
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing (2021) 3:171–185
https://doi.org/10.1007/s42514-021-00064-x

REGULAR PAPER

Rationing bandwidth resources for mitigating network resource
contention in distributed DNN training clusters

Qiang Qi1 · Fei Xu1 · Li Chen2 · Zhi Zhou3

Received: 31 August 2020 / Accepted: 6 February 2021 / Published online: 2 March 2021
© China Computer Federation (CCF) 2021

Abstract
Distributed deep neural network (DDNN) training becomes increasingly compelling as the DNN model gets complex and
the dataset grows large. Through an in-depth analysis of the latest Microsoft GPU cluster trace, we show that the co-located
Parameter Server (PS) configuration is not uncommon in production DDNN training clusters, which inevitably causes
intense network resource contention among the co-located PS and worker tasks. Our motivation experiments on Amazon
EC2 further show that such network resource contention brings severe performance variation to DDNN training jobs. While
existing works largely mitigate the inter-job network resource contention, the intra-job (i.e., task-level) network resource
contention among the co-located PS and worker tasks has received comparably little attention. To tackle such performance
issues, in this paper, we design and implement Nebula, a Network bandwidth resource allocation strategy for DDNN train-
ing tasks, in order to mitigate the network resource contention and alleviate the performance variation of DDNN training
jobs. Nebula monitors the weights of co-located PS and workers and rations the network bandwidth resources for the two
tasks by comparing the corresponding task weights. We implement a prototype of Nebula and conduct extensive prototype
experiments with representative DNN models trained on Amazon EC2. Our experiment results demonstrate that Nebula
can reduce the iteration time of a DDNN training job by up to 25% and improve the cluster resource utilization by up to 30%
in comparison to MXNet, yet with practically acceptable runtime overhead.

Keywords  Distributed DNN training · Bandwidth allocation · Network resource contention

 *	 Fei Xu
	 fxu@cs.ecnu.edu.cn

	 Qiang Qi
	 51184506067@stu.ecnu.edu.cn

	 Li Chen
	 li.chen@louisiana.edu

	 Zhi Zhou
	 zhouzhi9@mail.sysu.edu.cn

1	 Shanghai Key Laboratory of Multidimensional Information
Processing, School of Computer Science and Technology,
East China Normal University, Shanghai, China

2	 School of Computing and Informatics, University
of Louisiana at Lafayette, Lafayette, USA

3	 Guangdong Key Laboratory of Big Data Analysis
and Processing, School of Computer Science
and Engineering, Sun Yat-sen University, Guangzhou, China

1  Introduction

Distributed deep neural network (DDNN) training has
received widespread attention recently, as it is able to train
the DNN models in parallel with different approaches such
as data parallelism (Mayer and Jacobsen 2020), model
parallelism (Mirhoseini et al. 2017), and pipeline paral-
lelism (Narayanan et al. 2019). Among these parallelism
methods above, data parallelism with the Parameter Server
(PS) architecture has been widely adopted in production
DDNN training clusters (Gu et al. 2019) of big companies
like Google and Microsoft. To reduce the intermediate data
movement and achieve good training performance and scal-
ability, the co-located PS configuration is set as the default
(i.e., not uncommon) in popular DDNN training frameworks
(e.g., MXNet) (Luo et al. 2018). Our analysis of the latest
Microsoft GPU cluster (Jeon et al. 2019) in Sect. 2.1 further
shows that such a co-located PS configuration is deployed on
around 77% of machines. By co-locating the PS and worker
tasks on the same machine, however, the widely-adopted

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-021-00064-x&domain=pdf

172	 Q. Qi et al.

1 3

co-located PS configuration can cause severe network
resource contention among PS and worker tasks, thereby
degrading the DDNN training performance.

To alleviate the network resource contention and speed
up DDNN training performance, there have been many
research works dedicated to reducing the network traffic,
such as model quantization (Guptaand et al. 2015) and gradi-
ent sparsification (Lin et al. 2017). Nevertheless, reducing
the network traffic cannot fundamentally solve the network
resource contention problem, simply because the compres-
sion of communication data (i.e., model parameters, gra-
dient data) can bring extra computation overhead and the
compressed data is still likely to be large. Meanwhile, there
have also been recent works to mitigate the inter-job net-
work resource contention, which is mainly caused by the
contention of network resources among multiple jobs co-
located on the same machine. Such an issue can largely be
solved by scheduling or placing the DDNN training jobs
to the appropriate machines in GPU clusters (Wang et al.
2020b), while considering several other key factors such
as fairness (Kshiteej et al. 2020) and interference (Ukidave
et al. 2016). However, there has been scant research atten-
tion paid to the intra-job (i.e., task-level) network resource
contention among the co-located PS and worker tasks of one
DDNN training job.

The intra-job network resource contention in the co-
located PS configuration can cause severe performance
variation to DDNN training jobs. As evidenced by our
motivation experiments in Sect. 2.2, the iteration time for
the ResNet152 model trained in the co-located PS configura-
tion can vary five times larger than that in the non-colocated
PS configuration, leading to a comparatively low network
resource utilization and thus prolonging the DDNN train-
ing time as discussed in Sect. 2.3. By analyzing the network
communication mechanism of MXNet (Chen et al. 2015),
we further confirm that such intense intra-job network
resource contention can be caused by the uneven distribution
of model parameters among different PS, which inevitably
makes the communication operations of co-located PS and
worker tasks compete for network uplink or downlink band-
width resources on the same machine.

To deal with such performance issues above, in this
paper, we design Nebula, a simple yet effective network
bandwidth allocation strategy to mitigate the network
resource contention and alleviate the performance variation
of DDNN training jobs. Specifically, we first conduct a theo-
retical analysis of the performance variation caused by the
intra-job network resource contention among the co-located
PS and worker tasks. Based on such an in-depth analysis,
we further design our Nebula strategy to adequately allo-
cate the network bandwidth online for the co-located PS
and worker tasks by monitoring the corresponding task
weights. We implement a prototype of Nebula consisting

of a Nebula monitor and a Nebula controller. With the
aim of minimizing the training iteration time, the Neb-
ula controller adequately rations the network bandwidth
resources for PS and workers tasks by comparing the task
weights calculated by the Nebula monitor. To the best of
our knowledge, Nebula is the first attempt to analyze and
solve the intra-job network resource contention among the
co-located PS and worker tasks during the execution of a
DDNN training job.

We evaluate the effectiveness and runtime overhead of
Nebula with extensive prototype experiments on a cluster
of g3.8xlarge instances in Amazon EC2. Our experimental
results with four representative DNN models (i.e., AlexNet,
ResNet101, ResNet50, and VGG16) show that Nebula
can reduce the iteration time of DDNN training jobs by
15.2–25.0%, and improve the average utilization of CPU
and network cluster resources by up to 30%, as compared
with MXNet. In addition, Nebula incurs acceptable runt-
ime overhead in practice.

The rest of the paper is organized as follows. Section 2
illustrates the severity of DDNN training performance varia-
tion caused by network resource contention in the co-located
PS configuration. Through analyzing such a performance
variation problem in Sects. 3, 4 further designs and imple-
ments Nebula to adequately ration network bandwidth
resources for DDNN training tasks, so as to speed up the
performance of DDNN training jobs. Section 5 extensively
evaluates the performance gains and runtime overhead of
Nebula. We discuss our contribution in the context of
related work in Sect. 6. Finally, we conclude this paper in
Sect. 7.

2 � Background and motivation

In this section, we first analyze the DDNN training perfor-
mance variation caused by the network resource contention
in the co-located PS configuration. We then present an illus-
trative example to show how to speed up DDNN training
performance simply by rationing adequate network band-
width resources for PS and worker tasks.

