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Abstract
In the era of big data, image security and real-time processing become more and more important and increasingly difficult to 
satisfy. To improve the security and processing efficiency of image encryption algorithm, an enhanced quantum scheme is 
proposed for generalized novel enhanced quantum image representation. The proposed quantum encryption scheme mainly 
consists of two-stage operation in order, i.e., twice scrambling based generalized Arnold transform and pixel encryption 
based on the quantum key image (which are generated and prepared based on Logistic map). In the first stage, generalized 
Arnold transform are employed to simultaneously disturb the coordinate information and pixel gray value of quantum plain 
image. Following that, the scrambled image is further encrypted into a quantum cipher image based on quantum key image, 
which is divided into three sub-processes in detail, i.e., CNOT operations, bit-plane scrambling and controlled perfect shuffle 
permutations are executed orderly. The quantum image decryption process can be easily implemented in a reverse way. The 
complete quantum circuit implementation for above two stages operation is constructed and analyzed in terms of quantum 
cost and time complexity. Compared to classical image processing algorithm, the investigated quantum encryption algorithm 
demonstrates an exponential speedup with computational cost of O(n) for a 2n × 2

n quantum grayscale or color images. The 
proposed scheme is simulated and verified on a classical computer with MATLAB environments, i.e., not in a real quantum 
version that not considers the effects of quantum noise. Experimental results and numerical analysis indicate that the presented 
quantum algorithm has good visual effects and high security.

Keywords  Quantum computers · Image encryption/decryption · Generalized arnold transform · Logistic map · 
Computational complexity
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1  Introduction

Feynman R.P. first proposed the concept of simulating phys-
ics with computers, i.e., quantum computers (Feynman 
1982). The information is stored in quantum systems and 
regarded as quantum bits (qubits) (Stajic 2013). Due to the 
inherent properties of quantum mechanics such as coher-
ence, entanglement, and superposition of qubits, quantum 
information processing (QIP) is deemed to precede its clas-
sical counterparts in aspects of information storage, parallel 
computing and security (Michael and Isaac 2000). Although 
a real physical quantum computer has not been realized yet, it 
seems very necessary to develop quantum image processing 
tasks on account of that a quantum computer will inevitably 
need images displaying and processing ability. With the rapid 
development of QIP in recent years, classical image process-
ing tasks are naturally extended to quantum scenarios named 
as quantum image processing (QImP). QImP is an emerging 

http://orcid.org/0000-0002-8894-8108
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-020-00043-8&domain=pdf


229Quantum image encryption algorithm based on generalized Arnold transform and Logistic map﻿	

1 3

sub-discipline that focuses on extending conventional image 
processing tasks and operations to the quantum computing 
framework (Iliyasu 2013; Yan et al. 2016, 2017). Compared 
to image processing algorithm implemented within classi-
cal computers in a conventional way, an efficient quantum 
image encryption algorithm based on the principle of quan-
tum mechanics are assumed to improve the computational 
cost greatly, and can guarantee high security in theoretical. At 
present, the development of QImP can be classified into two 
aspects: quantum image representation and quantum image 
processing algorithm.

Quantum image representation encodes digital images 
within quantum computers. Many representation models of 
quantum images are investigated. Qubit Lattice is deemed as 
the first quantum image representation model (Venegas-And-
raca 2003), which stores a 2n × 2n color image in quantum 
systems with 22n qubits. To reduce the number of qubits used 
for encoding the quantum images, the flexible representation 
of quantum images (FRQI) proposed in (Li et al. 2018) stores 
a 2n × 2n grayscale image with 2n + 1 qubits, which stores 
pixel’s coordinate information into 2n-qubit computational 
basis states and encodes the pixel’s color information into 
a single qubit via angle encoding. For the convenience of 
color processing, the novel enhanced quantum representation 
(NEQR) of digital images (Zhang et al. 2013a) improves the 
FRQI model, which utilizes q-qubit computational basis state 
to store pixel’s gray value ranged [0, 2q − 1] . Next, the flexible 
quantum representation for gray-level images (FQRGI) was 
proposed by (Yang et al. 2014) that encode pixel’s gray-level 
information within single qubit phases. A normal arbitrary 
quantum superposition state (NAQSS) was proposed by (Li 
et al. 2014) to store a k-dimensional color digital image using 
amplitudes of computational basis state. Inspired by NEQR 
model, some quantum image representation models use com-
putational basis states to store pixel’s gray value information 
were proposed, such as quantum log-polar image (QUALPI) 
(Zhang et al. 2013b) and novel quantum representation of 
color digital images (NCQI) (Sang et al. 2017). To further 
improve the storage performance, quantum image representa-
tion models based on bit-plane was also proposed in (Li et al. 
2018; Wang et al., 2019; Li et al. 2019). Quantum image rep-
resentation based on bit-planes (BRQI) presented in (Li et al. 
2018) uses  (n + 4) and (n + 6) qubits to store a grayscale or 
RGB color image of 2n pixels, respectively. The quantum rep-
resentation model of color digital images (QRCI) in (Wang 
et al. 2018) stores a 2n × 2n color image with 2n + 6 qubits. 
The generalized model of NEQR (GNEQR) presented in (Li 
et al. 2019) uses 2n + 10 qubits to encode a 2n × 2n RGB 
color image. Based on the coding method of pixel informa-
tion, quantum image representation models described above 
can be classified into three categories: the first encodes pixel 
information via amplitude of qubit that includes Qubit Lat-
tice and FRQI (Venegas-Andraca 2003; Li et al. 2018); the 

second utilizes the phase of qubit encoding pixel information 
that contains FQRGI and NAQSS (Yang et al. 2014; Li et al. 
2014); the third using the basis states of qubits stores the 
pixel information, which includes NEQR, QUALPI, NCQI, 
BRQI, QRCI and GNEQR (Zhang et al. 2013a; Zhang et al. 
2013b; Sang et al. 2017; Li et al. 2018; Wang et al., 2019; 
Li et al. 2019).

Image encryption aims at providing information secrecy 
in public environment through disturbing an image into 
meaningless form using different methods. Up to now, quan-
tum image encryption has gained researchers’ considerable 
interest and mainly classified into following two classes: 
(1) image encryption in spatial domain based on quantum 
transformations; (2) image encryption based on chaos theory. 
In first category, a series of quantum encryption algorithms 
were investigated, such as quantum image scrambling based 
on Arnold, Fibonacci and Hilbert transforms (Jiang et al. 
2014a, b; Jiang and Wang 2014), quantum image encrypted 
based on quantum Fourier transform and double phase 
encoding (Yang et al. 2014; Li et al. 2018a, b, c), quantum 
image encrypted based on generalized Arnold transform and 
double random-phase encoding (Zhou et al. 2015), quantum 
image encrypted based on block geometric transformation 
and bit-plane scrambling (Li et al. 2019). In second category, 
Liang et al. investigated quantum image encryption based on 
generalized affine transform and Logistic map (Liang et al. 
2016). Tan et al. proposed a quantum color image encryp-
tion algorithm based on a hyper-chaotic system and quantum 
Fourier transform (Tan et al. 2016). Ran et al. proposed the 
quantum color image encryption based on coupled hyper-
chaotic Lorenz system (Ran et al. 2018). Subsequently, more 
quantum image encryption algorithms based on chaos theory 
were also reported in (Li et al. 2017; Zhou et al. 2018; Jiang 
et al. 2019).

However, above-mentioned quantum transformation based 
image encryption scheme only disturbing the coordinate 
information have several disadvantages. Such as the histo-
gram graphs are unchanged, and the quantum transformations 
need to perform many times to obtain a better encryption 
effect. On the other hand, chaos theory based quantum image 
encryption algorithms described above are similar to the 
"one-time pad" encryption, which involves high complexity 
in processing the pixel step-by-step according to the specific 
key stream. Furthermore, the former chaos-based quantum 
image encryption literatures also not provide the intact quan-
tum implementation circuit.

To conquer the disadvantage of quantum transformation 
based quantum image encryption algorithms and improve the 
computational efficiency of chaos theory based quantum image 
encryption algorithms, an enhanced quantum image encryption 
scheme that combines generalized Arnold transform and Logis-
tic map technologies are investigated. The main contributions 
of our work can be stated as: (1) twice scrambling based on 
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generalized Arnold transform are implemented to simultane-
ously encrypt the image coordinate information and pixel gray 
value; (2) the complete quantum circuit implementation for 
encrypting the image information based on quantum key image 
(generated via Logistic map) are constructed and illustrated, 
which can process all image pixel’s information in parallel. On 
the basis of computational complexity and experimental result 
analysis demonstrated in latter, it proves that our investigated 
quantum encryption scheme has lower complexity and high 
security.

