created a response 
structure for managing the request with dynamic and inter-
active nature. As with any global activity, the request can 
be answered on Machine X or transferred to other machines 
on the DECS.

Scalability in DECS, in addition to its traditional role, 
must have the load balancer to make decisions while call-
ing for resource discovery or creating a new response struc-
ture. The new response structure should not violate system 
performance.

At the moment of load imbalance in DECS due to a 
dynamic and interactive event, the load balancer can take 
one of the two redistribution policies, either going to the 
following equilibrium or returning to the previous stable dis-
tribution status (Khaneghah and Sharifi 2014). In this case, 
we can define the Effort variable, which represents the coef-
ficient of system call by the load balancer relative to the total 
system calls executed in a single unit of time. The EffortSi is 
calculated by Eq. 20.

As stated in Eq. 20, the EffortSi is equal to the number 
of system calls associated with the load balancer relative 
to the total system calls during the interval when the load 

(20)EffortSi =

�∑MACHINEZ

i=
(XLB)

NSC

�t=LB+�

t=LB

Fig. 4   Occurrence of the event leading to the activation of resource discovery in the computing system (Khaneghah 2017; Sharifi et al. 2010)
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balancer is busy redistributing the load and creating a new 
state of balance in the system. In Eq. 20, the MACHINEZ 
is defined because there may be more than one beneficiary 
machine involved. The MACHINEZ variable is equal to the 
total number of beneficiary machines related to the load 
balancer’s activities. In Eq. 20, the load balancer redis-
tributes the load in the time interval [LB, LB + ε]. If the 
value of the MACHINEZ variable is more than one, the vari-
able StatisticSij As shown in Eq. 21, it should be used. The 
StatisticSij can be calculated by Eq. 21. Note that the status 
of the load balance is denoted by i for the time before the 
load balancer is activated, and the status of the load balance 
after it is redistributed is shown by j.

In Eq. 21, the variable effortsi represents the load balance 
of state i and the effortsj represents the load balance of state 
j . The reason for defining the variable StatisticSij is that the 
two states i and j are independent of each other, and � is 
acceptable in both effortsi and effortsj . If the value in either 
i and j is very large or very small, then that state cannot be 
considered a valid state, and that state can be used as the 
load balance of state i or j.

The standardized variable of StandardSij can be calculated 
with Eq. 22.

As can be seen in Eq. 22, to calculate the standardization 
function of Statistics for both states of i and j , the load bal-
ancer needs to have information about the status of system 
calls of the load balancer relative to the total system calls 
in the processing element in both states i and j . The load 
balancer using Eq. 23 can decide whether the distribution 
status is similar in both i and j.

The variable in Eq. 23 indicates the similarity coefficient 
of distribution in both states i , and j . The numerical value of 

(21)

StatisticSij =

√

√

√

√

(

effortsi ∗
(

1 − effortsi
)

NSCi

)

+

(

effortsj ∗
(

1 − effortsj
)

NSCj

)

(22)

StandardSij =

[(
effortZ=Server

i
− effortZ=Server

j

)
−
(
efforti − effortj

)]

StatisticSij

(23)

P

⎡
⎢⎢⎢⎢⎢⎣

Alpha

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞��
effortZ=Server

i
− effortZ=Server

j

�
−
�
StandardSij

��
�

2

� ∗ StatisticSij

�

≤
�
efforti − effortj

�

≤

Beta
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i
− effortZ=Server

j

�
+
�
StandardSij

��
�

2

� ∗ StatisticSij

�
⎤⎥⎥⎥⎥⎥⎦

� is between zero and 100. When in function number 23, � 
is equal to 100, then from the point of view of the load bal-
ancer, the two distribution states i and j are pretty similar in 
distribution. When the value of � is equal to zero, then status 
i and j are entirely different. If the value of (efforti − effortj) 
is in the range [Alpha, Beta], then the value of � is correct; 
otherwise, the coefficient assigned to � is incorrect. The 
load-balancer can use Eq. 23 to decide on the system status 
similarity before and after adding a new resource.