2.1 � Co‑located PS configuration in DDNN training
clusters

Training DNN models in distributed manner is becoming
increasingly compelling, as the model gets complex and
the training dataset becomes large. In general, each DDNN
training job is comprised of two types of training tasks (i.e.,
PS tasks and worker tasks) running in the GPU cluster. For
each training iteration, the PS tasks execute collection
and broadcast operations, which collect the gradient data
from worker tasks and send the updated model parameters

173Rationing bandwidth resources for mitigating network resource contention in distributed…

1 3

to worker tasks, respectively. Correspondingly, the worker
tasks execute push and pull operations, which send the
gradient data to PS tasks and receive the updated model
parameters from PS tasks, respectively. To reduce the data
movement and achieve good DDNN training performance
and scalability, the co-located PS configuration (i.e., co-
locating PS and worker tasks on the same machine) is the
default in many DDNN training frameworks (e.g., MXNet).
In more detail, each machine hosts a PS task and multiple
worker tasks, and thus the PS task shares network and com-
putation resources with the worker tasks in the co-located
PS configuration.

To understand the DDNN training performance benefits
with the co-located PS configuration, we conduct a real-
world experiment by training three traditional image-classi-
fication DNN models in a 16-node GPU cluster. As shown
in Table 1, the DDNN training rate is steadily increased as
we add more co-located PS tasks to DDNN training jobs, by
varying the co-located PS number from 8 to 16. The ration-
ale is that, the co-located PS task can make full use of CPU
and intra-machine bandwidth resources to reduce the data
movement over the network. Accordingly, each GPU device
hosts a worker task and the CPU processors host the PS task
on one GPU machine.

To validate the prevalence of the co-located PS configu-
ration, we further estimate the number of co-located PS by
analyzing a DDNN training job trace from a Microsoft GPU
cluster (Jeon et al. 2019). As shown in Fig. 1, we observe
that over 80% of jobs are configured with four or more co-
located PS (with workers). Furthermore, we infer that the
co-location of PS and worker tasks occurs when the CPU

utilization of the machine exceeds 50% (Jeon et al. 2019).
We find that the co-located PS configuration is deployed on
around 77% of the machines in the Microsoft GPU cluster.
Our analysis above on the Microsoft cluster trace demon-
strates that the co-located PS configuration is not uncommon
in production DDNN training clusters.

2.2 � Understanding performance variation caused
by network resource contention

Though the co-located PS configuration has been widely
adopted in production DDNN training clusters, it inevita-
bly brings severe performance variation to DDNN train-
ing jobs. To illustrate that, we conduct another motivation
experiment by training ResNet50, ResNet152, and VGG16
on a 2-node cluster with the co-located PS configuration
(i.e., each machine hosting one PS task and one worker task).
As shown in Fig. 2, we observe that the iteration time1 for
DDNN training fluctuates wildly, and the coefficient of vari-
ation (CV) of DDNN training iteration time for the three
models is around 0.1, which is 3–5 times larger than the
CV obtained in the non-colocated PS configuration. Accord-
ingly, we conjecture that such a severe performance varia-
tion is mainly caused by the network resource contention
between the co-located PS and worker tasks.

To understand the performance variation of DDNN
training, we further analyze the network communication
mechanism of MXNet to show how the network resource
contention of PS and worker tasks occurs. In particular, we
neglect the intra-machine data transfer operations and only
focus on the operations of PS and worker tasks consuming
network resources. As depicted in Fig. 3, we observe that
the PS task completes the collection operation for its
gradient data earlier than the push operation of the worker
task (pushing gradient data to PS tasks on other machines),
which inevitably leads to the broadcast operation and the

Table 1   DDNN training performance with different co-located PS
configurations in a 16-node GPU cluster

Co-located DDNN training rate (samples/s)

PS number ResNet50 ResNet152 VGG16

8 32.2 16.6 7.0
12 37.1 12.7 9.2
16 49.9 24.1 11.8

Fig. 1   CDF of the co-located PS number for DDNN training jobs in a
Microsoft GPU cluster trace

Fig. 2   Distribution of the iteration time for training representative
DNN models

1  We consider the iteration time as the difference of end time of
pull operations for two adjacent iterations (Zhang et al. 2017).

174	 Q. Qi et al.

1 3

push operation contending for the uplink bandwidth of the
machine for a certain period of time.

We then summarize two conditions that can cause net-
work resource contention of co-located PS and worker tasks
as follows.

(a)	 Broadcast starts during the process of push.
(b)	 Pull begins during the execution of collection.

In general, the conditions (a) and (b) occur within one train-
ing iteration, and Fig. 3 belongs to the condition (a) above.
As the iteration time is mainly determined by the push and
pull operations of the worker task, such network resource
contention inevitably prolongs the DDNN training time and
brings severe variation to the iteration time of worker tasks
within one iteration and across iterations. In addition, the
overall network resource utilization and GPU utilization are
correspondingly decreased. We will formally analyze such
network resource contention in Sect. 3.1.

As a result, we focus on mitigating the performance vari-
ation of DDNN training jobs caused by network resource
contention, through adequately rationing network bandwidth
resources for co-located PS and worker tasks. In particular,
we do not consider the frameworks with a global barrier
(e.g., Tensorflow (Abadi et al. 2016)) due to its strict limita-
tion of parameter synchronization.

2.3 � An illustrative example

With the aim of mitigating the network resource conten-
tion as discussed above, we propose a simple yet effective
network bandwidth allocation strategy named Nebula,
in order to ration network bandwidth resources for co-
located PS and worker tasks. Nebula is able to deal with
the network resource contention and regulate the network
throughput to enhance the efficiency of network bandwidth
resources, thereby speeding up DDNN training.

To illustrate the performance benefits obtained by
Nebula, we conduct a motivation experiment by train-
ing ResNet50 on a 2-node GPU cluster, and each node is
a g3.4xlarge EC2 instance. As observed in Fig. 4, MXNet
can only train 5 iterations over 10 s, while Nebula can
complete 6 iterations within 10 s. In more detail, Neb-
ula can achieve a faster DDNN training rate of ResNet50
(with 19.6 samples/s) by 18.8% as compared with that of
MXNet (with 16.5 samples/s). This is because Nebula
adequately allocates network bandwidth resources for
the broadcast operation (in PS tasks) and the push
operation (in worker tasks), while MXNet allows the two
operations contending for network bandwidth resources
arbitrarily. Accordingly, Nebula achieves higher overall
network resource utilization as compared with the MXNet,
as depicted in Fig. 4, so that the DDNN training perfor-
mance can be significantly improved by Nebula.

Summary The network resource contention of co-
located PS and worker tasks inevitably brings severe per-
formance variation to DDNN training jobs. Judiciously
rationing network bandwidth resources for PS and worker
tasks can alleviate such network bandwidth contention and
significantly speed up the performance of DDNN training
jobs.

3 � Problem analysis and formulation

In this section, we first analyze the root cause of DDNN
training performance variation. Then, we build an analytical
model to formulate the completion time of each communica-
tion operation and the iteration time in a DDNN training job.
The key notations of our DDNN training performance model
are summarized in Table 2.

Collec�on

Push

Broadcast

Pull

PS Task:

Worker Task:

Network communica�on in one machine:

Time

Network resource conten�on
Opera�ons consuming downlink bandwidth
Opera�ons consuming uplink bandwidth

Collec�on

Push

Broadcast

Pull

PS Task:

Worker Task:

Network communica�on in one machine:

Time

Fig. 3   Network resource contention of PS and worker tasks in one
machine with the co-located PS configuration

Fig. 4   Comparison of network throughput achieved by Nebula and
MXNet during training ResNet50

175Rationing bandwidth resources for mitigating network resource contention in distributed…

1 3

3.1 � Analyzing DDNN training performance
variation

We consider a DDNN training job executed in a GPU clus-
ter (denoted by M ) with the co-located PS configuration,
and each machine contains one PS task and multiple worker
tasks. One of the worker tasks serves as the master worker
task (Luo et al. 2020), which takes charge of inter-machine
communication over the network.