The rest of this paper is organized as follows: In Sect. 2, we 
provide the basic knowledges needed for the proposed algorithm, 
including quantum qubits and gates, NEQR and GNEQR mod-
els, twice scrambling based on generalized Arnold transform, 
Logistic map and some quantum circuit modules. Section 3 
describes the proposed quantum encryption and decryption 
algorithms in detailed. Section 4 analyses the quantum cost and 
time complexity of the quantum implementation circuits, and 
comparisons with related references in terms of quantum cost. 
Experimental results and numerical analyses are demonstrated 
in Sect. 5. Finally, the conclusion works are stated in Sect. 6.

2 � Preliminaries

2.1 � Quantum bits and gates

2.1.1 � Quantum bits

The quantum bit (qubit) is the elementary memory unit in a 
quantum computer. Quantum information can be stored, manip-
ulated and measured via qubits. The state of single qubit can be 
mathematically described by a unit vector in two-dimensional 
Hilbert space. One useful picture in thinking about single qubit 
is the Bloch sphere as shown in Fig. 1 (Michael and Isaac 2000). 
A single qubit ��⟩ can be expressed as:

where � ∈ [0, �], � ∈ [0, 2�] , and |�|2 + |�|2 = 1 subjects 
to the normalization condition.

The qubit states �0⟩ = �
1 0

�T and �1⟩ = �
0 1

�T are called 
as the computational basis state spanning H2 in 2-D Hilbert 
space. The tensor product, denoted by ⊗ , is utilized to put 

(1)
��⟩ = cos

�

2
�0⟩ + ei� sin

�

2
�1⟩

= ��0⟩ + ��1⟩,

the small vector spaces together forming a larger vector space 
in Hilbert space. Let A be a n × n matrix and B be a m × m 
matrix, then the tensor product A ⊗ B is a nm × nm block 
matrix defined as:

Suppose that �i⟩ is the computational basis state in a 2n−D 
Hilbert space, where the state �i⟩ (i = 0, 1, 2, ⋅ ⋅ ⋅, 2n − 1) 
consists of the tensor products of the n computational basis 
states defined as:

where i =
∑n−1

j=0
ij × 2j , i0, i1, ⋅ ⋅ ⋅, in−1 ∈ {0, 1} . Thus, the 

quantum system of n-qubit can be described as a superposi-
tion state of 2n quantum computational basis states:

and also satisfying the normalization condition 
n−1∑
k=0

��ak��2 = 1.

2.1.2 � Quantum gates

Quantum gates are the necessary elements in constructing 
the quantum circuit. Some basic quantum gates and their cor-
responding matrices are demonstrated in Fig. 2.

Quantum Identity ( I2 ) gate denotes the quantum circuit 
line of single qubit. Similarly, 

(
I2
)⊗n

= I2n denotes the quan-
tum circuit line of n qubits.

Quantum NOT (also denoted as X) gate is similar to clas-
sical NOT operation, expressed as X�a⟩ = ��a

�
,a ∈ {0, 1},

a = 1 − a.
Quantum Hadamard (H) gate operated on single qubit �0⟩ 

and �1⟩ can transform the quantum state into an equal super-
position state, i.e., H(�0⟩) = 1

�√
2(�0⟩ + �1⟩) , H(�1⟩) =

1
�√

2(�0⟩ − �1⟩).
Quantum Controlled-NOT (CNOT) gate is usu-

ally used to realize the similar function of the classical 
XOR operation, which has two input qubits: control qubit 
and target qubit. It has two different forms 1-CNOT and 
0-CNOT, which mean the control qubit in state of �1⟩ and 
�0⟩ , respectively. Thus 1−CNOT(�a, b⟩) = �a, a⊕ b⟩ and 
0−CNOT(�a, b⟩) = ��a, a⊕ b

�
.

The Swap gate is used to interchange the two qubit state, 
i.e., Swap(�a, b⟩) = �b, a⟩ , and it can be decomposed into 
three 1-CNOT gates.

(2)A⊗ B =

⎡
⎢⎢⎣

A0,0B ⋯ A0,n−1B

⋮ ⋱ ⋮

An−1,0B ⋯ An−1,n−1B

⎤
⎥⎥⎦
.

(3)
�i⟩ = ��in−1⟩⊗ ��in−2⟩⊗ ⋅ ⋅ ⋅⊗ ��i1⟩⊗ ��i0⟩ = ��in−1in−2 ⋅ ⋅ ⋅ i1i0⟩,

(4)��⟩ =
n−1�
k=0

ak�k⟩, k = kn−1kn−2 ⋅ ⋅ ⋅ k1k0, ki ∈ {0, 1},

Fig. 1   Bloch sphere representa-
tion of a qubit
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2.2 � NEQR and GNEQR

Quantum image representation model NEQR (Zhang et al. 
2013a, b) uses two entangled qubit sequences to encode the 
whole image information into a normalized superposition 
state. For a 2n × 2n quantum image with grayscale ranged 
[0, 2q − 1] , the representative expression is expressed as:

where the binary sequence IYX = I0
YX
I1
YX

⋅ ⋅ ⋅ I
q−2

YX
I
q−1

YX
 encodes 

the pixel’s gray value in corresponding position (Y , X) . 
Y = yn−1 ⋅ ⋅ ⋅ y1y0 and X = xn−1 ⋅ ⋅ ⋅ x1x0 denote the pixel’s 
location information in vertical and horizontal directions, 
respectively.

When q = 8, �I⟩ represents a grayscale image. As an exam-
ple, Fig. 3 gives a 2 × 2 NEQR grayscale image, its quantum 
circuit line, and the representative expression.

A RGB color image can be decomposed into three chan-
nels of Red, Green, Blue, and each channel is a grayscale 
image defined as:

where ��IR⟩, ��IG⟩, ��IB⟩ encode the grayscale image in chan-
nels of Red, Green, and Blue, respectively.

Based on three components of grayscale image within 
RGB color image, the generalized model of NEQR 

(5)

�I⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

��IYX⟩�YX⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

q−1

⊗
K=0

���I
K
YX

��Y⟩�X⟩,

(6)

��IR⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

��RYX⟩�YX⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

q−1

⊗
K=0

���R
K
YX

��Y⟩�X⟩,

��IG⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

��GYX⟩�YX⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

q−1

⊗
K=0

���G
K
YX

��Y⟩�X⟩,

��IB⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

��BYX⟩�YX⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

q−1

⊗
K=0

���B
K
YX

��Y⟩�X⟩,

(GNEQR) (Li et al. 2019) that represents a quantum RGB 
color image is defined as:

Figure 4 illustrates the quantum circuit implementation 
for GNEQR image, where the quantum oracle NEQR (i.e., 
a quantum black box) prepares a NEQR quantum image 
(Zhang et  al. 2013a, b), and the unitary operation 
Rx

�
arctan

√
2
�
 is defined as:

(7)

�G⟩ = 1√
3

���IR⟩�01⟩ + ��IG⟩�10⟩ + ��IB⟩�11⟩
�

=
1√
3
×

1

2n

2n−1�
Y=0

2n−1�
X=0

���RYX⟩�YX⟩�01⟩ + ��GYX⟩�YX⟩�10⟩

+��BYX⟩�YX⟩�11⟩
�

(8)

Rx(arctan
√
2) =

�
cos(arctan

√
2) sin(arctan

√
2)

sin(arctan
√
2) − cos(arctan

√
2)

�

=

⎡⎢⎢⎣
1
�√

3
√
2
�√

3√
2
�√

3 −1
�√

3

⎤⎥⎥⎦
.

Fig. 2   Notations for some basic quantum gates with their correspond-
ing matrices expression

Fig. 3   A 2 × 2 NEQR image

Fig. 4   Quantum circuit for the preparation of GNEQR image and its 
quantum circuit line



232	 W.-W. Hu et al.

1 3

2.3 � Twice scrambling based on generalized Arnold 
transform

Arnold transform, also called as cat map, was proposed 
by (Arnold and Avez, 1968) in the research of ergodic 
theory. Dyson and Falk quoted the transform as an image 
scrambling method (Dyson and Falk, 1992). On the basis of 
Arnold transform, the two-dimension generalized Arnold 
transform (Zhou et al. 2015) is defined as:

where (x, y) and (x�, y�) are the pixel’s coordinates of the 
original image and scrambled image, respectively. N is the 
size of the square image, t and m are the positive integers.

