
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing (2019) 1:161–176
https://doi.org/10.1007/s42514-019-00017-5

REGULAR PAPER

swTensor: accelerating tensor decomposition on Sunway architecture

Xiaogang Zhong1,2 · Hailong Yang1,2 · Zhongzhi Luan1 · Lin Gan3 · Guangwen Yang3 · Depei Qian1

Received: 9 May 2019 / Accepted: 6 November 2019 / Published online: 20 November 2019
© China Computer Federation (CCF) 2019

Abstract
Modern applications are digesting and generating data with rich features that are stored in high dimensional array or tensor.
The computation applied to tensor, such as Canonical Polyadic decomposition (CP decomposition) plays an important role
in understanding the internal relationships within the data. Using CP decomposition to analyze large tensor with billions of
sizes requires tremendous computation power. In the meanwhile, the emerging Sunway many-core processor has demonstrated
its computation advantage in powering the first hundred petaFLOPS supercomputer in the world. In this paper, we propose
swTensor that adapts the CP decomposition to Sunway processor by leveraging the MapReduce framework for automatic
parallelization and the unique architecture of Sunway for high performance. Specifically, we divide the major computation
of CP decomposition into four sub-procedures and implement each using MapReduce framework with customized design
key-value pair. Also, we tile the data during the computation so that it fits into the limited local device memory on Sunway
for better performance. Moreover, we propose a performance auto-tuning mechanism to search for the optimal parameter
settings in swTensor. The experimental results demonstrate swTensor achieves better performance than the state-of-the-art
BigTensor and CSTF with the average speedup of 1.36 × and 1.24 × , respectively. Besides, swTensor exhibits better scal-
ability when scaling across multiple Sunway processors.

Keywords Sunway architecture · MapReduce · Tensor decomposition

1 Introduction

The evolution of recommendation system improves user
satisfactory with Internet surfing by offering the assistance
for searching the desired information. Recommendation
system uses tensor to store and compute feature informa-
tion in order to provide timely response (Sidiropoulos et al.
2017; Nickel et al. 2012). Moreover, tensor also plays an
increasingly important role in the fields of computer vision
(Shashua and Hazan 2005; Aja-Fernández et al. 2009),
image recognition (Lei and Yang 2006; Sonka et al. 2014)
and signal processing (Lim and Comon 2010; Cichocki et al.
2015). Using tensor to represent and store the feature infor-
mation improves the efficiency of application programming
and execution. Tensor decomposition is an indispensable
method for tensor computation (Tew 2016; Kolda and Bader
2009; Acar et al. 2011; Golub and Van Loan 2012). Tucker
decomposition and Canonical Polyadic decomposition (CP
decomposition) are two widely used schemes for tensor
decomposition. Existing work (Kolda and Bader 2009; Acar
et al. 2011; Choi et al. 2018; Kang et al. 2012) perform com-
prehensive bottleneck analysis and propose solutions from

 * Hailong Yang
 hailong.yang@buaa.edu.cn

 Xiaogang Zhong
 xiaogang2017@buaa.edu.cn

 Zhongzhi Luan
 07680@buaa.edu.cn

 Lin Gan
 lingan@tsinghua.edu.cn

 Guangwen Yang
 ygw@tsinghua.edu.cn

 Depei Qian
 depeiq@buaa.edu.cn

1 Sino-German Joint Software Institute, the School
of Computer Science and Engineering, Beihang University,
Beijing 100191, China

2 State Key Laboratory of Software Development
Environment, Beihang University, Beijing 100191, China

3 Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China

4 Present Address: Beihang University, G823, New Main
Building, Beijing 100191, China

http://orcid.org/0000-0003-1101-7927
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-019-00017-5&domain=pdf

162 X. Zhong et al.

1 3

different perspectives to improve the performance of tensor
decomposition.

In the meanwhile, MapReduce (Dean and Ghemawat
2008) framework from the big data community exhib-
its promising merits such as easy to program, automatic
parallelism and high scalability. It relieves the burden of
programmers from understanding the underlying hardware
details when developing large scale parallel application.
Using MapReduce, the computation procedure of a big data
application is abstracted into two processing stages, map and
reduce, which are automatically parallelized across multi-
ple machines. Due to the above advantages of MapReduce,
researchers (Jeon et al. 2016; Tsourakakis 2010; Kang et al.
2012) have been attempting to parallelize the computation
of tensor decomposition using MapReduce framework.
The combination of tensor decomposition and MapReduce
framework improves the efficiency of tensor computation by
leveraging massive computing resources.

Moreover, the optimizations to tensor decomposition have
been adapted to various hardware architectures and program-
ming frameworks. For instance, Smith et al. (2017) achieve a
good speedup of CP decomposition on Intel KNL (Knights
Landing) many-core processor. Choi et al. (2018) pinpoint
the performance bottleneck of MTTKRP (metricized tensor
times Khatri-Rao product) and apply data blocking tech-
nique to boost the performance on IBM POWER8 proces-
sor. Kang et al. (2012) optimize CP decomposition using
MapReduce framework and avoid intermediate data explo-
sion when updating factor matrices iteratively. Specifically,
BigTensor (Park et al. 2016) and CSTF (Blanco et al. 2018)
are the most popular open source implementations of tensor
decomposition using MapReduce framework. Despite the
above research efforts, adapting to the emerging architecture,
meanwhile leveraging the parallel processing of MapReduce
framework to implement efficient tensor decomposition, is
still a challenging research area.

Sunway Taihuligh is the first high-performance super-
computer that exceeds 100 PFLOPS in double precision.
Sunway Taihulight is powered by SW26010 processor,
which contains four core groups (CGs). Each CG com-
prises of one Management Processing Element (MPE) and
64 Computing Processing Elements (CPEs). The MPE can
fully support interrupt processing, memory management and
out-of-order execution. On the contrary, limited functions
are supported on CPE. However, the 64 CPEs provide high
aggregated computing power. Each CPE has a 64 KB Local
Device Memory (LDM) that is manually controlled by pro-
grammers. DMA is supported on CPE to achieve high mem-
ory bandwidth with accesses in batch. Moreover, CPEs can
communicate with each other through register communica-
tion. The peak floating point performance of one SW26010
is 3 TFLOPS. Unfortunately, there is no implementation of
tensor decomposition available on Sunway processor that,

on the one hand takes advantage of MapReduce parallel pro-
cessing, and on the other hand adapts to the architectural
features of Sunway. The missing support hinders applica-
tions relying on efficient tensor decomposition to exploit the
computation power of Sunway Taihulight.

This work primarily focuses on how to implement effi-
cient sparse CP decomposition with dense factor matrices
on Sunway architecture. Leveraging the available MapRe-
duce framework (swMR) on Sunway (Zhong et al. 2018),
we propose swTensor to realize tensor decomposition on
Sunway architecture. In swMR, the CPEs within a CG are
organized into 32 CPE pairs. Within each CPE pair, map and
reduce role is assigned to each CPE, respectively. swTensor
tiles the tensor data into 32 groups to adapt to the design of
swMR with customized design for key-value pair (Sect. 3.2).
Moreover, in swTensor the computation of Alternating Least
Squares (ALS) algorithm is divided into four sub-procedures
in order to avoid the intermediate data explosion (Sect. 3.3).
Furthermore, pipeline processing is also applied to deal with
the intermediate data, which better utilizes the limited LDM
on each CPE.

Specifically, this paper makes the following contributions:

• We propose swTensor, an efficient implementation of
sparse CP decomposition with dense factor matrices
using MapReduce framework on Sunway. The swTensor
exploits the benefits from both the MapReduce frame-
work for automatic parallel processing and the many-core
architecture of Sunway for high performance.

• We propose a data tiling method to adapt to the design
of MapReduce framework on Sunway. In addition, we
divide the computation of ALS algorithm into four sub-
procedures in order to avoid the intermediate data explo-
sion during decomposition.

• We expand swTensor to run on large scale by using
MPI to coordinate the computation among CGs. With
more Sunway processors utilized during decomposition,
swTensor can support CP decomposition on larger tensor
data.

• We identify several performance impacting parameters
in swTensor and build a performance model for auto-
tuning the parameters for optimal performance. This
performance auto-tuning method eliminates the manual
effort of tuning by hand and the time cost of exhaustive
search.

• We evaluate the performance of swTensor using datasets
at different scales. The experimental results demonstrate
that swTensor achieves 1.36 × and 1.24 × better perfor-
mance than BigTensor and CSTF on average, respec-
tively. In addition, the scalability of swTensor is better
than BigTensor and CSTF when scaling beyond a single
Sunway processor.

163swTensor: accelerating tensor decomposition on Sunway architecture

1 3

The rest of this paper is organized as follows. Section 2 illus-
trates the Sunway architecture and the MapReduce frame-
work available on Sunway. In addition, the background
on tensor computation is described. We also illustrate the
challenges to implement efficient tensor decomposition on
Sunway. Section 3 presents the methodology and imple-
mentation of swTensor. Section 4 presents the performance
auto-tuning method to determine the parameter settings for
swTensor. Section 5 presents the evaluation results of swTen-
sor across different scales of tensor data. We also compare
the performance of swTensor to the-state-of-the-art tensor
computation frameworks BigTensor and CSTF on CPU.
Section 6 presents the related works in this field. Section 7
concludes our work.