In fact, the root cause of network resource contention in
the co-located PS configuration is that the model parameters
are unevenly distributed among different PS. The rationale
is that, such an uneven parameter distribution will definitely
lead to different completion time of communication opera-
tions of PS and worker tasks, thereby resulting in the two
conditions for network resource contention enumerated in
Sect. 2.2. Such resource contention can get severer and con-
verge to a worst contention case during the execution of a
DDNN training job, which will be analyzed as follows.

We assume a case [i.e., condition (a) in Sect. 2.2] that the
pull operation is longer than the broadcast operation
by � , and also the communication operations in each itera-
tion i spend the same execution time, which can be formu-
lated as

where Sop
m,i

 and Eop

m,i
 denote the start and end time of four com-

munication operations including push and pull for worker
tasks, and collection and broadcast for PS tasks. As
shown in Fig. 5, the pull and collection operations
first contend for the network downlink bandwidth. Suppose
PS and worker tasks equally share the bandwidth resource,
such downlink bandwidth contention between pull and
collection operations can last for 2� . In the next itera-
tion, the broadcast operation starts during the process

T = E
op

m,i
− S

op

m,i
, op ∈ {����, ����}

T + � = E
op

m,i
− S

op

m,i
, op ∈ {���, ���}

of push operation (i.e., condition (a) in Sect. 2.2) and thus
contends for the network uplink bandwidth. Such resource
contention will last for 4� . In such a way, each communica-
tion operation in the following iterations will spend more
time to transfer the same amount of data.

The worst case of such resource contention discussed
above is that the push operation fully overlaps with the
broadcast operation. The rationale is that, the Bulk
synchronous parallel (BSP) mechanism mandates the PS
task to collect all the gradient data from push operations
of worker tasks, before starting the broadcast operation. In
such a worst case, the network resource contention will last
for almost the total iteration time (i.e., 4T), while the original
iteration time without any network resource contention is
2T + 2� . As a result, the network resource contention in co-
located PS configuration results in the severe performance
variation within one iteration and across iterations as illus-
trated in Sect. 2.2.

3.2 � Modeling iteration time of DDNN training jobs

Before modeling the iteration time, we first analyze the start
time and end time for four communication operations, which
are push and pull for worker tasks, and collection
and broadcast for PS tasks. In particular, we neglect the
intra-machine communication time and the aggregation time

Table 2   Key notations of
DDNN training performance
model

Notation Definition

M Set of machines in the GPU cluster
s Size of the model parameters
B Available uplink bandwidth in one machine
Bp,Bw

Average uplink bandwidth for the PS task during the transmission of
broadcast and collection, and that for the worker task during
the transmission of push and pull

S
op

m,i
Start time of one operation op in the i-th iteration on machine m

E
op

m,i
End time of one operation op in the i-th iteration on machine m

c
op
m Communication data size of one operation op in machine m
Tm,i The i-th iteration time on machine m
Ti The i-th iteration time of a DDNN training job

push

clt

push

PS:

Worker:

Network communica�on in one machine:
Time

Network resource conten�on

clt

pull

bct bct

pull

clt

pull

bct
T T T

T+ε T+ε T+ε T+ε
push

T+ε

bct

Fig. 5   Severity analysis of network resource contention in the co-
located PS configuration. bct and clt denote the abbreviations for
the broadcast and collection operations, respectively

176	 Q. Qi et al.

1 3

of gradient data. As the master worker task equally coordi-
nates network resources on a machine, the worker tasks have
the same iteration time on the same machine.

As one iteration i starts from the ending of pull opera-
tion for iteration i − 1 , we formulate the start time of push
and broadcast operations using the end time of iteration
i − 1 . Specifically, the push operation cannot start until
the worker has completed the backward propagation. The
broadcast operation begins once the PS task has fin-
ished the collection operation, when the workers have
pushed the gradient data to the PS task. Accordingly, the
start time of push operation Spush

m,i
 and broadcast opera-

tion Sbct
m,i

 is given by

where Epull

m,i−1
 denotes the end time of pull operation in

iteration i − 1 on machine m, and �m,i denotes the calculation
time of forward propagation and backward propagation. cpushn
denotes the communication data size of push operation on
machine n, and Bw ∈ (0,B] denotes the average network
uplink bandwidth allocated to the worker task on one
machine during the process of push operation. Accordingly,
c
push
n

Bw

 denotes the communication time of push operation on
machine n.

To obtain the end time Epull

m,i
 of pull operation in itera-

tion i on machine m, we proceed to formulate the end time
of broadcast operations, as Epull

m,i
 is determined by the

slowest broadcast operations on the other machines n
(i.e., n ≠ m ), which is given by

where Ebct
n,i

 denotes the end time of broadcast operation
in iteration i on machine n. cbct

m
 denotes the communication

data size of broadcast operation on machine m, and
Bp ∈ (0,B] denotes the network uplink bandwidth allocated
to the PS task on one machine during the process of
broadcast operation. Accordingly, c

bct
m

Bp

 denotes the com-

munication time of broadcast operation on machine m.
By substituting Eqs. (1) into (2), we can obtain the end

time Epull

m,i
 of pull operation in iteration i in terms of the end

time of pull operation in the last iteration i − 1 and uplink
bandwidth for PS and worker tasks, which is given by

(1)
S
push

m,i
= E

pull

m,i−1
+ �m,i,

Sbct
m,i

= max
n∈M,n≠m

(
S
push

n,i
+

c
push
n

Bw

)
,

(2)
E
pull

m,i
= max

n∈M,n≠m
Ebct
n,i
,

Ebct
m,i

= Sbct
m,i

+
cbct
m

Bp

,

(3)
E
pull

m,i
= max

n,q

(
cbct
n

Bp

+
c
push
q

Bw

+ E
pull

q,i−1
+ �q,i

)
,

∀n, q ∈ M, n ≠ m, q ≠ n

where the first term of Eq. (3) denotes the broadcast time
on machine n, and the second term denotes the communica-
tion time of push operation on machine q. The third term
and the fourth term denote the end time of pull operation
in iteration i − 1 and the calculation time in iteration i on
machine q, respectively.

To speed up DDNN training process and mitigate its
performance variation, our objective turns out to be mini-
mizing each iteration time for DDNN training jobs (i.e.,
the training time of the i-th iteration given the end time of
the last iteration i − 1 ). In particular, the DDNN training
time Ti for iteration i is determined by the machine that has
the longest execution time (i.e., the largest Tm,i,∀m ∈ M ).
Accordingly, our optimization problem can be formulated
in Eq. (4) as below.

where A = �q,i + E
pull

q,i−1
− E

pull

m,i−1
 denotes a value that depends

on the end time of the iteration i − 1 and the calculation time
of iteration i. The first two terms denote the data communi-
cation time on the slowest machines, which can be signifi-
cantly influenced by the network resource contention during
DDNN training. Constraint (5) indicates that the average
uplink bandwidth which one task can consume should be a
positive value and less than the available uplink bandwidth
B. Both Bp and Bw can be equal to B if there is no network
resource contention during the data communication of
DDNN training. Constraint (6) implies that the cluster has
two machines at least and m can be equal to q under the
circumstance.

Though our optimization problem can be formulated in
a closed-form expression, Eq. (4) is still in the form of a
min-max optimization problem (Russell and Norvig 2020).
Our optimization problem is not continuous and indiffer-
entiable. Accordingly, our bandwidth allocation problem
cannot be solved by a traditional gradient optimization
approach, and thus we turn to designing a bandwidth allo-
cation heuristic in Sect. 4 to solve such a performance
optimization problem.

(4)

min
Bp,Bw

Ti = min
Bp,Bw

(
max
m∈M

Tm,i
)

= min
Bp,Bw

(
max
m∈M

(
E
pull

m,i
− E

pull

m,i−1

))

= min
Bp,Bw

(
max

m,n,q∈M

(cbct
n

Bp

+
c
push
q

Bw

+ A
))

(5)s.t. Bp,Bw ∈ (0,B],

(6)n ≠ m, q ≠ n, ∀m, n, q ∈ M,

177Rationing bandwidth resources for mitigating network resource contention in distributed…

1 3

4 � Rationing network bandwidth resources
for DDNN training tasks

Based on our problem analysis and formulation above, we
proceed to design Nebula, a network bandwidth alloca-
tion strategy for co-located PS and worker tasks in order to
mitigate network resource contention.

