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Abstract
Modern applications are digesting and generating data with rich features that are stored in high dimensional array or tensor. 
The computation applied to tensor, such as Canonical Polyadic decomposition (CP decomposition) plays an important role 
in understanding the internal relationships within the data. Using CP decomposition to analyze large tensor with billions of 
sizes requires tremendous computation power. In the meanwhile, the emerging Sunway many-core processor has demonstrated 
its computation advantage in powering the first hundred petaFLOPS supercomputer in the world. In this paper, we propose 
swTensor that adapts the CP decomposition to Sunway processor by leveraging the MapReduce framework for automatic 
parallelization and the unique architecture of Sunway for high performance. Specifically, we divide the major computation 
of CP decomposition into four sub-procedures and implement each using MapReduce framework with customized design 
key-value pair. Also, we tile the data during the computation so that it fits into the limited local device memory on Sunway 
for better performance. Moreover, we propose a performance auto-tuning mechanism to search for the optimal parameter 
settings in swTensor. The experimental results demonstrate swTensor achieves better performance than the state-of-the-art 
BigTensor and CSTF with the average speedup of 1.36 × and 1.24 × , respectively. Besides, swTensor exhibits better scal-
ability when scaling across multiple Sunway processors.

Keywords Sunway architecture · MapReduce · Tensor decomposition

1 Introduction

The evolution of recommendation system improves user 
satisfactory with Internet surfing by offering the assistance 
for searching the desired information. Recommendation 
system uses tensor to store and compute feature informa-
tion in order to provide timely response (Sidiropoulos et al. 
2017; Nickel et al. 2012). Moreover, tensor also plays an 
increasingly important role in the fields of computer vision 
(Shashua and Hazan 2005; Aja-Fernández et  al. 2009), 
image recognition (Lei and Yang 2006; Sonka et al. 2014) 
and signal processing (Lim and Comon 2010; Cichocki et al. 
2015). Using tensor to represent and store the feature infor-
mation improves the efficiency of application programming 
and execution. Tensor decomposition is an indispensable 
method for tensor computation (Tew 2016; Kolda and Bader 
2009; Acar et al. 2011; Golub and Van Loan 2012). Tucker 
decomposition and Canonical Polyadic decomposition (CP 
decomposition) are two widely used schemes for tensor 
decomposition. Existing work (Kolda and Bader 2009; Acar 
et al. 2011; Choi et al. 2018; Kang et al. 2012) perform com-
prehensive bottleneck analysis and propose solutions from 
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different perspectives to improve the performance of tensor 
decomposition.

In the meanwhile, MapReduce (Dean and Ghemawat 
2008) framework from the big data community exhib-
its promising merits such as easy to program, automatic 
parallelism and high scalability. It relieves the burden of 
programmers from understanding the underlying hardware 
details when developing large scale parallel application. 
Using MapReduce, the computation procedure of a big data 
application is abstracted into two processing stages, map and 
reduce, which are automatically parallelized across multi-
ple machines. Due to the above advantages of MapReduce, 
researchers (Jeon et al. 2016; Tsourakakis 2010; Kang et al. 
2012) have been attempting to parallelize the computation 
of tensor decomposition using MapReduce framework. 
The combination of tensor decomposition and MapReduce 
framework improves the efficiency of tensor computation by 
leveraging massive computing resources.

Moreover, the optimizations to tensor decomposition have 
been adapted to various hardware architectures and program-
ming frameworks. For instance, Smith et al. (2017) achieve a 
good speedup of CP decomposition on Intel KNL (Knights 
Landing) many-core processor. Choi et al. (2018) pinpoint 
the performance bottleneck of MTTKRP (metricized tensor 
times Khatri-Rao product) and apply data blocking tech-
nique to boost the performance on IBM POWER8 proces-
sor. Kang et al. (2012) optimize CP decomposition using 
MapReduce framework and avoid intermediate data explo-
sion when updating factor matrices iteratively. Specifically, 
BigTensor (Park et al. 2016) and CSTF (Blanco et al. 2018) 
are the most popular open source implementations of tensor 
decomposition using MapReduce framework. Despite the 
above research efforts, adapting to the emerging architecture, 
meanwhile leveraging the parallel processing of MapReduce 
framework to implement efficient tensor decomposition, is 
still a challenging research area.