2 Background

2.1 Sunway many‑core processor

Sunway Taihulight supercomputer is powered by Sunway
SW26010 processor, which contains four core groups (CGs)
and each core group has one MPE (Management Processing
Element) and 64 CPEs (Computing Processing Elements)
that are organized as 8 × 8 mesh, as shown in Fig. 1. The
MPE has 32 KB L1 data cache and 256 KB L2 instruction
and data cache, whereas each CPE has 16 KB L1 instruction
cache and 64 KB LDM (Local Device Memory). The peak
memory bandwidth and double-precision performance of
each CG is 34 GB/s and 756 GFLOPS, respectively (Wang
et al. 2018). There are two approaches supported for CPE to
access main memory, one is the gld/gst (global load/store)
for discrete access and the other one is the DMA for batch
access. The DMA channel provides much higher bandwidth
than discrete access. In addition, CPE can communicate with
each other when in the same row or column of the mesh
through register communication.

2.2 MapReduce framework on Sunway

The swMR is the most recently proposed MapReduce frame-
work that adapts to the architectural features of Sunway pro-
cessor (Zhong et al. 2018). In swMR, the 64 CPEs in a CG
are divided into 32 CPE pairs, and the map/reduce role is
assigned to the two CPEs within each CPE pair, respectively.
As shown in Fig. 2, when the map CPE finishes process-
ing the input data, it generates the intermediate data and
sends it to the reduce CPE within the same CPE pair through
register communication. After the reduce CPE finishes pro-
cessing, it stores the partial results back to main memory.
In the meanwhile, the MPE continuously checks whether
all CPE pairs are completed. It then combines the partial
results from all CPE pairs and generates the final results.

Note that, each CPE pair can process its own input data inde-
pendently. swMR utilizes the LDM on each CPE to cache
the intermediate data during the processing in order to avoid
accessing main memory frequently. Moreover, swMR takes
the advantage of double buffering to prefetch the input data
from the main memory so that it can overlap the memory
access latency with computation. Another unique design
of swMR is that it can change the processing role (map to
reduce or vice versa) within each CPE pair dynamically,
which achieves better load balance during runtime.

2.3 Tensor decomposition

2.3.1 Tensor definition and operation

Tensor is the widely used data structure for representing data
in high dimension. In general, scalar, vector and matrix can
be considered as zero-order tensor, first-order tensor and
second-order tensor, respectively. Each dimension is termed
as a mode. A tensor with more than three modes is called

M
P
E

Main Mem

64
CPEs

NoC

CPE
(0,0)

CPE
(0,7)

CPE
(7,0)

CPE
(7,7)

CPE Cluster

M
P
E

Main Mem

64
CPEs

M
P
E

Main Mem

64
CPEs

M
P
E

Main Mem

64
CPEs

LDM

Fig. 1 The architecture of Sunway SW26010 processor. Each proces-
sor contains four core groups. Each core group has one MPE and 64
CPEs that are organized as 8 × 8 mesh. Each CPE has a 64KB LDM

Task
Manager

Task MPE

Register Comm LDM

Reduce

CPE Pair (0,0)

Map Reduce

CPE Pair (0,3)

Map

Reduce

CPE Pair (7,0)

Map Reduce

CPE Pair (7,3)

Map

Results

CPE Cluster

Fig. 2 The swMR framework. The map and reduce role is assigned to
the CPEs within each CPE pair. The MPE collects the partial results
from each CPE pair and combine them into final results

164 X. Zhong et al.

1 3

high-order tensor (Kolda and Bader 2009). Since it is hard to
describe when the tensor has more than three modes, in the
following discussion we focus on three-mode tensor without
losing the generality. Each element of a three-mode tensor
can be located by the indexes i, j and k (Golub and Van
Loan 2012). For instance, we can refer to a particular ele-
ment within a three-mode tensor as x(i, j, k). Accessing ele-
ments of tensors with other modes is similar. Using indexes
to locate elements within a tensor is efficient especially when
the tensor is sparse. There are a large number of mathemati-
cal operations that can be applied to tensor. However, due
to the page limit, we briefly introduce the important math-
ematical operations regarding CP decomposition. Readers
can refer to Kolda and Bader (2009) for more detailed dis-
cussion. In addition, for matrix related mathematical opera-
tions, the reader can refer to Golub and Van Loan (2012).

Given matrices A ∈ ℝM×N and B ∈ ℝP×Q , the Kronecker
product between A and B is defined in Eq. (1).

The Khatri-Rao product is column-wise Kronecker prod-
uct between matrices. For instance, there are two matri-
ces, matrix A ∈ ℝI×K

= (�
�
, �

�
, �

�
,… , �

�
) and matrix

B ∈ ℝJ×K
= (�

�
, �

�
, �

�
,… , �

�
) . Then the Khatri-Rao prod-

uct between A and B is defined in Eq. (2).

The Hadamard product is conducted between two matrices
with the same size, e.g. matrix A ∈ ℝI×J and B ∈ ℝI×J . Then
the Hadamard product between A and B is defined in Eq. (3).

In practice, high-mode tensor is more obscure than vector
and matrix, therefore it is difficult to represent and com-
pute high-mode tensor. Hence, an approach to express
high-mode tensor with two dimensional matrix is proposed,
which is called tensor unfolding or tensor matricization.
In general, for a three-mode tensor, there are three ways
to unfold it, mode 1, mode 2 and mode 3. For instance,
given a tensor X ∈ ℝI×J×K , mode 1 unfolding generates
X
(1)

= [X(∶, ∶, 1),X(∶, ∶, 2)] ∈ ℝI×JK , mode 2 unfold-
ing generates X

(2)
= [X(∶, ∶, 1)T ,X(∶, ∶, 2)T] ∈ ℝJ×IK ,

a n d m o d e 3 u n f o l d i n g g e n e r a t e s
X
(3)

= [X(∶, 1, ∶)T ,X(∶, 2, ∶)T ,X(∶, 3, ∶)T] ∈ ℝK×IJ.

(1)A⊗ B =

⎡⎢⎢⎢⎣

a
11
B a

12
B ⋯ a

1nB

a
21
B a

22
B ⋯ a

2nB

⋮ ⋮ ⋱ ⋮

am1B am2B ⋯ amnB

⎤⎥⎥⎥⎦

(2)A⊙ B = (�
�
⊗ �

�
, �

�
⊗ �

�
, �

�
⊗ �

�
,… , �

�
⊗ �

�
)

(3)A ∗ B =

⎡⎢⎢⎢⎣

a
11
b
11

a
12
b
12

⋯ a
1Jb1J

a
21
b
21

a
22
b
22

⋯ a
2Jb2J

⋮ ⋮ ⋱ ⋮

aI1bI1 aI2bI2 ⋯ aIJbIJ

⎤⎥⎥⎥⎦

2.3.2 Canonical polyadic decomposition

The most widely used tensor decomposition is Canonical
Polyadic decomposition (CP decomposition) (Hitchcock
1927) and Tucker Decomposition (Tucker 1963). In this
paper, we focus on implememting CP decomposition on
Sunway architecture. CP decomposition was initially pro-
posed by Hitchcock in 1927 (Hitchcock 1927). We briefly
introduce the mathematical definition of CP decomposition.
For a detailed mathematical proof, reader can refer to Kolda
and Bader (2009). Given a three-mode tensor X ∈ ℝI×J×K ,
the CP decomposition of X is defined Eq. (4), where
A ∈ ℝI×R , B ∈ ℝJ×R and C ∈ ℝK×R are factor matrices. The
value of element (i, j, k) located in tensor X can be approxi-
mated as xijk ≈

∑R

r=1
airbjrckr . The computation process of

CP decomposition is illustrated in Fig. 3.

As shown in Eq. (4), the difficult part of CP decompo-
sition is to determine the three factor matrices, A, B and
C. To address that, Alternating Least Squares (ALS) algo-
rithm is proposed to compute factor matrices. ALS itera-
tively updates factor matrices until the error is tolerable or
maximum iteration is reached. Algorithm 1 shows the code
of applying ALS to perform CP decomposition. To compute
factor matrix A, we fix matrices B and C, then apply ALS.
Equation 5 shows the computation for factor matrix A. A
similar approach is applied to compute matrices B and C,
respectively. Note that † is the pseudo-inverse operation.

(4)X ≈

R∑
r=1

𝜆rA(∶, r)⊗ B(∶, r)⊗ C(∶, r)

(5)Â = X
(1)
(C ⊙ B)(CTC ∗ BTB)†

⋯

Fig. 3 The illustration of CP decomposition. X ∈ ℝI×J×K , A ∈ ℝJ×R ,
C ∈ ℝK×R , R is the rank of tensor X

165swTensor: accelerating tensor decomposition on Sunway architecture

1 3

2.3.3 Challenges of implementing CP decomposition
on Sunway

In order to provide an efficient implementation of sparse CP
decomposition with dense factor matrices on Sunway, we
need to adapt the computation characteristics of CP decom-
position not only to the architectural features of Sunway for
high performance, but also to the MapReduce framework for
automatic parallelization. To achieve that, there are several
unique challenges we need to address.

