
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2020) 2:254–271
https://doi.org/10.1007/s42514-020-00037-6

1 3

REGULAR PAPER

FPT‑spike: a flexible precise‑time‑dependent single‑spike 
neuromorphic computing architecture

Tao Liu1   · Gang Quan2 · Wujie Wen1

Received: 11 March 2020 / Accepted: 14 May 2020 / Published online: 16 June 2020 
© China Computer Federation (CCF) 2020

Abstract
Modern Artificial Neural networks (ANNs) like Convolutional Neural Network (CNN), have found broad applications in 
real-world cognitive tasks. One challenging faced by these models is their tremendous memory and computing resource 
requirement. This also greatly hinders their adoptions from resource-constraint platforms, such as drone, mobile phone and 
IoT devices. Recently the brain-inspired spiking neural network (SNN) has been demonstrated as a promising solution for 
delivering more impressive computing and power efficiency. For SNNs, a large body of prior work were conducted on the 
spiking system design with a focus on using the spike firing rate (or rate-coded) for fulfilling the practical cognitive tasks. 
Such rate-based designs can underestimate the energy efficiency, throughput and system flexibility of SNNs. On the other 
hand, the potentials of time-based SNN are not fully unleashed in real applications due to lack of efficient coding and practical 
learning schemes in temporal domain. In this work, we make an early attempt to fill this gap: that said, a flexible precise-
time-dependent single-spike neuromorphic computing architecture, namely “FPT-Spike”, is developed. “FPT-spike” relies on 
three hardware-favorable components: precise ultra-sparse spike temporal encoding, efficient supervised temporal learning 
and fast asymmetric decoding, to realize flexible spatial–temporal information trade-off for neural network size reduction 
without scarifying data processing capability. Extensive experimental results show that “FPT-Spike” outperforms rate-based 
SNN and ANN significantly in three aspects: network size, processing speed and power consumption, demonstrating great 
potentials for its deployment in edge devices.

Keywords  Neuromorphic computing · Spiking neural network · Time coding

1  Introduction

As one of the most fascinating developments of Artificial 
Intelligence (AI), deep learning enabled neural network 
system, i.e. deep neural network (DNN) or convolutional 

neural network (CNN), has found broad applications in 
realistic cognitive tasks such as speech recognition, image 
processing, machine translation and object detection etc. 
(LeCun et al. 2015; Szegedy 2016). However, performing 
high-accurate testings for complex DNNs or CNNs requires 
massive amounts of computation and memory resources, 
indicating limited energy efficiency. For instance, the rec-
ognition implementation of state-of-the-art CNN–AlexNet 
(Krizhevsky et al. 2012) involves not only huge volumes of 
parameters (61 million) generating intensive off-chip mem-
ory accesses but also a large number of computing-intensive 
high precision floating-point operations (1.5 billion) (Farma-
hini-Farahani et al. 2015). The existing DNN or CNN accel-
erators implemented in general-purpose platforms, e.g. CPU 
and GPU, or domain-specific hardware like FPGA, usually 
focus on performance enhancement while hardware cost and 
energy consumption are not the primary design considera-
tions (Ciresan et al. 2011; Vanhoucke et al. 2011; Farabet 
et al. 2011). Such a weakness hinders these solutions from 

This work is supported in part by NSF under project CNS-
1423137.

 *	 Tao Liu 
	 tal519@lehigh.edu

	 Gang Quan 
	 gang.quan@fiu.edu

	 Wujie Wen 
	 wuw219@lehigh.edu

1	 Department of Electrical and Computer Engineering, Lehigh 
University, Bethlehem, USA

2	 Department of Electrical and Computer Engineering, Florida 
International University, Miami, USA

http://orcid.org/0000-0002-7535-444X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-020-00037-6&domain=pdf


255FPT‑spike: a flexible precise‑time‑dependent single‑spike neuromorphic computing…

1 3

many emerging applications of mobile autonomous systems 
like smart device, Internet-of-Things (IoT), wearable device, 
robotics etc., where very tighten power budget, hardware 
resource and footprint are enforced (Andri et al. 2016; Han 
et al. 2016).

Compared to the CNN and DNN designs, spiking-based 
neuromorphic computing, which is inspired by the work-
ing mechanism and efficiency of human brain, has received 
increased attentions from both academia and industry for 
achieving tremendous computing efficiency at much lower 
power of a single chip, e.g. the famous IBM TrueNorth chip 
that has total 1 million synapses and an operating power 
of 70 mW (Akopyan et al. 2015). These low-power, light, 
and small single-chip solutions leverage the efficient event-
driven concept to ease the computational load and enable 
possible cognitive applications in battery-limited smart 
device, mobile phone, and IoT etc., creating a very unique 
but promising branch of neuromorphic computing research 
(Neil and Liu 2014; Corradi and Indiveri 2015; Liu et al. 
2017).

The spiking neuromorphic architecture originates from 
the bio-inspired spiking neural network (SNN) and relies 
on the electrical spikes to represent the data and perform 
the computation. The information of SNN is usually con-
veyed by the occurrence frequency of spikes (rate coding) 
or their firing time (time coding). Rate coding, which can 
be efficiently obtained by simply generating a large number 
of input spikes (i.e. the spike occurrence frequency propor-
tional to the intensity of the input such as the pixel density 
of the image (Liu et al. 2016; Akopyan et al. 2015), has 
been widely adopted in many realistic cognition tasks. How-
ever, the rate-based SNN has significant limitations in both 
energy efficiency and processing speed: First, a sufficiently 
long time window should be always maintained not only 
for firing enough spikes by the input neurons (i.e. 20 Hz 
firing rate Akopyan et al. 2015), but also for performing 
the training and inference tasks by the output neurons (e.g. 
winner-takes-all rule based on the numbers of fired spikes 
Maass 2000), resulting in a computation speed degradation; 
Second, the energy efficiency of spiking-based designs is 
highly coupled with the number of processed spikes. For 
example, the energy-per-spike is a key measurement index 
(i.e. 45 pJ-per-spike for IBM TrueNorth Chip Akopyan et al. 
2015). The more spikes are fired, the more energy will be 
consumed by the spike related activities, i.e. spike firing of 
the input neurons, synaptic weighting and Integrate-and-Fire 
(IFC) processing of the output neurons.

Compared to the rate-based SNN, the more biological 
plausible time-based SNN may offer better system through-
put and energy efficiency (Thorpe et al. 2001), since the 
information can be embedded in the time (temporal) domain 
of short and sparse spikes instead of the large numbers of 
spikes. However, the lack of efficient hardware-favorable 

solutions for time-based information representation and 
complex spike-timing-dependent (temporal) training of bio-
logical synapses greatly limit practical applications of such 
an emerging architecture (Wang et al. 2015).

On one hand, translating the input stimulus (i.e. image 
pixels) to the delay of the spikes, namely time-based encod-
ing, is non-trivial because the coding efficiency can be easily 
degraded by the biased spike delays distributed in the limited 
coding intervals. As we shall show later, the similarity of 
different patterns is likely to be mapped to a same spik-
ing delay if not properly encoded, leading to a significant 
accuracy degradation. Also, the hardware realization of time 
coding is usually expensive, as the time-based spike ker-
nel needs to be carefully designed to provide accurate time 
information (e.g. pre-synaptic/post-synaptic time Thorpe 
et al. 2001) for time-based training.

On the other hand, realizing more biological plausible 
spiking-time based training, i.e. unsupervised spiking-time-
dependent plasticity (STDP), is very complex and costly 
due to the exponential time dependence of weight change 
and difficult convergence of learning (Sjöström and Gerst-
ner 2010). In real-world applications, training of the rate-
based SNN can be usually performed off-line by directly 
borrowing the standard back-propagation algorithm from 
artificial neural network (ANN) (Liu et al. 2016). However, 
this time-independent learning rule does not fit the time-
dependent SNN because of a fundamentally different train-
ing mechanism.

In this work, we investigate the possibility of unleashing 
the potentials of time-based SNN architecture in realistic 
applications by orchestrating the efficient time-based cod-
ing/decoding and learning algorithm. A Flexible Precise-
Time-Dependent Single-Spike Neuromorphic Computing 
Architecture, namely “FPT-Spike”, is proposed to facilitate 
the cognitive tasks like the MNIST digit recognition. Our 
“FPT-Spike” incorporates three integrated techniques: pre-
cise single-spike temporal encoding, efficient supervised 
temporal learning, and fast asymmetric decoding. Our major 
contributions are: 

1.	 We developed a precise-temporal encoding approach 
to efficiently translate the information into the tempo-
ral domain of a single spike. The single spike solution 
dramatically reduces the energy, while offering a flex-
ible spatial–temporal information conversion to satisfy 
various design trade-offs among model size, speed and 
accuracy;

2.	 We proposed a supervised temporal learning algorithm 
to facilitate synaptic plasticity on this single-spike sys-
tem. The proposed algorithm significantly improves the 
single-layer network learning capability and achieves 
comparable accuracy when compared to the ANN and 
rate-based SNN under the similar configuration;



256	 T. Liu et al.

1 3

3.	 We developed a novel asymmetric decoding to relieve 
the unique and serious weight competition issue existing 
in this single-spike system, and significantly improved 
the efficacy and efficiency of synaptic weight updating.