The generalized Arnold transform in the form of coor-
dinates can be expressed as:

Accordingly, the inverse generalized Arnold transform 
is defined as:

The inverse generalized Arnold transform in the form of 
coordinates is expressed as:

Only implementing the generalized Arnold transform 
on the image’s coordinate information do not changes 
histogram graph of the scrambled image. To enhance the 
security of the scrambled image, the generalized Arnold 
transform also can be used to scramble the pixel’s gray 
value. Assume that the pixel’s grayscale information IYX 
shown in Eq. (5) is divided into following two parts:

Then the generalized Arnold transform and its inverse 
transform implemented on grayscale space can be defined as:

(9)
[
x�

y�

]
=

[
1 t

m t ⋅ m + 1

] [
x

y

]
(modN),

(10)
x� = (x + t ⋅ y) mod N,

y� =
[
m ⋅ x + (t ⋅ m + 1)y

]
mod N.

(11)

[
x

y

]
=

[
1 t

m t ⋅ m + 1

]−1 [
x�

y�

]
(modN)

=

[
t ⋅ m + 1 −t

−m 1

] [
x�

y�

]
(modN).

(12)
x =

[
(t ⋅ m + 1)x� − t ⋅ y�

]
mod N,

y =
(
y� − m ⋅ x�

)
mod N.

(13)
IYX = I1YXI2YX ,

I1YX = I0
YX
I1
YX
I2
YX
I3
YX
, I2YX = I4

YX
I5
YX
I6
YX
I7
YX
.

where I�
YX

= I1�
YX
I2�

YX
= I0�

YX
I1�
YX
I2�
YX
I3�
YX
I4�
YX
I5�
YX
I6�
YX
I7�
YX

 is the pix-
el’s color information of encrypted image in position (Y,X).

2.4 � Logistic map

The chaotic Logistic map (Jafarizadeh and Behnia 2011) is 
widely studied in dynamic system, which is defined as:

where 0 ≤ � ≤ 4, k = 0, 1, 2, 3, ⋅ ⋅ ⋅, n and 0 < x0 < 1.
The study of chaotic dynamics shows that the Logistic 

map is in chaos when 3.56 < 𝜇 ≤ 4 . As an example, Logistic 
map curves under two different initial values with 100 itera-
tion times are illustrated in Fig. 5, from which it is easily to 
find that the Logistic map curves are very sensitive to the 
initial values.

2.5 � Quantum circuit modules

In this subsection, some quantum circuit modules are intro-
duced, which play a key element to construct the quantum 
circuit for the presented quantum scheme.

2.5.1 � ADDER module

The quantum ADDER originally introduced in (Vedral 
et al. 1996) is used to add two integers. Figure 6 illustrates 
the quantum circuit implementation for ADDER, which 
calculates the sum of two binary numbers A and B, where 
A = an−1an−2 ⋅ ⋅ ⋅ a2a1a0  and  B = bn−1bn−2 ⋅ ⋅ ⋅ b2b1b0  , 
ai, bi ∈ {0, 1} .  The sum of A  + B  is stored as 
S = snsn−1sn−2 ⋅ ⋅ ⋅ s2s1s0, si ∈ {0, 1} . Therein, the basic 
modules of CARRY and SUM (its quantum circuits are 
shown in Fig. 7a) are used to respectively calculate the carry 
of three binary bits and the sum of two binary bits.

According to the property of binary bits, quantum 
ADDER-MOD module to calculate the mod operation of 
(A + B) mod 2n was proposed (Jiang and Wang, 2014), which 
can be easily realized through omitting the highest bit sn of S. 
That is, (A + B) mod 2n = sn−1sn−2 ⋅ ⋅ ⋅ s1s0 . For simplicity, 
Fig. 7b gives the simplified diagram of ADDER-MOD 2n.

Noting that the positions of black boxes in the left and 
right within the CARRY module consists of all the same 
quantum gates but rearranged in a reverse order. In the 
following, we also adapt similar abbreviation notations to 

(14)

{
I1�

YX
= (I1YX + t ⋅ I2YX) mod 16

I2�
YX

=
(
m ⋅ I1YX + (t ⋅ m + 1) ⋅ I2YX

)
mod 16

,

{
I1YX =

[
(t ⋅ m + 1)I1�

YX
− t ⋅ I2�

YX

]
mod 16

I2YX =
(
I2�

YX
− m ⋅ I1�

YX

)
mod 16

,

(15)xk+1 = � ⋅ xk(1 − xk),
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denote the quantum modules that include same quantum 
gates but rearrange in a reverse order.

Due to the reversibility of quantum gates, if we 
reverse the action of the plain adder network with the 
initial two inputs �A⟩ and �B⟩ , the output will produce 
(�A⟩, �A − B⟩) when A > B. When A < B, the output is 
(�A⟩, �2n − (B − A)⟩) , where (n + 1) is the size of the sec-
ond register �B⟩ with the most significant qubit (bn) will 
always contain 1 (Vedral et al. 1996). Therefore, the quan-
tum circuit realization of (A − B) mod 2n is similar to the 

ADDER-MOD, which is realized by sequencing all of the 
quantum gates within ADDER in a reverse order directly 
and with the most significant bit bn = 1 of the second reg-
ister �B⟩ . The proof verifies this can be seen in Appendix 1. 
Figure 8 gives the simplified diagram of quantum circuit 
module of (A − B) mod 2n.

2.5.2 � Perfect shuffle permutation

The perfect shuffle permutation can be used to cyclic shift 
qubit sequence (Li et al. 2019a, b, c). For n-qubit sequence, 

Fig. 5   Two Logistic map curves 
under different initial values 
within 100 iteration times

Fig. 6   Quantum effective cir-
cuits for ADDER

Fig. 7   a Quantum circuit for CARRY and SUM, (b) the simplified 
diagram of ADDER − MOD 2

n

Fig. 8   Simplified diagram of quantum circuit module (A − B) mod 2
n 

equation
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it has two different forms of P2n−1,2 and P2, 2n−1 recursively 
defined as:

where P2, 2 is the Swap gate as shown in Fig. 2.
Thus P2n−1,2 and P2, 2n−1 respectively transform the n-qubit 

�X⟩ = ��xn−1xn−2 ⋅ ⋅ ⋅ x1x0⟩ into following forms:

Figure 9 illustrates the quantum circuits for P2n−1,2 and 
P2, 2n−1 , and their corresponding abbreviation notations are 
shown on the right.

2.5.3 � Quantum equal

Quantum Equal module introduced in (Zhou et al. 2107) 
is used to compare two bit sequences whether they are 
equal or not. The quantum circuit for Quantum Equal 
and its simplified module are illustrated in Fig. 10, where 
�Y⟩ = ��yn−1 ⋅ ⋅ ⋅ y1y0⟩ , �X⟩ = ��xn−1 ⋅ ⋅ ⋅ x1x0⟩ , xi, yi ∈ {0, 1} . 

(16)
P2n−1, 2 =

(
P2n−2, 2 ⊗ I2

)(
I2n−2 ⊗ P2, 2

)
,

P2, 2n−1 =
(
P2,2 ⊗ I2n−2

)(
I2 ⊗ P2, 2n−2

)
,

(17)
P2n−1,2�X⟩ = ��x0xn−1xn−2 ⋅ ⋅ ⋅ x1⟩,
P2, 2n−1 �X⟩ = ��xn−2 ⋅ ⋅ ⋅ x1x0xn−1⟩.

The output C represents the relationship between Y and X, 
i.e., if C = 1, then Y = X; otherwise, Y ≠ X when C = 0.

3 � Quantum image encryption 
and decryption

On the basis of generalized Arnold transform and Logistic 
map, our investigated quantum image encryption and decryp-
tion algorithms as well as the intact quantum implementation 
circuits are described in detail within this section.