Suppose, according to Eq. 23, the scalability reduces the 
system’s performance. In that case, the load balancer should 
use an alternative scalability mechanism, such as a func-
tionality change (Kayal 2009), or an extended version of 
the scalability, such as proxy openness (Khaneghah 2017).

7 � Evaluation

The distributed peer-to-peer computing system of 
Khaneghah (2017) has been used to evaluate the ExaLB 
framework in DECS. In this system, the manager uses the 
concept of regions to manage the system. This state makes 
it possible to define four areas in this system that fit the 
four primary resources defined by the operating system. The 
concept of global activity is defined according to what is 
shown in Fig. 4.

Three types of global activities have been implemented in 
the system (Khaneghah 2017). Charm +  + , MM5, and WRF 
software (Steen and Tanenbaum 2016; Adibi and Khaneghah 
2020; Mirtaheri et al. 2013) are three software applications 
requiring high performance computing and extensive pro-
cessing power. Each of this three software uses the com-
puting resources in the system based on global activity. 
Therefore, three types of global activities are running in the 
system at the same time. Each system member can execute 
one, two, or all three activities at any time.

The considered computing system is a large-scale com-
puting system in which the number of machines running 
scientific and practical programs is higher than traditional 
computing systems such as clusters. This computing system 
operates in a distributed manner. A part of this system has 
been used to evaluate the presented mathematical model. 
Therefore, the result obtained is due to the actual implemen-
tation of the program.

The computing system's number of elements equals 120 
processing elements. Forming a system of 120 processing 
elements makes it possible to consider it an extensive test-
bed system for each of the three software. The applications 
mentioned usually run on a smaller number of processing 
elements, so their implementation of 120 elements makes it 
possible to analyze the status of the software when running 
in an extensive system.
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Due to the nature of DECS, and the need to define the 
basic computing system, 40 processing elements have been 
considered for the direct computations. These 40 processing 
elements correspond to the basic requirements of processes 
related to the mentioned scientific application. During the 
execution, if processes request new resources to continue, 
the ExaLB load balancer uses the Scalability + unit to 
expand the system and add new resources.

To create dynamic and interactive events, machine no. 
34 uses a particular version of system management soft-
ware (Khaneghah 2017) in which the load balancer uses 
the ExaLB framework. The hardware configuration of this 
machine is compatible with other machines in the system. 
The reason for choosing processing element no. 34 is since 
this element participates in the global activities of all three 
programs, most of the time executing mentioned applica-
tions. If for each global activity, one activity page is con-
sidered according to Mirtaheri et al. (2013), in most of the 
applications' time, the processing element 34 is the inter-
section point of all three pages corresponding to the three 
global activities. Any other processing element could also 
be selected as the element under evaluation.

In element 34, the system manager unit has been changed. 
This state allows the unit in this element to manage the three 
situations of process creation, communication, and interac-
tion with the environment, which leads to dynamic and inter-
active events. The manager unit of processing element no. 
Thirty-four can manage the relationship between the process 
related to the global activity and the corresponding process 
outside the computing system, which was not considered in 
the initial response structure of the global activity. There-
fore, in processing element No. 34, the manager unit (A) can 
manage processes that are not present in the global activity 
structure at the time of system design, and (B) can manage 
the communications between two processes that make up the 
global activity, which was not intended for global activity, 

and (C) is in communication with another machine on which 
there are types of processes that make up the three scientific 
applications mentioned above.

Therefore, the manager unit of element no. Thirty-four 
can manage situations that lead to dynamic and interactive 
events in processes related to global activity. Figure 5 shows 
the occurrence of usual, dynamic, and interactive events and 
the number of events in each of the three situations that can 
be responded to by the ExaLB framework.

In Fig. 5, with regards to processing element no. 34, 
53% of the requests leading to the activation of the load 
balancer are related to dynamic and interactive process crea-
tion requests, 19% are related to dynamic and interactive 
communication requests, and 6% are related to dynamic 
and interactive communication requests with the system 
environment. This result indicates that 22% of the requests 
leading to the activation of the load balancer are of the tra-
ditional type. In this element, the ExaLB manager unit is 
activated as soon as a request occurs that requires calling 
the load balancer. In this unit, the RSPRS/CPRPS Rewriter 
unit decides on the type of request (whether it is a standard 
or a dynamic and interactive request) based on the type of 
process request, request history, time and location limita-
tions, and dependency. As seen in Fig. 5, the dynamic and 
interactive process request diagram has the highest adapta-
tion to the conventional request diagram, leading to the load 
balancer's activation.