4.	 We developed the time-based error back-propagation 
learning rule to improve the learnability and discussed 
a possible pipeline based neural processing scheme to 
implement the deep learning on the proposed single-
spike system and support different embedded devices.

To the best of our knowledge, this is the first comprehensive 
study on the end-to-end time-based spiking neuromorphic 
design consists of efficient, holistic techniques such as time-
based encoding, learning, and decoding, to explore how the 
time-based single-spike SNN architecture can be designed 
to perform the practical recognition tasks. Our simulation 
and implementation on mobile devices show that our pro-
posed single-spike SNN architecture can achieve similar 
classification accuracy as traditional rate-based SNNs and 
ANNs. Moreover, the impressive improvements in power, 
network size and learning efficiency, and the flexibility in 
spatial–temporal information conversion for trade-offs, well 
demonstrate the unique advantages of proposed time-based 
spiking neuromorphic architecture over existing solutions. 
The performance of proof-of-concept “FPT-Spike” can be 
further enhanced in various ways, i.e., increasing more lay-
ers through the proposed time-based error back-propagation 
learning rule. We hope that our results enable the commu-
nity to examine the time-based SNN architecture for real-
time cognitive applications in the growing power-constraint 
platforms, i.e., mobile, IoT devices, etc.

2 � Background and motivation

2.1 � Spiking based neuromorphic systems

As the next-generation neural network, spiking neural net-
work (SNN) represents its information as the spike train 

or voltage pulses vector. This biological inspiration indi-
cates a better computation efficiency with a less expensive 
hardware, and hence triggers its wide adoption in Neuro-
morphic Computing System (NCS) designs. Neural coding 
and synaptic plasticity are two crucial components in SNN 
designs. The encoded spike train will be sent through associ-
ated synapses and further tuned by corresponding synaptic 
conductances to strengthen or weaken the response activ-
ity. CMOS VLSI circuit is a realistic option to facilitate the 
SNN designs in real hardware implementations (Akopyan 
et al. 2015; Seo et al. 2011). In recent years, the emerging 
memristor crossbar becomes an attractive solution because 
the matrix-vector multiplication for synapse weight compu-
tation can be naturally conducted with its parallel architec-
ture (Jo et al. 2010; Wang et al. 2015). Figure 1 illustrates 
the memristor crossbar based SNN processing. The synap-
tic weight can be naturally mapped to the conductance on 
memristor nodes, thus conducting the highly paralleled SNN 
processing.

2.2 � Neural coding

The neural coding in SNNs can be generally categorized as 
rate coding, time coding, rank coding and population cod-
ing etc. (Borst and Theunissen 1999). In particularly, the 
first two codings are the most popular candidates in real 
applications, since each piece of coded information is only 
associated with the spikes generated by a single input neu-
ron, offering simplified encoding/decoding procedures and 
design complexity. On the contrary, the latter two codings 
use the spike groups from several predefined cooperated 
neurons to represent a piece of information, meaning more 
complicated coding/decoding designs and larger model size 
because of lower coded information density per neuron. 
Thus, we will focus our discussions on the rate coding and 
time coding in this work.

In rate coding, the receptor or encoding neuron inter-
prets the intensity of stimulus as the number of the spikes 
occurring in a fixed interval of time, i.e. the average firing 

Fig. 1   An illustration of 
memristor crossbar based SNN 
processing. The SNN input 
and synaptic weight can be 
naturally mapped to the input 
voltage and conductance g on 
memristor nodes, thus conduct-
ing the highly paralleled SNN 
processing. Analog and digital 
mixed signal circuits are usually 
adopted to support the SNN 
processing



257FPT‑spike: a flexible precise‑time‑dependent single‑spike neuromorphic computing…

1 3

frequency of a Poisson-like spike train is proportional to 
each image pixel density (Diehl and Cook 2015). Thus, the 
overall spike count generated in a dedicated task is deter-
mined by the number of input stimulus and the intensity of 
each stimulus. The accuracy, speed and power of an SNN 
can be fundamentally limited by such an encoding scheme, 
i.e. always maintaining enough spikes in an adequate time 
window. However, time coding, which is inspired by the 
human visual system (Thorpe et al. 2001), conveys the infor-
mation by the presence and occurring time of individual 
spikes. For example, each stimulus can be translated into a 
single spike but with different firing time.

2.3 � Related works

Most existing researches about spiking neuromorphic 
designs mainly concentrate on the SNN model mapping and 
hardware implementation, including CMOS VLSI circuit 
(Akopyan et al. 2015; Seo et al. 2011; Cao et al. 2015; Esser 
et al. 2016), reconfigurable FPGA (Neil and Liu 2014), and 
emerging memristor crossbar (Chu et al. 2015; Liu et al. 
2016). Recently, the spiking-based multilayer perception 
(MLP) and deep convolutional neuromprphic designs are 
also successfully developed to handle more complicated 
cognitive tasks (Cao et al. 2015; Esser et al. 2016). How-
ever, these works mainly focus on the rate- or time-based 
SNN model mapping and hardware implementations, rather 
than the SNN architecture optimization, i.e. coding, decod-
ing and learning approaches etc. For example, the relevant 
researches are narrowly conducted on the rate-based SNNs 
due to the similarity between numerical information rep-
resentation of ANNs and rate-based coding, and the direct 
deployment of learning rules from ANNs (Liu et al. 2016), 
while the practical architecture of time-based SNNs that can 
unleash its unique potentials in realistic applications haven’t 
been well studied.

The concept of temporal coding, which relies on the 
arrival time or delay of a spike train for information repre-
sentation, has been widely explored and proved in the devel-
opment of time-based SNN (Kempter et al. 1996; Butts et al. 
2007). These theoretical studies, however, mainly emphasize 
on the biological explanations of time-based SNN models 
based on simple cognitive benchmarks (i.e. two inputs XOR 
gate), which are far from the complicated real-world prob-
lems such as image recognition. Recently, Zhao et al. (2016) 
proposed an encoding circuit to handle the temporal coding, 
however, this type of work still concentrates on component-
level hardware implementations with simple case studies, 
and hence is lack of a holistic architecture-level solution 
set capable of handling realistic tasks. In Yu et al. (2013), 
a complete time-based SNN design is proposed. However, 
their solution suffers from limited accuracy fundamentally 
constrained by existing coding and temporal learning rule, 

and is not optimized towards hardware-based neuromorphic 
system designs.

Since the popular learning approaches such as back-
propagation (Rumelhart et al. 1988) widely used in ANN or 
rate-based SNN are unable to handle precise-time-dependent 
information due to a fundamentally different neural process-
ing, many proposals dedicated to the time-based learning 
have been developed Sjöström and Gerstner (2010), Gütig 
and Sompolinsky (2006) and Ponulak (2005). However, 
these learning algorithms are neither hardware-favorable nor 
applicable for realistic tasks due to the expensive conver-
gence and theoretical limitation. For example, in the unsu-
pervised Spike-timing dependent plasticity (STDP) learning 
rule, the neural network structure and synaptic computa-
tion will be exponentially increased due to the expensive 
convergence and clustering. The proposed “Tempotron” 
and “Remote Supervised Method (ReSuMe)” can use the 
teaching spike to adjust desired spiking time for temporal 
learning, however, are not applicable to handle complicated 
patterns.

2.4 � Motivation: time‑based single‑spike neural 
coding

Figure 2 demonstrates an example of conceptual comparison 
between rate coding and time coding in SNNs. As shown in 
Fig. 2, Te and Ti ( Re and Ri ) denote two types of input neu-
rons: the time-coded (rate-coded) excitatory and inhibitory 
neurons, respectively. The excitatory neuron can exhibit an 
active response to the stimulus while the inhibitory neuron 
intends to keep silent. T1 and T2 ( R1 and R2 ) denote two time-
coded (rate-coded) output neurons for the classification. The 
rate-based SNN generates far more number of spikes than 
that of time-based SNN in both types of input neurons. After 
the input spikes are processed by the two different SNNs, a 
single spike firing at a specific time interval can perform an 
inference task in the output layer of the time-based SNN. 
However, a considerable number of spikes are needed for 
fulfilling a rate-based classification in the rate-based SNN, 
indicating a much higher power consumption. Moreover, the 
rate-based SNN may exhibit a slower processing speed than 
that of time-based SNN, since the output neuron of the for-
mer SNN needs to count the spiking numbers (i.e. through 
Integrate-and-Fire Burkitt 2006) in the whole predefined 
time window, while that of the latter one may quickly sus-
pend its computations once a spike is detected.