• How to express the sparse CP decomposition with dense
factor matrices in MapReduce algorithm so that we can
leverage the existing swMR framework for automatic par-
allelization within a CG on Sunway processor. In swMR,
the CPEs within a CG are divided into 32 CPE pairs,
where the map and reduce tasks are performed within
each CPE pair. We need to adapt the computation of
CP decomposition to the unique design of CPE pairs in
swMR.

• How to utilize the limited LDM on CPEs to improve
the computation efficiency of sparse CP decomposition.
Accessing the main memory on Sunway is orders of mag-
nitude slower than LDM. However, the computation of
Khatri-Rao product generates massive intermediate data
with large tensor. Hence, we need to optimize the com-
putation procedure in order to avoid the intermediate data
explosion so that it can fit into the limited LDM on each
CPE.

• How to scale the sparse CP decomposition across mul-
tiple CGs so that large tensor data can be processed on
Sunway. The current swMR framework does not support
running beyond a single CG. We need to extend our
implementation of sparse CP decomposition swTensor
using MPI, so that computation can be distributed and
coordinated on multiple CGs for higher performance.

• How to determine the parameter settings for swTensor so
that it can achieve better performance when implemented
on Sunway processor. Since there are several parameters
that could affect the performance of swTensor, exhaus-
tively searching is both time consuming and unsustain-
able. Therefore, we need a performance auto-tuning
mechanism to search for the optimal parameter settings
for swTensor.

3 swTensor: methodology
and implementation

In this section, we first introduce the design overview of
our CP decomposition on Sunway. Then, we describe the
implementation details, including the optimizations we use

to adapt the CP decomposition to Sunway and avoid the
intermediate data explosion.

3.1 Design overview

In order to support CP decomposition on Sunway, we pro-
pose swTensor that adapts the computation of CP decompo-
sition to the MapReduce framework on Sunway. We notice
that the major computation of CP decomposition is to update
the factor matrices iteratively using ALS algorithm shown
in Algorithm 1. Since the computation of ALS is similar to
update factor matrices A, B and C, we take matrix A for illus-
tration as shown in Eq. (5). Note that the Khatri-Rao product
is performed in column order, therefore we transpose the fac-
tor matrices before the computation. However, for the ease
of illustration, we use the original form of factor matrice
in our discussion. To further fit in the multi-stage process-
ing on MapReduce framework, we divide the computation
procedure of Eq. (5) into four sub-procedures as following:

• Sub-procedure 1: M = (C ⊙ B).
• Sub-procedure 2: N = X

(1)
M.

• Sub-procedure 3: Q = (CTC ∗ BTB)†.
• Sub-procedure 4: Â = NQ.

In general, the initial value of the factor matrices A, B and C
are randomly generated (Kolda and Bader 2009). The size of
tensor X is usually very large (e.g., 10K × 10K × 10K), there-
fore using the traditional method to directly solve Eq. (5)
will generate tremendous intermediate data from Khatri-Rao
product. To address the intermediate data explosion prob-
lem, we apply data tiling technique (Sect. 3.2) along with the
MapReduce processing (Sect. 3.3) on Sunway.

Figure 4 illustrates the computation workflow for calcu-
lating factor matrix A with the above four sub-procedures
using the MapReduce framework on Sunway. In Sub-pro-
cedure 1, the map CPEs are responsible for conducting the
Khatri-Rao product between factor matrices B and C, which
equals to the Kronecker product by columns, to derive M.
In Sub-procedure 2, the map CPEs perform matrix multi-
plication between X

(1)
 and M, and then reduce CPEs add the

JK values to derive N. In Sub-procedure 3, the map CPEs
perform matrix multiplication for both CTC and BTB , and
then the reduce CPEs perform add operation for both J and
K. After that, the map CPEs perform Hadamard product
between J and K to derive Q. In Sub-procedure 4, the map
CPEs perform matrix multiplication between N and Q, and
then the reduce CPEs add the R values to derive A.

Note that in addition to the above four Sub-procedures,
the rest matrix operations in CPD include: (1) tensor flatten
of X, (2) matrix normalization of A, B and C, and (3) com-
putation of factor matrices B and C. For (1), it is not the per-
formance hotspot of CPD, and thus out of the scope of this

166 X. Zhong et al.

1 3

paper. For (2), we have already included matrix normaliza-
tion in each Sub-procedure. Since the matrix normalization
is never the performance bottleneck of CPD, we execute the
matrix normalization on MPE. For (3), since the computa-
tion of factor matrices B and C is similar to matrix A, we
omit the computation details of matrices B and C for brevity.

3.2 Data tiling

For Sub-procedure 1, M = (C ⊙ B) = (�
�
⊗ �

�
, �

�
⊗ �

�
,… ,

�
�
⊗ �

�
) , the Khatri-Rao product eventually transforms into

Kronecker product. For Kronecker product, �
�
⊗ �

�
 repre-

sents that each element of vector �
�
 multiplies all elements

of vector �
�
 . Since the computation on matrices B and C is

column-wise, we only need to tile matrix C by column. Dur-
ing each iteration, when the map CPE receives its tile and
interprets the column index of matrix C, it can automatically
locate the corresponding column index of matrix B.

As shown in Fig. 5, we tile the data by columns according
to the number of CPE pairs in swMR. According to Kro-
necker product, each CPE pair retrieves its input data by the
assigned column index, that is one element cij from matrix
C at a time. The map CPE then retrieves the elements bn

1
j∼n

2
j

from the corresponding column of B (denoted as Bjb , which
are the elements in the bth block and the jth column of B)
based on the row and column indexes contained in the key-
value pairs. We use LDM to store the elements from B as
many as possible. Then, cij is multiplied by Bjb to derive
elements mn

1
j∼n

2
j in matrix M (denoted as Mjb , which are

the elements in the bth block and the jth column of M). For
each CPE pair, it stores Mjb in LDM each time for the com-
putation in subsequent procedures, which consumes Bjb × 8
bytes (generated by the multiplication of Bjb and cij). In our
experiments, the Mjb consumes 8.4KB on average, which
takes up 6.55% of the LDM for each CPE pair.

Then, it proceeds to the Sub-procedure 2, as shown in
Fig. 6. We tile X

(1)
∈ I × JK that is generated from mode 1

unfolding. Multiplying Mjb obtained from Sub-procedure 1
and the corresponding vector from X

(1)
 generates the ele-

ments for each row of X
(1)

 . For instance, X
(1)ix1∼ix2

 denoted as
X
(1)ib represents elements from row one and block b in X

(1)
 .

Note that x
2
− x

1
= n

2
− n

1
 means that the number of ele-

ments within these two blocks equals. After that, we com-
pute ℕijb using Eq. (6). Then, the corresponding elements in
each row of X

(1)
 are multiplied by mn

1
j∼n

2
j . When the multi-

plication is done, the memory space allocated for mn
1
j∼n

2
j in

LDM is released in order to save space for the incoming
computation. Then the CPE pair continues to obtain the next
element, e.g., c

(i+1)j , from matrix C to compute the next ele-
ment of ℕ . Finally, we sum up all the elements in ℕ that have
the same i and j indexes, and derive the element at row i and
column j of N, e.g., N

0j =
∑

ℕ
0jb shown in Fig. 6. By tiling

matrices into small data blocks and applying the computa-
tion iteratively, we can eliminate the problem of intermediate

0 … R

C

Map

0

I

Map
Mul

0 … R 0 … R

Reduce

JK values

0

R

0 … R

Reduce
Add

Map
Mul

0 … R

R values

Reduce Add

Kronecker 0 … JK

Add
Map
Mul

0

R

0 … R

Map
Mul

J values

Reduce
Add

B M

Map
Hadamard

K values

B

C

0 … R

0 … R

0 … R

A

N Q

Sub-procedure 1 Sub-procedure 2 Sub-procedure 3 Sub-procedure 4

Fig. 4 The computation workflow of swTensor for calculating factor matrix A

C B

M

Fig. 5 Data tiling used in Sub-procedure 1. Each CPE pair retrieves
an element cij from matrix C and multiplies the corresponding block
of elements Bjb from matrix B in order to generate the element Mjb in
matrix M

167swTensor: accelerating tensor decomposition on Sunway architecture

1 3

data explosion and efficiently utilize the limited LDM on
each CPE for better performance. We do not apply data tiling
to Sub-procedure 3 and 4, since they generate small amount
of intermediate data.

3.3 Coordinating computation within MapReduce

In this section, we present the customized design of key-
value pair in swTensor, which adapts to the MapReduce
framework on Sunway to perform the computation of CP
decomposition.