Sunway Taihuligh is the first high-performance super-
computer that exceeds 100 PFLOPS in double precision. 
Sunway Taihulight is powered by SW26010 processor, 
which contains four core groups (CGs). Each CG com-
prises of one Management Processing Element (MPE) and 
64 Computing Processing Elements (CPEs). The MPE can 
fully support interrupt processing, memory management and 
out-of-order execution. On the contrary, limited functions 
are supported on CPE. However, the 64 CPEs provide high 
aggregated computing power. Each CPE has a 64 KB Local 
Device Memory (LDM) that is manually controlled by pro-
grammers. DMA is supported on CPE to achieve high mem-
ory bandwidth with accesses in batch. Moreover, CPEs can 
communicate with each other through register communica-
tion. The peak floating point performance of one SW26010 
is 3 TFLOPS. Unfortunately, there is no implementation of 
tensor decomposition available on Sunway processor that, 

on the one hand takes advantage of MapReduce parallel pro-
cessing, and on the other hand adapts to the architectural 
features of Sunway. The missing support hinders applica-
tions relying on efficient tensor decomposition to exploit the 
computation power of Sunway Taihulight.

This work primarily focuses on how to implement effi-
cient sparse CP decomposition with dense factor matrices 
on Sunway architecture. Leveraging the available MapRe-
duce framework (swMR) on Sunway (Zhong et al. 2018), 
we propose swTensor to realize tensor decomposition on 
Sunway architecture. In swMR, the CPEs within a CG are 
organized into 32 CPE pairs. Within each CPE pair, map and 
reduce role is assigned to each CPE, respectively. swTensor 
tiles the tensor data into 32 groups to adapt to the design of 
swMR with customized design for key-value pair (Sect. 3.2). 
Moreover, in swTensor the computation of Alternating Least 
Squares (ALS) algorithm is divided into four sub-procedures 
in order to avoid the intermediate data explosion (Sect. 3.3). 
Furthermore, pipeline processing is also applied to deal with 
the intermediate data, which better utilizes the limited LDM 
on each CPE.

Specifically, this paper makes the following contributions:

• We propose swTensor, an efficient implementation of 
sparse CP decomposition with dense factor matrices 
using MapReduce framework on Sunway. The swTensor 
exploits the benefits from both the MapReduce frame-
work for automatic parallel processing and the many-core 
architecture of Sunway for high performance.

• We propose a data tiling method to adapt to the design 
of MapReduce framework on Sunway. In addition, we 
divide the computation of ALS algorithm into four sub-
procedures in order to avoid the intermediate data explo-
sion during decomposition.

• We expand swTensor to run on large scale by using 
MPI to coordinate the computation among CGs. With 
more Sunway processors utilized during decomposition, 
swTensor can support CP decomposition on larger tensor 
data.

• We identify several performance impacting parameters 
in swTensor and build a performance model for auto-
tuning the parameters for optimal performance. This 
performance auto-tuning method eliminates the manual 
effort of tuning by hand and the time cost of exhaustive 
search.

• We evaluate the performance of swTensor using datasets 
at different scales. The experimental results demonstrate 
that swTensor achieves 1.36 × and 1.24 × better perfor-
mance than BigTensor and CSTF on average, respec-
tively. In addition, the scalability of swTensor is better 
than BigTensor and CSTF when scaling beyond a single 
Sunway processor.
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The rest of this paper is organized as follows. Section 2 illus-
trates the Sunway architecture and the MapReduce frame-
work available on Sunway. In addition, the background 
on tensor computation is described. We also illustrate the 
challenges to implement efficient tensor decomposition on 
Sunway. Section 3 presents the methodology and imple-
mentation of swTensor. Section 4 presents the performance 
auto-tuning method to determine the parameter settings for 
swTensor. Section 5 presents the evaluation results of swTen-
sor across different scales of tensor data. We also compare 
the performance of swTensor to the-state-of-the-art tensor 
computation frameworks BigTensor and CSTF on CPU. 
Section 6 presents the related works in this field. Section 7 
concludes our work.

2  Background

2.1  Sunway many‑core processor

Sunway Taihulight supercomputer is powered by Sunway 
SW26010 processor, which contains four core groups (CGs) 
and each core group has one MPE (Management Processing 
Element) and 64 CPEs (Computing Processing Elements) 
that are organized as 8 × 8 mesh, as shown in Fig. 1. The 
MPE has 32 KB L1 data cache and 256 KB L2 instruction 
and data cache, whereas each CPE has 16 KB L1 instruction 
cache and 64 KB LDM (Local Device Memory). The peak 
memory bandwidth and double-precision performance of 
each CG is 34 GB/s and 756 GFLOPS, respectively (Wang 
et al. 2018). There are two approaches supported for CPE to 
access main memory, one is the gld/gst (global load/store) 
for discrete access and the other one is the DMA for batch 
access. The DMA channel provides much higher bandwidth 
than discrete access. In addition, CPE can communicate with 
each other when in the same row or column of the mesh 
through register communication.