Based on our observation on the time-based single-spike 
neural coding, we propose the “FPT-Spike” architecture 
which is substantially different from previous works. We 
explore how the time-based single-spike SNN architecture 
can be designed to perform the realistic tasks through a 
holistic efficient techniques spanning time-based coding, 
learning to decoding. In particular, a low cost and efficient 



258	 T. Liu et al.

1 3

temporal learning named “PT-Learning” is augmented from 
the “Tempotron” learning by considering a synthesized con-
tribution of the cost function and the hardware-favorable 
time-dependent kernel for weight updating. By integrating 
with proposed “Precise Temporal Encoding” and “Asym-
metric Decoding”, “FPT-Spike” can improve the accu-
racy, power, learning efficiency, and the model size reduc-
tion through the spatial–temporal information conversion 
significantly.

3 � Design details

To unleash the potentials of the time-based SNN in per-
formance, power and speed, in this section, we present the 
design details of our proposed “FPT-Spike”—a flexible pre-
cise-time-dependent spiking neuromorphic architecture. We 
first introduce the system architecture of the “FPT-Spike”, 
which is centered around the single-spike neural informa-
tion processing with a capability of flexible spatial–temporal 
information conversion for different design trade-offs. Three 
key techniques: flexible precise temporal encoding–“FPT-
Encoding”, efficient supervised temporal learning with 

partial weights updating–“PT-Learning”, and fast asym-
metric decoding–“A-Decoding” will be also discussed in 
this section.

3.1 � System architecture

As an SNN realization, our “FPT-Spike” design is inspired 
from biological spiking neuron models. As Fig. 3 shows, 
our system mainly consists of following three components: 

1.	 Flexible precise temporal encoding: Translating the sam-
pled stimulus into a precise-time-dependent spike train 
followed by a low cost spike kernel modulation, as well 
as providing a flexible design trade-off through adjusta-
ble coding resolution of the “FPT-Encoding” technique;

2.	 Synaptic processing: Performing the computations, i.e. 
matrix-vector multiplication, IFC etc., based on modu-
lated spike kernels and associated synaptic weights, as 
well as conducting synaptic plasticity by partially updat-
ing the weights through “PT-Learning”;

3.	 Asymmetric decoding: Decoding the output spike 
through “A-Decoding” with a proposed asymmetric rule 
to results classification for learning and inference.

Fig. 2   The conceptual view of rate-coding and time-coding in SNNs. 
Te and Ti ( Re and Ri ) denote two types of input neurons: the time-
coded (rate-coded) excitatory and inhibitory neurons, respectively. 
The excitatory neuron can exhibit an active response to the stimulus 
while the inhibitory neuron intends to keep silent. T

1
 and T

2
 ( R

1
 and 

R
2
 ) denote two time-coded (rate-coded) output neurons for the clas-

sification, based on the spike timing (or spike rate). A considerable 
number of spikes are needed in the rate-based SNN, indicating a 
much higher power consumption and a slower processing speed than 
that of time-based SNN

Fig. 3   The overview of “FPT-Spike” system architecture, includ-
ing three components: Flexible precise temporal encoding, Synaptic 
processing and Asymmetric decoding. First, the stimulus will be cap-
tured by the temporal perceptors to generate a single spike in tem-
poral domain and modulated to a voltage vector through a spiking 
kernel function. For example, we use a simple linear-decayed kernel 

in our design to replace the original double exponential kernel func-
tion; Second, voltage pulses will be sent to the synaptic network for 
a weighting process and to generate output spike trains; Then output 
spike trains will be transmitted to the asymmetric decoder for classi-
fication and error detection. In learning procedure, the detected errors 
will be sent-back for synaptic plasticity



259FPT‑spike: a flexible precise‑time‑dependent single‑spike neuromorphic computing…

1 3

Figure 3 also depicts a comprehensive data processing flow 
of proposed “FPT-Spike”. First, the stimulus will be cap-
tured by the temporal perceptors to generate a sparse spike 
train (i.e. single spike) with a flexible temporal coding reso-
lution. Each spike train will be further modulated in time or 
temporal domain by a linear-decayed spiking kernel. Note 
here the information for each input neuron are carried by 
the time-dependent voltage pulse. Second, those voltage 
pulses will be sent to the synaptic network for a weighting 
process, i.e. the memristor crossbar with IFC design can be 
employed for parallel processing. The output neurons will 
exhibit time-varying weighting responses due to the time-
dependent input information. After that, the output neuron 
will fire a spike if the weighted post-synaptic voltage is 
higher than a threshold voltage. Then spike trains from the 
output layer will be transmitted to the asymmetric decoder. 
Finally, the target pattern will be classified by analyzing the 
synchronized output spikes with a predefined asymmetric 
rule. During the learning procedure, desired spike patterns 
are coded by following the similar asymmetric rule during 
decoding. The detected errors will be sent-back for synaptic 
plasticity through the proposed “PT-Learning”—a super-
vised temporal learning algorithm.

3.2 � FPT‑encoding and spatial–temporal 
information conversion

As discussed in Sect. 2, in rate coding, a large number of 
spikes within a proper time window will be needed for to 
precisely indicate the amplitude of an input signal, i.e. the 
pixel density of visual stimulus. Such a one-one mapping 
between each stimulus and spike train of each input neuron 
can lead to a significant energy overhead. Meanwhile, the 
time or temporal information of those spike trains are not 
fully leveraged by each neuron. Hence, we investigate sev-
eral existing temporal coding techniques and further propose 
the “FPT-Encoding” to efficiently translate the stimulus into 
the temporal domain of the generated spikes. To maximize 
the power efficiency with minimized number of spikes, the 
input information will be represented as an extreme sparse 
train–single spike and its occurring delay in all aforemen-
tioned coding approaches.

3.2.1 � Efficient temporal encoding

We explored a typical temporal coding technique widely 
used in the practical image cognitive tasks (i.e. MNIST data-
set)—the “1-1 coding”, that is, each single pixel is directly 
mapped to an input neuron with its spiking delay inversely 
proportional to that pixel density, as demonstrated in Fig. 4a. 
Here the spike delay is Di = T × round

(
1 −

Pixi

max(Pixi)

)
 , where 

T is the selected length of encoding time, Pixi is the density 

of the pixel i, i = 1, 2,… ,N . N denotes total number of pix-
els or input neurons to represent an input image. We also 
define that there is no spike if Pixi = 0 . As we shall present 
later, our results show that the “1-1 coding” achieves very 
unacceptable training accuracy ((∼ 20% ) even under a large 
model size, that is, 784 input neurons for a 28 × 28 image. 
The reason is that the majority of generated spikes are cen-
tralized around just a few time slots (low coding efficiency) 
and unable to differentiate different patterns in the temporal 
domain (see the distribution of spiking delays of “1-1 cod-
ing” in Fig. 4b).

A more effective coding may be achieved if the spike 
occurs at each time interval with almost equal probability, 
thus to greatly enrich the temporal information needed in 
the training and testing. Inspired by this observation, we fur-
ther propose two “FPT-Encoding” schemes–“Random n-1 
coding” and “Conv-like coding” by perceiving the local-
ized information from multiple interested pixels, i.e. spiking 
delay is equal to the number of “0s” among several selected 
binarized pixels. As Fig. 4a shows, “Random n-1 coding” 
can map n random pixels into an input neuron, in which a 
temporal delay is derived from multiple random selected 
binary pixels; “Conv-like coding” is inspired from human 
visual cortex and Convultional Neural Network (CNN), 
where a convolution kernel (i.e. a unit square matrix) will 
be applied on the full image (binarized pixels) to capture the 
spatial information and then translated into a single spike 
delay in temporal domain. The spiking delays of “Conv-like 
coding” are almost evenly distributed across the whole time 
domain (See Fig. 4b), which indicates the best utilization of 
temporal representation and best accuracy among the three 
candidates, as we will show in Sect. 4.

3.2.2 � Spatial–temporal information conversion for model 
size reduction

In “Conv-like coding” or “Random n-1 coding”, an input 
image can be represented by a pair of M input neurons 
(spatial domain) and certain amount of time information 
per neuron determined by the number of interested pixels 
(i.e. temporal coding resolution R, in temporal domain). 
Adjusting R can directly impact the information entropy 
of temporal domain, e.g. encoding time frame T, thus to 
change M accordingly. Hence, besides the power efficiency 
over rate coding, another unique advantage of the pro-
posed temporal coding is to offer a flexible spatial–tem-
poral information conversion, which enables a possible 
neural network model size reduction. Figure 4c demon-
strates the concept of spatial–temporal trade-off to realize 
the model size reduction based on “Conv-like coding”. In 
this example, we assume the “baseline design” as follows: 
M = 6 input neurons, 12 synaptic weights (spatial domain) 
with a given coding time window (temporal domain) can 



260	 T. Liu et al.

1 3

represent the entire information of the image. An alterna-
tive “size-reduced design” can offer the similar informa-
tion with only M = 3 input neurons, 6 synaptic weights 
(50% less spatial information) by enlarging the kernel size 
or encoding time (more temporal information). Therefore, 
“FPT-Spike” can offer various design options (i.e. neu-
ral network size and processing speed) to satisfy different 
application requirements. However, different “FPT-Spike” 
designs can vary in accuracy, speed and number of syn-
aptic connections etc., as we will discuss later in Sect. 4.