For Sub-procedure 1 (M = C ⊙ B), the input key of
map function is (CRow, CCol, BlockID), where CRow and
CCol represent the location of element in factor matrix C,
e.g. c

(CRow,CCol) . The BlockID represents the block index of
the CCol column in matrix B. Considering that the span
of column width is too large to fin in the limited capacity
of LDM, swMR tiles the data based on the available space
of LDM and then generates a BlockID for each block. The
input value is (BVal, Count), where BVal is an array storing
the data from the corresponding column of matrix B and
Count is the number of elements in BVal, as shown in Fig. 5.
Therefore, we can obtain a particular element c

(CRow,CCol)
from matrix C using the key. Then, c

(CRow,CCol) is multiplied
with BVal to derive MVal. After the computation of Sub-
procedure 1, the output key is designed as (CRow, BlockID),
which has the same meaning as input key. The output value
is (MVal, Count), where Count represents the number of
elements in MVal.

(6)ℕijb =

n
2
,x
2∑

n=n
1
,x=x

1

mnjX(1)ix

For Sub-procedure 2 (N = X
(1)
M), its input key-value pair

is the output key-value pair from Sub-procedure 1, e.g., key
= (CRow, BlockID) and value = (MVal, Count). According
to Khatri-Rao product and tensor unfolding, the number of
columns in matrix X

(1)
 equals the number of rows in matrix

M, which is JK. Then, we tile each row of matrix X
(1)

 in the
following way. First, we divide each row into K big blocks,
where K is the row count of factor matrix C. Second, each
big block is further divided into Count small blocks, where
Count is obtained from input key-value pair. To implement
the data tiling of matrix X

(1)
 , the map CPE obtains the cor-

responding data from X
(1)

 , as shown in Algorithm 2. We use
double buffering technique to overlap the delay caused by
accessing main memory with the computation. For instance,
in Algorithm 2, when the map CPE finishes processing the
current data block (line 9), it can continue to process next
data block since it is already prefetched in the double buffer
(line 14).

Fig. 6 Data tiling used in Sub-
procedure 2. Mjb obtained from
Sub-procedure 1, is multiplied
by the corresponding vector
from X

1
 , which generates ℕijb .

Then all elements in ℕ that have
the same i and j indexes are sum
up to derive the according ele-
ment for matrix N

168 X. Zhong et al.

1 3

For Sub-procedure 3 and 4 (Q = (CTC ∗ BTB)† and
Â = NQ), Because CTC and BTB are computed in a same
way, we take CTC for illustration. As mentioned in Sect. 3.1,
we use transposed factor matrices for better memory effi-
ciency. Therefore we only store CT and BT . Fortunately, this
does not affect computation of CTC . As shown in Fig. 7, the
computation of CTC is equivalent to each row of CT multi-
plied by itself. The design of key is (RowID, BlockID), where
RowID represents the row index and BlockID represents the
block index of the CTVal. And the value is (CTVal, Count),
where CTVal is an array with the corresponding data from
CT and Count represents the size of CTVal. The output key
is (RowID, ColID, BlockID), and the value is (val) where
val is the result of CTC . Because Hadamard product is an
element-wise operation, we design the key/value as (StartIn-
dex, EndIndex) and (AVal, BVal), respectively. Then BVal
multiplies AVal in an element-wise way. Finally, Sub-pro-
cedure 4 (Â = NQ) only requires matrix multiplication to
be performed. The design of key-value pair is similar to the
computation of X

(1)
M.

3.4 Scaling beyond core group

One limitation of the current MapReduce framework on
Sunway is that it can only utilize one CG, and thus can-
not scale across multiple Sunway processors. Since our CP
decomposition swTensor is based on the above MapReduce
framework, it hinders swTensor from handling much larger
tensor data. Therefore, in order to overcome the scalability
limitation, we extend swTensor using MPI so that it can run
CP decomposition at large scale across multiple Sunway
processors.

The fundamental idea for scaling the computation of
CP decomposition is to use the MPE as master, which then
divides factor matrices by columns and distributes the col-
umn partitions to other CGs for parallel processing with
original design of swTensor unchanged. When the com-
putation on each CG is completed, the master MPE gath-
ers the partial results from all CGs and generates the final
results. Note that we store the transposed factor matrices as

described in Sect. 3.1, hence the factor matrices are actually
divided by rows. For the ease of illustration, we describe our
MPI extension based on the original matrix format.

For Sub-procedure 1, considering Kronecker products are
column-wise operations, if we divide the factor matrices by
rows, the elements of M are distributed across different CGs.
In that case, the row size of X

(1)
 does not match the row size

of M in Sub-procedure 2. In order to fulfill the computation
in Sub-procedure 2, it requires large amount of data trans-
fers among CGs to gather the distributed elements of M and
thus deteriorates the computation performance. Therefore,
we partition the factor matrices by columns to ensure the
matching of subsequent computation. Whereas for Sub-pro-
cedure 3, the CTC is computed by rows, therefore similar
idea is also applied to partition the matrix across multiple
CGs for vector multiplication. As for Hadamard products,
since they are element-wise operations, the same data parti-
tion method also applies. For Sub-procedure 4, which is the
matrix multiplication, we apply the same idea to partition
the matrices by columns.

4 Performance auto‑tuning

4.1 Identifying the parameters

There are several parameters (e.g., px
1
 to px

6
) that could

affect the performance of swTensor, which control the data
tiling, LDM usage, DMA transfer and CPE parallelism in
order to adapt to the Sunway architecture. For Sub-procedure
1, it tiles the factor matrices B and C based on the number
of CPE pairs by column, shown as Fig. 5. After data tiling,
the CPE fetches the corresponding data blocks from B and
C, and processes the data by column. For instance, When a
CPE pair processes the data of column j, we need to obtain
the data of cij and a data vector bn1j∼n2j of matrix B from
main memory. Since the size of LDM is quite limited and we
cannot load all data to LDM at once, parameter px

1
 is used

to control the amount of data fetched to LDM each time.
For Sub-procedure 2, to compute N

0jb , the corresponding
data block of X

(1)0b needs to be loaded in LDM from main
memory, as shown in Fig. 6. Since the LDM is also used to
store the partial results of Mjb computed by Sub-procedure 2,
there is not enough space to store the entire data block X

(1)0b .
Therefore, we tile X

(1)0b and use parameter px
2
 to control

the amount of data fetched from main memory for each tile.
In Sub-procedure 3 and 4, as shown in Fig. 7, the CPE

loads the corresponding data of CT and BT from main
memory to LDM. These two Sub-procedures suffer a simi-
lar problem of limited LDM and we apply a similar solu-
tion to tile the data fetched from main memory to LDM.

Fig. 7 An example to illustrate the computation of CTC . Each ele-
ment (e.g., ℂ

00
) in ℂ is derived by each row of CT multiplied by itself.

Therefore, only CT needs to be stored in memory

169swTensor: accelerating tensor decomposition on Sunway architecture

1 3

Hence, we use parameter px
3
 and px

4
 to control the amount

of data fetched from matrices N and Q in main memory,
respectively. In addition, the swMR framework also has two
important parameters px

5
 and px

6
 that could impact the per-

formance of swTensor. The parameter px
5
 is an unbalanced

threshold which judges whether load imbalance occurs
between two CPEs within a CPE pair. When the perfor-
mance difference between the two CPEs is more than px

5
 ,

swMR realizes load imbalance occurs and adjusts the load
for the next round of computation within a CPE pair for
better performance. Whereas parameter px

6
 is the dynamic

balancing ratio that controls the amount of computing load
to be re-assigned from the heavy-loaded CPE to the light-
loaded CPE within a CPE pair.

4.2 Building analytic performance model

To derive the optimal settings for the parameters in swTensor
through exhaustive search would take either a prohibitively
long time, or too much human efforts, which is impractical
in real-world. Therefore, we propose an auto-tuning scheme
to identify the optimal parameter settings of swTensor. In
order to use the auto-tuning scheme, we need to build an
analytic performance model T(px

1
, px

2
, px

3
, px

4
, px

5
, px

6
) ,

which can precisely measure the performance of swTensor.
The valid range and constraint of the parameters in the

performance model is as follows:

• 0 < px
1
< LDMsize, 0 < px

2
< LDMsize and 0 < px

1
+

px
2
< LDM

size
 , besides px

1
, px

2
∈ N.

• 0 < px
3
< LDMsize , 0 < px

4
< LDMsize and px

3
, px

4
∈ N.

• 0 ⩽ px
5
⩽ 5000 and px

5
∈ N.

• 0 ⩽ px
6
⩽ 1 and px

6
∈ R.

The whole procedure of swTensor is divided into 4 Sub-
procedures. Hence, the performance model T can be built
as Eq. (7). Within each Sub-procedure, there are two types
of operations: 1) computation including Khatri-Rao prod-
uct, Hadamard product and matrix operations; 2) accessing
main memory through DMA. Since the computation result
of Sub-procedure 1 is the input for Sub-procedure 2, we use
Tsub1,2 to represent the combined performance of Sub-pro-
cedure 1 and 2, as shown in Eq. (8). Equation 8 can be fur-
ther expanded as Eq. (9). Note that in each Sub-procedure,
the DMA data transfer is overlapped with the computation,
therefore we consider the maximum execution time of the
overlapped operations in Eq. (9).