4.1 � Design of network bandwidth allocation
strategy

We design Nebula strategy in Algorithm 1 by following
a quite simple and intuitive heuristic: We leverage the task
weight to ration adequate network bandwidth resources
to the co-located PS and worker tasks once the network
resource contention is severe. Nebula aims to answer
when and how to allocate the network bandwidth for the
co-located PS and worker tasks. In particular, Nebula miti-
gates the resource contention by focusing on the network
uplink bandwidth, and accordingly the resource contention
on network downlink bandwidth will also be alleviated.

Algorithm 1 Nebula: Network bandwidth resource
allocation strategy for co-located PS and worker tasks.
Input: Available bandwidth of one machine B, the network

bandwidth allocation coefficient θ, and the weight thresh-
old w0.

1: Initialize: A map storing the classification of commu-
nication data (including model parameters and gradient
data): mp ← 〈null, null〉; Weights of PS and worker tasks
for network uplink bandwidth: ww ← 0, wp ← 0; Flag of
network bandwidth allocation for PS tasks and worker
tasks: flag ← 0;

2: Obtain the communication data information through pro-
filing of DDNN training jobs;

3: Classify the communication data according to the start
time of data transfer, and store the layer index of com-
munication data and its class into mp;

4: while one communication data with the layer index i
starts or finishes its network transfer do

5: if the data i belongs to the worker task then
6: ww ← ww ± e−mp[i];
7: else
8: wp ← wp ± e−mp[i];
9: end if
10: if wp − ww ≥ w0 && flag �= 1 then
11: Cancel the bandwidth limit of broadcast operation

and limit push operation bandwidth by B · θ;
12: flag ← 1;
13: else if ww − wp ≥ w0 && flag �= 2 then
14: Cancel the bandwidth limit of push operation, and

limit broadcast operation by B · θ;
15: flag ← 2;
16: end if
17: end while

 Specifically, Nebula has three input parameters includ-
ing the available network bandwidth B of one machine, the

bandwidth allocation coefficient � ∈ (0, 1] , and a weight
threshold w0 for deciding when to allocate network band-
width for PS and worker tasks. In particular, B ⋅ � indicates
the value to limit (i.e., how to allocate) network bandwidth
for the PS or worker task during DDNN training. Before
the execution of a DDNN training job, we first initialize a
map data structure �� = ⟨����, �����⟩ to store the class
information of each communication data (i.e., model param-
eters and gradient data), where ���� denotes the layer index
of the communication data. We also initialize the weights
for PS and worker tasks (i.e., the task weight is the sum
of weights of communication data packets carried by the
task), as well as a flag that indicates whether the network
bandwidth is appropriately allocated on the PS or worker
tasks (line 1). We then leverage job profiling (e.g., within
10 iterations) to obtain the communication data information
including the layer index of communication data and the
start time of data transfer. According to the transfer start
time of communication data, we classify the communication
data into several classes (e.g., 10 for ResNet50) by a simple
clustering algorithm (lines 2–3). After that, we proceed to
monitor the status of PS and worker tasks, and compare the
two task weights (i.e., ww , wp ) to adequately ration network
bandwidth resources for the co-located PS and worker tasks
in each iteration.

In more detail, once a communication data with the layer
index i starts or finishes its network transfer, we have to add
or delete the weight of the communication data from the
corresponding task weight. In particular, we empirically use
an exponential function to calculate the weight of each com-
munication data, by the intuition that the communication
data with a small layer index has a higher transfer priority
compared with the data with a larger layer index (lines 4–9).
The rationale is that, the communication data generated by
the front layer (e.g., the layer 0) is eagerly required by the
pull operation of the next training iteration (Jayarajan et al.
2019). After task weights have been updated, Nebula fur-
ther decides whether to enforce bandwidth allocation for
tasks. If wp is larger than ww by exceeding an empirical
threshold (i.e., w0 = 1 by default), we limit the bandwidth
of the push operation by B ⋅ � and cancel the bandwidth
limit of broadcast. We also set the bandwidth alloca-
tion flag as 1, which indicates that the bandwidth of push
operation has been limited (lines 10–12). Similarly, if ww is
larger than wp by exceeding w0 , we limit the bandwidth of
the broadcast operation by B ⋅ � and cancel the band-
width limit of push, and set the flag as 2 which indicates
that the bandwidth of broadcast operation has been lim-
ited (lines 13–16).

Remark Nebula adopts a bandwidth allocation coeffi-
cient � ∈ (0, 1] to control the network bandwidth for PS and
worker tasks. The value of � will definitely affect the perfor-
mance of DDNN training jobs. For simplicity, we only

178	 Q. Qi et al.

1 3

consider the factors related to the network bandwidth Bp , Bw
in Eq. (4). By assuming cpushq = cbct

m
= c , the optimization

p r o b l e m i n E q . (4) c a n b e r e d u c e d t o
min(

c

Bw

+
c

Bp

) = c ⋅min(
1

Bw

+
1

Bp

) , where Bp and Bw can be

equal to B if no network contention exists. Therefore, the
sum of Bw and Bp can represent the degree of network
resource contention between PS and worker tasks. The larger
value their sum is, the severer this contention is. As the net-
work resource contention exists in most cases as evidenced
in Sect. 2.2, we simply assume (Bw + Bp) = X ∼ N(�, �2)
which distributes in the interval [B, 2B]. By setting Bw and
Bp as B ⋅ � when the network bandwidth is appropriately
allocated, the optimization problem can be simplified as
minimizing the expectation of the function below.

where X ∼ N(1.5B, 0.25B) . As depicted in Fig. 6, we observe
that the general trend of the iteration time is to first decrease
and then increase as the value of � increases. Accordingly,
we empirically set the value of � as 0.4 by default, as it can
achieve good DDNN training performance in most cases. We
will validate our analysis of � above in Sect. 5.2.

4.2 � Implementation of Nebula

We implement a prototype of our Nebula based on
BytePS2, as BytePS is a generic communication sched-
uler for the mainstream DDNN training frameworks (e.g.,
MXNet, TensorFlow). Specifically, our prototype of Neb-
ula is implemented upon BytePS v0.2.4 with over 200 lines
of C++ and Linux Shell codes. As shown in Fig. 7, Nebula
is executed on each machine, which includes two modules
elaborated as follows.

(7)E
(
1

�
+

1

X

B
− �

)
,

Nebula monitor Nebula monitor is actually the imple-
mentation of Algorithm 1. We process the json file generated
by job profiling and obtain the layer index and start time of
communication data. In a DDNN training job, data commu-
nication occurs frequently and can be classified into several
types. To adapt to network resource contention, Nebula
embeds the monitor inside the DDNN training framework,
and invokes a trigger once one communication data starts or
finishes its network transfer. Such a trigger further accesses
the weights of PS tasks and worker tasks, and then Neb-
ula leverages the communication data information through
profiling to update the task weights. With the updated task
weights, Nebula is able to decide when and how to allocate
network bandwidth for PS and worker tasks.
Nebula controller Nebula controller leverages the tc

tool and cgroup to limit the network bandwidth of one
specific process by automatically captured its pid. The cor-
responding cgroup and tc files are created as long as pid
is obtained with the launch of PS and worker tasks. Once
the task weights are changed and the network bandwidth
limits are required to be enforced, a Shell script with two
bandwidth values will be generated to modify the cgroup
and tc files created before, so that the network bandwidth
of PS and worker tasks can be limited accordingly.
Nebula offers two main advantages over the existing

mainstream DDNN training frameworks as follows. (1)
Nebula is the first to deal with the performance variation
problem caused by network resource contention, through
exploiting the characteristics of data communication (i.e.,
task weights, communication data classification) in DDNN
training. (2) Nebula is a framework-independent tool to
mitigate network resource contention by the adequate net-
work bandwidth allocation for co-located PS and worker
tasks.

