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Abstract
Distributed deep neural network (DDNN) training becomes increasingly compelling as the DNN model gets complex and 
the dataset grows large. Through an in-depth analysis of the latest Microsoft GPU cluster trace, we show that the co-located 
Parameter Server (PS) configuration is not uncommon in production DDNN training clusters, which inevitably causes 
intense network resource contention among the co-located PS and worker tasks. Our motivation experiments on Amazon 
EC2 further show that such network resource contention brings severe performance variation to DDNN training jobs. While 
existing works largely mitigate the inter-job network resource contention, the intra-job (i.e., task-level) network resource 
contention among the co-located PS and worker tasks has received comparably little attention. To tackle such performance 
issues, in this paper, we design and implement Nebula, a Network bandwidth resource allocation strategy for DDNN train-
ing tasks, in order to mitigate the network resource contention and alleviate the performance variation of DDNN training 
jobs. Nebula monitors the weights of co-located PS and workers and rations the network bandwidth resources for the two 
tasks by comparing the corresponding task weights. We implement a prototype of Nebula and conduct extensive prototype 
experiments with representative DNN models trained on Amazon EC2. Our experiment results demonstrate that Nebula 
can reduce the iteration time of a DDNN training job by up to 25% and improve the cluster resource utilization by up to 30% 
in comparison to MXNet, yet with practically acceptable runtime overhead.
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1  Introduction

Distributed deep neural network (DDNN) training has 
received widespread attention recently, as it is able to train 
the DNN models in parallel with different approaches such 
as data parallelism  (Mayer and Jacobsen 2020), model 
parallelism (Mirhoseini et al. 2017), and pipeline paral-
lelism (Narayanan et al. 2019). Among these parallelism 
methods above, data parallelism with the Parameter Server 
(PS) architecture has been widely adopted in production 
DDNN training clusters (Gu et al. 2019) of big companies 
like Google and Microsoft. To reduce the intermediate data 
movement and achieve good training performance and scal-
ability, the co-located PS configuration is set as the default 
(i.e., not uncommon) in popular DDNN training frameworks 
(e.g., MXNet) (Luo et al. 2018). Our analysis of the latest 
Microsoft GPU cluster (Jeon et al. 2019) in Sect. 2.1 further 
shows that such a co-located PS configuration is deployed on 
around 77% of machines. By co-locating the PS and worker 
tasks on the same machine, however, the widely-adopted 
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co-located PS configuration can cause severe network 
resource contention among PS and worker tasks, thereby 
degrading the DDNN training performance.

To alleviate the network resource contention and speed 
up DDNN training performance, there have been many 
research works dedicated to reducing the network traffic, 
such as model quantization (Guptaand et al. 2015) and gradi-
ent sparsification (Lin et al. 2017). Nevertheless, reducing 
the network traffic cannot fundamentally solve the network 
resource contention problem, simply because the compres-
sion of communication data (i.e., model parameters, gra-
dient data) can bring extra computation overhead and the 
compressed data is still likely to be large. Meanwhile, there 
have also been recent works to mitigate the inter-job net-
work resource contention, which is mainly caused by the 
contention of network resources among multiple jobs co-
located on the same machine. Such an issue can largely be 
solved by scheduling or placing the DDNN training jobs 
to the appropriate machines in GPU clusters (Wang et al. 
2020b), while considering several other key factors such 
as fairness (Kshiteej et al. 2020) and interference (Ukidave 
et al. 2016). However, there has been scant research atten-
tion paid to the intra-job (i.e., task-level) network resource 
contention among the co-located PS and worker tasks of one 
DDNN training job.

The intra-job network resource contention in the co-
located PS configuration can cause severe performance 
variation to DDNN training jobs. As evidenced by our 
motivation experiments in Sect. 2.2, the iteration time for 
the ResNet152 model trained in the co-located PS configura-
tion can vary five times larger than that in the non-colocated 
PS configuration, leading to a comparatively low network 
resource utilization and thus prolonging the DDNN train-
ing time as discussed in Sect. 2.3. By analyzing the network 
communication mechanism of MXNet (Chen et al. 2015), 
we further confirm that such intense intra-job network 
resource contention can be caused by the uneven distribution 
of model parameters among different PS, which inevitably 
makes the communication operations of co-located PS and 
worker tasks compete for network uplink or downlink band-
width resources on the same machine.

To deal with such performance issues above, in this 
paper, we design Nebula, a simple yet effective network 
bandwidth allocation strategy to mitigate the network 
resource contention and alleviate the performance variation 
of DDNN training jobs. Specifically, we first conduct a theo-
retical analysis of the performance variation caused by the 
intra-job network resource contention among the co-located 
PS and worker tasks. Based on such an in-depth analysis, 
we further design our Nebula strategy to adequately allo-
cate the network bandwidth online for the co-located PS 
and worker tasks by monitoring the corresponding task 
weights. We implement a prototype of Nebula consisting 

of a Nebula monitor and a Nebula controller. With the 
aim of minimizing the training iteration time, the Neb-
ula controller adequately rations the network bandwidth 
resources for PS and workers tasks by comparing the task 
weights calculated by the Nebula monitor. To the best of 
our knowledge, Nebula is the first attempt to analyze and 
solve the intra-job network resource contention among the 
co-located PS and worker tasks during the execution of a 
DDNN training job.

We evaluate the effectiveness and runtime overhead of 
Nebula with extensive prototype experiments on a cluster 
of g3.8xlarge instances in Amazon EC2. Our experimental 
results with four representative DNN models (i.e., AlexNet, 
ResNet101, ResNet50, and VGG16) show that Nebula 
can reduce the iteration time of DDNN training jobs by 
15.2–25.0%, and improve the average utilization of CPU 
and network cluster resources by up to 30%, as compared 
with MXNet. In addition, Nebula incurs acceptable runt-
ime overhead in practice.

The rest of the paper is organized as follows. Section 2 
illustrates the severity of DDNN training performance varia-
tion caused by network resource contention in the co-located 
PS configuration. Through analyzing such a performance 
variation problem in Sects. 3, 4 further designs and imple-
ments Nebula to adequately ration network bandwidth 
resources for DDNN training tasks, so as to speed up the 
performance of DDNN training jobs. Section 5 extensively 
evaluates the performance gains and runtime overhead of 
Nebula. We discuss our contribution in the context of 
related work in Sect. 6. Finally, we conclude this paper in 
Sect. 7.

2 � Background and motivation

In this section, we first analyze the DDNN training perfor-
mance variation caused by the network resource contention 
in the co-located PS configuration. We then present an illus-
trative example to show how to speed up DDNN training 
performance simply by rationing adequate network band-
width resources for PS and worker tasks.