The frequency of change of events leading to the dynamic 
and interactive process creation is almost the same as the 
rate of regular events leading to the activation of the load 
balancer, except for the times 11, 29, and 47. The matching 
between dynamic and interactive process creation requests 
with conventional requests that lead to the activation of the 
load balancer is due to changes like the process requests in 
processing element no. 34.

Fig. 5   Events leading to the 
activation of the ExaLB load 
balancer in processing element 
no. 34
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On average, in 50-time units, processing element no. 
Thirty-four were monitored, and 53.38% of standard process 
requests became dynamic and interactive process creation 
requests. The 53% occurrence of dynamic and interactive 
requests is the reason for the need for scalability of the com-
puting system. The number 53% means that in 53 out of 100 
requests leading to the activation of the load balancer, there 
is a need to create a new process that creates new global 
activity. This process expands the computing system to 
meet the requirements of the process running on element 
no. 34. It also means that 53% of the requested resources 
for the running process were not considered. This element 
creates a dynamic and interactive process that creates a new 
response structure through the Scalability + unit to meet the 
above requirements. Suppose the system is observed for a 
long time; then 53% of events lead to the activation of the 
load balancer into dynamic and interactive events of process 
creation. For a long time, the computing system has been 
scaled to the level where there would be little need to create 
new structures. The dynamic and interactive process creation 
events of ExaLB are used for scalability and the creation 
of new global activities to meet process requests. After a 
particular time, the size of the system by these processes 
reaches a stable level. In this situation, the system creates 
dynamic and interactive process events at a shallow rate.

In Fig. 5, the presence of zero points in the dynamic and 
interactive process diagram of processor creation means 
there is no need to create a new global activity to meet the 
processor's needs. Figure 6 shows the correlation status of 
dynamic and interactive process creation events and the 
requests leading to the activation of the ExaLB.

As seen in Fig. 6, the data of these two variables have a 
second-order correlation of 0.387 with each other, which 
indicates that if the system, especially element no. 34, if 
examined for a long time, these two variables would be less 
dependent on one another. This state indicates the independ-
ence of the computing system from scalability to meet the 
requirements of processes in processing element no. 34.

As seen in Fig. 5, about 19% of requests to activate the 
ExaLB result from dynamic and interactive communication 
requests between processes in the system. From the point 
of view of the ExaLB, this means that 19 out of 100 inter-
processes communication requests are not considered in 
the basic structure of executing scientific applications. The 

number of inter-processes communication requests not con-
sidered in the initial response structure leans to zero faster 
than the process creation requests. If the computing system, 
and in particular processing element no. 34, is examined for a 
long time. According to the ExaLB, after the system reaches 
balance, the inter-processes communication resulting from 
the process requests reaches a stable state. This stability does 
not mean that inter-processes communication requests of 
dynamic and interactive nature do not occur. Instead, process 
requests not turn into dynamic and interactive inter-processes 
communication requests. This state is due to the considera-
tion of two concepts of history and the behavior of each 
request by the ExaLB. Figure 7 shows the correlation coeffi-
cient between the number of requests leading to the activation 
of the ExaLB and the requests leading to the dynamic and 
interactive nature of inter-processes communication.

As seen in Fig. 7, the second-order correlation coefficient 
between these two variables tends to reach zero in the long 
run. This event indicates that if the system has reached sta-
bility over time, the number of requests leading to dynamic 
and interactive inter-process communications does not 
depend on the process requests. This event is due to the 
existence of request history, especially the request history for 
executing global activity, as well as request analysis, based 
on three-dimensional space of time, location, and depend-
ency, which eventually leads to independence from the 
number of process requests. In such cases, the occurrence 
of dynamic and interactive inter-process events becomes 
dependent on ReqNull . From the point of view of the ExaLB, 
this means that the reasons for the occurrence of dynamic 
and interactive inter-process communication events in the 
state of balance are due to the formation of global activity. If 
the cause of global activity formation is to discover commu-
nications, the system expects dynamic and interactive inter-
process communications to be formed in global activity.