Fig. 6   Simulated relationship between the bandwidth allocation coef-
ficient � ∈ (0, 1] and DDNN training iteration time

PS task
(CPU)

Nebula
Monitor

Cgroup (PS pid)

Nebula

User submits one DDNN training job
Machine 2

Machine 4

Machine 1

Machine 3

GPU cluster

Worker task 0
(GPU:0)

Worker task n
(GPU:n)...

Nebula
Controller

BytePS

Cgroup (worker pid)

Traffic control

Worker weightPS weight

Worker task 1
(GPU:0)

Bandwidth
alloca�on

Fig. 7   Nebula implementation based on BytePS

2  https​://githu​b.com/byted​ance/bytep​s.

https://github.com/bytedance/byteps

179Rationing bandwidth resources for mitigating network resource contention in distributed…

1 3

Nebula discussion We discuss a practical issue related
to the implementation of Nebula, which is how to control
the network communication with low overhead. Many recent
works (e.g., P3 (Jayarajan et al. 2019), Geryon (Wang et al.
2020c)) focus on network congestion and resource conten-
tion during DDNN training. They generally involve several
modifications in the transport layer and network layer. Com-
pared with these works, Nebula exploits the tc tool to
configure the traffic control in the Linux kernel with low
overhead, which will be validated in Sect. 5.3. Nevertheless,
as the model becomes more complex, the communication
conditions will change more rapidly during DDNN training.
To respond to such rapid network changes, frequently ration-
ing network bandwidth will inevitably bring critical network
fluctuations and impact DDNN training performance. To
ease such network fluctuations in the environment of rapid
network changes, we plan to leverage the Software Defined
Network (SDN) techniques to implement Nebula by allo-
cating network bandwidth for co-located PS and worker
tasks of DDNN training jobs.

5 � Performance evaluation

In this section, we evaluate the effectiveness and runtime
overhead of Nebula by carrying out a set of real-world
experiments trained with four representative DNN models
on Amazon EC2.

5.1 � Experimental setup

Cluster configurations We set up a DDNN training cluster on
Amazon EC2 using up to 8 g3.8xlarge instances. Each EC2
instance is equipped with 2 Tesla M60 GPUs, 32 vCPUs,
244 GB SSD, and the network bandwidth ranging from 1
to 5 Gbps. Specifically, the network bandwidth of instances
is set as 1 Gbps when training AlexNet, ResNet50, and
ResNet101. The network bandwidth of instances is set as 4
Gbps when training VGG16 due to its large model parameter
size. We launch two worker tasks on two GPUs and one PS
task on the CPUs on each EC2 instance.

Workloads and datasets We choose four representative
DNN models which are AlexNet, ResNet50, ResNet101, and
VGG16. We select AlexNet because it is considered as one
of the most influential DNN models in Computer Vision.
VGG is a classical DNN model due to its large model param-
eter size, and ResNet is adopted as the de-facto standard
for image classification. We use ImageNet 2012 (i.e., ILS-
VRC2012_img_val) as our training dataset.

Baseline We compare Nebula with BytePS (Jiang
et al. 2020) on MXNet (Chen et al. 2015) as Nebula is

implemented based on BytePS (discussed in Sect. 4.2). For
simplicity, we denote the baseline (i.e., BytePS on MXNet)
as MXNet henceforth, and we configure the parameters in
BytePS as default values and restrict the size of each com-
munication data packet less than 4 MB.

Metrics We illustrate the effectiveness of Nebula using
three important metrics: the iteration execution time, the
variance of iteration completion time, and the GPU and net-
work resource utilization of EC2 instances. In particular, we
record the iteration completion time by monitoring the train-
ing progress of worker tasks on each instance and calculat-
ing the variance of the completion time among all instances
within one iteration. The variance of iteration completion
time indicates the performance variation of the DDNN train-
ing workload.

5.2 � Effectiveness of Nebula

Iteration execution time Figure 8 compares the execu-
tion time when training four representative DNN models
with Nebula and MXNet. Each bar denotes the average
iteration time of the first 100 iterations of all worker tasks.
Moreover, we repeat the experiments for each DNN model
for five times and illustrate the average iteration time with
error bars of standard deviations. Specifically, we observe
that Nebula shortens the average iteration completion
time by 15.2–25.0% as compared to MXNet. The perfor-
mance improvement with Nebula is significant in training
AlexNet (i.e., 25.0%). As a classical DNN model, AlexNet
training can be accelerated by parallel computing signifi-
cantly (Krizhevsky et al. 2012) and will not be blocked by
several special modules in DNN models (e.g., shortcuts).
Accordingly, short computation time and over 60 MB
model parameters lead to highly intense network resource

Fig. 8   Average iteration execution time of four representative models
trained with MXNet and Nebula 

180	 Q. Qi et al.

1 3

contention when training AlexNet, which can be effectively
alleviated by our Nebula bandwidth allocation strategy.

Furthermore, we observe that the performance variation
of iteration execution time (across iterations) with MXNet
are greater than that with Nebula. The rationale is that
Nebula alleviates the network contention and allocates
appropriate network bandwidth to the co-located PS and
worker tasks. Figure 9 compares the distribution of the
iteration execution time during training ResNet101 with
Nebula and MXNet. We observe that Nebula keeps the
iteration execution time in an ideal time interval and thus
accelerates the DNN training process. The average iteration
time with Nebula is 3.45 s, while the average iteration
time with MXNet is 4.35 s. Moreover, the standard devia-
tion with Nebula is only 0.21 s, which is much lower than
0.63 s with MXNet. In sum, Nebula is able to reduce the
performance variation of DDNN training across iterations
as compared with MXNet.

Variations of iteration completion time We proceed to
look into the DDNN training process on each EC2 instance
by taking AlexNet as an example. We record the iteration
completion time of each instance within one iteration in
order to seek the root cause of the performance improve-
ment with Nebula. Specifically, we train AlexNet with 8
g3.8xlarge EC2 instances, and we calculate the average com-
pletion time in each iteration and the time deviation across
instances. Fig. 10 shows the deviations of the 8 instances
from the average iteration time for the first 10 iterations.
We observe that the time deviation with Nebula is stable
within a small time interval (i.e., 0.2 s), while the outliers
are scattered over seconds with MXNet. Accordingly, Neb-
ula achieves the stable iteration execution time across EC2
instances within one iteration, as compared with MXNet.

Moreover, we examine the iteration completion time of
all the workers (i.e., EC2 instances) when training different
DNN models with 4 g3.8xlarge instances. Fig. 11 depicts
the CDF of time variance values of all workers within one

iteration for each DNN model. The variance of AlexNet
and ResNet101 can be mitigated by Nebula significantly
and there is relatively small performance improvement for
VGG16, which is consistent with our experiment results
in Fig. 8. Specifically, Nebula maintains the time vari-
ance less than 0.4 s for over 95% of iterations when train-
ing ResNet101, but the maximum time variance is still
large. This is because many small parameters exist in
ResNet101 which can cause the network fluctuations. As
for the VGG16 model, the time variance is much greater
as the communication time is over 1 second with MXNet.
Nebula can reduce such a time variance down to 0.5 s for
VGG16. In sum, Nebula can reduce the time variance by
up to 65.2% (e.g., from 0.58 to 0.20 s in ResNet101), as
compared with MXNet.