3.1 � Encryption and decryption processes

Figure 11 gives the whole procedure of our investigated quan-
tum image encryption and decryption schemes. As shown in 
Fig. 11a, the encryption process mainly divides into two stages, 
i.e., twice scrambling and pixel encryption. Due to the decryp-
tion is exact the inverse operation of encryption, which also 
contains two stages, i.e., pixel decryption and inverse twice 
scrambling (as shown in Fig. 11b).

As illustrated in Fig. 11a, to encrypt a quantum plain image 
�I⟩ or �G⟩ (respectively expressed as Eqs. (5) and (7)), a secret 
quantum image �K⟩ with size of 2n × 2n is needed to be prepared 

Fig. 9   Quantum circuits for 
P
2n−1,2

 and P
2, 2n−1

Fig. 10   Circuit design for Quan-
tum Equal
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first. Herein, K is a classical grayscale image generated based 
on Logistic map first, and then encoded into a quantum image 
�K⟩ based on NEQR model (Zhang et al. 2013a, b), which can 
be expressed as:

where K
YX

= K
0

YX
K

1

YX
⋯K

6

YX
K

7

YX
=

7∑
i=0

K
i

YX
× 2

7−i
, K

i

YX
∈ {0, 1} 

are generated by Logistic map under the initial values x0, � 
with iteration times t = 22n . The relationship of KYX , xt , Y, 
X, t can be described:

where floor and mod respectively stand for round down and 
modulus operations.

3.2 � Quantum image encryption

The quantum image encryption is composed of two stages 
as illustrated in Fig. 11a. It can be described in detail as 
follows:

Stage 1 twice scrambling.
Suppose the final encrypted image �A⟩ in first stage can 

be written as:

(18)

�K⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

��KYX⟩�Y⟩�X⟩

=
1

2n

2n−1�
Y=0

2n−1�
X=0

7

⊗
T=0

���K
T
YX

��Y⟩�X⟩,

(19)

KYX = floor
[
mod

((
xt × 256

)
, 256

)]
, t ∈

{
1, 2, ⋯ , 22n

}
,

Y = yn−1yn−2 ⋅ ⋅ ⋅ y1y0, X = xn−1xn−2 ⋅ ⋅ ⋅ x1x0, yi, xi ∈ {0, 1},

t = Y × 2n + X + 1,

(20)

�A⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

��AYX⟩�YX⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

q−1

⊗
T=0

���A
T
YX

��Y⟩�X⟩.

According to Eq.  (10), the coordinate of encrypted 
image �A⟩ is defined as:

where ��YI⟩ and ��XI⟩ are the coordinates information of 
quantum image �I⟩ , ��YA⟩ and ��XA⟩ denote the coordinates 
information of quantum image �A⟩.

Due to the nature of modulo operation, we have:

Thus �Y⟩A and �X⟩A can be calculated in following forms:

Based on quantum ADDER MOD 2n shown in Fig. 7(b), 
Fig. 12 illustrates the integrated quantum circuit imple-
mentation for calculating the coordinate information of the 
encrypted image �A⟩ , in which the detailed quantum circuit 
for Box 1 is shown in Fig. 13.

Based on generalized Arnold transform, the pixel’s color 
information of quantum encrypted image �A⟩ is defined as:

where IYX =
(
I1YX , I2YX

)
 is the pixel color information of 

plain image �I⟩.AYX =
(
A1YX ,A2YX

)
 is the pixel color infor-

mation of encrypted image �A⟩ . Figure 14 illustrates the 
intact quantum circuit implementation for encrypting pixel 
color information based on generalized Arnold transform.

Stage 2 pixel encryption.
Herein, suppose that the final encrypted image �E⟩ in stage 

2 is written as:

(21)
��XA⟩ = ���

�
XI + t ⋅ YI

�
mod 2n

�
,

��YA⟩ = ���
�
m ⋅ XI + (t ⋅ m + 1)YI

�
mod 2n

�
,

(22)(X + 2 ⋅ Y) mod 2n =
[
(X + Y) mod 2n + Y

]
mod 2n.

(23)

�
YI ,XI

�
→

�
YI ,

�
XI + YI

�
mod 2n

�
→

�
YI ,

�
XI + 2 ⋅ YI

�
mod 2n

�
→

⋯ →

�
YI ,

�
XI + (t − 1) ⋅ YI

�
mod 2n

�
→

⎛⎜⎜⎜⎜⎝
YI ,

�
XI + t ⋅ YI

�
mod 2n

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
XA

⎞⎟⎟⎟⎟⎠
.

(24)

�
X
I
,X

I

�
→

�
X
I
, 2 ⋅ X

I
mod 2

n
�
→ ⋯ →

�
X
I
,m ⋅ X

I
mod 2

n
�

�
Y
I
,m ⋅ X

I
mod 2

n
�
→

�
Y
I
,
�
m ⋅ X

I
+ Y

I

�
mod 2

n
�

→

�
Y
I
,
�
m ⋅ X

I
+ 2 ⋅ Y

I

�
mod 2

n
�
→ ⋯ →

�
Y
I
,
�
m ⋅ X

I
+ t ⋅ Y

I

�
mod 2

n
�

→

⎛
⎜⎜⎜⎜⎝
Y
I
,
�
m ⋅ X

I
+ (t + 1) ⋅ Y

I

�
mod 2

n

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Y
A

⎞
⎟⎟⎟⎟⎠
.

(25)

��A1YX⟩ = ���
�
I1YX + t ⋅ I2YX

�
mod 2n

�
,

��A2YX⟩ = ���
�
m ⋅ I1YX + (t ⋅ m + 1)I2YX

�
mod 2n

�
,

I1YX = I0
YX
I1
YX
I2
YX
I3
YX
, I2YX = I4

YX
I5
YX
I6
YX
I7
YX
,

A1YX = A0
YX
A1
YX
A2
YX
A3
YX
, A2YX = A4

YX
A5
YX
A6
YX
A7
YX
,

Fig. 11   Quantum image encryption and decryption processes: (a) 
encryption, (b) decryption
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The aim of current stage is to encrypt the pixel’s color 
information of image �A⟩ in first stage. The integrated quan-
tum circuit for pixel information encryption is demonstrated 
in Fig. 15, which can be described as follows.

First, quantum Equal module is employed to compare the 
coordinate information of the two quantum images �K⟩ and 
�A⟩ . The comparison results are denoted by the single output 
qubit �C⟩ defined as:

where �YX⟩K and �YX⟩A respectively denote the pixel’s loca-
tion information of quantum images �K⟩ and �A⟩.

(26)

�E⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

��EYX⟩�YX⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

q−1

⊗
T=0

���E
T
YX

��Y⟩�X⟩.

(27)

��YX⟩K = �YX⟩A, �C⟩ = �1⟩,
�YX⟩K ≠ �YX⟩A, �C⟩ = �0⟩,

Fig. 12   Quantum circuits for 
encrypting the coordinate 
information

Fig. 13   Quantum circuit for box 1

Fig. 14   Quantum circuits for 
encrypting the pixel color 
information
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Second, quantum Pixel Encryption module is used to 
encrypt the pixel’s color information of image �A⟩ when the 
coordinate information of two images �K⟩ and �A⟩ are equal. 
That is, the output qubit �C⟩ in state of �1⟩ is utilized to act as 
a controlled qubit for Pixel Encryption module. The intact 
quantum circuit implementation for Pixel Encryption mod-
ule is illustrated in Fig. 16, which consists of three steps 
described as follows.

Step 1 encrypt the pixel’s color information of image �A⟩ 
through CNOT gates, where the qubit |||Ki

YX

⟩
 is the control qubit 

while qubit |||Ai
YX

⟩
 is the target qubit, i = 0, 1, ⋯ , 7 . Assume 

that the encrypted image is �AX⟩ , then it can be defined as:

(28)

�AX⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

��AYX ⊕ KYX⟩�YX⟩

=
1

2n

2n−1�
Y=0

2n−1�
X=0

q−1

⊗
T=0

���A
T
YX

⊕ KT
YX

��Y⟩�X⟩

=
1

2n

2n−1�
Y=0

2n−1�
X=0

q−1

⊗
T=0

���AX
T
YX

��Y⟩�X⟩.