Based on what has been said about the Scalability + unit, 
after the expansion of the computing system, the perfor-
mance of ExaLB may decrease. As seen in Fig. 5, 6% of the 
requests that trigger the ExaLB are dynamic and interac-
tive requests that require interaction with the system envi-
ronment. However, the number of requests that lead to a 
dynamic and interactive request for interaction with the sys-
tem environment is small compared to the other two types 

Model Summary
Model R R Square Adjusted R 

Square
Std. Error of the 
Estimate

1 .622a .387 .374 17.47062

Fig. 6   The correlation between events leading to the activation of 
the ExaLB and events leading to the dynamic and interactive process 
creations

Model Summary
Model R R Square Adjusted R 

Square
Std. Error of the 
Estimate

1 .019a .000 -.020 6.44682
a. Predictors: (Constant), Request

Fig. 7   The correlation between the events leading to the activation 
of the ExaLB and the events leading to the dynamic and interactive 
inter-process communications
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discussed. As a result, the rate of reduction of these requests 
and the independence of these requests to ones leading to 
activating the load balancer is higher than the other two 
types. From the point of view of ExaLB, when requests of 
dynamic and interactive nature for interaction with the envi-
ronment are created, for responding to this type of request, 
ExaLB should call the resource discovery to expand the sys-
tem and create a new response structure. On the other hand, 
according to what is mentioned in the Scalability + unit 
related to the ExaLB load balancer, the management system 
is not allowed to expand the computing system to any extent.

Consequently, the performance of the computing system 
may fall. This reduction in performance contrasts with the 
functional nature of the DECS. Figure 8 shows the correla-
tion coefficient between the two variables of the number of 
requests leading to the activation of the ExaLB and dynamic 
and interactive requests for interaction with the environment.

As can be seen in Fig. 8, the second-order correlation 
coefficient between these two variables is zero. In DECS, 
after the formation of the region, it is expected that the load 
status pattern at the time of dynamic and interactive event 
occurrence for interaction with the system environment to be 
very similar to the load pattern when there are no dynamic 
and interactive requests. The difference in the R-value in 
Figs. 7 and 8 is also due to the concept of the variable α. The 
variable α causes the similarity of the distribution in the two 
states i and j to be the reason for the level of dependency of 

the number of D&I requests for interaction with the envi-
ronment, to have a faster rate of becoming independent 
from events leading to activation of ExaLB, compared to 
the level of dependency of the number of D&I requests for 
inter-process communications. In this case, the D&I requests 
for interaction with the system environment depend only on 
the variable ReqNULL . Figure 9 shows the number of D&I 
requests responded to by processing element no. 34.

As can be seen in Fig. 9, the number of forks, inter-pro-
cess communication, and interaction with environment D&I 
requests that have been answered by processing element no. 
Thirty-four are displayed. By comparing Figs. 5 and 9, it can 
be concluded that in terms of D&I requests, ExaLB has not 
been able to respond. Also, if the times in which there is no 
D&I request are not considered, the results show that ExaLB 
has responded to 53.70% of D&I fork requests and 44.99% 
of D&I inter-process communication requests, and 33.66% 
of D&I interaction with environment requests.

The lack of response to 46.30% of D&I fork requests is 
due to the inability to create the parameter RI(t) in Eq. 17. 
As seen in Fig. 9, in all types of D&I requests, the response 
rate has increased as time has passed. This event is due to 
variables Resourcehistory and Reqhistory . The more ExaLB has 
information about the status of resources and requests, the 
descriptors of request and resource (Eqs. 18 and 19) status 
would be more accurate.