(7)T =Tsub1 + Tsub2 + Tsub3 + Tsub4

(8)T =Tsub1,2 + Tsub3 + Tsub4

The constant value 3 in Eq. (9) means that there are three
factor matrices to compute, whereas the constant value 6
means that when we compute these three factor matrices,
there are two types of computation to perform including
matrix product and Hadamard product. TDMA means the time
for DMA transfer, where Eq. (10) show the details on how
to calculate the DMA transfer time. Since the calculation of
TDMA is similar for each Sub-procedure, we omit the TDMA
equations for other Sub-procedures.

The calculation of Tsub1,2 , Tsub3 and Tsub4 is shown in
Eqs. (11–13), respectively. T

0
 and T

1
 represent the computa-

tion time of CPE 0 and CPE 1 within a CPE pair, respec-
tively. VDMA represents the DMA bandwidth, and Vflop repre-
sents the peak floating point performance of CPE. Note that
the initial value of T

0
 and T

1
 is 1, where T

0
− T

1
= 0 means

that the load on CPE 0 and CPE 1 is balanced. After the first
round of computation, our implementation evaluates whether
load imbalance occurs between two CPEs within a CPE pair.
If load imbalance is detected, T

0
 and T

1
 will be updated to

(1 − px
6
)Tsubpre and px

6
Tsubpre , respectively, where Tsubpre rep-

resents the execution time of previous Sub-procedure.

(9)

T = 3

(
TDMAinit +

n−2∑
max(TDMA, Tsub1,2) + Tsub1,2last

)

+ 6

(
TDMAinit +

n−2∑
max(TDMA, Tsub3) + Tsub3last

)

+ 3

(
TDMAinit +

n−2∑
max(TDMA, Tsub4) + Tsub4last

)

(10)

TDMA =

⎧⎪⎨⎪⎩

(1−px
6

T0−T1

T0(1)
)(px

1
+px

2
)

VDMA

, ��T0 − T
1
�� ⩾ px

5

px
1
+px

2

VDMA

, ��T0 − T
1
�� < px

5
, init_round

(11)

Tsub1,2 =

⎧⎪⎨⎪⎩

�
1−px

6

T0−T1

T0(1)

�
(px

1
+px

2
)+px

1

Vflop

, ��T0 − T
1
�� ⩾ px

5

2px
1
+px

2

Vflop

, ��T0 − T
1
�� < px

5
, last_round

(12)

Tsub3 =

⎧⎪⎨⎪⎩

�
1−px

6

T0−T1

T0(1)

�
px

3

Vflop

, ��T0 − T
1
�� ⩾ px

5

px
3

Vflop

, ��T0 − T
1
�� < px

5
, last_round

(13)

Tsub3 =

⎧⎪⎨⎪⎩

�
1−px

6

T0−T1

T0(1)

�
px

4

Vflop

, ��T0 − T
1
�� ⩾ px

5

px
4

Vflop

, ��T0 − T
1
�� < px

5
, last_round

170 X. Zhong et al.

1 3

4.3 Auto‑tuning using simulated annealing
algorithm

Based on the above analytic performance model, we use sim-
ulated annealing algorithm (Bertsimas and Tsitsiklis 1993;
Aarts et al. 2007) to determine the optimal parameter settings.
The simulated annealing algorithm tries to find the global opti-
mal solution by accepting, with probability, a worse solution to
step out local optimal solution.The auto-tuning procedure for
swTensor is shown in Fig. 8. We first initialize the parameters
randomly, within their value range. T means the temperature
that we use in an auto-tuning algorithm, � means the ratio
when decreasing the temperature, solution represents a set of
parameter settings, and f represents the analytic performance
model. For each iteration of the algorithm, a new solution
named as neighbor solution, is generated and then the algo-
rithm computes the increment dE of the analytic performance
model f. If dE is less than zero then algorithm accepts the
neighbor solution as a current solution, otherwise the neighbor
solution is accepted with probability p = exp(−dE∕T) . If the
iteration meets the termination condition of the algorithm, the
current solution will be the final optimal solution, otherwise
the algorithm decreases the temperature to T = � × T , and
generates a new neighbor solution to start over the iteration. In
our case, the simulated annealing algorithm takes 24 minutes
to derive the global optimal parameter settings, which is more
efficient than exhaustive search.

5 Evaluation

In this section, we first compare the performance of swTen-
sor with existing work running on a CPU cluster with
equivalent computation capability to a Sunway CG. Then,
we build the roofline model to show how effectively our
swTensor adapted to the Sunway architecture. Moreover,
we present the performance results when scaling swTensor
beyond a single CG. Finally, we use several real-world data-
sets to further demonstrate the performance advantage of
swTensor. We provide performance comparison with exist-
ing works that are also based on MapReduce framework
such as BigTensor and CSTF.

5.1 Experimental setup

We conduct the experiments on a Sunway SW26010 pro-
cessor, which contains four CGs. Each CG consists of one
MPE and 64 CPEs. Each Sunway processor has 32GB DDR3
memory. The detailed specifications of SW26010 are listed
in Table 1. We compare the performance of swTensor with
BigTensor (Park et al. 2016) and CSTF (Blanco et al. 2018),
which are state-of-the-art tenor decomposition frameworks

running on CPU. To provide a fair comparison, we run
BigTensor on a CPU cluster of 10 nodes, which delivers
equivalent peak floating point performance to a Sunway
CG. The detailed specifications of each CPU node are also
listed in Table 1. Moreover, we also port BigTensor to Sun-
way (denoted as swBT) without the optimizations proposed
in swTensor to better understand the effectiveness of our
approach. In order to evaluate the performance of swTensor
under different sizes of tensor, we synthetically generate ran-
dom tensor data (Kolda and Bader 2009) of size I × J × K ,
ranging from 2 × 10

3 to 9 × 10
3 and the number of nonzeros

ranging from 2 × 10
5 to 6 × 10

5 . The datasets evaluated are
shown in Table 2.

5.2 Performance

We compare the performance of swTensor running on a
CG of Sunway processor to BigTensor and CSTF running
on a CPU cluster of 10 nodes due to the equivalent peak
performance as shown in Table 1. This experimental setup
intends to provide a fair comparison on processors with
similar computation capacity. The performance results are
shown in Fig. 9. It is clear that swTensor achieves better
performance than BigTensor and CSTF across all tensor
sizes with the average speedup of 1.36 × and 1.24 × , respec-
tively. Especially, when the tensor size is small, swTensor
achieves more speedup over BigTensor and CSTF on the
same dataset. The largest speedup achieved by swTensor is
1.62× and 1.56× running on dataset1 compared to BigTen-
sor and CSTF, respectively. However, as the tensor size
increases, the execution time of swTensor, BigTensor and
CSTF increases accordingly. The performance advantage of
swTensor becomes less significant compared to BigTensor
and CSTF when the tensor size is large. When running on
dataset5, the performance of swTensor is only 1.12 × and

256 256 256 256 500 0.1

269 280 273 293 684 0.2

dE = f(nei_solution)
 -f(cur_solution)

cur_solution = nei_solution

A random solution & initial
temperature

Generate a neighbor
solution

Compare with neighbor
solution

Accept neighbor solution with
probability

Continue or decrease the
temperature

initial
solution

neighbor
solution

If dE<0

If dE>0

temperature T=1500

Fig. 8 The performance auto-tuning mechanism using simulated
annealing

171swTensor: accelerating tensor decomposition on Sunway architecture

1 3

1.03 × better than BigTensor and CSTF, respectively. The
reason for the diminishing speedup of swTensor when the
tensor size scales is due to the limited capacity of LDM on
each CG. As the tensor size becomes too large to be cached
in LDM of all CPEs, more data accesses are inevitable to
read and write from main memory, which degrades the per-
formance of swTensor. This observation justifies our contri-
bution to scale swTensor to multiple CGs in order to handle
larger tensor size. We also notice that swBT achieves the
worst performance among all the CPD implementations. The
results are as expected because swBT does not apply all the
optimizations proposed in swTensor such as data tiling and
coordinated computation, which leads to inefficient adapta-
tion to the Sunway architecture. Since the performance of
swBT is far below the rest of CPD implementations, we do
not include swBT in the following evaluation of scalability
and case study.

5.3 Roofline model analysis

To better understand how effective our swTensor is adapted
to the Sunway architecture, we build a roofline model of a
Sunway CG using similar approach in Xu et al. (2017). Note
that the roofline model of Sunway has already been validated
in Xu et al. (2017) with thorough experiments. Since the

performance counters are quite limited on Sunway CPEs,
it is difficult to measure the operational intensity of swTen-
sor during runtime. Therefore, we calculate the operational
intensity through algorithm analysis, which is also adopted
in Williams et al. (2009). Note that the attainable perfor-
mance of swTensor is still measured for the experiment run.

The advantage of roofline model is that it builds up rela-
tionships among peak floating point performance, opera-
tional intensity and memory bandwidth, which is quite
illustrative to reveal the intrinsic characteristics of the
application and provide guidance for performance optimi-
zation. To derive the operational intensity of CP decomposi-
tion, we analyze the computation procedure and realize the
major floating point computation happens during step 2 as
described in Sect. 3.1. The amount of floating point opera-
tions is JK × 2 × I × R , where R is the rank of the tensor.
In each iteration, the computation procedure is the same.
Therefore, we only need to calculate the operational inten-
sity for one iteration. In each iteration, there are three factor
matrices accessed including A, B and C. Take the industry
YELP dataset (Yelp dataset challenge 2019) for example, the
calculation of operational intensity for CP decomposition is
shown in Eq. (14).