3.2.3 � Linearized spiking kernel

Once the delay for the single spike is determined, as shown 
in Fig. 3, a spiking kernel K will be applied to shape the 
associated spikes for input neurons. The kernel plays an 
important role in the following synaptic weighting for the 
output voltage Vn(t) , as shown in Eq. ( 1):

where weight Vn(t) represents the voltage of output neuron n, 
wmn denotes the synaptic efficacy between input neuron Xm 
and output neuron An . ts is the decoded spiking delay of Xm.

To provide sufficient and accurate temporal information 
for the classification, the exponential decayed post-synaptic 
potential in the biological spike response neural model (Ger-
stner 2001) can be expressed as:

where � ( �1 and �2 ) denotes decay time constant, and � is the 
normalizing constant.

However, such an exponential decaying function requires 
expensive computation and hardware resource. In “FPT-
Spike”, we employ a more hardware-favorable kernel 
function K2 —a linear decaying function (see K1 and K2 

(1)Vn(t) =

M∑

m

wmn

T∑

ts

K(t − ts)

(2)K1(t − ts) = �(exp[−(t − ts)∕�1] − exp[−(t − ts)∕�2])

Fig. 4   The design explora-
tion of “FPT-Encoding” and 
“Spatial–Temporal Information 
Conversion”. a “1-1 coding” 
is based on the direct map-
ping from single pixel to an 
input neuron with spiking time 
inversely proportional to pixel 
density while “Random n-1 
coding” and “Conv-like coding” 
are based on binary-entropy of 
multiple pixels and have the 
capacity to offer the flexible 
spatial–temporal trade-off for 
model reduction; b Histogram 
of spiking delays for three dif-
ferent coding schemes on the 
full MNIST dataset. The spiking 
occurring at each delay interval 
with a similar probability may 
enrich the encoding information 
of input neurons, leading to a 
more effective temporal encod-
ing and stronger learning capa-
bility. Compared with the other 
candidates, “Conv-like coding” 
is showing the well-distributed 
spiking across the whole time 
domain and is adopted in our 
design; c A flexible spatial–
temporal trade-off is developed 
for neural network model size 
reduction by adjusting the tem-
poral coding resolution



261FPT‑spike: a flexible precise‑time‑dependent single‑spike neuromorphic computing…

1 3

comparison in Fig. 3), to simplify the costly dual-exponen-
tial function K1:

As we shall show later, such a linear approximation cause 
very marginal classification accuracy degradation.

3.3 � Asymmetric decoding

In ‘FPT-Spike”, a novel Asymmetric decoding scheme, 
namely “A-Decoding”, is proposed for the classification. As 
the error signal for the proposed supervised temporal learn-
ing will be also generated through asymmetric decoding, we 
will discuss the “A-Decoding” technique first.

In rate-based SNN, the target pattern can be directly 
determined by the output neuron with highest spiking num-
bers, which is similar to the “one-hot” coding based calssi-
fication in traditional neural network. Since all the output 
neurons will be participating in the learning process of each 
target pattern, the costly weight updating will be performed 
in all synapses at each iteration of learning. The subsequent 
neural competition (weight conflict) among different pat-
terns can be rectified by enough information provided by 
the large number of input spikes. Hence a good classifica-
tion accuracy may be achieved for all different patterns. 

(3)K2(t − ts) = 1 − �(t − ts)

However, the similar case cannot occur in our proposed 
“FPT-Spike”, since its weight updating solely relies on the 
very limited number of spare spikes (e.g. a single spike) in 
temporal domain. Our investigations show that the synaptic 
weight conflict becomes more serious among different pat-
terns due to the similar weak weight updating, indicating 
a significant accuracy degradation. Hence, we propose the 
“A-Decoding” to alleviate the neural competition for accu-
racy improvement.

Figure 5 illustrates the key idea of proposed “A-Decod-
ing”, including pattern readout and error detection. Pattern 
{Pi} can be decoded based on the firing status of output neu-
ron {Ni} . In our asymmetric decoding, the output neuron 
can work on three different statuses: “firing”, “not firing” 
and “independent”, as shown in Fig. 5. Note “independent” 
means that the associated neurons will not participate in the 
learning process of a certain pattern, and it will only occur 
in learning mode.

In testing mode, the output neuron will be only in follow-
ing two status: {1 − firing∕0 − notfiring} . The target pattern 
is scanned according to the order of the first firing neuron. 
Assume a binary code Ñ1Ñ2Ñ3 ⋯ Ñi is generated by output 
neurons {Ni} , a Huffman-style decoding procedure can be 
performed (See Fig. 5 left part). For example, if the first fir-
ing neuron is N3 , the corresponding code will be 0̃0̃1̃ . Thus, 
the target pattern is P3 . In “FPT-Spike”, the early detection 

Fig. 5   An overview of proposed “A-Decoding”. Output neuron can 
work on three different statuses: “firing”, “not firing” and “independ-
ent”. In testing mode, the target pattern is scanned according to the 
order of the first firing neuron through a Huffman-style decoding 
(left part). System may perform an early-detection by following the 
“Fire&Cut Order”. In learning mode, a desired spike pattern can be 
reversely generated according to the Huffman-style decoding of pat-

tern {Pi} (right part) and “independent” status will not be involved 
during the learning, leading to a fast learning speed. Once a partici-
pated neuron triggers an unexpected fire or a missing fire, an error 
will be detected and its synaptic weights will be modified according 
to “PT-learning”. Such an asymmetrical correlation between {Ni} and 
{Pi} can ease the neural competition among the output neurons and 
boost the accuracy



262	 T. Liu et al.

1 3

of testing, namely “Fire&Cut”, can be realized based on the 
temporal “winner-take-all” rule: Once the IFC of neuron 
Ni triggers a spike, all the remained IFCs for other neurons 
will be shut down by following the “Fire&Cut Order”, which 
may save the additional power consumed by the IFCs. In 
learning mode, a desired spike pattern is reversely gener-
ated according to the Huffman-style decoding of pattern 
{Pi} (See Fig. 5 right part). Once a participated neuron Ni 
triggers an unexpected firing or a missing firing, an error 
will be detected and only the synaptic weights of Ni will 
be modified according to our proposed “PT-learning”. Note 
only “partial” output neurons (NOT in“independent” status), 
will be involved during the learning of pattern {Pi} , namely 
“Partial Learning”. Such a mechanism significantly accel-
erates the learning procedure and saves power consumed 
by the unnecessary neural processing. Meanwhile, {Ni} is 
“asymmetrically” correlated with {Pi} and thus can ease the 
neural competition. For example, neuron Ni only engages 
in the synaptic plasticity of pattern Pi and will be ignored 
during the learning of all other patterns. As we shall show 
later, by taking advantages of “Fire&Cut”, “Partial Learn-
ing” and “Ease Competition”, our proposed “A-Decoding” 
can significantly enhance the weighting efficiency and learn-
ing accuracy.

3.4 � PT‑learning for light‑weighted online training

In “FPT-Spike”, only a single precisely delayed spike 
is needed to represent the coded information. However, 
the popular learning approaches such as Perceptron 

(Rumelhart et al. 1985) and Back-propagation (Rumel-
hart et al. 1988) in ANN or rate-coded SNN are unable 
to handle precise-time-dependent information due to the 
fundamentally different neural processing. Meanwhile, 
the existing time-based learning algorithms are usually 
too costly to be applied in real hardware implementation. 
For example, the unsupervised STDP may handle complex 
realistic tasks, however, the neural network structure and 
synaptic computation will be exponentially increased due 
to the expensive convergence and clustering (Legenstein 
et al. 2005). The supervised algorithm, such as Tempo-
tron (Gütig and Sompolinsky 2006) and Remote Super-
vised Method (ReSuMe) (Ponulak 2005), are either not 
hardware-favorable or incapable to handle the real-world 
applications. Thus, we propose the “PT-Learning”– an 
applicable supervised learning algorithm with acceler-
ated “Partial weights updating” dedicated for the proposed 
single-spike Temporal architecture .

“PT-Learning” coordinates with the aforementioned 
“A-Decoding” to capture the errors needed for synaptic 
weights updating. An error detected by the “A-Decoding” 
will be processed by “PT-Learning” to generate corre-
sponding weight changes and send back for synapse updat-
ing. As shown in Figs. 3 and 6a, two types of errors may 
occur in the output neuron: “false missing” (Stimulus A) 
and “false fire” (Stimulus B). Here “false missing” means 
that the neuron does not fire a spike expected by the train-
ing pattern, while “false fire” is defined as an undesired 
spike firing.