Step 2 current step consists of two substeps described 
as follows:

Substep 2.1 perform the bit-plane scrambling operation 
on image �AX⟩ , then the obtained encrypted image �AB⟩ can 
be defined as:

Substep 2.2 implement the CNOT gates on image �K⟩ . 
Then the obtained image �KX⟩ is defined as:

Step 3 under the control of qubits K0
YX
, K1

YX
, K2

YX
, K3

YX
 , 

implement the controlled perfect shuffle permutation P27, 2 or 
P23, 2 on image �AB⟩ . Since it is hard to describe the encryp-
tion process of this step in formula form, we omit it from 
here for simplicity. Assume that the image �AB⟩ after perfect 
shuffle permutation operations is final encrypted image �E⟩ 
written as Eq. (26).

Figure 17 gives the complete quantum circuit implemen-
tation for the proposed quantum image encryption process. 

(29)

�AB⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

4

⊗
T=7

���AX
T
YX

����AX
7
YX

⊕ AX3
YX

�����AX
6
YX

⊕ AX2
YX

�

⊗
���AX

5
YX

⊕ AX1
YX

����AX4
YX

⊕ AX0
YX

�
�Y⟩�X⟩

=
1

2n

2n−1�
Y=0

2n−1�
X=0

4

⊗
T=7

���K
T
YX

⊕ AT
YX

�
⊗
���K

7
YX

⊕ A7
YX

⊕ K3
YX

⊕ A3
YX

�

⊗
����K

6
YX

⊕ A6
YX

⊕ K2
YX

⊕ A2
YX

�
⊗

���K
5
YX

⊕ A5
YX

⊕ K1
YX

⊕ A1
YX

�

⊗
���K4

YX
⊕ A4

YX
⊕ K0

YX
⊕ A0

YX

�
�Y⟩�X⟩

=
1

2n

2n−1�
Y=0

2n−1�
X=0

q−1

⊗
T=0

���AB
T
YX

��Y⟩�X⟩.

(30)

�KX⟩ = 1

2n

2n−1�
Y=0

2n−1�
X=0

3

⊗
T=0

���K
T
YX

⊕ K7−T
YX

����K
4
YX
K5
YX
K6
YX
K7
YX

��Y⟩�X⟩

=
1

2n

2n−1�
Y=0

2n−1�
X=0

7

⊗
T=0

���KX
T
YX

��Y⟩�X⟩.

Fig. 15   Quantum circuit for pixel encryption

Fig. 16   Quantum circuit for 
Pixel Encryption module
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Herein, the simplified diagram of “Generalized Arnold” 
means the twice scrambling based on generalized Arnold 
transform in stage 1, and the simplified diagram of “Pixel 
Encryption Based on Key Image” means the pixel encryp-
tion process in stage 2. Figures 17a, b respectively denote 
the encryption for the quantum grayscale and color images.

3.3 � Quantum image decryption

Quantum image decryption is the inverse process of encryp-
tion as illustrated in Fig. 11b. Based on quantum key image 
�K⟩ and quantum encrypted image �E⟩ , the decryption process 
that recovering the quantum plain image �I⟩ can be described 
within following two stages.

Stage 1 pixel decryption.
The quantum circuit module for pixel decryption opera-

tion in this stage is shown in Fig. 18. The process can be 
explained as follows.

First, the Quantum Equal module is employed to compare 
whether the coordinate information of two images �K⟩ and �E⟩ 
are equal or not.

Second, the output qubit �C⟩ of Quantum Equal module is 
used to act as the control qubit for quantum Pixel Decryption 
module. Figure 19 illustrates the detailed quantum circuit 
implementation for Pixel Decryption module, which consists 
of following three steps.

Step 1 current step consists of two substeps described as 
follows:

Substep 1.1 implement the CNOT operations within image 
�K⟩ , and then obtain the image �KX⟩ described as Eq. (30).

Substep  1 .2  under  the  cont ro l  of  qubi ts 
K0
YX
, K1

YX
, K2

YX
, K3

YX
 , implement the controlled perfect shuf-

fle permutation P27, 2 or P23, 2 on image �E⟩ . Then, we can 
decrypt the quantum image �E⟩ into �AB⟩ written as Eq. (29).

Step 2 current step includes following two substeps 
described as:

Susbstep 2.1 implement the CNOT operations on quantum 
image �KX⟩ , which can transform image �KX⟩ into image �K⟩.

Substep 2.2 implement the inverse bit-plane scrambling 
operation for quantum image �AB⟩ . Then we can obtain image 
�AX⟩ written as Eq. (28).

Step 3 implement the CNOT operations between images 
�K⟩ and �AX⟩ , then �AX⟩ is transformed into the �A⟩ written 
as Eq. (20).

Stage 2 inverse twice scrambling.
Based on Eq. (12), the coordinate information based on 

inverse generalized Arnold transform can be defined as:

Similarly, due to the nature of mod operation, we can 
deduce the following relationship:

(31)
��XI⟩ = ���

�
(t ⋅ m + 1) ⋅ XA − t ⋅ YA

�
mod 2n

�
,

��YI⟩ = ���
�
YA − m ⋅ XA

�
mod 2n

�
.

Fig. 17   Quantum circuit 
modules for quantum image 
encryption process: (a) quantum 
grayscale image; (b) quantum 
color image

Fig. 18   Quantum circuit module for Pixel Decryption operation
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Thus, based on the quantum module ADDER − MOD 2n 
(shown in Fig.  7(b)) and its inverse module 
ADDER − MOD 2n (shown in Fig. 8), the coordinate infor-
mation ��YI⟩ and ��XI⟩ can be calculated as follows:

On the basis of Eqs. (33) and (34), Fig. 20 illustrates the 
integrated quantum circuit for calculating the coordinate 
information of the plain image �I⟩.

Based on Eq. (14), the pixel’s color information of plain 
image �I⟩ can be defined as:

(32)

(t ⋅ X − m ⋅ Y) mod 2n

= (t ⋅ X mod 2n − m ⋅ Y mod 2n) mod 2n

=

{[
(t − 1) ⋅ X mod 2n + X

]
mod 2n

−
[
(m − 1) ⋅ Y mod 2n + Y

]
mod 2n

}
mod 2n.

(33)

��
XA,XA

�
→

�
XA, 2 ⋅ XA mod 2n

�
→ ⋯ →

�
XA, tm ⋅ XA mod 2n

�
→

�
XA, (tm + 1) ⋅ XA mod 2n

�
��

YA, YA
�
→

�
YA, 2 ⋅ YA mod 2n

�
→

⋯ →

�
YA, t ⋅ YA mod 2n

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
(tm + 1) ⋅ XA mod 2n, t ⋅ YA mod 2n

�

→

⎧⎪⎪⎨⎪⎪⎩

(tm + 1) ⋅ XA mod 2n,
�
(tm + 1) ⋅ XA − t ⋅ YA

�
mod 2n

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
XI

⎫⎪⎪⎬⎪⎪⎭

.

(34)

�
XA,XA

�
→

�
XA, 2 ⋅ XA mod 2n

�
→ ⋯ →

�
XA,m ⋅ XA mod 2n

�

�
YA,m ⋅ XA mod 2n

�
→

⎡⎢⎢⎢⎢⎣
YA,

�
YA − m ⋅ XA

�
mod 2n

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
YI

⎤⎥⎥⎥⎥⎦
.

According to Eq. (35), Fig. 21 illustrates the intact quan-
tum circuit implementation for recovering pixel’s color infor-
mation of image �I⟩.

Based on above-mentioned two stages operation, Fig. 22 
illustrates the whole quantum circuit implementation module 
for proposed quantum image decryption scheme. Wherein, 
Figs. 22a, b respectively denote the decryption for the quan-
tum grayscale and color images. The simplified diagram of 
“Pixel Decryption Based on Key Image” means the decryp-
tion process within stage 1, and the simplified diagram of 
“Inverse Generalized Arnold” means the inverse twice 
scrambling operation within stage 2.

4 � Complexity analyses

To give a detailed analysis about the computational com-
plexity, the quantum cost and time complexity of a quantum 
circuit defined in (Li et al. 2018a, b, c) are adopted, which 
are defined as:

(1) The quantum cost of a quantum circuit can be 
regarded as the total number of basic operations which 
simulate the circuit.

(2) The time complexity of a quantum circuit is defined 
by the total number of time steps. In a time step, only one 
basic operation is executed or multiple ones can be per-
formed in parallel.