The roofline model of a Sunway CG is shown in Fig. 10. The
ridge point of the roofline model is 33.19, which means the
application with operational intensity larger than the ridge
point is no longer memory bounded. It is obvious that our
swTensor reaches the operational intensity of 9.34, which is
still under the slope of the roofline model and thus mostly
bounded by the memory bandwidth. In the case of dataset
(Yelp dataset challenge 2019), our swTensor achieves the
performance of 523.39GFLOPS on a Sunway CG, which

(14)

OperationalIntensity = Flops∕Bytes

= 2268GFlop ∗ 3∕728.5 ∗ 10
9Bytes

= 9.34

Table 1 The hardware and software specifications of the Sunway pro-
cessor and CPU cluster

Specifications Sunway SW26010 Xeon E5620

Hardware Core 1 MPE@1.45GHz and
64 CPEs@1.45GHz
per CG

4 cores@2.4GHz

Node 4 CGs 2 Xeon E5620
Memory 32GB (8GB per CG) 12GB
GFLOPS 750 (per CG) 768 (10 nodes)

Software OS customized CentOS v6.5
MapReduce swMR (Zhong et al.

2018)
Hadoop v2.9.0

JDK – OpenJDK v1.8.0
MPI MVAPICH2 v2.2a –
Compiler sw5cc v5.421 –

Table 2 The tensor datasets evaluated in the experiments

I, J, K indicates the dimension of the tensor data

Data I J K Nonzeros

Dataset1 2 × 10
3

2 × 10
3

2 × 10
3

2 × 10
5

Dataset2 4 × 10
3

4 × 10
3

4 × 10
3

3 × 10
5

Dataset3 6 × 10
3

6 × 10
3

6 × 10
3

4 × 10
5

Dataset4 7 × 10
3

7 × 10
3

7 × 10
3

5 × 10
5

Dataset5 9 × 10
3

9 × 10
3

9 × 10
3

6 × 10
5

Fig. 9 The performance comparison of swTensor, BigTensor, swBT
and CSTF on synthetic datasets

172 X. Zhong et al.

1 3

reaches 69.78% efficiency of the theoretical peak perfor-
mance of a Sunway CG. Indicated by the roofline model,
there is still 30.22% performance space for further optimiza-
tion. Therefore, to further exploit the computation power of
a Sunway CG, we need to improve the operational intensity
through vectorization and instruction re-ordering (Xu et al.
2017). However, we leave it for future work.

5.4 Scalability

To evaluate the scalability, we run swTensor across multi-
ple Sunway nodes (each Sunway node contains one Sunway
processor that consists of four CGs) ranging from 1 to 10.
We also run BigTensor and CSTF on CPU cluster for com-
parison. The performance of a single node is used as the
baseline. As shown in Fig. 11, swTensor exhibits much better
scalability than BigTensor and CSTF on different datasets as
the number of nodes scales. For small (Dataset1), medium
(Dataset3) and large (Dataset5) size of tensor data, swTensor
achieves 3.11 × , 2.91 × and 2.76 × speedup, respectively
when scaling to 10 nodes. Whereas for BigTensor, the
speedup is only 2.32 × , 2.12 × and 1.92 × , respectively. For
CSTF the speedup is only 1.21 × , 1.30 × and 1.36 × , respec-
tively. The scalability of CSTF is worse than both BigTensor
and swTensor due to the overhead of massive intermediate
data generated during the computation. We also notice that
the scalability of swTensor is far from linear, one reason for
the sub-optimal scalability of swTensor could be attributed
to our inefficient MPI implementation, which requires fur-
ther optimization. Another reason could be, as the number
of CGs increases while the size of tensor data stays constant,
the computation assigned to each CG becomes insufficient
to amortize the overhead of MPI communication. However,
the concrete reasons still require further investigation in our
future work.

5.5 Case study

In addition to the synthetic datasets, we evaluate swTensor
with several real-world datasets as listed in Table 3. The
YELP dataset (Yelp dataset challenge 2019) contains hun-
dreds of thousands of reviews across 10,100 businesses,
whereas the ML-20M dataset (Harper and Konstan 2016)
contains 10,000,054 ratings and 95,580 tags applied to
10,681 movies from MovieLens. The nell1 and dellicious3d
datasets are from FROSTT (Smith et al. 2017), where nell1
represents tensor with noun-verb-noun triplets, and delli-
cious3d is a user-item-tag tensor crawled from tagging sys-
tems. As shown in Fig. 12a, swTensor achieves better per-
formance than BigTensor and CSTF on YELP and ML-20M
datasets. For the YELP dataset, swTensor achieves 1.31 × and
1.18 × speedup compared to BigTensor and CSTF, respec-
tively, whereas for the ML-20M dataset swTensor achieves
1.33 × and 1.22 × speedup, respectively. In Fig. 12b, on nell1
and dellicious3d datasets, swTensor and CSTF achieve simi-
lar performance, both of which are better than BigTensor.
Note that the reason why the performance of CSTF com-
pared to BigTensor is different from the results reported in
Blanco et al. (2018) can be understood from two aspects: (1)
The hardware settings of the experiment platforms are not
exactly the same. Except CPU, the performance specifica-
tions of memory and disk subsystems may also be different.
(2) The CSTF is implemented on top of Spark, which is more
sensitive to CPU performance compared to BigTensor that is
implemented on top of Hadoop. In our experiment platform,
the CPU is less powerful compared to Blanco et al. (2018) in
terms of both core number as well as CPU frequency, which
constrains the performance advantage of CSTF compared
to BigTensor. Nevertheless, the results with the real-world
datasets also demonstrate the effectiveness of our swTensor
for supporting tensor decomposition on Sunway architecture.

2 4 8 16 32 64 128

350

450

550

650

750

900
Memory Bound Computing Bound

A
tta

in
ab

le
 P

er
fo

rm
an

ce
(G

FL
O

PS
)

Operational Intensity (Flops/Bytes)

33.18

9.34

523.39GFLOPS

Peak Performance 750GFLOPS

Fig. 10 The roofline model of a Sunway CG when running swTensor
with the YELP dataset

swTensor
BigTensor
CSTF

Fig. 11 The scalability of swTensor, BigTensor and CSTF running on
different datasets across multiple nodes

173swTensor: accelerating tensor decomposition on Sunway architecture

1 3

6 Related work

There are many research works that have been devoting sig-
nificant efforts to optimize the algorithm of tensor decom-
position. The computation of MTTKRP is identified to be
the major performance bottleneck by carefully analyzing
and instrumenting the computation of MTTKRP (Choi et al.
2018). Moreover, the authors in Choi et al. (2018) combine
two data blocking methods and apply it to the MTTKRP,
which achieves considerable speedup. eALS (element-wise
Alternating Least Squares) (He et al. 2016), based on the
traditional ASL algorithm, offers a new way to optimize
tensor decomposition for online recommendation system.
The dynamically changing features in real-world data are
taken into consideration by eALS. A highly scalable ten-
sor decomposition scheme, which is effective for speedup
relation extraction, has been proposed by Chang et al.
(2014). DFacTo (Choi and Vishwanathan 2014) presents
a distributed algorithm that exploits the properties of the
Khatri-Rao product to accelerate Alternating Least Squares
(ALS) and Gradient Descent (GD) algorithms used in tensor
factorization.

Besides, tensor decomposition has been adapted to vari-
ous hardware architectures for better performance. On the
Intel many-core processor KNL (Knights Landing), the
computation of CP decomposition is balanced among the
processing units, which leads to 1.8 × performance speedup
(Smith et al. 2017). Li et al. (2016); Ma et al. (2019)

propose an optimized design of sparse tensor-times-dense
matrix multiply on GPU that exploits fine thread granular-
ity, coalesced memory access, rank blocking and fast shared
memory. F-COO (Liu et al. 2017) proposes a unified tensor
format along with GPU-specific optimizations that leverages
the similar computation patterns between tensor operations.
The implementation using F-COO achieves better perfor-
mance than the implementation using vendor libraries on
GPU. Most recently, balanced-CSF (Nisa e al. 2019) (bal-
anced compressed sparse fiber) format has been proposed on
GPU that extends the CSF format to better utilize the mas-
sive parallelism on GPU for accelerating the irregular com-
putation of sparse MTTKRP with load balance. GTA (Oh
et al. 2019) provides a general framework for Tucker factori-
zation on both CPU and GPU that implements alternating
least squares with a row-wise update in parallel, which effec-
tively accelerates the factor matrice update process with less
memory consumption. Phipps and Kolda (2019) propose a
portable approach to determine the level of parallelism for
MTTKRP on different architectures, which includes fine-
grained parallelism, portable thread-local arrays and atomic-
write contention avoidance.