To develop a low cost and efficient temporal learning 
algorithm, “FPT-Spike” is further augmented from the Tem-
potron learning by considering a synthesized contribution of 
the error and the time-dependent kernel for weight updat-
ing. As shown in Algorithm 1, once an error is detected, the 
error spiking time ( Tfal ) and the cost function (Err) will be 
extracted from Tmax and Vth − Vmax . Here Vmax and Tmax are 
the maximum membrane potential and its (potential) spiking 
time, respectively. As shown in Fig. 6a, a negative (positive) 
Err means a false- fire (missing). Hence, the gradient of Err 
with respect to each weight wc at pre-synaptic spiking time 
Tc can be calculated as:

Here K2 is the linear decayed spike kernel defined in Eq. ( 3). 
The summation include all pre-synaptic spikes arriving 
before Tmax which are weighted through the synaptic efficacy 
wc . The second term indicates the derivative between the 
“spiking voltage” and “error time”; however, it will not con-
tribute to the synaptic update since �V(Tmax)

�Tmax
 = 0 due to the 

definition of Tmax . Therefore, by further considering Err into 
the change of wc , �wc can be expressed as:

(4)−
dErr

dwc

= Err
∑

Tc≤Tmax

K2(Tmax − Tc) +
�V(Tmax)

�Tmax

dTmax

dwc



263FPT‑spike: a flexible precise‑time‑dependent single‑spike neuromorphic computing…

1 3

where � denotes the learning rate and spike kernel K2 can 
be used again to calculate the contributions from the input 
neuron Xc at time Tc . As depicted in Fig. 6c, for each output 
neuron AN , �wc , which is determined by the error and the 
time-dependent linear kernel (see Eq. 5), will be only applied 
to “partial” synapses connected with the contributed neurons 
Xc (i.e. neuron X2 , X3 and X5 in the case of “false-missing” and 
neuron X2 , X3 and X4 in the case of “false-fire” from Fig. 6b).

As discussed in “A-Decoding”, only partial output neu-
rons will be involved during the learning of a certain pattern, 
meaning that only partial synaptic weights will be updated. 
The dual-level acceleration, contributed by both “A-Decod-
ing” and “PT-Learning”, can improve the learning efficiency 
significantly. As we shall show later, the synaptic computa-
tion can be reduced more than 200% when compared with 
the standard learning approach without accelerations. More-
over, “PT-Learning” together with “A-Decoding” can boost 
the accuracy for realistic recognition task significantly.

(5)�wc = �Err
∑

Tc≤Tfal

K2(Tfal − Tc)
3.5 � Time‑based error back‑propagation 

for powerful offline training

Our developed “PT-Learning” is a highly efficient learning 
rule to enable the online training for proposed time-based 
single-spike neuromorphic architecture. We use the volt-
age difference and the threshold as an error function and a 
non-differentiable activation function, respectively, which 
is incompatible with the traditional back-propagation learn-
ing rule. This online training design can only be applied 
to the simple neural network structure, i.e., a single layer. 
We further develop the time-based error back-propagation 
learning rule, namely “TBP-Learning”, which can be used 
as an offline training approach to improving the learnability 
of proposed “FPT-Spike” architecture.

In our exploration, we find that the time-based neural pro-
cessing can be approximated as:

(6)dj(wij, di) =
1

n

n∑

i=1

wijdi

Fig. 6   Illustration of the basic 
idea of PT-Learning. a, b The 
input spike trains of {XM} will 
be modulated and integrated to 
generate output voltage pulses 
on each output neuron {AN} and 
output spike will be triggered 
once the integrated voltage 
crosses the threshold. Two types 
of errors may occur according 
to the undesired output spiking 
status: “false missing” and 
“false fire”. Once an error is 
detected, the error spiking time 
( Tfal ) and the cost function (Err) 
will be extracted to calculate 
weight adjustment; b, c Spiking 
kernel K

2
 is used reversely to 

calculate the voltage contribu-
tions from the input neuron Xc 
at time Tc (=Tfal ). The weight 
increment �wc can be by further 
calculated with Err and K

2
 for 

“partial weights updating” only 
on the synapses connected with 
contributed neurons



264	 T. Liu et al.

1 3

where wij is the synaptic weight between neuron i and j, di is 
encoded spike delay of neuron i in time-based SNN, and n 
is number of post-synaptic neurons. In particular, the spike 
delay dj of output neuron j can be directly tuned by weights 
wij through the approximate average function. Based on such 
an approximation of time-based neural processing, we can 
define a temporal error function on output neuron j:

where dt(j) is its target spike delay and da(j) is the actual spike 
delay. Therefore, the output delay of neuron j is given as:

where dl−1
i

 is the pre-synaptic delay of the i-th neuron and � 
is the implicit activation function based on the approximate 
average function. Therefore, the partial derivative of tempo-
ral error with respect to weight wl

ij
 can be expressed as:

which is similar to the traditional error back-propagation. In 
particular, the derivative of last term can be calculated as:

Based on the approximate average function, the derivative 
of mid-term can be also simplified as:

and the derivative of first term for neuron j at output layer 
l is:

thus we have:

in particular, for the neuron j at hidden layer(s), we have:

(7)Ej =
1

2

(
dt(j) − da(j)

)2

(8)dl
j
= �(netl

j
) = �

(
1

n

n∑

i=1

wl
ij
dl−1
i

)

(9)
�Ej

�wl
ij

=
�Ej

�dl
j

�dl
j

�netl
j

�netl
j

�wl
ij

(10)
�netl

j

�wl
ij

=
�

�wl
ij

(
1

n

n∑

i=1

wl
ij
dl−1
i

)
=

dl−1
i

n

(11)
�dl

j

�netl
j

=
�

�netl
j

�

(
netl

j

)
= 1

(12)
�Ej

�dl
j

=
�Ej

�da(j)
=

�

�da(j)

1

2
(dt(j) − da(j))

2 = da(j) − dt(j)

(13)
�Ej

�wl
ij

=
dl−1
i

(da(j) − dt(j))

n

(14)

�Ej

�dl
j

=

n∑

k=1

(
�Ej

�netl+1
k

�netl+1
k

�dl
j

)
=

n∑

k=1

(
�Ej

�dl
j

�dl
j

�netl+1
k

wl+1
jk

)

where k is the post-synaptic neuron of j, by defining:

therefore, we can obtain the weight updating at learning rate 
� as:

3.6 � Pipeline‑based neural processing scheme

Based on the proposed online “PT-Learning” and offline 
“TBP-Learning”, the “FPT-Spike” architecture can be 
implemented through several different approaches: 1) 
For the light-weighted cognition tasks on a simple SNN, 
we follow the end-to-end procedure as shown in Fig. 3 to 
implement the “FPT-Spike” with online “PT-Learning” 
rule. This implementation requires the analog and digital 
mixed signal circuits to encode spike delay and to modu-
late the spiking kernel. 2) For the complex cognition tasks 
on a large-scaled deep SNN, we first to train the weights 
of SNN through the offline “TBP-Learning”. Then, we 
apply the trained weights and conduct the feed-forward 
time-based neural processing for inference.

Besides, we also devised an alternative implementation 
– the pipeline-based neural processing scheme for digi-
tal spikes. In our proposed “TBP-Learning”, the neural 
network weights can be directly tuned to adjust the spike 
delays. Such a design also enables the alternative digital 
spike (e.g., binary spikes “0-non-fire/1-fire”) based imple-
mentation without evolving the spiking kernel modulation 
on analog and digital mixed signal circuits, therefore to 
reduce the implementation cost significantly. However, 
unlike the two implementations above, the digit spike 
is event-driven incompatible, i.e., a neuron will not be 
updated only when it receives or emits a spike asynchro-
nously. Therefore, we propose the pipeline-based neural 
processing scheme to improve processing efficiency.

As shown in Fig. 7, the pipeline-based neural process-
ing scheme consists of two processing phases, i.e., “SR—
Spike Receiving” and “SG—Spike Generation”. Such 
pipeline-based neural processing will follow the similar 
layer-wised processing order on SNNs. In the first com-
puting cycle CC1, input data will be encoded into a time-
based spike train (single-spike with a certain delay) dur-
ing the SR phase on the input layer. After that, the spike 
train will be processed layer-wisely through the SG+SR 
pipeline until the output spike train is generated during 

(15)�l
j
=

�Ej

�dl
j

�dl
j

�netl
j

=

�
da(j) − dt(j) , l is output layer∑

k �
l+1
k

wl+1
jk

, l is hidden layer

(16)�wl
ij
= −�

�Ej

�wl
ij

= −��l
j

dl−1
i

n



265FPT‑spike: a flexible precise‑time‑dependent single‑spike neuromorphic computing…

1 3

the SG phase on the output layer. The output spike train 
will be further decoded into the cognitive results. Com-
pared with the event-driven spiking kernel-based design, 
the pipeline-based neural processing scheme will consume 
one extra computing cycle in inference, while saving the 
implementation cost.

4 � Evaluations

To evaluate the accuracy, processing efficiency and power 
consumption of our proposed “FPT-Spike” neuromorphic 
architecture, extensive experiments are conducted in the 
platforms like MATLAB and heavily modified open-source 
simulator–Brian (Goodman and Brette 2009).