GPU and network resource utilization To examine
whether Nebula can improve the resource utilization, we

Fig. 9   Distribution of iteration execution time across iterations when
training ResNet101 model with MXNet and Nebula 

Fig. 10   Iteration completion time of all workers within one iteration
when training AlexNet model with MXNet and Nebula 

Fig. 11   CDF of the iteration completion time variance of all work-
ers within one iteration when training different DNN models with
MXNet and Nebula 

181Rationing bandwidth resources for mitigating network resource contention in distributed…

1 3

further take a closer look at the network throughput during
the training of AlexNet and ResNet50. Fig. 12 shows the
network uplink throughput of the PS and worker tasks co-
located in one instance. Specifically, the network resource
contention is intense when training ResNet50 with MXNet
as shown in Fig. 12a. The worker task occupies more net-
work bandwidth in the first iteration, and the next iteration
starts without too much delay. The PS task occupies more
network uplink bandwidth in the second iteration, and we
can observe there is an apparent delay that lasts over 100 ms
before the third iteration starts. This is because such network
resource contention leads to a long completion time of push
and thus postpones the pull operation further. With Neb-
ula, such intense network contention is alleviated because
of our reasonable rationing strategy. As shown in Fig. 12b,
the contention for the uplink bandwidth between the co-
located PS and worker tasks for AlexNet are severer than
that for ResNet50 in each iteration. Our Nebula bandwidth
allocation strategy alleviates the network resource conten-
tion among PS and worker tasks. We observe that Nebula
completes almost three iterations while MXNet only com-
pletes two iterations within one second.

In addition, we calculate the average value and the stand-
ard deviation of the network throughput and GPU utilization
of a worker node during the execution of the four DNN mod-
els, as summarized in Table 3. Nebula achieves both higher
and more stable GPU utilization and network throughput in
comparison to MXNet. FOr instance, Nebula improves the
average network throughput by up to 30% (e.g., from 63.6 to
82.5 MB/s for AlexNet). Similarly,Nebula also increases
the average GPU utilization by 15.4–26.7% (e.g., from 17.7
to 21.5% for ResNet50). As a result, the small deviation
of resource utilization further validates the low variance of
iteration execution time achieved by our Nebula bandwidth
allocation strategy.

Sensitivity of � : In our experiments above, we simply set
� as a constant value 0.4 by default. The value of � will
impact the training performance according to our analysis
in Sect. 4.1. To examine the DDNN training performance

Fig. 12   Comparison of network throughput over time of when training a ResNet50 and b AlexNet models with MXNet and Nebula 

Fig. 13   Observed and fitted iteration execution time of AlexNet (the
upper) and ResNet50 (the lower) model training by varying different
values of � from 0.1 to 1

Table 3   The #average (#standard deviation) of network throughput
and GPU utilization of a machine when training different DNN mod-
els with MXNet and Nebula 

Throughput (MB/s) GPU (%)

MXNet Nebula MXNet Nebula

AlexNet 63.6 (3.5) 82.5 (0.6) 2.2 (0.10) 2.9 (0.03)
ResNet101 61.2 (1.0) 74.3 (0.9) 18.1 (0.52) 21.8 (0.30)
ResNet50 53.1 (0.8) 65.1 (0.5) 17.7 (0.20) 21.5 (0.15)
VGG16 164.2 (3.9) 189.2 (1.6) 15.6 (0.37) 18.0 (0.13)

182	 Q. Qi et al.

1 3

with different values of � , we alter � as 11 sample values
(i.e., 0.1, 0.2, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) when
training ResNet50 and AlexNet. We then fit these 11 sample
points with a Gaussian function, as the expected iteration
time is associated with a Gaussian function in the math-
ematical expression. As shown in Fig. 13, the fitted curve on
the model ResNet50 (the lower one) is accordant with our
simulation curve of � in Fig. 6 (Sect. 4.1), while the fitted
curve on AlexNet is basically consistent with our simulated
curve. We observe that the best value of � is located in the
interval from 0.3 to 0.6. The sensitivity of � obtained on
other DNN models shows the similar characteristics. 0.4 is
an appropriate value of � because it can effectively alleviate
the network resource contention in most cases. Even 0.4
does not perform very well on several DNN models, we can
manually tune it online without incurring much performance
overhead.

Different available network bandwidth To obtain comple-
mentary insights and verify the effectiveness of Nebula,
we conduct another experiment to evaluate the DDNN train-
ing performance under different available network band-
width for training machines. Specifically, we train AlexNet
with different available bandwidth ranging from 1 Gbps to
5 Gbps. As shown in Fig. 14, the DDNN training speed
with Nebula consistently outperforms that with MXNet.
The performance improvement (i.e., 29.6–47.6%) varies as
the network bandwidth increases. In more detail, the train-
ing speedup can reach up to 47.6% when the available net-
work bandwidth is 2 Gbps, while the training speed is only
improved by around 30% with the bandwidth setting as 1
Gbps and 5 Gbps. Accordingly, our analysis above indicates
that Nebula can achieve better performance gain when the
available network bandwidth resource is stringent (i.e., B = 1
– 5 Gbps as the network contention exists), while the DDNN
training performance with Nebula gradually converges to
that with MXNet when the available network bandwidth

resource is sufficient (i.e., B = 5–10 Gbps as the network
contention is mitigated) in our experimental setup.

5.3 � Runtime overhead of Nebula

We first estimate the computation overhead of Nebula dur-
ing DDNN training. According to Algorithm 1, the compu-
tation time of Nebula can be determined by the number
of communication data packets which is denoted as nump ,
and it is mainly associated with the DNN model size and
the cluster scale. Even for a large DNN model like VGG16,
the computation complexity of Nebula is within O(nump) ,
where nump = 105 . Second, Nebula controller allocates the
network bandwidth for PS and worker tasks, which impacts
the network performance during DDNN training. Through
analyzing the log file of Nebula, we find that the network
bandwidth of PS and worker tasks is enforced for less than
four times within one iteration, and the network bandwidth
of PS and worker tasks is limited twice in most cases. Also,
we can adjust the weight threshold w0 (i.e., 1 by default)
to control the number of bandwidth limitations enforced
for PS and worker tasks. Finally, we examine the profiling
overhead of DDNN training workloads in Nebula. The
job profiling time equals to the DDNN training time for the
first 5 iterations, which are 17.5, 16.6, 11.0, and 20.5 s for
AlexNet, ResNet101, ResNet50, and VGG16, respectively,
in our experiment. In general, the DDNN training workloads
are periodically executed and contain thousands of train-
ing iterations. As a result, the overall runtime overhead of
Nebula above is acceptable in practice.

6 � Related work

6.1 � Mitigating network resource contention
in DDNN training

There have been several works on mitigating network con-
tention in DDNN training. The contention among the co-
located tasks is actually the competition of network resources
on one GPU machine. It commonly occurs in the multi-job
(e.g., multi-tenant) environments and the resource contention
will prolong the whole training process when sharing net-
work resources. To address such an issue, MLNet (Mai et al.
2015) has proposed the network prioritization to arbitrate
the access to network resources. A more recent work (Wang
et al. 2020b) proposes a communication contention-aware
scheduling algorithm (Ada-SRSF) based on the execu-
tion of DDL jobs in the form of Directed Acyclic Graphs
(DAGs). For the cloud-based environment, PLink (Luo et al.
2020) can efficiently generate aggregation plans for DDNN
training jobs to adapt to the changing network conditions.
While these works above require modifications to the DNN

Fig. 14   Comparison of DDNN training performance of AlexNet with
various available network bandwidth ranging from 1 Gbps to 5 Gbps
for MXNet and Nebula 

183Rationing bandwidth resources for mitigating network resource contention in distributed…

1 3

training framework, Nebula is actually a supplementary
tool of network bandwidth allocator, which does not require
any changes to the training framework. Similarly, Tensor-
lights (Huang et al. 2019) is an end-host traffic scheduler to
mitigate the inter-job network contention. Compared with
its time slice rotation strategy to allocate network resources
among jobs, Nebula applies a quota-based allocation strat-
egy and adjusts it with the change of network conditions and
mitigates the intra-job network resource contention.