The reason for the significant difference between the 
results of the D&I fork request with the other two types in 
Fig. 9 is due to Reqbehavior and the response mechanism of 
ExaLB to different types of D&I requests. ExaLB can use 
two different mechanisms for responding to D&I events, 
either by changing the functionality of the resource or by 
scalability. In these experiments, the mechanism used by 
the ExaLB is considered the scalability mechanism. When a 
fork-type D&I event occurred, the ExaLB, using the scalabil-
ity mechanism, considering Eq. 22, created a new response 
structure for managing the event. The reason for the failure 

Model Summary
Model R R Square Adjusted R 

Square
Std. Error of the 

Estimate
1 .002a .000 -.021 25.68537
a. Predictors: (Constant), Request

Fig. 8   The correlation between events leading to the activation of the 
ExaLB and events leading to the dynamic and interactive request for 
interaction with the system environment

Fig. 9   Number of D&I requests 
responded by processing ele-
ment no. 34

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ev
en

t

Time

D&I Events Answer

D&I Answered fork

D&I Answered Communication

D&I Answered Interactive



410	 F. Mollasalehi et al.

1 3

of the ExaLB, in the process of responding to the fork D&I 
requests in units such as 19, 22, 26, and 38, has been the 
need for the long time required to run the resource discovery.

In the 30th time unit, the ExaLB unit successfully 
responded to 60 out of 62 fork D&I requests. The ExaLB 
load balancer has analyzed the behavior of requests in exe-
cuting the application. This state, from the point of view of 
the ExaLB load balancer, means that there is enough time to 
extract the behavior of requests that occur in the 39th unit. 
In the 4th unit, 52 fork D&I requests occurred, of which the 
ExaLB answered 51 requests. By examining the status of 
the application in processing element No. 34, it is clear that 
the nature of the requests is such that they can be answered 
using scalability. The time required to execute the resource 
discovery for scalability and response to these requests, as 
well as the system's state after scalability, is acceptable to 
the ExaLB load balancer according to Eq. 22.

Events in the third time unit made it possible to state that 
the resource discovery, and its responsibility in responding 
to D&I requests, is effective over the functionality of the 
ExaLB. This event occurred when the request behavior had 
not been extracted or there had not been sufficient infor-
mation about the functionality of the resource. Extracting 
request behavior and resource functionality and collect-
ing more information about the status of the resources and 
requests reduces the dependency of the ExaLB on other 
system-managing units. Typically 50% of fork D&I requests 
cannot be answered by ExaLB's load balance. By examin-
ing the status of programs in number 34 and increasing the 
number of iterations of the experiment, it is observed that 
two factors are the most important reasons for the inability 
of the ExaLB load balancer to respond to these requests. 
The first factor is the inability of the resource discovery to 
respond to the scalability request in an acceptable time. The 
second factor is the lack of scalability due to reduced sys-
tem performance (presented in Eq. 22). Examining the test 
results, especially the test results, in a situation where a fork-
type D&I event occurs, but the ExaLB load balancer cannot 
respond. It made that in 38% of cases performing Eq. 22 is 
the reason for the inability to respond to the requests.

As can be seen in Fig. 9, the number of unanswered 
events by the ExaLB unit is higher than other types of D&I 
events when they were interactive D&I requests. The reason 
is that no element inside the computing system can respond 
to an interactive D&I request, and the resource managing 
unit must find it in the environment outside the system. 
There is no accurate information on which to form the matri-
ces in Eqs. 15 and 16. Because such a processing element 
containing the resource has been outside the computing sys-
tem, there is no information about its importance in global 
activities. When the resource is discovered, the ExaLB load 
balancer considers the importance of this resource to be 100 
out of 100.

By examining Fig. 9, it can be seen that in time units such 
as 7, 28, and 43, the ExaLB load balancer has responded 
to all fork D&I requests. Except for a few time units, such 
as time unit 41, all events of interactive D&I nature are 
responded to, or it is entirely unable to respond. It was 
found that in the mentioned time units, the ExaLB load bal-
ancer encountered an event similar to similar events that 
had already happened. This repetition of events caused the 
ExaLB load balancer to obtain sufficient information about 
the request behavior (defined in Eq. 10) and the resource dis-
covery pattern. The ExaLB load balancer, in time units, has 
extracted the description of the request and resource status 
using Eqs. 18 and 19, which leads to the inability to respond 
to events similar to the events of the mentioned time units. 
This event allowed the ExaLB load balancer to use a pattern 
of complete ability or inability for interactive D&I events.