2.1 � Co‑located PS configuration in DDNN training 
clusters

Training DNN models in distributed manner is becoming 
increasingly compelling, as the model gets complex and 
the training dataset becomes large. In general, each DDNN 
training job is comprised of two types of training tasks (i.e., 
PS tasks and worker tasks) running in the GPU cluster. For 
each training iteration, the PS tasks execute collection 
and broadcast operations, which collect the gradient data 
from worker tasks and send the updated model parameters 
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to worker tasks, respectively. Correspondingly, the worker 
tasks execute push and pull operations, which send the 
gradient data to PS tasks and receive the updated model 
parameters from PS tasks, respectively. To reduce the data 
movement and achieve good DDNN training performance 
and scalability, the co-located PS configuration (i.e., co-
locating PS and worker tasks on the same machine) is the 
default in many DDNN training frameworks (e.g., MXNet). 
In more detail, each machine hosts a PS task and multiple 
worker tasks, and thus the PS task shares network and com-
putation resources with the worker tasks in the co-located 
PS configuration.

To understand the DDNN training performance benefits 
with the co-located PS configuration, we conduct a real-
world experiment by training three traditional image-classi-
fication DNN models in a 16-node GPU cluster. As shown 
in Table 1, the DDNN training rate is steadily increased as 
we add more co-located PS tasks to DDNN training jobs, by 
varying the co-located PS number from 8 to 16. The ration-
ale is that, the co-located PS task can make full use of CPU 
and intra-machine bandwidth resources to reduce the data 
movement over the network. Accordingly, each GPU device 
hosts a worker task and the CPU processors host the PS task 
on one GPU machine.

To validate the prevalence of the co-located PS configu-
ration, we further estimate the number of co-located PS by 
analyzing a DDNN training job trace from a Microsoft GPU 
cluster (Jeon et al. 2019). As shown in Fig. 1, we observe 
that over 80% of jobs are configured with four or more co-
located PS (with workers). Furthermore, we infer that the 
co-location of PS and worker tasks occurs when the CPU 

utilization of the machine exceeds 50% (Jeon et al. 2019). 
We find that the co-located PS configuration is deployed on 
around 77% of the machines in the Microsoft GPU cluster. 
Our analysis above on the Microsoft cluster trace demon-
strates that the co-located PS configuration is not uncommon 
in production DDNN training clusters.

2.2 � Understanding performance variation caused 
by network resource contention

Though the co-located PS configuration has been widely 
adopted in production DDNN training clusters, it inevita-
bly brings severe performance variation to DDNN train-
ing jobs. To illustrate that, we conduct another motivation 
experiment by training ResNet50, ResNet152, and VGG16 
on a 2-node cluster with the co-located PS configuration 
(i.e., each machine hosting one PS task and one worker task). 
As shown in Fig. 2, we observe that the iteration time1 for 
DDNN training fluctuates wildly, and the coefficient of vari-
ation (CV) of DDNN training iteration time for the three 
models is around 0.1, which is 3–5 times larger than the 
CV obtained in the non-colocated PS configuration. Accord-
ingly, we conjecture that such a severe performance varia-
tion is mainly caused by the network resource contention 
between the co-located PS and worker tasks.

To understand the performance variation of DDNN 
training, we further analyze the network communication 
mechanism of MXNet to show how the network resource 
contention of PS and worker tasks occurs. In particular, we 
neglect the intra-machine data transfer operations and only 
focus on the operations of PS and worker tasks consuming 
network resources. As depicted in Fig. 3, we observe that 
the PS task completes the collection operation for its 
gradient data earlier than the push operation of the worker 
task (pushing gradient data to PS tasks on other machines), 
which inevitably leads to the broadcast operation and the 

Table 1   DDNN training performance with different co-located PS 
configurations in a 16-node GPU cluster

Co-located DDNN training rate (samples/s)

PS number ResNet50 ResNet152 VGG16

8 32.2 16.6 7.0
12 37.1 12.7 9.2
16 49.9 24.1 11.8

Fig. 1   CDF of the co-located PS number for DDNN training jobs in a 
Microsoft GPU cluster trace

Fig. 2   Distribution of the iteration time for training representative 
DNN models

1  We consider the iteration time as the difference of end time of 
pull operations for two adjacent iterations (Zhang et al. 2017).
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push operation contending for the uplink bandwidth of the 
machine for a certain period of time.

We then summarize two conditions that can cause net-
work resource contention of co-located PS and worker tasks 
as follows. 

(a)	 Broadcast starts during the process of push.
(b)	 Pull begins during the execution of collection.

In general, the conditions (a) and (b) occur within one train-
ing iteration, and Fig. 3 belongs to the condition (a) above. 
As the iteration time is mainly determined by the push and 
pull operations of the worker task, such network resource 
contention inevitably prolongs the DDNN training time and 
brings severe variation to the iteration time of worker tasks 
within one iteration and across iterations. In addition, the 
overall network resource utilization and GPU utilization are 
correspondingly decreased. We will formally analyze such 
network resource contention in Sect. 3.1.

As a result, we focus on mitigating the performance vari-
ation of DDNN training jobs caused by network resource 
contention, through adequately rationing network bandwidth 
resources for co-located PS and worker tasks. In particular, 
we do not consider the frameworks with a global barrier 
(e.g., Tensorflow (Abadi et al. 2016)) due to its strict limita-
tion of parameter synchronization.

2.3 � An illustrative example

With the aim of mitigating the network resource conten-
tion as discussed above, we propose a simple yet effective 
network bandwidth allocation strategy named Nebula, 
in order to ration network bandwidth resources for co-
located PS and worker tasks. Nebula is able to deal with 
the network resource contention and regulate the network 
throughput to enhance the efficiency of network bandwidth 
resources, thereby speeding up DDNN training.

To illustrate the performance benefits obtained by 
Nebula, we conduct a motivation experiment by train-
ing ResNet50 on a 2-node GPU cluster, and each node is 
a g3.4xlarge EC2 instance. As observed in Fig. 4, MXNet 
can only train 5 iterations over 10 s, while Nebula can 
complete 6 iterations within 10 s. In more detail, Neb-
ula can achieve a faster DDNN training rate of ResNet50 
(with 19.6 samples/s) by 18.8% as compared with that of 
MXNet (with 16.5 samples/s). This is because Nebula 
adequately allocates network bandwidth resources for 
the broadcast operation (in PS tasks) and the push 
operation (in worker tasks), while MXNet allows the two 
operations contending for network bandwidth resources 
arbitrarily. Accordingly, Nebula achieves higher overall 
network resource utilization as compared with the MXNet, 
as depicted in Fig. 4, so that the DDNN training perfor-
mance can be significantly improved by Nebula.