4.1 � Quantum cost

The complex quantum circuit on many qubits n can be 
decomposed into a sequence of one-qubit and two-qubit 

(35)
��I1YX⟩ = ���

�
(t ⋅ m + 1) ⋅ A1YX − t ⋅ A2YX

�
mod 2n

�
,

��I2YX⟩ = ���
�
A2YX − m ⋅ A1YX

�
mod 2n

�
.

Fig. 19   Quantum circuit for 
Pixel Decryption module
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quantum gates compositions (Michael and Isaac 2000; 
Barenco 1995). Herein, the quantum cost of one-qubit and 
two-qubit quantum gates are taken as unit. Furthermore, it 
pointed out that a quantum Cn(X) gate can be decomposed 
into 2(n-1) Toffoli gates and a CNOT gate with n-1 ancillary 
qubits (Michael and Isaac 2000), in which n ( n ≥ 3 ) is the 
number of control qubits and X is NOT gate (as illustrated 

in Fig. 23), and one Toffoli gate (i.e., C2(X) ) can be simu-
lated by five two-qubit quantum gates illustrated in Fig. 24 
(Michael and Isaac 2000). Thus the quantum cost of a Cn(X) 
gate is deduced as 2(n − 1) × 5 + 1 = 10n − 9.

Since the investigated quantum image encryption process 
mainly consists of two stages, i.e., twice scrambling within 

Fig. 20   Quantum implemen-
tation circuits of the inverse 
generalized Arnold transform 
for coordinate information

Fig. 21   Quantum circuits of 
inverse generalized Arnold 
transform for the pixel informa-
tion
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stage 1 and pixel encryption within stage 2, the quantum 
cost of intact quantum circuit for image encryption can be 
discussed as follows:

Stage 1 twice scrambling.
The quantum cost in current stage is dependent on the 

number of quantum ADDER-MOD module used. The 

quantum circuit implementations are illustrated in Figs. 12 
and 14. For the coordinate information encryption shown 
in Fig. 12, the number of ADDER − MOD 2n module is 
t ⋅ m + t + m − 1 , and as well as 2n additional CNOT gates. 
For pixel’s gray value encryption shown in Fig. 14, the num-
ber of ADDER − MOD 24 module also is t ⋅ m + t + m − 1 , 
and as well as additional 8 CNOT gates. The detailed quan-
tum circuit for ADDER is shown in Fig. 6, which contains 
(2n-1) CARRY modules (a CARRY module consists of 2 
Toffoli and 1 CNOT gates), n SUM modules (a SUM module 
consists of 2 CNOT gates), and an additional CNOT gate. 
Thus, the quantum cost of ADDER − MOD 2n is calculated 
as:

(36)(2n − 1) × (2 × 5 + 1) + 2n + 1 = 24n − 10.

Fig. 22   Quantum circuit module 
for quantum image decryption: 
(a) quantum grayscale image; 
(b) quantum color image

Fig. 23   The decomposition of 
C
n(X) gate via Toffoli gates and 

CNOT gate

Fig. 24   The decomposition of Toffoli gate via five two-qubit quantum 
gates
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Thus, the quantum cost of twice scrambling in stage 1 can 
be deduced as:

where two positive integers k1 and k2 are constants denote 
the iteration times of generalized Arnold transforms 
implemented on pixel’s coordinate and color information, 
respectively.

Stage 2 pixel encryption.
The quantum circuit within current stage 2 mainly con-

sists of two modules: Quantum Equal and Pixel Encryption. 
According to effective circuit of Quantum Equal shown in 
Fig. 10, we can infer that the Quantum Equal module within 
current stage contains 4n CNOT gates and an additional 
C2n(X) gate. Thus, the quantum cost of Quantum Equal 
module is 24n − 9 . For the Pixel Encryption module shown 
in Fig. 16, it contains 16 CNOT gates, 4 Swap gates, 2 con-
trolled P27, 2 modules and 4 controlled P23, 2 modules. Noting 
that Swap gate can be decomposed into three CNOT gates 
(shown in Fig. 2), then the controlled Swap gate (with one 
control qubit) can be regarded as consisting of three Toffoli 
gates. Then the quantum cost of Pixel Encryption module is 
calculated as: 16 + 4 + (2 × 7 + 4 × 3) × 3 × 5 = 410 . Thus, 
the quantum cost in stage 2 is calculated as:

Based on above two stage analysis, the quantum cost of 
presented quantum image encryption process is calculated 
as O(n) . Furthermore, due to the decryption is exactly the 
inverse process of encryption, we can infer that the quantum 
cost of image decryption process is also O(n).

4.2 � Time complexity

Similar to quantum cost analysis, the time complexity of 
quantum image encryption process is divided into following 
two stages.

Stage 1 twice scrambling.
Noting that the CARRY and SUM modules within 

ADDER are executed in sequence (shown in Fig. 6), and 
the quantum gates (i.e., Toffoli and CNOT gates) within 
these modules are also executed in sequence (shown in 
Fig. 7a). Thus, the time complexity of single ADDER mod-
ule is 24n-10. For the quantum circuit of Box 1 shown in 
Fig. 12, it can be designed in parallel within two steps. 

(37)

k1 × [(24n − 10) × (t ⋅ m + t + m − 1) + 2n]

+k2 × [(24 ⋅ 4 − 10) × (t ⋅ m + t + m − 1) + 8]

= O(n),

(38)24n − 9 + 410 = 24n + 401 = O(n).

Because the generalized Arnold transform implemented 
on pixel’s coordinate and color information are independ-
ent (i.e., these two processes can be executed in parallel), 
the time complexity of twice scrambling in stage 1 can be 
deduced as:

where max means taking the maximum.
Stage 2 pixel encryption.
For the Quantum Equal module shown in Fig. 15, the 

4n CNOT gates can be executed in parallel with 2 steps, 
and the C2n(X) gate can be decomposed into (2n-1) Toffoli 
gates and 1 CNOT gate executed in sequence. Thus, the 
time complexity of Quantum Equal module calculated as 
2 + (2n − 1) × 5 + 1 = 10n − 2 . For the Pixel Encryption 
module, it is divided into three steps: (1) the CNOT opera-
tions of step 1 can be executed in parallel with one step; (2) 
the Swap operations and CNOT operations of step 2 can be 
executed in parallel with two steps; (3) the controlled per-
fect shuffle permutations in step 3 contains 26 controlled 
Swap gates, where a controlled Swap gate can be regarded 
as three Toffoli gates. Thus, the time complexity step 3 is 
26 × 3 × 5 = 390 . Therefore, the time complexity of stage 
2 is calculated as:

From above two stages analyses, it is easily to infer that 
the time complexity for our investigated quantum image 
encryption and decryption schemes are both O(n) . Noting 
that in classical image processing algorithms, the pixels 
needs to be processed one-by-one, it requires a compu-
tational complexity of at least O

(
22n

)
 for a 2n × 2n digital 

image. Thus the presented quantum image encryption and 
decryption schemes have achieved an exponential speedup 
than the classical algorithms.

4.3 � Comparisons

Compared to classical image processing algorithm that pro-
cess the pixel’s information pixel-by-pixel, our presented 
quantum image encryption algorithm obviously has a lower 
complexity. Therefore, we only compare our presented 
quantum scheme with others existing quantum schemes 
to evaluate the performance in terms of quantum cost. 
Table 1 gives the comparisons in terms of quantum cost 

(39)

max

{
k1 × [(24n − 10) × (t ⋅ m + t + m − 1) + 2],

k2 × [(24 ⋅ 4 − 10) × (t ⋅ m + t + m − 1) + 2]

}
,

(40)10n − 2 + 1 + 2 + 390 = 10n + 391.
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with existing researches, from which we can conclude that 
our investigated quantum scheme has the same or lower 
quantum cost than existing works.

5 � Experimental results and numerical 
analysis

Due to the absence of a practical and functional quantum 
computer, our experimental results are simulated under the 
classical computers equipped with the MATLAB environ-
ment. I.e., in a classical version (no quantum version) with an 
ideal environment without considering the effects of quan-
tum noise introduced when implements the quantum gate and 
quantum measurement operations. MATLAB is a good tool 
that facilitates the representation and manipulation of large 
arrays of vectors and matrices, which makes it simulate quan-
tum states and operators effectively, such as the superposition 
states of quantum images and the quantum unitary operations.

To evaluate the performance of our presented quantum 
encryption scheme, two grayscale images (Lena and Camera-
man) and two color images (Lena and Airplane) with size of 
256 × 256 are used as the tested images illustrated in Fig. 25.