4.1 � Simulation setup

In our evaluation, a full MNIST database is adopted as 
the benchmark, which includes 60K training images and 
10K testing images (LeCun et al. 1998). A set of “FPT-
Spike” designs–“FPT-Spike(R)” with temporal resolution 

“R”, are implemented to demonstrate the advantage of 
flexible “spatial–temporal information trade-offs”. Note 
the adjustable temporal resolution “R” denotes the num-
ber of interested pixels per input neuron, and it is a square 
number when we adopt “FPT-encoding”–“conv-like cod-
ing” in all “FPT-Spike(R)” designs. We also assume the 
encoding time frame (T) is T = � × R(ms) , where � = 1(ms) 
is the fixed minimum time interval to fire the spike. The 
maximum temporal information T can be adjusted by tun-
ing the parameter R. The number of input neurons (spatial 
domain) can be expressed as M = ⌈P−

√
R+1

S
⌉2 , where P 

and S represent the width of an input image and the stride 
with which we slide the filter– the convolution kernel of 
the“conv-like coding”, respectively. P = 28 and S = 2 are 
selected in our evaluations of MNIST dataset. Similar as 
the convolution computation in CNN, zero padding will be 
applied for each input image if necessary. Two representative 
baselines under similar network configurations, including 
the rate-coded SNN–“Diephl-15” Diehl and Cook (2015) 
and the ANN–“Lecun-98” LeCun et al. (1998), are also 
implemented for the energy and performance comparisons 
with proposed “FPT-Spike”. Table 1 presents the structural 

Fig. 7   An illustration of the pipeline-based neural processing scheme. 
The 2-step layer-wised neural processing consists of “SR-Spike 
Receiving” and “SG-Spike Generation” phases. For the first layer 
L1 (input layer) in the first computing cycle CC1, input data will be 

encoded into a time-based spike train during the SR phase. Start from 
the second computing cycle CC2, spike train will be processed in 
layer-wise through SG+SR pipeline until the final output spike train 
is generated during the SG phase on the output layer

Table 1   Structural parameters 
of selected candidates

Candidate Number of input 
neurons

Number of output 
neurons

Number of synaptic 
weights

neural process-
ing time-frame 
T

FPT-Spike(4) 196 10 1960 4 ms
FPT-Spike(16) 169 10 1690 16 ms
FPT-Spike(25) 144 10 1440 25 ms
FPT-Spike(100) 100 10 1000 100 ms
Diehl-15 784 100 78400 500 ms
Lecun-98 784 10 7840 –



266	 T. Liu et al.

1 3

parameters of selected candidates. All the evaluations are 
conducted based on following settings: Training data is 
equally fed into neural networks with three training itera-
tions, i.e. 180K samples, followed by one testing iteration. 
The initial weights ( w ∈ (−1,+1) ) are randomly generated 
before training.

4.2 � Accuracy and flexible spatial–temporal 
information trade‑offs

Figure 8 shows the accuracy comparison among different 
“FPT-Spike (R)”, the ANN–“Lecun-98” and rate-based 
SNN–“Diehl-15”. “FPT-Spike(25)” can achieve very com-
parable accuracy at much lower cost ( ∼ 86 %, 1440 syn-
aptic weights) when compared with “Diehl-15” ( ∼ 83 %, 
78400 synaptic weights) and “Lecun-98” ( ∼ 88 %, 7840 
synaptic weights). Meanwhile, “FPT-Spike(16)” and “FPT-
Spike(25)” also show a very close accuracy ( ∼ 87 % and 
∼ 86%), which is much better than “FPT-Spike(4)” and 
“FPT-Spike(100)” ( ∼ 63 % and ∼ 70%).

We also evaluated the individual training accuracy 
improvement contributed by various proposed techniques, 
such as “linearized spiking kernel”, “conv-like coding”, 

“A-Decoding” and “PT-Learning”, receptively. Here, we 
choose the “FPT-Spike(16)” as the baseline design that 
employs all aforementioned techniques. “Exponential Ker-
nel”, “random 16-1 coding”, “non A-Decoding” and “Tem-
potron” denote the designs that substitute only one out of 
the four techniques, that is, linearized spiking kernel v.s. 
exponential spiking kernel), “conv-like coding” v.s. “random 
16-1 coding”, and “A-Decoding” v.s. standard decoding, 
respectively. As shown in Fig. 10, “FPT-Spike(16)” shows 
a very marginal accuracy degradation (0.2%) because of the 
“linearized spiking kernel” ( K2 in Eq. ( 3)) when compared 
with the original costly “Exponential Kernel” design (86.9%, 
K1 in Eq. ( 2)). Furthermore, “FPT-Spike(16)” boosts the 
accuracy by ∼ 13 %, ∼ 19 % and ∼ 38 % when compared 
with the designs of “random 16-1 coding” ( ∼ 74%), “non 
A-Decoding” ( ∼ 68%), and the theoretical “Tempotron” 
learning rule ( ∼ 49%), respectively, which clearly demon-
strates the effectiveness of the proposed“conv-like coding”, 
“A-Decoding” and “PT-Learning”.

Table 1 illustrates the advantage of spatial–temporal 
information conversion offered by “FPT-Spike”. Increasing 
the number of interested pixels per input neuron (R) means 
an enlarged encoding time frame T to enrich the temporal 

Fig. 8   Training and testing 
accuracy of MNIST database on 
selected candidates

Fig. 9   Training accuracy with 
various spatial–temporal trade-
offs



267FPT‑spike: a flexible precise‑time‑dependent single‑spike neuromorphic computing…

1 3

information, and hence reduces the needed spatial informa-
tion or number of input neurons (i.e. from M = 196 neurons, 
T = 4 ms of “FPT-Spike(4)” to M = 144 neurons, T = 25 ms 
of “FPT-Spike(25)”). However, as Fig. 9 shows, the train-
ing accuracy varies as R changes, which indicates that a 
proper combination of spatial–temporal information (M,T) 
is essential to guarantee a high classification accuracy. Either 
fast designs, e.g. (784,1), (196,4), with too limited temporal 
information but larger spatial information or slow designs 
like (81,144) or (64,196) with too much temporal informa-
tion but less spatial information, can lead to very prominent 
accuracy degradation. Yet there still exists multiple combi-
nations of (M,T) to achieve the best accuracy, i.e. (169,16) 
and (144,36) for ∼ 86 % accuracy. Table 1 also shows that 
the time-based designs, i.e. “FPT-Spike(25)”, can reduce 
the number of synapse weights notably ( ∼ 5× and ∼ 50× ) 
as compared with “Lecun-98” and “Diephl-15” at a similar 
accuracy because of additional temporal information. All 
these results clearly demonstrate the possibility of design 
trade-offs between network size and speed even without sac-
rificing the accuracy.

4.3 � Processing efficiency

The occurrence frequency of synaptic events is calculated 
to evaluate the system processing efficiency, including both 
weighting and weights updating. The weighting process in 
feed-forward pass consists of multiply-accumulate opera-
tions necessary in both training and testing stages of each 
input image, while the weights updating only occurs during 
the training or feed-back pass.

Figure 11 compares the number of weighting operations 
among three designs in the feed-forward pass. Here“non 
A-Decoding” design represents the “FPT-Spike” only 
without employing the “A-Decoding” technique. The first 
training iteration is selected as the representative feed-
forward pass, given the same number of weighting opera-
tions for both training and testing stages of “Diehl-15” 
and “non A-Decoding”. However, the amount of weight 
operations of “FPT-Spike(16)” is different between train-
ing and testing due to the “Fire&Cut” mechanism in“A-
Decoding”. Hence, the weighting of the first testing itera-
tion is also included in “FPT-Spike(16)” (see Fig. 11). 

Fig. 10   Training accuracy on 
different design variants

Fig. 11   Feed-forward efficiency 
per input image



268	 T. Liu et al.

1 3

As shown in Fig. 11, even the “non A-Decoding”, i.e. 
“FPT-Spike(16)” without the “A-Decoding” technique, 
gains ∼ 185× weighting operation reduction as compared 
with rate-coded SNN–“Diehl-15”. The reason is that rate-
coded SNN requires a long time window to process the 
spikes at enlarged neuron model size, i.e. 350(ms) for 
“Diehl-15” Diehl and Cook (2015) v.s. 16(ms) of “FPT-
Spike(16)”, causing tremendous weighting processes on 
each time slot. Compared with “non A-Decoding”, weight-
ing operations of “FPT-Spike(16)” can be further reduced 
by ∼ 28 % and ∼ 69 % in first training iteration and testing 
iteration, respectively. As expected, the “early-detection” 
working mechanism in “A-Decoding” removes many 
unnecessary weighting operations on both “initialized” 
weights and “well-trained” weights.

We also characterize the occurrence frequency of weights 
updating during the first training iteration to evaluate the 
processing efficiency in the feed-back pass. Each detected 
error, including ‘false missing” and “false fire”, can cause a 
substantial number of weights updating. Thus, we average 
the total number of weights updating by each image and 
each error. In particular, weights updating “per image” can 
represent an overall weighting efficiency for three differ-
ent designs, i.e. “Diehl-15”, “PT-Spike”, and “Worst Case”. 
Here “Worst Case” denotes the “FPT-Spike(16)” without 
employing “A-Decoding” and “PT-Learning”. As Fig. 12 
shows, even “Worst Case” achieves ∼ 4.6× and 40× reduc-
tions on weights updating per image and per error, respec-
tively, compared with “Diehl-15”. Such impressive improve-
ment is introduced by the significant compressed model size. 
Moreover, compared with the “worst case”, “PT-Learning” 
and “A-Decoding” contribute ∼ 2× and ∼ 4× weights updat-
ing reduction per error and per image for “FPT-Spike(16)”, 
respectively, demonstrating the effectiveness of “dual-level 
acceleration” from decoding and learning.