Summary The network resource contention of co-
located PS and worker tasks inevitably brings severe per-
formance variation to DDNN training jobs. Judiciously 
rationing network bandwidth resources for PS and worker 
tasks can alleviate such network bandwidth contention and 
significantly speed up the performance of DDNN training 
jobs.

3 � Problem analysis and formulation

In this section, we first analyze the root cause of DDNN 
training performance variation. Then, we build an analytical 
model to formulate the completion time of each communica-
tion operation and the iteration time in a DDNN training job. 
The key notations of our DDNN training performance model 
are summarized in Table 2.

Collec�on

Push

Broadcast

Pull

PS Task:

Worker Task:

Network communica�on in one machine:

Time

Network resource conten�on
Opera�ons consuming downlink bandwidth
Opera�ons consuming uplink bandwidth

Collec�on

Push

Broadcast

Pull

PS Task:

Worker Task:

Network communica�on in one machine:

Time

Fig. 3   Network resource contention of PS and worker tasks in one 
machine with the co-located PS configuration

Fig. 4   Comparison of network throughput achieved by Nebula and 
MXNet during training ResNet50
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3.1 � Analyzing DDNN training performance 
variation

We consider a DDNN training job executed in a GPU clus-
ter (denoted by M ) with the co-located PS configuration, 
and each machine contains one PS task and multiple worker 
tasks. One of the worker tasks serves as the master worker 
task (Luo et al. 2020), which takes charge of inter-machine 
communication over the network.

In fact, the root cause of network resource contention in 
the co-located PS configuration is that the model parameters 
are unevenly distributed among different PS. The rationale 
is that, such an uneven parameter distribution will definitely 
lead to different completion time of communication opera-
tions of PS and worker tasks, thereby resulting in the two 
conditions for network resource contention enumerated in 
Sect. 2.2. Such resource contention can get severer and con-
verge to a worst contention case during the execution of a 
DDNN training job, which will be analyzed as follows.

We assume a case [i.e., condition (a) in Sect. 2.2] that the 
pull operation is longer than the broadcast operation 
by � , and also the communication operations in each itera-
tion i spend the same execution time, which can be formu-
lated as

where Sop
m,i

 and Eop

m,i
 denote the start and end time of four com-

munication operations including push and pull for worker 
tasks, and collection and broadcast for PS tasks. As 
shown in Fig. 5, the pull and collection operations 
first contend for the network downlink bandwidth. Suppose 
PS and worker tasks equally share the bandwidth resource, 
such downlink bandwidth contention between pull and 
collection operations can last for 2� . In the next itera-
tion, the broadcast operation starts during the process 

T = E
op

m,i
− S

op

m,i
, op ∈ {����, ����}

T + � = E
op

m,i
− S

op

m,i
, op ∈ {���, ���}

of push operation (i.e., condition (a) in Sect. 2.2) and thus 
contends for the network uplink bandwidth. Such resource 
contention will last for 4� . In such a way, each communica-
tion operation in the following iterations will spend more 
time to transfer the same amount of data.

The worst case of such resource contention discussed 
above is that the push operation fully overlaps with the 
broadcast operation. The rationale is that, the Bulk 
synchronous parallel (BSP) mechanism mandates the PS 
task to collect all the gradient data from push operations 
of worker tasks, before starting the broadcast operation. In 
such a worst case, the network resource contention will last 
for almost the total iteration time (i.e., 4T), while the original 
iteration time without any network resource contention is 
2T + 2� . As a result, the network resource contention in co-
located PS configuration results in the severe performance 
variation within one iteration and across iterations as illus-
trated in Sect. 2.2.

3.2 � Modeling iteration time of DDNN training jobs

Before modeling the iteration time, we first analyze the start 
time and end time for four communication operations, which 
are push and pull for worker tasks, and collection 
and broadcast for PS tasks. In particular, we neglect the 
intra-machine communication time and the aggregation time 

Table 2   Key notations of 
DDNN training performance 
model

Notation Definition

M Set of machines in the GPU cluster
s Size of the model parameters
B Available uplink bandwidth in one machine
Bp,Bw

Average uplink bandwidth for the PS task during the transmission of 
broadcast and collection, and that for the worker task during 
the transmission of push and pull

S
op

m,i
Start time of one operation op in the i-th iteration on machine m

E
op

m,i
End time of one operation op in the i-th iteration on machine m

c
op
m Communication data size of one operation op in machine m
Tm,i The i-th iteration time on machine m
Ti The i-th iteration time of a DDNN training job

push

clt

push

PS:

Worker:

Network communica�on in one machine:
Time

Network resource conten�on

clt

pull

bct bct

pull

clt

pull

bct
T T T

T+ε T+ε T+ε T+ε
push

T+ε

bct

Fig. 5   Severity analysis of network resource contention in the co-
located PS configuration. bct and clt denote the abbreviations for 
the broadcast and collection operations, respectively
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of gradient data. As the master worker task equally coordi-
nates network resources on a machine, the worker tasks have 
the same iteration time on the same machine.

As one iteration i starts from the ending of pull opera-
tion for iteration i − 1 , we formulate the start time of push 
and broadcast operations using the end time of iteration 
i − 1 . Specifically, the push operation cannot start until 
the worker has completed the backward propagation. The 
broadcast operation begins once the PS task has fin-
ished the collection operation, when the workers have 
pushed the gradient data to the PS task. Accordingly, the 
start time of push operation Spush

m,i
 and broadcast opera-

tion Sbct
m,i

 is given by

where Epull

m,i−1
 denotes the end time of pull operation in 

iteration i − 1 on machine m, and �m,i denotes the calculation 
time of forward propagation and backward propagation. cpushn  
denotes the communication data size of push operation on 
machine n, and Bw ∈ (0,B] denotes the average network 
uplink bandwidth allocated to the worker task on one 
machine during the process of push operation. Accordingly, 
c
push
n

Bw

 denotes the communication time of push operation on 
machine n.