Moreover, many previous works are dedicated to deal-
ing with the network bottleneck of PS, which is caused by
the competition of network resources on PS among worker
tasks. For instance, Poseidon (Zhang et al. 2017) employs a
decentralized architecture to transfer large layers to alleviate
the PS network bottleneck. R2SP (Chen et al. 2019) focuses
on how to share the PS bandwidth resources by time division
multiplexing and thus to fully utilize the network resources
of PS. While such PS network bottleneck can be mitigated in
the co-located PS configuration, Nebula allocates the net-
work bandwidth dynamically for PS and worker tasks during
the training process and aims to fully utilize the network
resources of GPU machines. In addition, Optimus (Peng
et al. 2018) adequately adjusts the number and placement
of workers and PS online, which can mitigate the network
resource contention from the aspect of PS and worker con-
figurations. A more recent work (Berral et al. 2020) employs
a combination of two machine learning algorithms to explore
behaviors/patterns of containers and allocate CPU/memory
resources dynamically, but the network resource is ignored.
These prior works above are mainly deployed with the non-
co-located PS configuration. In contrast, Nebula focuses
on the common DDNN training environment (i.e., in the
widely-used co-located PS configuration) and solving the
intra-job network resource contention.

6.2 � Communication scheduling of DDNN training

To optimize the DDNN training performance through net-
work communication, a number of works are devoted to
overlapping the computation and communication by design-
ing advanced communication scheduling strategies. These
scheduling strategies are mainly to answer what granular-
ity the communication data packets belong to and when to
transfer the communication data packets.

To answer the first question, i.e., what granularity the
communication data packets belong to, Poseidon (Zhang
et al. 2017) sets the gradient data of one layer as the unit
of communication data, while P3 (Jayarajan et al. 2019)
partitions a large layer into several small parts to further
increase the performance benefits of overlapping. Simi-
larly, our implementation of Nebula is based on the layer
slicing operations to obtain such performance benefits of
overlapping. For the All-Reduce training architecture,

MG-WFBP (Shi et al. 2019) merges the layer data to
decrease the communication overhead, and a more recent
work (Shi et al. 2020) focuses on solving a trade-off optimi-
zation problem to answer whether to merge gradient data or
not in sparsification.

As for the second question, i.e., when to transfer the
communication data packets, Poseidon (Zhang et al. 2017)
specifies the dependency among different layers within one
iteration to maximize the performance benefits of overlap-
ping. With the particular focus on overlapping between two
adjacent iterations, P3 (Jayarajan et al. 2019) attempts to
overlap the communication in the current iteration and the
forwarding propagation in the next iteration. It schedules
the transmission of data packets by a priority-based strategy.
ByteScheduler (Peng et al. 2019) introduces a data transfer
window to fully utilize the network bandwidth, which in
turn weakens the preemption ability of the data packets with
high priority. Different from the prior works above, Nebula
presents how to ration network resources for co-located PS
and worker tasks to mitigate the network contention, which
mainly reduces the communication time from the aspect of
the network links. In addition, we plan to extend Nebula
to support several recent orthogonal works on network-level
flow scheduling (e.g., (Wang et al. 2020c)).

6.3 � Bandwidth allocation for VMs and applications

There have been many previous works on the bandwidth
allocation for virtual machines (VMs) and applications. For
example, Falloc (Guo et al. 2015) models the datacenter
bandwidth allocation as a cooperative game to achieve the
VM-based fairness in datacenter networks. AppBag (Shen
et al. 2020) is an application-aware bandwidth guarantee
framework. Unlike the complicated methods above includ-
ing the asymmetric Nash bargaining solution in Falloc,
JCAB (Wang et al. 2020a) based on Lyapunov optimization
and Markov approximation, and a recent work (Panayiotou
et al. 2019) based on reinforcement learning, Nebula pro-
poses a simple heuristic bandwidth rationing algorithm to
adjust the network bandwidth for co-located PS and worker
tasks, thereby achieving good DDNN training performance.
Moreover, these prior works above usually require amounts
of historical data, and AppBag (Shen et al. 2020) allocates
the accurate bandwidth to VMs with one-step-ahead traffic
information. In contrast, Nebula only requires the real-
time available network bandwidth data, which can be gen-
erated during the training process and be captured on each
GPU machine with a low cost. In addition, different from the
implementation on the emulated network (Xu et al. 2017)
and the SDN environment, Nebula and Falloc are light-
weight and implemented based on the tc controller.

184	 Q. Qi et al.

1 3

7 � Conclusion and future work

To mitigate the network resource contention and alleviate
the performance variations of DDNN training jobs, this
paper presents the design and implementation of Nebula,
a simple yet effective network bandwidth resource allo-
cation strategy by monitoring the weights of co-located
PS and worker tasks. Specifically, Nebula first acquires
the communication data information including the layer
index and its class based on job profiling. Nebula then
calculates the weights of two co-located tasks according
to the class information of communication data trans-
ferred by PS and worker tasks. By comparing the two task
weights, Nebula adequately rations the network band-
width resource online for co-located PS and worker tasks,
so as to speed up the performance of DDNN training jobs.
We implement a prototype of Nebula based on BytePS,
which is an open-source general distributed training
framework. We conduct extensive prototype experiments
by training representative DNN models on Amazon EC2.
Our experiment results demonstrate that Nebula is able
to reduce the iteration time of a DDNN training job by up
to 25%, and improve the cluster resource utilization by up
to 30% in comparison to MXNet.

As our future work, we plan to extend Nebula in two
directions: (1) incorporating the factor of power consump-
tion into our bandwidth allocation strategy, and (2) allocat-
ing the network bandwidth for PS and worker tasks using
the SDN techniques.

Acknowledgements  This work was supported in part by the NSFC
under grant No.61972158, in part by the Science and Technology Com-
mission of Shanghai Municipality under grant No.20511102802 and
No.18DZ2270800, and in part by the Tencent Corporation. Li Chen’s
work was supported by a grant from BoRSF-RCS under the contract
LEQSF(2019-22)-RD-A-21. Zhi Zhou’s work was supported in part by
the NSFC under grant No.61802449.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a
system for large-scale machine learning. Proc. USENIX OSDI
2016, 265–283 (2016)

Berral JL, Wang C, Youssef A (2020) AI4DL: mining behaviors of
deep learning workloads for resource management. In: Proceed-
ings of USENIX HotCloud (2020)

Chen, C., Wang, W., Li, B.: Round-Robin synchronization: mitigat-
ing communication Bottlenecks in parameter servers. Proc IEEE
INFOCOM 2019, 532–540 (2019)

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T.,
Xu, B., Zhang, C., Zhang, Z.: Mxnet: a flexible and efficient
machine learning library for heterogeneous distributed systems
(2015). arXiv preprint arXiv​:15120​1274

Gu, J., Chowdhury, M., Shin, K.G., Zhu, Y., Jeon, M., Qian, J., Liu,
H., Guo, C.: Tiresias: a GPU cluster manager for distributed
deep learning. Proc. USENIX NSDI 2019, 485–500 (2019)

Guo, J., Liu, F., Lui, J.C.S., Jin, H.: Fair network bandwidth alloca-
tion in iaas datacenters via a cooperative game approach. IEEE/
ACM Trans. Netw. 24, 873–886 (2015)

Guptaand, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep
learning with limited numerical precision. Proc. ICML 2015,
1737–1746 (2015)

Huang, X.S., Chen, A., Ng, T.: Green, yellow, yield: end-host traffic
scheduling for distributed deep learning with tensorlights. Proc.
IEEE IPDPSW 2019, 430–437 (2019)

Jayarajan, A., Wei, J., Gibson, G., Fedorova, A., Pekhimenko, G.:
Priority-based parameter propagation for distributed DNN train-
ing. In: Talwalkar, A., Smith, V., Zaharia, M. (eds.) Proceedings
of Machine Learning and Systems 2019, vol. 3, pp. 132–145
(2019)

Jeon, M., Venkataraman, S., Phanishayee, A., Qian, J., Xiao, W., Yang,
F.: Analysis of large-scale multi-tenant GPU clusters for DNN
training workloads. Proc. USENIX ATC 2019, 947–960 (2019)

Jiang, Y., Zhu, Y., Lan, C., Yi, B., Cui, Y., Guo, C.: A unified archi-
tecture for accelerating distributed DNN training in heterogene-
ous GPU/CPU clusters. In: Proceedings of USENIX OSDI, pp
463–479 (2020)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. Proc. NIPS 2012,
1097–1105 (2012)