Moreover, there are research works adapting CP decom-
position to MapReduce framework to accelerate tensor
decomposition with better parallelism and automatic scal-
ability. FlexiFaCT (Beutel et al. 2014), HaTen2 (Jeon et al.
2015), Gigatensor (Kang et al. 2012) and BigTensor (Park
et al. 2016) all take advantage of MapReduce framework
to accelerate tensor decomposition on cluster. FlexiFaCT

Table 3 The real-world tensor
datasets

I, J, K indicates the dimension of the tensor data

Data I J K Nonzeros

YELP (Yelp dataset challenge 2019) 70 × 10
3

15 × 10
3 108 334 × 10

3

ML-20M (Harper and Konstan 2016) 71 × 10
3

10 × 10
3 157 10 × 10

6

nell1 (Smith et al. 2017) 2 × 10
6

2 × 10
6

25 × 10
6

144 × 10
6

dellicious3d (Smith et al. 2017) 532 × 10
3

17 × 10
6

2 × 10
6

140 × 10
6

(a) (b)

Fig. 12 The performance comparison of swTensor, BigTensor and CSTF on real-world datasets

174 X. Zhong et al.

1 3

supports decomposition on both matrix and tensor by using
stochastic gradient descent on different objective functions.
HaTen2 reduces the amount of intermediate data and the
number of computing jobs when the data size is tremendous.
GigaTensor uses a novel computing algorithm to avoid inter-
mediate data explosion as well as reduce the number of float-
ing point operations, which demonstrates its effectiveness
by evaluating with real-world datasets. CSTF (Blanco et al.
2018) proposes a novel queuing strategy to exploit the data
reuse between the computation procedures in CP decom-
position that reduces the communication cost significantly.

In the meanwhile, there are surging research works
(Zhong et al. 2018; Liu et al. 2018; Hu et al. 2019; Liu et al.
2019; Han et al. 2019; Chen et al. 2018; Li et al. 2018a, b;
Duan et al. 2018) based on Sunway architecture in the past
few years, which provide valuable experience to our work.
The achievable performance by leveraging the architecture
features of Sunway such as memory architecture, CPEs and
register communication, is quantitatively measured by Xu
et al. (2017) with both memory-bound and computing-bound
benchmarks. The observations described in Xu et al. (2017)
provide useful insights for performance optimization on
Sunway architecture. swMR (Zhong et al. 2018), a MapRe-
duce programming framework based on Sunway architec-
ture, leverages the computing resources of Sunway proces-
sor to automatically parallelize the map/reduce processing
and optimize the performance using the unique architectural
features such as CPEs and register communication. A sparse
matrix vector multiplication algorithm optimized for Sunway
architecture, is proposed by Liu et al. (2018). The proposed
technique optimizes the sparse matrix vector multiplication
by tiling resource and data into three levels, and then lev-
erage register communication and local device memory to
implement effective data transfer and better usage of CPEs.
Li et al. (2018b) re-designs the computation of sparse trian-
gular solver (SpTRSV) by assigning different roles to CPEs
within a CG on Sunway processor. This multi-role design
provides an efficient implementation of SpTRSV on Sunway
by carefully manipulating the local device memory and reg-
ister communication for synchronization.

7 Conclusion and future work

In this paper, we present an efficient implementation of ten-
sor decomposition swTensor by adapting the architecture
features of Sunway many-core architecture. Specifically, we
leverage the Sunway MapReduce framework swMR for auto-
parallelization of tensor decomposition, and tile the tensor
data based on the 32 CPE pairs in swMR for load balance.
In addition, we design customized key-value pairs to uti-
lize the parallel processing of swMR and divide the origi-
nal CP decomposition into four sub-procedures in order to

avoid intermediate data explosion with the limited LDM on
Sunway. Moreover, we propose a performance auto-tuning
mechanism to search for the optimal parameter settings for
swTensor. The experiment results show that swTensor per-
forms better than the state-of-the-art BigTensor and CSTF
in both performance and scalability. For the future work,
we would like to extend swTensor to support more types of
tensor decomposition such as Tucker decomposition (Tucker
1963), which are widely used in various application fields.
Moreover, we would like to further optimize the MPI imple-
mentation of swTensor so that it can process tensor data
with massive size by utilizing the Sunway processors at large
scale.

Acknowledgements The authors would like to thank all anonymous
reviewers for their insightful comments and suggestions. This work
is supported by National Key R&D Program of China (Grant No.
2016YFB1000503 and 2016YFA0602200), National Natural Sci-
ence Foundation of China (Grant No. 61502019 and 61732002), State
Key Laboratory of Software Development Environment (Grant No.
SKLSDE-2018ZX-19), Center for High Performance Computing and
System Simulation, Pilot National Laboratory for Marine Science and
Technology (Qingdao). Hailong Yang is the corresponding author.

Compliance with ethical standards

 Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

Aarts, E., Korst, J., Michiels, W.: Simulated annealing. Local Search
Combin. Optim. 36, partii(3), 187–210 (2007)

Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor
factorizations for incomplete data. Chemometr. Intell. Lab. Syst.
106(1), 41–56 (2011)

Aja-Fernández, S., de Luis Garcia, R., Tao, D., Li, X.: Tensors in
Image Processing and Computer Vision. Springer, Berlin (2009)

Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15
(1993)

Beutel, A., Talukdar, P.P., Kumar, A., Faloutsos, C., Papalexakis, E.E.,
Xing, E.P.: Flexifact: scalable flexible factorization of coupled
tensors on hadoop. In: Proceedings of the 2014 SIAM Interna-
tional Conference on Data Mining, pp. 109–117. SIAM (2014)

Blanco, Z., Liu, B., Dehnavi, M.M.: Cstf: Large-scale sparse tensor
factorizations on distributed platforms. In: Proceedings of the
47th International Conference on Parallel Processing, p. 21. ACM
(2018)

Chang, K.W., Yih, S.W.t., Yang, B., Meek, C.: Typed tensor decompo-
sition of knowledge bases for relation extraction (2014)

Chen, B., Fu, H., Wei, Y., He, C., Zhang, W., Li, Y., Wan, W., Zhang,
W., Gan, L., Zhang, W., et al.: Simulating the Wenchuan earth-
quake with accurate surface topography on Sunway taihulight. In:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, p. 40. IEEE Press
(2018)

Choi, J., Liu, X., Smith, S., Simon, T.: Blocking optimization tech-
niques for sparse tensor computation. In: 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp.
568–577. IEEE (2018)

175swTensor: accelerating tensor decomposition on Sunway architecture

1 3

Choi, J.H., Vishwanathan, S.V.N.: Dfacto: distributed factorization of
tensors. Adv. Neural Inf. Process. Syst. 2, 1296–1304 (2014)

Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q.,
Caiafa, C., Phan, H.A.: Tensor decompositions for signal process-
ing applications: from two-way to multiway component analysis.
IEEE Signal Process. Mag. 32(2), 145–163 (2015)

Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on
large clusters. Commun. ACM 51(1), 107–113 (2008)

Duan, X., Gao, P., Zhang, T., Zhang, M., Liu, W., Zhang, W., Xue, W.,
Fu, H., Gan, L., Chen, D., et al.: Redesigning lammps for peta-
scale and hundred-billion-atom simulation on sunway taihulight.
In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis, p. 12.
IEEE Press (2018)

Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press,
Baltimore (2012)

Han, Q., Yang, H., Luan, Z., Qian, D.: Accelerating tile low-rank gemm
on Sunway architecture: Poster. In: Proceedings of the 16th ACM
International Conference on Computing Frontiers, pp. 295–297.
ACM (2019)

Harper, F.M., Konstan, J.A.: The movielens datasets: history and con-
text. ACM Trans. Interact. Intell. Syst. (tiis) 5(4), 19 (2016)

He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for
online recommendation with implicit feedback. In: Proceedings of
the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval, pp. 549–558. ACM (2016)

Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of
products. J. Math. Phys. 6(1–4), 164–189 (1927)

Hu, Y., Yang, H., Luan, Z., Qian, D.: Massively scaling seismic pro-
cessing on sunway taihulight supercomputer. arXiv preprint arXiv
:1907.11678 (2019)

Jeon, I., Papalexakis, E.E., Faloutsos, C., Sael, L., Kang, U.: Min-
ing billion-scale tensors: algorithms and discoveries. Int. J. Very
Large Data Bases 25(4), 519–544 (2016)

Jeon, I., Papalexakis, E.E., Kang, U., Faloutsos, C.: Haten2: Billion-
scale tensor decompositions. In: Data Engineering (ICDE), 2015
IEEE 31st International Conference on, pp. 1047–1058. IEEE
(2015)

Kang, U., Papalexakis, E., Harpale, A., Faloutsos, C.: Gigatensor: scal-
ing tensor analysis up by 100 times-algorithms and discoveries.
In: Proceedings of the 18th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pp. 316–324.
ACM (2012)

Kolda, T.G., Bader, B.W.: Tensor decompositions and applications.
SIAM Rev. 51(3), 455–500 (2009)

Lei, C., Yang, Y.H.: Tri-focal tensor-based multiple video synchroni-
zation with subframe optimization. IEEE Trans. Image Process.
15(9), 2473–2480 (2006)