To obtain the end time Epull

m,i
 of pull operation in itera-

tion i on machine m, we proceed to formulate the end time 
of broadcast operations, as Epull

m,i
 is determined by the 

slowest broadcast operations on the other machines n 
(i.e., n ≠ m ), which is given by

where Ebct
n,i

 denotes the end time of broadcast operation 
in iteration i on machine n. cbct

m
 denotes the communication 

data size of broadcast operation on machine m, and 
Bp ∈ (0,B] denotes the network uplink bandwidth allocated 
to the PS task on one machine during the process of 
broadcast operation. Accordingly, c

bct
m

Bp

 denotes the com-

munication time of broadcast operation on machine m.
By substituting Eqs. (1) into (2), we can obtain the end 

time Epull

m,i
 of pull operation in iteration i in terms of the end 

time of pull operation in the last iteration i − 1 and uplink 
bandwidth for PS and worker tasks, which is given by

(1)
S
push

m,i
= E

pull

m,i−1
+ �m,i,

Sbct
m,i

= max
n∈M,n≠m

(
S
push

n,i
+

c
push
n

Bw

)
,

(2)
E
pull

m,i
= max

n∈M,n≠m
Ebct
n,i
,

Ebct
m,i

= Sbct
m,i

+
cbct
m

Bp

,

(3)
E
pull

m,i
= max

n,q

(
cbct
n

Bp

+
c
push
q

Bw

+ E
pull

q,i−1
+ �q,i

)
,

∀n, q ∈ M, n ≠ m, q ≠ n

where the first term of Eq. (3) denotes the broadcast time 
on machine n, and the second term denotes the communica-
tion time of push operation on machine q. The third term 
and the fourth term denote the end time of pull operation 
in iteration i − 1 and the calculation time in iteration i on 
machine q, respectively.

To speed up DDNN training process and mitigate its 
performance variation, our objective turns out to be mini-
mizing each iteration time for DDNN training jobs (i.e., 
the training time of the i-th iteration given the end time of 
the last iteration i − 1 ). In particular, the DDNN training 
time Ti for iteration i is determined by the machine that has 
the longest execution time (i.e., the largest Tm,i,∀m ∈ M ). 
Accordingly, our optimization problem can be formulated 
in Eq. (4) as below.

where A = �q,i + E
pull

q,i−1
− E

pull

m,i−1
 denotes a value that depends 

on the end time of the iteration i − 1 and the calculation time 
of iteration i. The first two terms denote the data communi-
cation time on the slowest machines, which can be signifi-
cantly influenced by the network resource contention during 
DDNN training. Constraint (5) indicates that the average 
uplink bandwidth which one task can consume should be a 
positive value and less than the available uplink bandwidth 
B. Both Bp and Bw can be equal to B if there is no network 
resource contention during the data communication of 
DDNN training. Constraint (6) implies that the cluster has 
two machines at least and m can be equal to q under the 
circumstance.

Though our optimization problem can be formulated in 
a closed-form expression, Eq. (4) is still in the form of a 
min-max optimization problem (Russell and Norvig 2020). 
Our optimization problem is not continuous and indiffer-
entiable. Accordingly, our bandwidth allocation problem 
cannot be solved by a traditional gradient optimization 
approach, and thus we turn to designing a bandwidth allo-
cation heuristic in Sect. 4 to solve such a performance 
optimization problem.

(4)

min
Bp,Bw

Ti = min
Bp,Bw

(
max
m∈M

Tm,i
)

= min
Bp,Bw

(
max
m∈M

(
E
pull

m,i
− E

pull

m,i−1

))

= min
Bp,Bw

(
max

m,n,q∈M

(cbct
n

Bp

+
c
push
q

Bw

+ A
))

(5)s.t. Bp,Bw ∈ (0,B],

(6)n ≠ m, q ≠ n, ∀m, n, q ∈ M,
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4 � Rationing network bandwidth resources 
for DDNN training tasks

Based on our problem analysis and formulation above, we 
proceed to design Nebula, a network bandwidth alloca-
tion strategy for co-located PS and worker tasks in order to 
mitigate network resource contention.

4.1 � Design of network bandwidth allocation 
strategy

We design Nebula strategy in Algorithm 1 by following 
a quite simple and intuitive heuristic: We leverage the task 
weight to ration adequate network bandwidth resources 
to the co-located PS and worker tasks once the network 
resource contention is severe. Nebula aims to answer 
when and how to allocate the network bandwidth for the 
co-located PS and worker tasks. In particular, Nebula miti-
gates the resource contention by focusing on the network 
uplink bandwidth, and accordingly the resource contention 
on network downlink bandwidth will also be alleviated.

Algorithm 1 Nebula: Network bandwidth resource
allocation strategy for co-located PS and worker tasks.
Input: Available bandwidth of one machine B, the network

bandwidth allocation coefficient θ, and the weight thresh-
old w0.

1: Initialize: A map storing the classification of commu-
nication data (including model parameters and gradient
data): mp ← 〈null, null〉; Weights of PS and worker tasks
for network uplink bandwidth: ww ← 0, wp ← 0; Flag of
network bandwidth allocation for PS tasks and worker
tasks: flag ← 0;

2: Obtain the communication data information through pro-
filing of DDNN training jobs;

3: Classify the communication data according to the start
time of data transfer, and store the layer index of com-
munication data and its class into mp;

4: while one communication data with the layer index i
starts or finishes its network transfer do

5: if the data i belongs to the worker task then
6: ww ← ww ± e−mp[i];
7: else
8: wp ← wp ± e−mp[i];
9: end if
10: if wp − ww ≥ w0 && flag �= 1 then
11: Cancel the bandwidth limit of broadcast operation

and limit push operation bandwidth by B · θ;
12: flag ← 1;
13: else if ww − wp ≥ w0 && flag �= 2 then
14: Cancel the bandwidth limit of push operation, and

limit broadcast operation by B · θ;
15: flag ← 2;
16: end if
17: end while

 Specifically, Nebula has three input parameters includ-
ing the available network bandwidth B of one machine, the 

bandwidth allocation coefficient � ∈ (0, 1] , and a weight 
threshold w0 for deciding when to allocate network band-
width for PS and worker tasks. In particular, B ⋅ � indicates 
the value to limit (i.e., how to allocate) network bandwidth 
for the PS or worker task during DDNN training. Before 
the execution of a DDNN training job, we first initialize a 
map data structure �� = ⟨����, �����⟩ to store the class 
information of each communication data (i.e., model param-
eters and gradient data), where ���� denotes the layer index 
of the communication data. We also initialize the weights 
for PS and worker tasks (i.e., the task weight is the sum 
of weights of communication data packets carried by the 
task), as well as a flag that indicates whether the network 
bandwidth is appropriately allocated on the PS or worker 
tasks (line 1). We then leverage job profiling (e.g., within 
10 iterations) to obtain the communication data information 
including the layer index of communication data and the 
start time of data transfer. According to the transfer start 
time of communication data, we classify the communication 
data into several classes (e.g., 10 for ResNet50) by a simple 
clustering algorithm (lines 2–3). After that, we proceed to 
monitor the status of PS and worker tasks, and compare the 
two task weights (i.e., ww , wp ) to adequately ration network 
bandwidth resources for the co-located PS and worker tasks 
in each iteration.