2.2  MapReduce framework on Sunway

The swMR is the most recently proposed MapReduce frame-
work that adapts to the architectural features of Sunway pro-
cessor (Zhong et al. 2018). In swMR, the 64 CPEs in a CG 
are divided into 32 CPE pairs, and the map/reduce role is 
assigned to the two CPEs within each CPE pair, respectively. 
As shown in Fig. 2, when the map CPE finishes process-
ing the input data, it generates the intermediate data and 
sends it to the reduce CPE within the same CPE pair through 
register communication. After the reduce CPE finishes pro-
cessing, it stores the partial results back to main memory. 
In the meanwhile, the MPE continuously checks whether 
all CPE pairs are completed. It then combines the partial 
results from all CPE pairs and generates the final results. 

Note that, each CPE pair can process its own input data inde-
pendently. swMR utilizes the LDM on each CPE to cache 
the intermediate data during the processing in order to avoid 
accessing main memory frequently. Moreover, swMR takes 
the advantage of double buffering to prefetch the input data 
from the main memory so that it can overlap the memory 
access latency with computation. Another unique design 
of swMR is that it can change the processing role (map to 
reduce or vice versa) within each CPE pair dynamically, 
which achieves better load balance during runtime.

2.3  Tensor decomposition

2.3.1  Tensor definition and operation

Tensor is the widely used data structure for representing data 
in high dimension. In general, scalar, vector and matrix can 
be considered as zero-order tensor, first-order tensor and 
second-order tensor, respectively. Each dimension is termed 
as a mode. A tensor with more than three modes is called 
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CPEs that are organized as 8 × 8 mesh. Each CPE has a 64KB LDM

Task 
Manager

Task MPE

Register Comm LDM

Reduce

CPE Pair (0,0)

Map Reduce

CPE Pair (0,3)

Map

Reduce

CPE Pair (7,0)

Map Reduce

CPE Pair (7,3)

Map

Results

CPE Cluster

Fig. 2  The swMR framework. The map and reduce role is assigned to 
the CPEs within each CPE pair. The MPE collects the partial results 
from each CPE pair and combine them into final results



164 X. Zhong et al.

1 3

high-order tensor (Kolda and Bader 2009). Since it is hard to 
describe when the tensor has more than three modes, in the 
following discussion we focus on three-mode tensor without 
losing the generality. Each element of a three-mode tensor 
can be located by the indexes i, j and k (Golub and Van 
Loan 2012). For instance, we can refer to a particular ele-
ment within a three-mode tensor as x(i, j, k). Accessing ele-
ments of tensors with other modes is similar. Using indexes 
to locate elements within a tensor is efficient especially when 
the tensor is sparse. There are a large number of mathemati-
cal operations that can be applied to tensor. However, due 
to the page limit, we briefly introduce the important math-
ematical operations regarding CP decomposition. Readers 
can refer to Kolda and Bader (2009) for more detailed dis-
cussion. In addition, for matrix related mathematical opera-
tions, the reader can refer to Golub and Van Loan (2012).

Given matrices A ∈ ℝM×N and B ∈ ℝP×Q , the Kronecker 
product between A and B is defined in Eq. (1).

The Khatri-Rao product is column-wise Kronecker prod-
uct between matrices. For instance, there are two matri-
ces, matrix A ∈ ℝI×K

= (�
�
, �

�
, �

�
,… , �

�
) and matrix 

B ∈ ℝJ×K
= (�

�
, �

�
, �

�
,… , �

�
) . Then the Khatri-Rao prod-

uct between A and B is defined in Eq. (2).

The Hadamard product is conducted between two matrices 
with the same size, e.g. matrix A ∈ ℝI×J and B ∈ ℝI×J . Then 
the Hadamard product between A and B is defined in Eq. (3).