Li, J., Ma, Y., Yan, C., Vuduc, R.: Optimizing sparse tensor times
matrix on multi-core and many-core architectures. In: Proceedings
of the Sixth Workshop on Irregular Applications: Architectures
and Algorithms, pp. 26–33. IEEE Press (2016)

Li, L., Yu, T., Zhao, W., Fu, H., Wang, C., Tan, L., Yang, G., Thom-
son, J.: Large-scale hierarchical k-means for heterogeneous many-
core supercomputers. In: SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp.
160–170. IEEE (2018a)

Li, M., Liu, Y., Yang, H., Luan, Z., Qian, D.: Multi-role sptrsv on
sunway many-core architecture. In: 2018 IEEE 20th Interna-
tional Conference on High Performance Computing and Com-
munications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pp. 594–601. IEEE (2018b)

Lim, L.H., Comon, P.: Multiarray signal processing: Tensor decompo-
sition meets compressed sensing. arXiv preprint arXiv :1002.4935
(2010)

Liu, B., Wen, C., Sarwate, A.D., Dehnavi, M.M.: A unified optimiza-
tion approach for sparse tensor operations on gpus. In: 2017 IEEE
International Conference on Cluster Computing (CLUSTER), pp.
47–57. IEEE (2017)

Liu, C., Xie, B., Liu, X., Xue, W., Yang, H., Liu, X.: Towards efficient
spmv on sunway manycore architectures. In: Proceedings of the
2018 International Conference on Supercomputing, pp. 363–373.
ACM (2018)

Liu, C., Yang, H., Sun, R., Luan, Z., Qian, D.: swtvm: Exploring the
automated compilation for deep learning on sunway architecture.
arXiv preprint arXiv :1904.07404 (2019)

Ma, Y., Li, J., Wu, X., Yan, C., Sun, J., Vuduc, R.: Optimizing sparse
tensor times matrix on gpus. J. Parallel Distrib. Comput. 129,
99–109 (2019)

Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing yago: scalable machine
learning for linked data. In: Proceedings of the 21st international
conference on World Wide Web, pp. 271–280. ACM (2012)

Nisa, I., Li, J., Sukumaran-Rajam, A., Vuduc, R., Sadayappan, P.:
Load-balanced sparse mttkrp on gpus. arXiv preprint arXiv
:1904.03329 (2019)

Oh, S., Park, N., Jang, J.G., Sael, L., Kang, U.: High-performance
tucker factorization on heterogeneous platforms. IEEE Trans.
Parallel Distrib. Syst. (2019)

Park, N., Jeon, B., Lee, J., Kang, U.: Bigtensor: Mining billion-scale
tensor made easy. In: Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management, pp.
2457–2460. ACM (2016)

Phipps, E.T., Kolda, T.G.: Software for sparse tensor decomposition on
emerging computing architectures. SIAM J. Sci. Comput. 41(3),
C269–C290 (2019)

Shashua, A., Hazan, T.: Non-negative tensor factorization with appli-
cations to statistics and computer vision. In: Proceedings of the
22nd international conference on Machine learning, pp. 792–799.
ACM (2005)

Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexa-
kis, E.E., Faloutsos, C.: Tensor decomposition for signal process-
ing and machine learning. IEEE Trans. Signal Process. 65(13),
3551–3582 (2017)

Smith, S., Choi, J.W., Li, J., Vuduc, R., Park, J., Liu, X., Karypis,
G.: Frostt: The formidable repository of open sparse tensors and
tools (2017)

Smith, S., Park, J., Karypis, G.: Sparse tensor factorization on many-
core processors with high-bandwidth memory. In: Parallel and
Distributed Processing Symposium (IPDPS), 2017 IEEE Inter-
national, pp. 1058–1067. IEEE (2017)

Sonka, M., Hlavac, V., Boyle, R.: Image processing, analysis, and
machine vision. Cengage Learning (2014)

Tew, P.A.: An investigation of sparse tensor formats for tensor librar-
ies. Ph.D. thesis, Massachusetts Institute of Technology (2016)

Tsourakakis, C.E.: Data mining with mapreduce: Graph and tensor
algorithms with applications. Diss. Master’s thesis, Carnegie Mel-
lon University (2010)

Tucker, L.R.: Implications of factor analysis of three-way matrices for
measurement of change. Probl. Meas. Change 15, 122–137 (1963)

Wang, X., Xue, W., Liu, W., Wu, L.: swsptrsv: a fast sparse triangular
solve with sparse level tile layout on sunway architectures. In: Pro-
ceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 338–353. ACM (2018)

Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful
visual performance model for floating-point programs and multi-
core architectures. Tech. rep., Lawrence Berkeley National Lab.
(LBNL), Berkeley (2009)

Xu, Z., Lin, J., Matsuoka, S.: Benchmarking sw26010 many-core
processor. In: Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2017 IEEE International, pp. 743–752.
IEEE (2017)

http://arxiv.org/abs/1907.11678
http://arxiv.org/abs/1907.11678
http://arxiv.org/abs/1002.4935
http://arxiv.org/abs/1904.07404
http://arxiv.org/abs/1904.03329
http://arxiv.org/abs/1904.03329

176 X. Zhong et al.

1 3

Yelp dataset challenge. (2019) https ://www.yelp.com/datas et/chall enge
Zhong, X., Li, M., Yang, H., Liu, Y., Qian, D.: swmr: A framework for

accelerating mapreduce applications on sunway taihulight. IEEE
Trans. Emerg. Topics Comput. (2018)

Xiaogang Zhong is a master stu-
dent in School of Computer Sci-
ence and Engineering, Beihang
University. He is currently work-
ing on big data processing opti-
mization. His research interests
include parallel programming,
computational graph optimiza-
tion and computer architecture.

Hailong Yang is an assistant pro-
fessor in School of Computer
Science and Engineering, Bei-
hang University. He received the
Ph.D degree in the School of
Computer Science and Engineer-
ing, Beihang University in 2014.
He has been involved in several
scientific projects such as perfor-
mance analysis for big data sys-
tems and performance optimiza-
tion for large scale applications.
His research interests include
parallel and distributed comput-
ing, HPC, performance optimi-
zation and energy efficiency. He

is a member of China Computer Federation (CCF).

Zhongzhi Luan received the
Ph.D. in the School of Computer
Science of Xi’an Jiaotong Uni-
versity. He is an Associate Pro-
fessor of Computer Science and
Engineering, and Assistant
Director of the Sino-German
Joint Software Institute (JSI)
Laboratory at Beihang Univer-
sity, China. Since 2003, His
research interests including dis-
tributed computing, parallel
computing, grid computing,
HPC and the new generation of
network technology.

Lin Gan is an assistant researcher
in the Department of Computer
Science and Technology at Tsin-
ghua University, and the assis-
tant director of the National
Supercomputing Center in Wuxi.
His research interests include
high performance computing
solutions based on hybrid plat-
forms such as GPUs, FPGAs,
and Sunway CPUs. Gan received
a PhD in computer science from
Tsinghua University. He is the
recipient of the 2016 ACM Gor-
don Bell Prize, the 2017 ACM
Gordon Bell Prize Finalist, the

2018 IEEE-CS TCHPC Early Career Researchers Award for Excellence
in HPC, and the Most Significant Paper Award in 25 Years awarded by
FPL 2015, etc. He is a member of IEEE

Guangwen Yang is a professor in
the Department of Computer
Science and Technology at Tsin-
ghua University, and the director
of the National Supercomputing
Center in Wuxi. His research
interests include parallel algo-
rithms, cloud computing, and the
earth system model. Yang
received a PhD in computer sci-
ence from Tsinghua University.
He has received the ACM Gor-
don Bell Prize in the year of
2016 and 2017, and the Most
Significant Paper Award in 25
Years awarded by FPL 2015, etc.

He is a member of IEEE.

Depei Qian is a professor at the
Department of Computer Sci-
ence and Engineering, Beihang
University, China. He received
his master degree from Univer-
sity of North Texas in 1984. He
is currently serving as the chief
scientist of China National High
Technology Program (863 Pro-
gram) on high productivity com-
puter and service environment.
He is also a fellow of China
Computer Federation (CCF). His
research interests include inno-
vative technologies in distributed
computing, high performance

computing and computer architecture.

https://www.yelp.com/dataset/challenge

	swTensor: accelerating tensor decomposition on Sunway architecture
	Abstract
	1 Introduction
	2 Background
	2.1 Sunway many-core processor
	2.2 MapReduce framework on Sunway
	2.3 Tensor decomposition
	2.3.1 Tensor definition and operation
	2.3.2 Canonical polyadic decomposition
	2.3.3 Challenges of implementing CP decomposition on Sunway

	3 swTensor: methodology and implementation
	3.1 Design overview
	3.2 Data tiling
	3.3 Coordinating computation within MapReduce
	3.4 Scaling beyond core group

	4 Performance auto-tuning
	4.1 Identifying the parameters
	4.2 Building analytic performance model
	4.3 Auto-tuning using simulated annealing algorithm

	5 Evaluation
	5.1 Experimental setup
	5.2 Performance
	5.3 Roofline model analysis
	5.4 Scalability
	5.5 Case study

	6 Related work
	7 Conclusion and future work
	Acknowledgements
	References