In more detail, once a communication data with the layer 
index i starts or finishes its network transfer, we have to add 
or delete the weight of the communication data from the 
corresponding task weight. In particular, we empirically use 
an exponential function to calculate the weight of each com-
munication data, by the intuition that the communication 
data with a small layer index has a higher transfer priority 
compared with the data with a larger layer index (lines 4–9). 
The rationale is that, the communication data generated by 
the front layer (e.g., the layer 0) is eagerly required by the 
pull operation of the next training iteration (Jayarajan et al. 
2019). After task weights have been updated, Nebula fur-
ther decides whether to enforce bandwidth allocation for 
tasks. If wp is larger than ww by exceeding an empirical 
threshold (i.e., w0 = 1 by default), we limit the bandwidth 
of the push operation by B ⋅ � and cancel the bandwidth 
limit of broadcast. We also set the bandwidth alloca-
tion flag as 1, which indicates that the bandwidth of push 
operation has been limited (lines 10–12). Similarly, if ww is 
larger than wp by exceeding w0 , we limit the bandwidth of 
the broadcast operation by B ⋅ � and cancel the band-
width limit of push, and set the flag as 2 which indicates 
that the bandwidth of broadcast operation has been lim-
ited (lines 13–16).

Remark Nebula adopts a bandwidth allocation coeffi-
cient � ∈ (0, 1] to control the network bandwidth for PS and 
worker tasks. The value of � will definitely affect the perfor-
mance of DDNN training jobs. For simplicity, we only 
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consider the factors related to the network bandwidth Bp , Bw 
in Eq. (4). By assuming cpushq = cbct

m
= c , the optimization 

p r o b l e m  i n  E q .   ( 4 )  c a n  b e  r e d u c e d  t o 
min(

c

Bw

+
c

Bp

) = c ⋅min(
1

Bw

+
1

Bp

) , where Bp and Bw can be 

equal to B if no network contention exists. Therefore, the 
sum of Bw  and Bp  can represent the degree of network 
resource contention between PS and worker tasks. The larger 
value their sum is, the severer this contention is. As the net-
work resource contention exists in most cases as evidenced 
in Sect. 2.2, we simply assume (Bw + Bp) = X ∼ N(�, �2) 
which distributes in the interval [B, 2B]. By setting Bw and 
Bp as B ⋅ � when the network bandwidth is appropriately 
allocated, the optimization problem can be simplified as 
minimizing the expectation of the function below.

where X ∼ N(1.5B, 0.25B) . As depicted in Fig. 6, we observe 
that the general trend of the iteration time is to first decrease 
and then increase as the value of � increases. Accordingly, 
we empirically set the value of � as 0.4 by default, as it can 
achieve good DDNN training performance in most cases. We 
will validate our analysis of � above in Sect. 5.2.

4.2 � Implementation of Nebula

We implement a prototype of our Nebula  based on 
BytePS2, as BytePS is a generic communication sched-
uler for the mainstream DDNN training frameworks (e.g., 
MXNet, TensorFlow). Specifically, our prototype of Neb-
ula is implemented upon BytePS v0.2.4 with over 200 lines 
of C++ and Linux Shell codes. As shown in Fig. 7, Nebula 
is executed on each machine, which includes two modules 
elaborated as follows.

(7)E
(
1

�
+

1

X

B
− �

)
,

Nebula monitor Nebula monitor is actually the imple-
mentation of Algorithm 1. We process the json file generated 
by job profiling and obtain the layer index and start time of 
communication data. In a DDNN training job, data commu-
nication occurs frequently and can be classified into several 
types. To adapt to network resource contention, Nebula 
embeds the monitor inside the DDNN training framework, 
and invokes a trigger once one communication data starts or 
finishes its network transfer. Such a trigger further accesses 
the weights of PS tasks and worker tasks, and then Neb-
ula leverages the communication data information through 
profiling to update the task weights. With the updated task 
weights, Nebula is able to decide when and how to allocate 
network bandwidth for PS and worker tasks.
Nebula controller Nebula controller leverages the tc 

tool and cgroup to limit the network bandwidth of one 
specific process by automatically captured its pid. The cor-
responding cgroup and tc files are created as long as pid 
is obtained with the launch of PS and worker tasks. Once 
the task weights are changed and the network bandwidth 
limits are required to be enforced, a Shell script with two 
bandwidth values will be generated to modify the cgroup 
and tc files created before, so that the network bandwidth 
of PS and worker tasks can be limited accordingly.
Nebula offers two main advantages over the existing 

mainstream DDNN training frameworks as follows. (1) 
Nebula is the first to deal with the performance variation 
problem caused by network resource contention, through 
exploiting the characteristics of data communication (i.e., 
task weights, communication data classification) in DDNN 
training. (2) Nebula is a framework-independent tool to 
mitigate network resource contention by the adequate net-
work bandwidth allocation for co-located PS and worker 
tasks.

Fig. 6   Simulated relationship between the bandwidth allocation coef-
ficient � ∈ (0, 1] and DDNN training iteration time
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Fig. 7   Nebula implementation based on BytePS

2  https​://githu​b.com/byted​ance/bytep​s.

https://github.com/bytedance/byteps
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Nebula discussion We discuss a practical issue related 
to the implementation of Nebula, which is how to control 
the network communication with low overhead. Many recent 
works (e.g., P3 (Jayarajan et al. 2019), Geryon (Wang et al. 
2020c)) focus on network congestion and resource conten-
tion during DDNN training. They generally involve several 
modifications in the transport layer and network layer. Com-
pared with these works, Nebula exploits the tc tool to 
configure the traffic control in the Linux kernel with low 
overhead, which will be validated in Sect. 5.3. Nevertheless, 
as the model becomes more complex, the communication 
conditions will change more rapidly during DDNN training. 
To respond to such rapid network changes, frequently ration-
ing network bandwidth will inevitably bring critical network 
fluctuations and impact DDNN training performance. To 
ease such network fluctuations in the environment of rapid 
network changes, we plan to leverage the Software Defined 
Network (SDN) techniques to implement Nebula by allo-
cating network bandwidth for co-located PS and worker 
tasks of DDNN training jobs.

5 � Performance evaluation

In this section, we evaluate the effectiveness and runtime 
overhead of Nebula by carrying out a set of real-world 
experiments trained with four representative DNN models 
on Amazon EC2.