In practice, high-mode tensor is more obscure than vector 
and matrix, therefore it is difficult to represent and com-
pute high-mode tensor. Hence, an approach to express 
high-mode tensor with two dimensional matrix is proposed, 
which is called tensor unfolding or tensor matricization. 
In general, for a three-mode tensor, there are three ways 
to unfold it, mode 1, mode 2 and mode 3. For instance, 
given a tensor X ∈ ℝI×J×K , mode 1 unfolding generates 
X
(1)

= [X(∶, ∶, 1),X(∶, ∶, 2)] ∈ ℝI×JK  ,  mode 2 unfold-
ing generates X

(2)
= [X(∶, ∶, 1)T ,X(∶, ∶, 2)T ] ∈ ℝJ×IK  , 

a n d  m o d e  3  u n f o l d i n g  g e n e r a t e s 
X
(3)

= [X(∶, 1, ∶)T ,X(∶, 2, ∶)T ,X(∶, 3, ∶)T ] ∈ ℝK×IJ.
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2.3.2  Canonical polyadic decomposition

The most widely used tensor decomposition is Canonical 
Polyadic decomposition (CP decomposition) (Hitchcock 
1927) and Tucker Decomposition (Tucker 1963). In this 
paper, we focus on implememting CP decomposition on 
Sunway architecture. CP decomposition was initially pro-
posed by Hitchcock in 1927 (Hitchcock 1927). We briefly 
introduce the mathematical definition of CP decomposition. 
For a detailed mathematical proof, reader can refer to Kolda 
and Bader (2009). Given a three-mode tensor X ∈ ℝI×J×K , 
the CP decomposition of X is defined Eq.  (4), where 
A ∈ ℝI×R , B ∈ ℝJ×R and C ∈ ℝK×R are factor matrices. The 
value of element (i, j, k) located in tensor X can be approxi-
mated as xijk ≈

∑R

r=1
airbjrckr . The computation process of 

CP decomposition is illustrated in Fig. 3.

As shown in Eq. (4), the difficult part of CP decompo-
sition is to determine the three factor matrices, A, B and 
C. To address that, Alternating Least Squares (ALS) algo-
rithm is proposed to compute factor matrices. ALS itera-
tively updates factor matrices until the error is tolerable or 
maximum iteration is reached. Algorithm 1 shows the code 
of applying ALS to perform CP decomposition. To compute 
factor matrix A, we fix matrices B and C, then apply ALS. 
Equation 5 shows the computation for factor matrix A. A 
similar approach is applied to compute matrices B and C, 
respectively. Note that † is the pseudo-inverse operation.

 

(4)X ≈

R∑
r=1

𝜆rA(∶, r)⊗ B(∶, r)⊗ C(∶, r)

(5)Â = X
(1)
(C ⊙ B)(CTC ∗ BTB)†

⋯

Fig. 3  The illustration of CP decomposition. X ∈ ℝI×J×K , A ∈ ℝJ×R , 
C ∈ ℝK×R , R is the rank of tensor X 
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2.3.3  Challenges of implementing CP decomposition 
on Sunway

In order to provide an efficient implementation of sparse CP 
decomposition with dense factor matrices on Sunway, we 
need to adapt the computation characteristics of CP decom-
position not only to the architectural features of Sunway for 
high performance, but also to the MapReduce framework for 
automatic parallelization. To achieve that, there are several 
unique challenges we need to address.

• How to express the sparse CP decomposition with dense 
factor matrices in MapReduce algorithm so that we can 
leverage the existing swMR framework for automatic par-
allelization within a CG on Sunway processor. In swMR, 
the CPEs within a CG are divided into 32 CPE pairs, 
where the map and reduce tasks are performed within 
each CPE pair. We need to adapt the computation of 
CP decomposition to the unique design of CPE pairs in 
swMR.

• How to utilize the limited LDM on CPEs to improve 
the computation efficiency of sparse CP decomposition. 
Accessing the main memory on Sunway is orders of mag-
nitude slower than LDM. However, the computation of 
Khatri-Rao product generates massive intermediate data 
with large tensor. Hence, we need to optimize the com-
putation procedure in order to avoid the intermediate data 
explosion so that it can fit into the limited LDM on each 
CPE.

• How to scale the sparse CP decomposition across mul-
tiple CGs so that large tensor data can be processed on 
Sunway. The current swMR framework does not support 
running beyond a single CG. We need to extend our 
implementation of sparse CP decomposition swTensor 
using MPI, so that computation can be distributed and 
coordinated on multiple CGs for higher performance.

• How to determine the parameter settings for swTensor so 
that it can achieve better performance when implemented 
on Sunway processor. Since there are several parameters 
that could affect the performance of swTensor, exhaus-
tively searching is both time consuming and unsustain-
able. Therefore, we need a performance auto-tuning 
mechanism to search for the optimal parameter settings 
for swTensor.