5.1 � Experimental results

For simplicity, Figs. 26 and 27 only demonstrate several cases 
of the encrypted images based on our investigated quantum 
encryption algorithm. Figure 26 illustrates the visual effects 

Table 1   Comparisons in terms of quantum cost

Works Images Quantum cost

Yang et al. (2013) Grayscale O
(
n
2
)

Yang et al. (2014) Color O
(
n
2
)

Jiang, Wu and Wang, (2014a, b) Grayscale O(n)

Jiang, Wang and Wu (2014a, b) Grayscale O
(
n
2
)

Zhou et al. (2015) Grayscale O
(
n
2
)

Liang et al. (2016) Grayscale O(n)

Zhou et al. (2018) Color O(n)

Li et al. (2018a, b, c) Grayscale or color O(n2n)

Li et al. (2019a, b, c) Grayscale or color O
(
n
2
)

Our scheme Grayscale or color O(n)

Fig. 25   Tested images used in 
our simulation

Fig. 26   Visual effects of the 
encrypted grayscale images: (a) 
Encrypted Lena, (b) Encrypted 
Cameraman
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of the encrypted grayscale images Lena and Cameraman. 
Herein, the iteration times of generalized Arnold transform 
with initial values t = m = 2 implemented in pixel’s coordinate 
and color information are 4 times and 2 times, respectively. 
Figure 27 illustrates the visual effects of the encrypted color 
images Lena and Airplane under the same conditions as 
Fig. 26 does. Herein, the text below encrypted image with 
four initial values (from left to right) respectively represent 
iteration times of generally Arnold transform implemented 
on pixel’s coordinate and color information, and two initial 
values x0, � of Logistic map.

5.2 � Statistical analysis

5.2.1 � Mean square error

A perfect encrypted image should significantly differ with 
the original one. The mean square error (MSE) is an effec-
tive merit that characterizes the difference between encrypted 
images and original versions. For two grayscale images with 
size of 2n × 2n , MSE is defined as:

(41)MSE =
1

2n × 2n

2n−1∑
i=0

2n−1∑
j=0

[
I(i, j) − E(i, j)

]2
,

where I(i, j) and E(i, j) are the pixel gray value of original 
and encrypted images in position (i,j), respectively. Simi-
larly, for two color images, MSE is defined via three chan-
nels red, green and blue as:

where IK(i, j) and EK(i, j) are pixel gray value of original and 
encrypted images in position (i,j), respectively. K = R, G, B 
respectively denote the red, green and blue channels of RGB 
color image.

Obviously, the larger the MSE value is, the better the encryp-
tion effects is. For the four plain images shown in Fig. 25, the 
MSE values of the encrypted images shown in Fig. 26 based on 
our presented scheme are calculated as shown in Table 2. The 
MSE values of color image in three channels Red, Green and 
Blue for the encrypted color images Lena and Airplane shown 
in Fig. 27 are demonstrated in Table 3. Apparently, the numeri-
cal values in Tables 2 and 3 with high MSE values indicate that 
the images encrypted by using our proposed scheme are quite 

(42)

MSER =
1

2n × 2n

2n−1∑
i=0

2n−1∑
j=0

[
IR(i, j) − ER(i, j)

]2
,

MSEG =
1

2n × 2n

2n−1∑
i=0

2n−1∑
j=0

[
IG(i, j) − EG(i, j)

]2
,

MSEB =
1

2n × 2n

2n−1∑
i=0

2n−1∑
j=0

[
IB(i, j) − EB(i, j)

]2
,

Fig. 27   Visual effects of the 
encrypted color images: (a) 
Encrypted Lena, (b) Encrypted 
Airplane

Table 2   MSE values of the 
encrypted grayscale images 
with original version

MSEs Images Encrypted images under different initial values

[4,2, 0.65, 3.75] [4, 2, 0.65, 3.85] [4, 2, 0.70, 3.75] [4, 2, 0.70, 3.85]

Lena 9.0052e + 03 9.0204e + 03 9.1091e + 03 9.0992e + 03
Cameraman 9.4319e + 03 9.2363e + 03 9.4141e + 03 9.2563e + 03
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differ with the original images. Thus, our investigated image 
encryption algorithm has good encryption effects. Further-
more, to test the chance of a successful attack when decrypts an 
encrypted image using two very close initial values of Logistic 
map, the MSE of two encrypted grayscale images Lena and 
Cameraman are shown in Table 4 as examples. Obviously, the 
MSE values of two encrypted grayscale images under very two 
close initial values of Logistic map are larger than 1.08e + 04. 
Thus we can infer that the similarity of these two encrypted 
images is very small.

To compare the performance of our presented scheme 
with existing references, Table 5 illustrates the MSE values of 
encrypted color image Lena in Li and Zhao 2017, Ran et al. 
2018 and our scheme. The MSEs of our proposed encrypted 
image is a little small than the MSEs of schemes in Li and Zhao 
2017, Ran et al. 2018.

5.2.2 � Correlation between adjacent pixels

Correlation Coefficient (CC) reflects the degree of similar-
ity between two variables. Suppose that x, y are the grayscale 
values of adjacent pixels set. Then, the correlation coefficient 
between x and y is defined as:

where E(x) = 1∕n
∑n

i=1
xi and E(y) = 1∕n

∑n

i=1
yi are the 

mean of two variables x and y, respectively. cov(x,y) is called 
the covariance of two variables x and y, and D(x) and D(y) 
are the variance of two variables x and y, respectively.

An effective image encryption algorithm should produce 
the encrypted image with sufficiently low correlation in 
horizontal, vertical and diagonal directions. Generally, the 
CC of original image in three directions (i.e., vertical, hori-
zontal and diagonal) is close to 1 because each two pixels 
within image are highly correlated to each other. On the 
contrary, the CC of an encrypted image should be close to 
0. To calculate the CC of original image and corresponding 
encrypted image, 8000 pairs of two adjacent pixels from 
horizontal, vertical and diagonal directions, are randomly 

(43)

CCXY =
cov(x, y)√
D(x)D(y)

=

1

n

∑n

i=1

��
xi − E(x)

��
yi − E(y)

��
�

1

n

∑n

i=1

�
xi − E(x)

�2 1
n

∑n

i=1

�
yi − E(y)

�2

Table 3   MSE values of the 
encrypted color images with 
original version

MSEs Images Channels Encrypted images under different initial values

[4,2,0.65, 3.75] [4,2, 0.65, 3.85] [4, 2, 0.70, 3.75] [4, 2, 0.70, 3.85]

Lena Red 3.4825e + 03 3.4934e + 03 3.5262e + 03 3.4901e + 03
Green 3.0044e + 03 2.9991e + 03 3.0115e + 03 3.0042e + 03
Blue 2.3695e + 03 2.3662e + 03 2.3576e + 03 2.3433e + 03

Jetplane Red 3.2179e + 03 2.9447e + 03 3.1872e + 03 2.9561e + 03
Green 3.5487e + 03 3.5711e + 03 3.5822e + 03 3.5858e + 03
Blue 3.5506e + 03 3.5280e + 03 3.4822e + 03 3.5179e + 03

Table 4   MSE values of two 
encrypted grayscale images

MSEs Images Encrypted images under different initial values

[4,2, 0.65, 3.75] [4, 2, 0.65, 3.85] [4, 2, 0.70, 3.75] [4, 2, 0.70, 3.85]

Lena 1.0847e + 04 1.0967e + 04
Cameraman 1.0840e + 04 1.0853e + 04

Table 5   Comparisons with 
other existing works

MSEs Images Channels Our scheme Li and Zhao 2017 Ran et al. 2018
[4,2,0.65, 3.75] – –

Lena Red 3.4825e + 03 1.062 + e4 9.114e + 03
Green 3.0044e + 03 9.064 + e3 9.784e + 03
Blue 2.3695e + 03 7.111 + e3 1.066e + 04

Table 6   Correlation coefficients of the original grayscale images

CC Images Three different directions

Horizontal Vertical Diagonal

Lena 0.9069 0.9480 0.9226
Cameraman 0.9445 0.9210 0.8291
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choose, respectively. Table 6 illustrates the CCs of original 
images Lena and Cameraman in three directions, which is 
all close to 1. Table 7 gives the CCs of encrypted grayscale 

images under different initial values in three directions 
which are all close to zero. Apparently, on the basis of 
specific values shown in Tables 6 and 7, it is easily to find 
that the correlation between the adjacent pixels in original 
image is very strong while in encrypted image are almost 
irrelevant. So that there is no information obtained about 
the original image by analysis the correlations of neighbor-
hood pixels in encrypted image.