5.1 � Experimental setup

Cluster configurations We set up a DDNN training cluster on 
Amazon EC2 using up to 8 g3.8xlarge instances. Each EC2 
instance is equipped with 2 Tesla M60 GPUs, 32 vCPUs, 
244 GB SSD, and the network bandwidth ranging from 1 
to 5 Gbps. Specifically, the network bandwidth of instances 
is set as 1 Gbps when training AlexNet, ResNet50, and 
ResNet101. The network bandwidth of instances is set as 4 
Gbps when training VGG16 due to its large model parameter 
size. We launch two worker tasks on two GPUs and one PS 
task on the CPUs on each EC2 instance.

Workloads and datasets We choose four representative 
DNN models which are AlexNet, ResNet50, ResNet101, and 
VGG16. We select AlexNet because it is considered as one 
of the most influential DNN models in Computer Vision. 
VGG is a classical DNN model due to its large model param-
eter size, and ResNet is adopted as the de-facto standard 
for image classification. We use ImageNet 2012 (i.e., ILS-
VRC2012_img_val) as our training dataset.

Baseline We compare Nebula with BytePS  (Jiang 
et al. 2020) on MXNet (Chen et al. 2015) as Nebula is 

implemented based on BytePS (discussed in Sect. 4.2). For 
simplicity, we denote the baseline (i.e., BytePS on MXNet) 
as MXNet henceforth, and we configure the parameters in 
BytePS as default values and restrict the size of each com-
munication data packet less than 4 MB.

Metrics We illustrate the effectiveness of Nebula using 
three important metrics: the iteration execution time, the 
variance of iteration completion time, and the GPU and net-
work resource utilization of EC2 instances. In particular, we 
record the iteration completion time by monitoring the train-
ing progress of worker tasks on each instance and calculat-
ing the variance of the completion time among all instances 
within one iteration. The variance of iteration completion 
time indicates the performance variation of the DDNN train-
ing workload.

5.2 � Effectiveness of Nebula

Iteration execution time Figure  8 compares the execu-
tion time when training four representative DNN models 
with Nebula and MXNet. Each bar denotes the average 
iteration time of the first 100 iterations of all worker tasks. 
Moreover, we repeat the experiments for each DNN model 
for five times and illustrate the average iteration time with 
error bars of standard deviations. Specifically, we observe 
that Nebula shortens the average iteration completion 
time by 15.2–25.0% as compared to MXNet. The perfor-
mance improvement with Nebula is significant in training 
AlexNet (i.e., 25.0%). As a classical DNN model, AlexNet 
training can be accelerated by parallel computing signifi-
cantly (Krizhevsky et al. 2012) and will not be blocked by 
several special modules in DNN models (e.g., shortcuts). 
Accordingly, short computation time and over 60 MB 
model parameters lead to highly intense network resource 

Fig. 8   Average iteration execution time of four representative models 
trained with MXNet and Nebula 
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contention when training AlexNet, which can be effectively 
alleviated by our Nebula bandwidth allocation strategy.

Furthermore, we observe that the performance variation 
of iteration execution time (across iterations) with MXNet 
are greater than that with Nebula. The rationale is that 
Nebula alleviates the network contention and allocates 
appropriate network bandwidth to the co-located PS and 
worker tasks. Figure 9 compares the distribution of the 
iteration execution time during training ResNet101 with 
Nebula and MXNet. We observe that Nebula keeps the 
iteration execution time in an ideal time interval and thus 
accelerates the DNN training process. The average iteration 
time with Nebula is 3.45 s, while the average iteration 
time with MXNet is 4.35 s. Moreover, the standard devia-
tion with Nebula is only 0.21 s, which is much lower than 
0.63 s with MXNet. In sum, Nebula is able to reduce the 
performance variation of DDNN training across iterations 
as compared with MXNet.

Variations of iteration completion time We proceed to 
look into the DDNN training process on each EC2 instance 
by taking AlexNet as an example. We record the iteration 
completion time of each instance within one iteration in 
order to seek the root cause of the performance improve-
ment with Nebula. Specifically, we train AlexNet with 8 
g3.8xlarge EC2 instances, and we calculate the average com-
pletion time in each iteration and the time deviation across 
instances. Fig. 10 shows the deviations of the 8 instances 
from the average iteration time for the first 10 iterations. 
We observe that the time deviation with Nebula is stable 
within a small time interval (i.e., 0.2 s), while the outliers 
are scattered over seconds with MXNet. Accordingly, Neb-
ula achieves the stable iteration execution time across EC2 
instances within one iteration, as compared with MXNet.

Moreover, we examine the iteration completion time of 
all the workers (i.e., EC2 instances) when training different 
DNN models with 4 g3.8xlarge instances. Fig. 11 depicts 
the CDF of time variance values of all workers within one 

iteration for each DNN model. The variance of AlexNet 
and ResNet101 can be mitigated by Nebula significantly 
and there is relatively small performance improvement for 
VGG16, which is consistent with our experiment results 
in Fig. 8. Specifically, Nebula maintains the time vari-
ance less than 0.4 s for over 95% of iterations when train-
ing ResNet101, but the maximum time variance is still 
large. This is because many small parameters exist in 
ResNet101 which can cause the network fluctuations. As 
for the VGG16 model, the time variance is much greater 
as the communication time is over 1 second with MXNet. 
Nebula can reduce such a time variance down to 0.5 s for 
VGG16. In sum, Nebula can reduce the time variance by 
up to 65.2% (e.g., from 0.58 to 0.20 s in ResNet101), as 
compared with MXNet.

GPU and network resource utilization To examine 
whether Nebula can improve the resource utilization, we 

Fig. 9   Distribution of iteration execution time across iterations when 
training ResNet101 model with MXNet and Nebula 

Fig. 10   Iteration completion time of all workers within one iteration 
when training AlexNet model with MXNet and Nebula 

Fig. 11   CDF of the iteration completion time variance of all work-
ers within one iteration when training different DNN models with 
MXNet and Nebula 
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further take a closer look at the network throughput during 
the training of AlexNet and ResNet50. Fig. 12 shows the 
network uplink throughput of the PS and worker tasks co-
located in one instance. Specifically, the network resource 
contention is intense when training ResNet50 with MXNet 
as shown in Fig. 12a. The worker task occupies more net-
work bandwidth in the first iteration, and the next iteration 
starts without too much delay. The PS task occupies more 
network uplink bandwidth in the second iteration, and we 
can observe there is an apparent delay that lasts over 100 ms 
before the third iteration starts. This is because such network 
resource contention leads to a long completion time of push 
and thus postpones the pull operation further. With Neb-
ula, such intense network contention is alleviated because 
of our reasonable rationing strategy. As shown in Fig. 12b, 
the contention for the uplink bandwidth between the co-
located PS and worker tasks for AlexNet are severer than 
that for ResNet50 in each iteration. Our Nebula bandwidth 
allocation strategy alleviates the network resource conten-
tion among PS and worker tasks. We observe that Nebula 
completes almost three iterations while MXNet only com-
pletes two iterations within one second.