By analyzing the ExaLB unit's functionality and the appli-
cations in processing element no. 34, it can be concluded that 
the main reason for such a phenomenon is not creating the 
descriptive matrix of the temporal changes for the desired 
resource as expressed in Eq. 18. The primary inability to cre-
ate such a structure lies in resource discovery. Interactive D&I 
events strongly correlate with the load balancing function and 
the response history's data structures to similar events.

We are examining the scientific applications and the sta-
tus of executing processes on processing unit no. 34, it can 
be concluded that the most influential variable on the abil-
ity or inability to respond to such events is the Null vari-
ables defined in the matrices of Eq. 5. As seen in Fig. 9, 
the ExaLB can respond to 45 out of 100 inter-process com-
munication D&I events during system execution for a more 
extended period. The occurrence of these events from the 
point of view of the ExaLB load balancer means chang-
ing the reason for the request from the non-request status 
to the new request and changing the request behavior. From 
the resource analysis point of view, the inter-process com-
munication resource, which had another role in the global 
activity, should be changed and proposed as a communica-
tion mechanism between the two processes. The response 
to inter-process D&I requests is such that scalable mecha-
nisms are not used for the responding structure. Changing 
the functionality of resources and process is the method used 
to manage these events.

The need to use a separate model to respond to inter-
process communication D&I events leads to time units such 
as 3, 5, 9, and 12, in which the ExaLB can not respond to the 
event due to the inability to change the role and functionality 
of the resource or processor request. The majority of times 
that the ExaLB does not respond to inter-process communi-
cation D&I requests are at system startup time. The ExaLB 
must be able to manage resources and processes by extract-
ing the pattern of functionality and role by changing them 
when the inter-process communication type of D&I events 
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occur. Based on examining Fig. 9, it can be seen that most 
inter-process communication and D&I events responded to 
by the ExaLB management element is around the average 
line.

Figure 10 shows the number of dynamic and interac-
tive events affecting the load balancing operation in the 
ExaLB framework, the DTHMM ExaLB mechanism, and 
the HemeLB mechanism.

As shown in Fig. 10, on average, every time the test is 
run, 37 requests are created, leading to load redistribution 
in computing element No. 37, which is somehow affected 
by dynamic and interactive events. This dynamic and inter-
active event can occur both in computing element number 
37 and at any point of the computing system in a way that 
affects the implementation of the activities of the load bal-
ancer activated in computing element 37. On average, the 
HemeLB mechanism can manage the impacts of dynamic 
and interactive events on the load balancing operation in 
each test run five times. This issue is due to the primary con-
dition of activation of the HemeLB mechanism in comput-
ing element No. 37 to manage the impacts of dynamic and 
interactive events on the operation of the resource load bal-
ancing. In a typical situation, in computing element number 
37, the traditional load balancer is running. A dynamic and 
interactive event impacts the operation of the load balancer 
and causes the developed part of the load balancer based on 
the HemeLB to be activated. Based on the HemeLB mecha-
nism, the load balancer makes a decision based on a set of 
indicators regarding the occurrence or lack of occurrence 
of the mentioned situation. By examining the experiments, 
it was found that the allocation model is not challenged in 
many cases due to the occurrence of dynamic and interactive 
events and their impact on the load balancing function. How-
ever, the collecting activities and the need to create expanded 
structures to manage the impacts of the dynamic event and 
interaction in the system and, consequently, the functionality 

of the distributed management unit have been affected. In the 
distributed load balancer based on the HemeLB mechanism, 
only one part of the functional tasks of the distributed load 
balancer is considered the focus of the effects of dynamic 
and interactive events on the operation of this element.