To present the intuitive visual effects, Figs. 28 and 29 
show the comparison of correlation distributions of two 
adjacent pixels in three directions between the original 
grayscale images and encrypted versions. Herein, images 
are encrypted under four initial values [4, 2, 0.65, 3.85]. 
Obviously, it is also clear from Figs. 28 and 29 that the cor-
relation between the adjacent pixels in the original image 
is very strong and adjacent pixels in the encrypted image 
are almost irrelevant.

Table 7   Correlation coefficients of the encrypted color images

CC Images Encrypted images 
under different initial 
values

Three different directions

Horizontal Vertical Diagonal

Lena [4, 2, 0.65, 3.75] 0.0150 − 0.0169 0.0121
[4, 2, 0.65, 3.85] − 0.0007 0.0056 − 0.0041
[4, 2, 0.70, 3.75] − 0.0043 − 0.0125 0.0064
[4, 2, 0.70, 3.85] 0.0003 − 0.0041 0.0119

Cameraman [4, 2, 0.65, 3.75] − 0.0166 − 0.0027 0.0043
[4, 2, 0.65, 3.85] − 0.0048 0.0005 0.0093
[4, 2, 0.70, 3.75] 0.0129 − 0.0104 − 0.0004
[4, 2, 0.70, 3.85] 0.0147 − 0.0080 0.0127

Fig. 28   Correlation distribu-
tions between two adjacent 
pixels in three directions: (a) 
image Lena and (b) encrypted 
image Lena
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5.2.3 � Information entropy

Information Entropy (IE) is a statistical measure of uncer-
tainty feature of the image. The computing formula of infor-
mation entropy H(s) for message source is defined as:

where p
(
si
)
 represents the probability of the occurrence of 

symbol si , and the ideal entropy value for an encrypted gray-
scale image should be 8 bits in ideal conditions. In another 
words, if the gray values of an image are distributed more 
even, and then the entropy value is closer to the ideal value 
8 to resist the entropy attacks.

(44)H(s) = −

2n−1∑
i=0

p
(
si
)
log2 p

(
si
)

The information entropy of original grayscale images 
Lena, Cameraman and their corresponding encrypted ver-
sions is listed in Table 8. From the results of statistics, the 
loss in the processing of information encryption is com-
pletely weak. Thus, the proposed scheme is stable and secure 
against entropy attack.

5.3 � Security analysis

5.3.1 � Histogram

Image histogram reflects the distribution of an image’s pixel 
gray value, which is an essential merit to assess the perfor-
mance of any image encryption algorithm. A good secure 

Fig. 29   Correlation distribu-
tions between two adjacent pix-
els in three directions: (a) image 
Cameraman and (b) encrypted 
image Cameraman
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encryption algorithm should guarantee that the histograms 
of encrypted images are completely different to histograms 
of original versions. Figure 30 illustrates the histogram of 
original plain images, i.e., grayscale images Lena and Cam-
eraman in first row, and color images Lena and Airplane in 
three channels (Red, Green and Blue) in second row.

Figures 31 and 32 respectively demonstrate the histograms 
of encrypted images based on our presented scheme. Obvi-
ously, the histogram of the encrypted grayscale images Lena 

and Cameraman (shown in Fig. 31) are totally a different dis-
tribution forms compared to the original versions as well as 
the histogram of encrypted color images Lena and Airplane 
(shown in Fig. 32). Furthermore, under different initial values 
of Logistic map for generating the secret key image, the his-
togram graphs are also very similar to each other. Therefore, 
we can conclude that there is no similarity in terms of histo-
grams between the plain images and the encrypted versions.

Table 8   Information entropy 
of the original and encrypted 
images (bit)

IEs Images Original images Encrypted images under different initial values

[4, 2, 0.65, 3.75] [4, 2, 0.65, 3.85] [4, 2, 0.70, 3.75] [4, 2, 0.70, 3.85]

Lena 7.5683 7.9881 7.9535 7.9875 7.9555
Cameraman 7.0486 7.9831 7.9224 7.9809 7.9220

Fig. 30   Histograms of tested images shown in Fig. 25
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5.3.2 � Key analysis

Key space is the number of different keys can be used to 
encrypt the plain image. Key sensitivity is known as the sensi-
tivity of the secret key to decrypt effect, which ensures that one 
cannot obtain any useful information from the decrypted image 
when a tiny change occurs to the keys. Large key space plus 
sensitive key are the essential property for good image encryp-
tion algorithm, which can stand up to the brute-force attack.

The proposed quantum scheme has four initial values: k1, 
k2,x0 and �. Wherein, positive integer k1 and k2 respectively 
denote the iteration times of generally Arnold transform imple-
mented on plain image pixel’s coordinate and color information. 
Keys x0 and � are real numbers that belong to the initial values 
of Logistic map under condition of 0 < x0 < 1, 3.56 < 𝜇 ≤ 4 . 
Thus the total key space can be deduced as:

(45)k1 × k2 × c1 × c2 →∝

where positive integers c1 and c2 respectively represent the 
number of real numbers x0 and � can be chose in interval of 
(0, 1) and (3.65, 4].

To verify our presented quantum scheme has a sensitive 
key, an example is tested as illustrated in Fig. 33. Herein, 
the visual effects and corresponding histogram graphs for 
the encrypted grayscale image Lena under the initial value 
[4, 2, 0.65, 3.75] are decrypted with the correct key and 
three different wrong keys [4, 2, 0.65, 3.85], [4, 2, 0.70, 
3.75], [4, 2, 0.70, 3.85] demonstrated in Fig. 32. Appar-
ently, the decrypted image with wrong initial keys are 
total disordered or meaningless, and the corresponding 
histogram graphs are quite different from its original ver-
sions and similar to each other. Thus, it can infer that our 
presented quantum scheme has a very sensitive key and 
the plain image can only be decrypted via correct keys.

Fig. 31   Histograms of 
encrypted grayscale images 
under the specific keys
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Fig. 32   Histograms of 
encrypted color images under 
specific keys

Fig. 33   Visual effects of 
decrypted images under correct 
and wrong initial values: (a) is 
the encrypted grayscale image 
Lena; (b) is the decrypted 
image under the correct initial 
values; (c, d) and (f) are the 
decrypted Lena images with 
wrong initial values as text 
shown; (f, g) and (h) are the 
corresponding histogram graphs 
of decrypted Lena images (c, d) 
and (e), respectively
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6 � Conclusions

Based on chaos theory of the generalized Arnold transform 
and Logistic map, a two-stage quantum image encryption 
algorithm is investigated in this paper. In stage 1, twice 
scrambling operation based on generalized Arnold trans-
form is proposed. Following that, according to the quantum 
key image generated and prepared via Logistic map, the 
CNOT operations, bit-plane scrambling and controlled per-
fect shuffle permutations are executed in orderly to encrypt 
the pixel gray value of the scrambled image. Both quantum 
cost and time complexity of the quantum implementation 
circuits are O(n) for a 2n × 2n quantum grayscale or color 
images. Thus, we can infer that the investigated quantum 
encryption algorithm has an exponential speedup in con-
trast of classical counterparts with complexity no less than 
O
(
22n

)
 for a 2n × 2n digital image. Experiments are simu-

lated on the classical computers with MATLAB environ-
ment, in which statistical and security analyses indicate 
that the encrypted images possess good visual effects and 
high security.
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Appendix 1

For two n-qubit numbers A and B, (A − B) mod 2n can be 
expressed as:

Proof  1.1 It is obvious that (A − B) mod 2n = A − B when 
A ≥ B.

1.2 When A < B , it can be verified as follows:
Assume that B = bn−1bn−2 ⋅ ⋅ ⋅ b1b0 denotes the inverse code 

of B, then we can obtain that:

(A − B) mod 2n =

{
A − B, A ≥ B

2n − (B − A), A < B
.

T h u s ,  −B = (B + 1) − 2n, B + 1 = 2n − B  ,  a n d 
(A − B) mod 2n can be deduced as follows:

Since A < B ⇒ [2n − (B − A)] < 2n , we can obtain that:
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