Kshiteej, M., Arjun, B., Arjun, S., Shivaram, V., Aditya, A., Amar,
P., Shuchi, C.: Themis: fair and efficient GPU cluster scheduling.
Proc. USENIX NSDI 2020, 289–304 (2020)

Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.J.: Deep Gradient Com-
pression: Reducing the Communication Bandwidth for Distributed
Training. (2017) arXiv preprint arXiv​:17120​1887

Luo, L., Nelson, J., Ceze, L., Phanishayee, A., Krishnamurthy, A.:
Parameter hub: a rack-scale parameter server for distributed deep
neural network training. Proc. ACM SOCC 2018, 41–54 (2018)

Luo L, West P, Krishnamurthy A, Ceze L, Nelson J (2020) PLink: Dis-
covering and Exploiting Datacenter Network Locality for Efficient
Cloud-based Distributed Training. Proc. of MLSys 2020

Mai, L., Hong, C., Costa, P. (2015) Optimizing network performance
in distributed machine learning. In: Proceedings of USENIX Hot-
Cloud 2015

Mayer, R., Jacobsen, H.A.: Scalable deep learning on distributed infra-
structures: challenges, techniques, and tools. ACM Comput Surv
(CSUR) 53, 1–37 (2020)

Mirhoseini, A., Pham, H., Le, Q.V., Steiner, B., Larsen, R., Zhou, Y.,
Kumar, N., Norouzi, M., Bengio, S., Dean, J.: Device placement
optimization with reinforcement learning. Proc. ICML 2017,
2430–2439 (2017)

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., Devanur,
N.R., Ganger, G.R., Gibbons, P.B., Zaharia, M.: PipeDream: gen-
eralized pipeline parallelism for DNN training. Proc. ACM SOSP
2019, 1–15 (2019)

Panayiotou, T., Manousakis, K., Chatzis, S.P., Ellinas, G.: A data-
driven bandwidth allocation framework With QoS considerations
for EONs. J Lightwave Technol 37, 1853–1864 (2019)

Peng, Y., Bao, Y., Chen, Y., Wu, C., Guo, C.: Optimus: an efficient
dynamic resource scheduler for deep learning clusters. Proc. Euro-
Sys 2018, 1–14 (2018)

Peng, Y., Zhu, Y., Chen, Y., Bao, Y., Yi, B., Lan, C., Wu, C., Guo, C.:
A generic communication scheduler for distributed DNN training
acceleration. Proc. ACM SOSP 2019, 16–29 (2019)

Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach.
Prentice Hall, New York (2020)

Shen, D., Luo, J., Dong, F., Jin, J., Zhang, J., Shen, J.: Facilitating
Application-Aware Bandwidth Allocation in the Cloud with

http://arxiv.org/abs/151201274
http://arxiv.org/abs/171201887

185Rationing bandwidth resources for mitigating network resource contention in distributed…

1 3

One-Step-Ahead Traffic Information. IEEE Trans. Serv. Comput.
13, 381–394 (2020)

Shi, S., Chu, X., Li, B.: MG-WFBP: efficient data communication for
distributed synchronous SGD algorithms. Proc. IEEE INFOCOM
2019, 172–180 (2019)

Shi, S., Wang, Q., Chu, X., Li, B., Qin, Y., Liu, R., Zhao, X.: Commu-
nication-efficient distributed deep learning with merged gradient
sparsification on gpus. In: Proceedings of IEEE INFOCOM 2020
(2020)

Ukidave, Y., Li, X., Kaeli, D.: Mystic: predictive scheduling for Gpu
based cloud servers using machine learning. Proc. IEEE IPDPS
2016, 353–362 (2016)

Wang, C., Zhang, S., Chen, Y., Qian, Z., Wu, J., Xiao, M.: Joint config-
uration adaptation and bandwidth allocation for edge-based real-
time video analytics. Proc. IEEE INFOCOM 2020, 1–10 (2020)

Wang, Q., Shi, S., Wang, C., Chu, X. Communication Contention
Aware Scheduling of Multiple Deep Learning Training Jobs.
(2020b). arXiv preprint arXiv​:20021​0105

Wang, S., Li, D., Geng, J.: Geryon: accelerating distributed CNN train-
ing by network-level flow scheduling. Proc. IEEE INFOCOM
2020, 1678–1687 (2020)

Xu, F., Ye, W., Liu, Y., Zhang, W.: Ufalloc: towards utility max-min
fairness of bandwidth allocation for applications in datacenter
networks. Mobile Netw. Appl. 22, 161–173 (2017)

Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X., Hu, Z., Wei,
J., Xie, P., Xing, E.P.: Poseidon: an efficient communication archi-
tecture for distributed deep learning on GPU clusters. Proc. USE-
NIX ATC 2017, 181–193 (2017)

Qiang Qi  received his BS degree
in Computer Science from East
China Normal Universi ty
(ECNU) in 2018. He is currently
pursuing his MS degree in Com-
puter Science in the School of
Computer Science and Technol-
ogy at ECNU. His current
research interests focus on cloud
datacenter networks and distrib-
uted machine learning systems.

Fei Xu  received the PhD degree
in computer science and engi-
neering from the Huazhong Uni-
versity of Science and Technol-
ogy, Wuhan, China, in 2014. He
received Outstanding Doctoral
Dissertation Award in Hubei
province, China, and ACM
Wuhan & Hubei Computer Soci-
ety Doctoral Dissertation Award
in 2015. He is currently an asso-
ciate professor with the School
of Computer Science and Tech-
nology, East China Normal Uni-
versity, Shanghai, China. His
research interests include cloud

computing and datacenter, virtualization technology, and distributed
systems.

Li Chen  received the BEngr
degree from the Department of
Computer Science and Technol-
ogy, Huazhong University of
Science and Technology, China,
in 2012 and the MASc degree
from the Department of Electri-
cal and Computer Engineering,
University of Toronto, in 2014
and the PhD degree in computer
science and engineering from the
Department of Electrical and
Computer Engineering, Univer-
sity of Toronto, in 2018. She is
currently an assistant professor
with the Department of Com-

puter Science, School of Computing and Informatics, University of
Louisiana at Lafayette, Lafayette, USA. Her research interests include
big data analytics systems, cloud computing, datacenter networking,
and resource allocation.

Zhi Zhou  received the B.S., M.E.,
and Ph.D. degrees in 2012, 2014,
and 2017, respectively, all from
the School of Computer Science
and Technology at Huazhong
University of Science and Tech-
nology (HUST), Wuhan, China.
He is currently an associate pro-
fessor in the School of Computer
Science and Engineering at Sun
Yat-sen University, Guangzhou,
China. In 2016, he was a visiting
scholar at University of Göttin-
gen. He was nominated for the
2019 CCF Outstanding Doctoral
Dissertation Award, the sole

recipient of the 2018 ACM Wuhan & Hubei Computer Society Doc-
toral Dissertation Award, and a recipient of the Best Paper Award of
IEEE UIC 2018. His research interests include edge computing, cloud
computing, and distributed systems.

http://arxiv.org/abs/200210105

	Rationing bandwidth resources for mitigating network resource contention in distributed DNN training clusters
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Co-located PS configuration in DDNN training clusters
	2.2 Understanding performance variation caused by network resource contention
	2.3 An illustrative example

	3 Problem analysis and formulation
	3.1 Analyzing DDNN training performance variation
	3.2 Modeling iteration time of DDNN training jobs

	4 Rationing network bandwidth resources for DDNN training tasks
	4.1 Design of network bandwidth allocation strategy
	4.2 Implementation of Nebula

	5 Performance evaluation
	5.1 Experimental setup
	5.2 Effectiveness of Nebula
	5.3 Runtime overhead of Nebula

	6 Related work
	6.1 Mitigating network resource contention in DDNN training
	6.2 Communication scheduling of DDNN training
	6.3 Bandwidth allocation for VMs and applications

	7 Conclusion and future work
	Acknowledgements
	References