The distributed load balancer based on the DTHMM 
ExaLB mathematical model provides the ability for the dis-
tributed load balancer to manage the activity based on the 
changes that cause the function of the distributed load bal-
ancer to be violated, after analyzing each dynamic and inter-
active event. On average, in each test run, the mathematical 
mechanism of DTHMM ExaLB can detect nine events affect-
ing the distributed load balancer's operation and management. 
Unlike the HemeLB, this mechanism considers all the situa-
tions. This information leads to the impact of the dynamic and 
interactive event on the operation of the load balancer. The 
distributed load balancer to dynamic and interactive events 
based on the DTHMM ExaLB mechanism can only handle 
nine out of 37 events. In this mechanism, the concept of the 
system state is used to describe the functionality of the dis-
tributed load balancer, and the return of the system state to a 
stable condition after the occurrence of a dynamic and inter-
active event is considered a method to manage the impacts 
of the dynamic and interactive event on the operation of the 
distributed load balancer—the mentioned mechanism to be 
unable to transfer the system to a stable state. If the distributed 
load balancer uses more variables than the traditional one to 
describe its state, creating the system state becomes compli-
cated. Another challenge of this solution is the possibility of 
the inability to change the state of the system to a stable condi-
tion for the operation of the distributed load balancer.

As shown in Fig. 10, the ExaLB-based distributed load 
balancer manages 19 dynamic and interactive event occur-
rences affecting the operation of the distributed load bal-
ancer. The ExaLB management unit uses the two concepts 
of separation of dynamic and interactive events, as well as 

Fig. 10   Dynamic and interac-
tive events affect the operation 
of load balancing in the ExaLB 
framework, ExaLB DTHMM, 
and HemeLB mechanisms
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the separation of the structures of the execution of the activi-
ties of the distributed load balancer after the occurrence of a 
dynamic and interactive event based on the framework intro-
duced in this article. Using these two concepts makes the 
distributed load balancer based on ExaLB able to analyze 
the event and its impacts on the operation of the distributed 
load balancer based on the framework presented in Fig. 3 and 
the use of RSPRS/CPRPS. The lack of possibility in creat-
ing structures related to RSPRS/CPRPS due to the lack of 
detection of the incident causes the framework to be unable 
to utilize its management capabilities in 49% of the cases 
and experiments. This situation indicates that the framework 
introduced for the ExaLB-based distributed load balancer can 
manage the effects of dynamic and interactive events on the 
functionality of the distributed load balancer in 51% of cases.

8 � Discussion

In DECS, the occurrence of a D&I by computing pro-
cesses causes the response structure to change. Changing 
the response structure may cause the load balancer's pat-
tern (or patterns) to be unable to respond and manage the 
new condition. The load balancer, as the central element of 
computing systems, assigns computing process requests to 
the appropriate resources during the execution of scientific 
applications. The purpose of the load balancer is to execute 
the allocation function, processes, and, ultimately, the sci-
entific application in the shortest possible time. Two sets 
of CPRPS and RSPRS affect the functionality of the load 
balancer. A D&I event may cause the RI on which the load 
balancer redistributes the tasks to differ from the actual RI 
of the system. This paper introduces the ExaLB framework 
to address this challenge.

ExaLB framework changes the functionality of the load 
balancer, which used to be the mapping form of request 
space to the resource space, to the mapping form of the pro-
cess status matrix to the source description space, and also 
decides on the type of request, whether it requires a standard 
distribution or a D&I request requiring redistribution. The 
ExaLB, unlike traditional load balancers, does not collect 
resources and process information while performing activi-
ties related to redistribution. The basic premise of ExaLB 
is that each process is part of global activity, so examining 
the process at a given moment cannot tell the characteristics 
of the process request. The development of the functional-
ity of the ExaLB load balancer, based on Eq. 5, enables 
the ExaLB to retain information about the history, behavior, 
type, and reason for the request in global activity and related 
processes for each request. The development of Eq. 1 to 
Eq. 5 by the ExaLB causes the status of each resource to be 
analyzed at each moment. In traditional computing systems, 
the load balancer describes the resource status at the moment 

of redistribution based on the indicator(s). At the same time, 
the ExaLB assumes that the functionality of resources in 
DECS is determined in executing global activities. To ana-
lyze the resource, one must be able to analyze its history, 
functionality, and significance in global activities.

This event causes the ExaLB to use two matrices, [
ResourcetypeResourcefuctionalityResourcehistoryResourceNULL

]
 

and 
[
ReqtypeReqBehaviorReqhistoryReqNULL

]
 to describe the func-

tionality of the load balancer. Managing global computing 
processes based on the concept of global activity allows 
ExaLB to be able to gather the information needed to create 
the two matrices mentioned.