4.4 � Power consumption

To evaluate the power efficiency contributed by the proposed 
single-spike neuromorphic architecture, we adopted a similar 
methodology from Akopyan et al. (2015), Cao et al. (2015). 
In particular, in our measurement we assume that a single 
spike activity consumes � Joules of energy, despite whether 
the spike is pre-synaptic or post-synaptic. The total power 
consumption can be estimated based on this unit power con-
sumption per single spike together with total spike numbers. 
In our evaluation, the total spiking energy is also calibrated 
in one testing iteration (10K images). Figure 13 compares 
the power consumption averaged by each input neuron and 
each image, respectively, among three different designs: 
“Minitaur”, “Diehl-15”,“FPT-Spike(16)”. For example, our 
proposed“FPT-Spike(16)” solution will consume 151.12 × � 
Joules in average on the generated spike train for encoding a 
single input image. The new candidate “Minitaur” Neil and 
Liu (2014) is introduced for a fair comparison since it is a 
more hardware-oriented rate-coded SNN. As Fig. 13 shows, 
“FPT-Spike(16)” saves ∼ 8× and ∼ 64× power for each input 
neuron and each input image over “Diehl-15’, respectively, 
indicating the efficiency of our proposed single-spike coding 
technique. Compared with the hardware-oriented rate-coded 
SNN design “Minitaur”, “FPT-Spike(16)” can still achieve 
∼ 1.4× ( ∼ 6.6× ) power reduction on each input neuron 
(input image).

4.5 � TBP‑learning

Table 2 shows the evaluation results of “TBP-Learning”. 
We trained a two-layer time-based SNN (169-500-10) with 
proposed offline time-based error back-propagation as our 
“TBP-Learning” candidate with the MNIST dataset. In 
our evaluation, we compare its testing accuracy with other 

Fig. 12   Feed-back efficiency



269FPT‑spike: a flexible precise‑time‑dependent single‑spike neuromorphic computing…

1 3

candidates include the five-layer CNN “’Lenet-5”. As listed 
in Table 2, “TBP-Learning” can boost the testing accuracy 
from 89.6% (single-layer “PT-Learning”) to 99.1% through 
the time-based error back-propagation training on the two-
layer time-based SNN, achieving the best results among all 
candidates and even comparable with the five-layer CNN 
“Lenet-5” ( 99.05% ). In particular, compared with the hard-
ware-oriented design “Minitaur” ( 92% ), “TBP-Learning” 
can achieve better accuracy with a more simplified network 
structure, indicating a promising solution for resource-lim-
ited embedded platforms.

4.6 � Android implementation with pipeline‑based 
neural processing

In addition to the simulation results, we also implemented 
the “FPT-Spike” on the Android device applied with the pro-
posed pipeline-based neural processing scheme and tested 
the battery consumption and time consumption on 300K 
MNIST samples. Fig. 14 shows the configuration and test-
ing results on our Android implementation. Compared with 
the android version “Lenet” CNN, our “FPT-Spike” signifi-
cantly reduces the battery consumption from ∼ 13% to ∼ 2% . 
Besides, the time consumption for “FPT-Spike” to process 
a single image is less than 1ms, outperforms the “Lenet” 

CNN while maintaining a similar testing accuracy. These 
results show that the proposed “FPT-Spike” architecture and 
pipeline-based neural processing scheme is a flexible solu-
tion that can be implemented on different embedded devices 
(e.g., without the analog and digital mixed signal circuits) 
with significantly improved performance.

5 � Conclusion

As the rate-based spiking neural network (SNN) subjects 
to power and speed challenges due to processing large 
number of spikes, in this work, we systematically studied 
the possibility of utilizing the more power-efficient time-
based SNN in real-world cognitive tasks. Three integrated 
techniques– precise single-spike temporal encoding, effi-
cient supervised temporal learning and fast asymmetric 
decoding, were proposed to construct the Flexible Pre-
cise-Time-Dependent Spiking Neuromorphic Architecture, 

Fig. 13   Spiking power con-
sumption ( � Joules /spike)

Table 2   Evaluation on TBP-Learning

Candidate Types Testing accuracy Network structure

TBP-Learning tSNN 99.1% 169-500-10
PT-Learning tSNN 89.6% 169-10
Diehl rSNN 95% 784-6400
Minitaur rSNN 92% 784-500-500-10
Lenet-5 CNN 99.05% 1024-C1-S2-C3-S4-C5-

F6-10

Fig. 14   An Android implementation of “FPT-Spike” with pipeline-
based neural processing



270	 T. Liu et al.

1 3

namely, “FPT-Spike”. The single-spike temporal encoding 
offers an energy-efficient information representation solu-
tion with the potentials of design trade-offs by leveraging 
the flexible spatial–temporal information conversion. The 
supervised learning and asymmetric decoding can work 
cooperatively to deliver a more effective and efficient syn-
aptic weight updating and classification. Our evaluations 
on the MNIST database well demonstrate the advantages 
of “FPT-Spike” over the rate-based SNN in terms of net-
work size, speed and power, with a comparable accuracy. 
We hope our study can inspire and motivate more in-depth 
research on the time-based SNN for realistic applications 
in energy-constraint platforms.

References

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., 
Merolla, P., Imam, N., Nakamura, Y., Datta, P., Nam, G.J., et al.: 
Truenorth: Design and tool flow of a 65 mw 1 million neuron 
programmable neurosynaptic chip. IEEE Trans. Comput. Aided 
Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015)

Andri, R., Cavigelli, L., Rossi, D., Benini, L.: Yodann: An ultra-low 
power convolutional neural network accelerator based on binary 
weights. In: VLSI (ISVLSI), 2016 IEEE Computer Society 
Annual Symposium on, pp. 236–241. IEEE (2016)

Borst, A., Theunissen, F.E.: Information theory and neural coding. Nat. 
Neurosci. 2(11), 947–957 (1999)

Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. 
homogeneous synaptic input. Biol. Cybern. 95(1), 1–19 (2006)

Butts, D.A., Weng, C., Jin, J., Yeh, C.I., Lesica, N.A., Alonso, J.M., 
Stanley, G.B.: Temporal precision in the neural code and the time-
scales of natural vision. Nature 449(7158), 92–95 (2007)

Cao, Y., Chen, Y., Khosla, D.: Spiking deep convolutional neural 
networks for energy-efficient object recognition. Int. J. Comput. 
Vision 113(1), 54–66 (2015)

Chu, M., Kim, B., Park, S., Hwang, H., Jeon, M., Lee, B.H., Lee, 
B.G.: Neuromorphic hardware system for visual pattern recogni-
tion with memristor array and cmos neuron. IEEE Trans. Ind. 
Electron. 62(4), 2410–2419 (2015)

Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Con-
volutional neural network committees for handwritten character 
classification. In: Document Analysis and Recognition (ICDAR), 
2011 International Conference on, pp. 1135–1139. IEEE (2011)

Corradi, F., Indiveri, G.: A neuromorphic event-based neural recording 
system for smart brain-machine-interfaces. IEEE Trans. Biomed. 
Circuits Syst. 9(5), 699–709 (2015)

Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using 
spike-timing-dependent plasticity. Frontiers in computational neu-
roscience 9, (2015)

Esser, S.K., Merolla, P.A., Arthur, J.V., Cassidy, A.S., Appuswamy, R., 
Andreopoulos, A., Berg, D.J., McKinstry, J.L., Melano, T., Barch, 
D.R., et al.: Convolutional networks for fast, energy-efficient neu-
romorphic computing. Proc. Natl. Acad. Sci p. 201604850 (2016)

Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, 
B., Akselrod, P., Talay, S.: Large-scale fpga-based convolutional 
networks. Scaling up Machine Learning: Parallel and Distributed 
Approaches pp. 399–419 (2011)

Farmahini-Farahani, A., Ahn, J.H., Morrow, K., Kim, N.S.: Nda: 
Near-dram acceleration architecture leveraging commodity dram 

devices and standard memory modules. In: High Performance 
Computer Architecture (HPCA), 2015 IEEE 21st International 
Symposium on, pp. 283–295. IEEE (2015)

Gerstner, W.: A framework for spiking neuron models: the spike 
response model. Handb. Biol. Phys. 4, 469–516 (2001)

Goodman, D.F., Brette, R.: The brian simulator. Front. Neurosci, 3, 
26 (2009)

Gütig, R., Sompolinsky, H.: The tempotron: a neuron that learns spike 
timing-based decisions. Nat. Neurosci. 9(3), 420–428 (2006)

Han, S., Shen, H., Philipose, M., Agarwal, S., Wolman, A., Krishna-
murthy, A.: Mcdnn: An approximation-based execution frame-
work for deep stream processing under resource constraints. In: 
Proceedings of the 14th Annual International Conference on 
Mobile Systems, Applications, and Services, pp. 123–136. ACM 
(2016)

Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: 
Nanoscale memristor device as synapse in neuromorphic systems. 
Nano Lett. 10(4), 1297–1301 (2010)

Kempter, R., Gerstner, W., Van Hemmen, J.L., Wagner, H.: Temporal 
coding in the sub-millisecond range: Model of barn owl auditory 
pathway. In: Advances in neural information processing systems, 
pp. 124–130 (1996)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification 
with deep convolutional neural networks. In: Advances in neural 
information processing systems, pp. 1097–1105 (2012)

LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 
436–444 (2015)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning 
applied to document recognition. Proc. IEEE 86(11), 2278–2324 
(1998)

LeCun, Y., Cortes, C., Burges, C.J.: The mnist database of handwritten 
digits (1998)

Legenstein, R., Naeger, C., Maass, W.: What can a neuron learn with 
spike-timing-dependent plasticity? Neural Comput. 17(11), 2337–
2382 (2005)

Liu, C., Yang, Q., Yan, B., Yang, J., Du, X., Zhu, W., Jiang, H., Wu, Q., 
Barnell, M., Li, H.: A memristor crossbar based computing engine 
optimized for high speed and accuracy. In: VLSI (ISVLSI), 2016 
IEEE Computer Society Annual Symposium on, pp. 110–115. 
IEEE (2016)

Liu, T., Liu, Z., Lin, F., Jin, Y., Quan, G., Wen, W.: Mt-spike: A mul-
tilayer time-based spiking neuromorphic architecture with tem-
poral error backpropagation. In: 2017 IEEE/ACM International 
Conference on Computer-Aided Design (ICCAD), pp. 450–457. 
IEEE (2017)

Maass, W.: On the computational power of winner-take-all. Neural 
Comput. 12(11), 2519–2535 (2000)

Neil, D., Liu, S.C.: Minitaur, an event-driven fpga-based spiking net-
work accelerator. IEEE Trans. Very Large Scale Integr. VLSI 
Syst. 22(12), 2621–2628 (2014)

Ponulak, F.: Resume-new supervised learning method for spiking 
neural networks. Institute of Control and Information Engineer-
ing, Poznan University of Technology.(Available online at: http://
d1.cie.put.pozna​n.pl/fp/resea​rch.html) (2005)

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal rep-
resentations by error propagation. Tech. rep, DTIC Document 
(1985)

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning represen-
tations by back-propagating errors. Cognitive modeling 5(3), 1 
(1988)

Seo, J.s., Brezzo, B., Liu, Y., Parker, B.D., Esser, S.K., Montoye, R.K., 
Rajendran, B., Tierno, J.A., Chang, L., Modha, D.S., et al.: A 
45nm cmos neuromorphic chip with a scalable architecture for 
learning in networks of spiking neurons. In: Custom Integrated 
Circuits Conference (CICC), 2011 IEEE, pp. 1–4. IEEE (2011)

http://d1.cie.put.poznan.pl/fp/research.html
http://d1.cie.put.poznan.pl/fp/research.html


271FPT‑spike: a flexible precise‑time‑dependent single‑spike neuromorphic computing…

1 3

Sjöström, J., Gerstner, W.: Spike-timing dependent plasticity. Spike-
timing dependent plasticity p. 35 (2010)

Szegedy, C.: An overview of deep learning. AITP 2016, (2016)
Thorpe, S., Delorme, A., Van Rullen, R.: Spike-based strategies for 

rapid processing. Neural Netw. 14(6), 715–725 (2001)
Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neu-

ral networks on cpus. In: Proc. Deep Learning and Unsupervised 
Feature Learning NIPS Workshop, vol. 1, p. 4. Citeseer (2011)

Wang, Y., Tang, T., Xia, L., Li, B., Gu, P., Yang, H., Li, H., Xie, Y.: 
Energy efficient rram spiking neural network for real time clas-
sification. In: Proceedings of the 25th GLVLSI, pp. 189–194. 
ACM (2015)

Yu, Q., Tang, H., Tan, K.C., Li, H.: Precise-spike-driven synaptic 
plasticity: learning hetero-association of spatiotemporal spike 
patterns. PLoS One 8(11), e78318 (2013)

Zhao, C., Wysocki, B.T., Thiem, C.D., McDonald, N.R., Li, J., Liu, L., 
Yi, Y.: Energy efficient spiking temporal encoder design for neu-
romorphic computing systems. IEEE Trans. Multi-Scale Comput. 
Syst. 2(4), 265–276 (2016)

Dr. Tao Liu  received his Ph.D. in 
Electrical and Computer Engi-
neering and M.S. in Computer 
Engineering from Florida Inter-
national University in 2020 and 
2013, respectively, and his B.S. 
in Computer Science from 
Southeast University, Nanjing, 
China in 2007. He is currently a 
research associate in the Depart-
ment of Electrical and Computer 
Engineering at Lehigh Univer-
sity. His research interests 
include neuromorphic comput-
ing, embedded machine learning 
system design, and machine 

learning security. His works have been published on conferences and 
journals across the fields of EDA, architecture, computer systems, 
machine learning, and artificial intelligence, etc., including DAC, 
ICCAD, CVPR, HOST, MICCAI, TCAD, JTEC, etc. Dr. Liu received 
the best paper nominations from DAC 2020, ICCAD 2018, ASP-DAC 
2018. He was also the recipient of the 54th DAC A. Richard Newton 
Young Student Fellow Award, the 36th ICCAD ACM Student Research 
Competition Travel Award.

Dr. Gang Quan  received his Ph.D. 
from the Department of Com-
puter Science & Engineering, 
University of Notre Dame, USA, 
his M.S. from the Chinese Acad-
emy of Sciences, Beijing, China, 
and his B.S. from the Depart-
ment of Electronic Engineering, 
Tsinghua University, Beijing, 
China. He is currently a full pro-
fessor in the Electrical and Com-
puter Engineering Department, 
Florida International University. 
His research interests and exper-
tise include real-time systems, 

embedded system design, power-/thermal-aware computing, advanced 
computer architecture and cloud computing. Dr. Quan is the recipient 
of a National Science Foundation Faculty Career Award. He also won 
the Best Paper Award from the 38th Design Automation Conference. 
His paper was also selected as one of the Most Influential Papers of 
10 years Design, Automation, and Test in Europe Conference (DATE) 
in 2007. Dr. Quan is a senior member of IEEE.

Wujie Wen  is currently an assis-
tant professor in the department 
of Electrical and Computer 
Engineering at Lehigh Univer-
sity. He received his Ph.D. from 
University of Pittsburgh in 2015. 
He earned his B.S. and M.S. 
degrees in electronic engineering 
from Beijing Jiaotong University 
and Tsinghua University, Bei-
jing, China, in 2006 and 2010, 
respectively. He was an assistant 
professor in the ECE department 
of Florida International Univer-
sity, Miami, FL, during 2015–
2019. Before joining the acad-
emy, he also worked with AMD 

and Broadcom for various engineer and intern positions. His research 
interests include deep learning hardware acceleration/security/applica-
tion, neuromorphic computing, electronic design automation (EDA), 
and circuit-architecture design for emerging memory technologies etc. 
His works have been published widely across venues in EDA, machine 
learning/AI etc., including HPCA, DAC, ICCAD, DATE, ICPP, HOST, 
CVPR, ECCV, AAAI etc. Dr. Wen is the associate editor of Neurocom-
puting and serves/served as the General Chair of ISVLSI 2019 
(Miami), Technical Program Chair of ISVLSI 2018 (Hong Kong), as 
well as program committee for many conferences such as DAC, 
ICCAD, DATE, ASP-DAC etc. He received best paper nominations 
from DAC2020, ICCAD2018, ASP-DAC2018, DATE2016 and 
DAC2014. He was also the recipient of the 49th DAC A. Richard New-
ton Graduate Scholarship—the most prestigious Ph.D. scholarship (one 
awardee per year) in EDA society. His research projects are sponsored 
by the US National Science Foundation, Air Force Research Lab and 
the Florida Center for Cybersecurity etc.


	FPT-spike: a flexible precise-time-dependent single-spike neuromorphic computing architecture
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Spiking based neuromorphic systems
	2.2 Neural coding
	2.3 Related works
	2.4 Motivation: time-based single-spike neural coding

	3 Design details
	3.1 System architecture
	3.2 FPT-encoding and spatial–temporal information conversion
	3.2.1 Efficient temporal encoding
	3.2.2 Spatial–temporal information conversion for model size reduction
	3.2.3 Linearized spiking kernel

	3.3 Asymmetric decoding
	3.4 PT-learning for light-weighted online training
	3.5 Time-based error back-propagation for powerful offline training
	3.6 Pipeline-based neural processing scheme

	4 Evaluations
	4.1 Simulation setup
	4.2 Accuracy and flexible spatial–temporal information trade-offs
	4.3 Processing efficiency
	4.4 Power consumption
	4.5 TBP-learning
	4.6 Android implementation with pipeline-based neural processing

	5 Conclusion
	References