In addition, we calculate the average value and the stand-
ard deviation of the network throughput and GPU utilization 
of a worker node during the execution of the four DNN mod-
els, as summarized in Table 3. Nebula achieves both higher 
and more stable GPU utilization and network throughput in 
comparison to MXNet. FOr instance, Nebula improves the 
average network throughput by up to 30% (e.g., from 63.6 to 
82.5 MB/s for AlexNet). Similarly,Nebula also increases 
the average GPU utilization by 15.4–26.7% (e.g., from 17.7 
to 21.5% for ResNet50). As a result, the small deviation 
of resource utilization further validates the low variance of 
iteration execution time achieved by our Nebula bandwidth 
allocation strategy.

Sensitivity of � : In our experiments above, we simply set 
� as a constant value 0.4 by default. The value of � will 
impact the training performance according to our analysis 
in Sect. 4.1. To examine the DDNN training performance 

Fig. 12   Comparison of network throughput over time of when training a ResNet50 and b AlexNet models with MXNet and Nebula 

Fig. 13   Observed and fitted iteration execution time of AlexNet (the 
upper) and ResNet50 (the lower) model training by varying different 
values of � from 0.1 to 1

Table 3   The #average (#standard deviation) of network throughput 
and GPU utilization of a machine when training different DNN mod-
els with MXNet and Nebula 

Throughput (MB/s) GPU (%)

MXNet Nebula MXNet Nebula

AlexNet 63.6 (3.5) 82.5 (0.6) 2.2 (0.10) 2.9 (0.03)
ResNet101 61.2 (1.0) 74.3 (0.9) 18.1 (0.52) 21.8 (0.30)
ResNet50 53.1 (0.8) 65.1 (0.5) 17.7 (0.20) 21.5 (0.15)
VGG16 164.2 (3.9) 189.2 (1.6) 15.6 (0.37) 18.0 (0.13)
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with different values of � , we alter � as 11 sample values 
(i.e., 0.1, 0.2, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) when 
training ResNet50 and AlexNet. We then fit these 11 sample 
points with a Gaussian function, as the expected iteration 
time is associated with a Gaussian function in the math-
ematical expression. As shown in Fig. 13, the fitted curve on 
the model ResNet50 (the lower one) is accordant with our 
simulation curve of � in Fig. 6 (Sect. 4.1), while the fitted 
curve on AlexNet is basically consistent with our simulated 
curve. We observe that the best value of � is located in the 
interval from 0.3 to 0.6. The sensitivity of � obtained on 
other DNN models shows the similar characteristics. 0.4 is 
an appropriate value of � because it can effectively alleviate 
the network resource contention in most cases. Even 0.4 
does not perform very well on several DNN models, we can 
manually tune it online without incurring much performance 
overhead.

Different available network bandwidth To obtain comple-
mentary insights and verify the effectiveness of Nebula, 
we conduct another experiment to evaluate the DDNN train-
ing performance under different available network band-
width for training machines. Specifically, we train AlexNet 
with different available bandwidth ranging from 1 Gbps to 
5 Gbps. As shown in Fig. 14, the DDNN training speed 
with Nebula consistently outperforms that with MXNet. 
The performance improvement (i.e., 29.6–47.6%) varies as 
the network bandwidth increases. In more detail, the train-
ing speedup can reach up to 47.6% when the available net-
work bandwidth is 2 Gbps, while the training speed is only 
improved by around 30% with the bandwidth setting as 1 
Gbps and 5 Gbps. Accordingly, our analysis above indicates 
that Nebula can achieve better performance gain when the 
available network bandwidth resource is stringent (i.e., B = 1 
– 5 Gbps as the network contention exists), while the DDNN 
training performance with Nebula gradually converges to 
that with MXNet when the available network bandwidth 

resource is sufficient (i.e., B = 5–10 Gbps as the network 
contention is mitigated) in our experimental setup.

5.3 � Runtime overhead of Nebula

We first estimate the computation overhead of Nebula dur-
ing DDNN training. According to Algorithm 1, the compu-
tation time of Nebula can be determined by the number 
of communication data packets which is denoted as nump , 
and it is mainly associated with the DNN model size and 
the cluster scale. Even for a large DNN model like VGG16, 
the computation complexity of Nebula is within O(nump) , 
where nump = 105 . Second, Nebula controller allocates the 
network bandwidth for PS and worker tasks, which impacts 
the network performance during DDNN training. Through 
analyzing the log file of Nebula, we find that the network 
bandwidth of PS and worker tasks is enforced for less than 
four times within one iteration, and the network bandwidth 
of PS and worker tasks is limited twice in most cases. Also, 
we can adjust the weight threshold w0 (i.e., 1 by default) 
to control the number of bandwidth limitations enforced 
for PS and worker tasks. Finally, we examine the profiling 
overhead of DDNN training workloads in Nebula. The 
job profiling time equals to the DDNN training time for the 
first 5 iterations, which are 17.5, 16.6, 11.0, and 20.5 s for 
AlexNet, ResNet101, ResNet50, and VGG16, respectively, 
in our experiment. In general, the DDNN training workloads 
are periodically executed and contain thousands of train-
ing iterations. As a result, the overall runtime overhead of 
Nebula above is acceptable in practice.

6 � Related work

6.1 � Mitigating network resource contention 
in DDNN training

There have been several works on mitigating network con-
tention in DDNN training. The contention among the co-
located tasks is actually the competition of network resources 
on one GPU machine. It commonly occurs in the multi-job 
(e.g., multi-tenant) environments and the resource contention 
will prolong the whole training process when sharing net-
work resources. To address such an issue, MLNet (Mai et al. 
2015) has proposed the network prioritization to arbitrate 
the access to network resources. A more recent work (Wang 
et al. 2020b) proposes a communication contention-aware 
scheduling algorithm (Ada-SRSF) based on the execu-
tion of DDL jobs in the form of Directed Acyclic Graphs 
(DAGs). For the cloud-based environment, PLink (Luo et al. 
2020) can efficiently generate aggregation plans for DDNN 
training jobs to adapt to the changing network conditions. 
While these works above require modifications to the DNN 

Fig. 14   Comparison of DDNN training performance of AlexNet with 
various available network bandwidth ranging from 1 Gbps to 5 Gbps 
for MXNet and Nebula 
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training framework, Nebula is actually a supplementary 
tool of network bandwidth allocator, which does not require 
any changes to the training framework. Similarly, Tensor-
lights (Huang et al. 2019) is an end-host traffic scheduler to 
mitigate the inter-job network contention. Compared with 
its time slice rotation strategy to allocate network resources 
among jobs, Nebula applies a quota-based allocation strat-
egy and adjusts it with the change of network conditions and 
mitigates the intra-job network resource contention.