From the point of view of the ExaLB, each resource 
falls into one of four categories: computing and processing 
resources, memory resources, input and output resources, 
or file resources. Using Eq. 5 to define the functionality of 
the ExaLB provides the ability to make decisions about the 
nature of requests as well as the abilities of the resources. 
The matrix 

[
ReqtypeReqBehaviorReqhistoryReqNULL

]
 causes the 

ExaLB to use the ReqNULL the concept and Eqs. 9 and 10 
determine whether the request is a D&I or a conventional 
request. If the request is D&I, it uses the introduced ExaLB 
framework. If the request made according to Eqs. 9 and 10 
is conventional, it uses the standard distribution pattern of 
distributed computing systems (Khaneghah 2017).

T h e  
[
ResourcetypeResourcefuctionality

ResourcehistoryResourceNULL
]
 allows the ExaLB to use 

ResourceNULL Furthermore, Eqs. 15 and 16 decide whether 
or not this resource can respond to the D&I request. If the 
resource can respond to D&I requests, then ExaLB uses the 
resource mentioned in the global activity created to respond 
to D&I requests. This event is done by changing the concept 
of Resourcefunctionality (Khaneghah and Sharifi 2014; Kayal 
2009). This event allows the resource to modify its function-
ality according to the process requests so that it can respond 
based on the new function.

Equation 17 is a derivative description of Eq. 5. Accord-
ing to Eq. 5, the function of the load balancer is to map the 
matrices describing the status of the resource and the 
request to one another. Equation 17 states that resource and 
request status description matrices change during the execu-
tion of the scientific applications and, consequently, the 
activities related to the ExaLB. This attribute enables the 
ExaLB to be to perform redistribution-related activities 
when D&I requests occur based on Eq.  17 to extract 
�[ReqtypeReqBehaviorReqhistoryReqNULL]

�t

 ​​  a n d 
�[ResourcetypeResourcefunctionalityResourcehistoryResourceNULL]

�t

 matrices at any time 
during the execution of scientific applications. The men-
tioned matrices describing the status of the process and 
resource in terms of time are due to the inability of the 
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ExaLB, related to the need to retrieve information from 
resources and processes after a D&I event occurs. The dif-
ference in RI formed by data gathering of the load balancer 
and the actual RI of the system after D&I events occur is 
the main reason for the inability of the traditional load bal-
ancers to manage DECS. This issue has been resolved in the 
ExaLB framework by the Data Gathering unit based on 
Eqs. 18 and 19. Suppose the ExaLB can analyze the status 
of the resource based on time according to Eq. 18. In that 
case, it can decide whether it can form the resource descrip-
tion matrix of Eq. 17 based on the information and charac-
teristics of the resource. Suppose the ExaLB can create a 
resource status description matrix in Eq.  17 based on 
Eq. 18. In that case, it can describe changes in resource 
type, history, functionality, and significance in global activi-
ties regarding time and resource status changes. If the 
ExaLB has the above information set, it knows the resource 
status and the variability of the four factors affecting the 
resource. This information makes the state of the ExaLB of 
the operating system equal to the state of the existing system 
during the occurrence of a D&I request. If the ExaLB ele-
ment can analyze the request status based on time according 
to Eq. 19, the description of the system status from ExaLB's 
point of view should be the same as the actual system 
status.

The most critical function of Eqs. 18 and 19 is to enable 
the ExaLB to have accurate information about the status 
of processes and computing resources in a distributed sys-
tem regarding the effects of the D&I events on them. The 
mentioned information set allows the load balancer to man-
age the redistribution activities in a way that includes the 
impacts of D&I requests on the entire system's status.

The ExaLB framework generates time-dependent RI 
using RSPRS / CPRPS Rewriter and Data Gathering units. 
The functionality of the ExaLB is not based on the RI of 
the activation time but on the RI, which is time-based and 
includes changes due to the occurrence of D&I events during 
the execution of redistribution activities. The use of Eqs. 18 
and 19, as well as the description of the function of the sys-
tem manager unit based on Eq. 5, causes the state of the 
system on which the load balancer is redistributing to match 
the state of the actual status of the computing system.
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