Moreover, many previous works are dedicated to deal-
ing with the network bottleneck of PS, which is caused by 
the competition of network resources on PS among worker 
tasks. For instance, Poseidon (Zhang et al. 2017) employs a 
decentralized architecture to transfer large layers to alleviate 
the PS network bottleneck. R2SP (Chen et al. 2019) focuses 
on how to share the PS bandwidth resources by time division 
multiplexing and thus to fully utilize the network resources 
of PS. While such PS network bottleneck can be mitigated in 
the co-located PS configuration, Nebula allocates the net-
work bandwidth dynamically for PS and worker tasks during 
the training process and aims to fully utilize the network 
resources of GPU machines. In addition, Optimus (Peng 
et al. 2018) adequately adjusts the number and placement 
of workers and PS online, which can mitigate the network 
resource contention from the aspect of PS and worker con-
figurations. A more recent work (Berral et al. 2020) employs 
a combination of two machine learning algorithms to explore 
behaviors/patterns of containers and allocate CPU/memory 
resources dynamically, but the network resource is ignored. 
These prior works above are mainly deployed with the non-
co-located PS configuration. In contrast, Nebula focuses 
on the common DDNN training environment (i.e., in the 
widely-used co-located PS configuration) and solving the 
intra-job network resource contention.

6.2 � Communication scheduling of DDNN training

To optimize the DDNN training performance through net-
work communication, a number of works are devoted to 
overlapping the computation and communication by design-
ing advanced communication scheduling strategies. These 
scheduling strategies are mainly to answer what granular-
ity the communication data packets belong to and when to 
transfer the communication data packets.

To answer the first question, i.e., what granularity the 
communication data packets belong to, Poseidon (Zhang 
et al. 2017) sets the gradient data of one layer as the unit 
of communication data, while P3 (Jayarajan et al. 2019) 
partitions a large layer into several small parts to further 
increase the performance benefits of overlapping. Simi-
larly, our implementation of Nebula is based on the layer 
slicing operations to obtain such performance benefits of 
overlapping. For the All-Reduce training architecture, 

MG-WFBP  (Shi et  al. 2019) merges the layer data to 
decrease the communication overhead, and a more recent 
work (Shi et al. 2020) focuses on solving a trade-off optimi-
zation problem to answer whether to merge gradient data or 
not in sparsification.

As for the second question, i.e., when to transfer the 
communication data packets, Poseidon (Zhang et al. 2017) 
specifies the dependency among different layers within one 
iteration to maximize the performance benefits of overlap-
ping. With the particular focus on overlapping between two 
adjacent iterations, P3 (Jayarajan et al. 2019) attempts to 
overlap the communication in the current iteration and the 
forwarding propagation in the next iteration. It schedules 
the transmission of data packets by a priority-based strategy. 
ByteScheduler (Peng et al. 2019) introduces a data transfer 
window to fully utilize the network bandwidth, which in 
turn weakens the preemption ability of the data packets with 
high priority. Different from the prior works above, Nebula 
presents how to ration network resources for co-located PS 
and worker tasks to mitigate the network contention, which 
mainly reduces the communication time from the aspect of 
the network links. In addition, we plan to extend Nebula 
to support several recent orthogonal works on network-level 
flow scheduling (e.g., (Wang et al. 2020c)).

6.3 � Bandwidth allocation for VMs and applications

There have been many previous works on the bandwidth 
allocation for virtual machines (VMs) and applications. For 
example, Falloc (Guo et al. 2015) models the datacenter 
bandwidth allocation as a cooperative game to achieve the 
VM-based fairness in datacenter networks. AppBag (Shen 
et al. 2020) is an application-aware bandwidth guarantee 
framework. Unlike the complicated methods above includ-
ing the asymmetric Nash bargaining solution in Falloc, 
JCAB (Wang et al. 2020a) based on Lyapunov optimization 
and Markov approximation, and a recent work (Panayiotou 
et al. 2019) based on reinforcement learning, Nebula pro-
poses a simple heuristic bandwidth rationing algorithm to 
adjust the network bandwidth for co-located PS and worker 
tasks, thereby achieving good DDNN training performance. 
Moreover, these prior works above usually require amounts 
of historical data, and AppBag (Shen et al. 2020) allocates 
the accurate bandwidth to VMs with one-step-ahead traffic 
information. In contrast, Nebula only requires the real-
time available network bandwidth data, which can be gen-
erated during the training process and be captured on each 
GPU machine with a low cost. In addition, different from the 
implementation on the emulated network (Xu et al. 2017) 
and the SDN environment, Nebula and Falloc are light-
weight and implemented based on the tc controller.
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7 � Conclusion and future work

To mitigate the network resource contention and alleviate 
the performance variations of DDNN training jobs, this 
paper presents the design and implementation of Nebula, 
a simple yet effective network bandwidth resource allo-
cation strategy by monitoring the weights of co-located 
PS and worker tasks. Specifically, Nebula first acquires 
the communication data information including the layer 
index and its class based on job profiling. Nebula then 
calculates the weights of two co-located tasks according 
to the class information of communication data trans-
ferred by PS and worker tasks. By comparing the two task 
weights, Nebula adequately rations the network band-
width resource online for co-located PS and worker tasks, 
so as to speed up the performance of DDNN training jobs. 
We implement a prototype of Nebula based on BytePS, 
which is an open-source general distributed training 
framework. We conduct extensive prototype experiments 
by training representative DNN models on Amazon EC2. 
Our experiment results demonstrate that Nebula is able 
to reduce the iteration time of a DDNN training job by up 
to 25%, and improve the cluster resource utilization by up 
to 30% in comparison to MXNet.

As our future work, we plan to extend Nebula in two 
directions: (1) incorporating the factor of power consump-
tion into our bandwidth allocation strategy, and (2) allocat-
ing the network bandwidth for PS and worker tasks using 
the SDN techniques.
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