3  swTensor: methodology 
and implementation

In this section, we first introduce the design overview of 
our CP decomposition on Sunway. Then, we describe the 
implementation details, including the optimizations we use 

to adapt the CP decomposition to Sunway and avoid the 
intermediate data explosion.

3.1  Design overview

In order to support CP decomposition on Sunway, we pro-
pose swTensor that adapts the computation of CP decompo-
sition to the MapReduce framework on Sunway. We notice 
that the major computation of CP decomposition is to update 
the factor matrices iteratively using ALS algorithm shown 
in Algorithm 1. Since the computation of ALS is similar to 
update factor matrices A, B and C, we take matrix A for illus-
tration as shown in Eq. (5). Note that the Khatri-Rao product 
is performed in column order, therefore we transpose the fac-
tor matrices before the computation. However, for the ease 
of illustration, we use the original form of factor matrice 
in our discussion. To further fit in the multi-stage process-
ing on MapReduce framework, we divide the computation 
procedure of Eq. (5) into four sub-procedures as following:

• Sub-procedure 1: M = (C ⊙ B).
• Sub-procedure 2: N = X

(1)
M.

• Sub-procedure 3: Q = (CTC ∗ BTB)†.
• Sub-procedure 4: Â = NQ.

In general, the initial value of the factor matrices A, B and C 
are randomly generated (Kolda and Bader 2009). The size of 
tensor X is usually very large (e.g., 10K × 10K × 10K ), there-
fore using the traditional method to directly solve Eq. (5) 
will generate tremendous intermediate data from Khatri-Rao 
product. To address the intermediate data explosion prob-
lem, we apply data tiling technique (Sect. 3.2) along with the 
MapReduce processing (Sect. 3.3) on Sunway.

Figure 4 illustrates the computation workflow for calcu-
lating factor matrix A with the above four sub-procedures 
using the MapReduce framework on Sunway. In Sub-pro-
cedure 1, the map CPEs are responsible for conducting the 
Khatri-Rao product between factor matrices B and C, which 
equals to the Kronecker product by columns, to derive M. 
In Sub-procedure 2, the map CPEs perform matrix multi-
plication between X

(1)
 and M, and then reduce CPEs add the 

JK values to derive N. In Sub-procedure 3, the map CPEs 
perform matrix multiplication for both CTC and BTB , and 
then the reduce CPEs perform add operation for both J and 
K. After that, the map CPEs perform Hadamard product 
between J and K to derive Q. In Sub-procedure 4, the map 
CPEs perform matrix multiplication between N and Q, and 
then the reduce CPEs add the R values to derive A.

Note that in addition to the above four Sub-procedures, 
the rest matrix operations in CPD include: (1) tensor flatten 
of X, (2) matrix normalization of A, B and C, and (3) com-
putation of factor matrices B and C. For (1), it is not the per-
formance hotspot of CPD, and thus out of the scope of this 
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paper. For (2), we have already included matrix normaliza-
tion in each Sub-procedure. Since the matrix normalization 
is never the performance bottleneck of CPD, we execute the 
matrix normalization on MPE. For (3), since the computa-
tion of factor matrices B and C is similar to matrix A, we 
omit the computation details of matrices B and C for brevity.

3.2  Data tiling

For Sub-procedure 1, M = (C ⊙ B) = (�
�
⊗ �

�
, �

�
⊗ �

�
,… ,

�
�
⊗ �

�
) , the Khatri-Rao product eventually transforms into 

Kronecker product. For Kronecker product, �
�
⊗ �

�
 repre-

sents that each element of vector �
�
 multiplies all elements 

of vector �
�
 . Since the computation on matrices B and C is 

column-wise, we only need to tile matrix C by column. Dur-
ing each iteration, when the map CPE receives its tile and 
interprets the column index of matrix C, it can automatically 
locate the corresponding column index of matrix B.

As shown in Fig. 5, we tile the data by columns according 
to the number of CPE pairs in swMR. According to Kro-
necker product, each CPE pair retrieves its input data by the 
assigned column index, that is one element cij from matrix 
C at a time. The map CPE then retrieves the elements bn

1
j∼n

2
j 

from the corresponding column of B (denoted as Bjb , which 
are the elements in the bth block and the jth column of B) 
based on the row and column indexes contained in the key-
value pairs. We use LDM to store the elements from B as 
many as possible. Then, cij is multiplied by Bjb to derive 
elements mn

1
j∼n

2
j in matrix M (denoted as Mjb , which are 

the elements in the bth block and the jth column of M). For 
each CPE pair, it stores Mjb in LDM each time for the com-
putation in subsequent procedures, which consumes Bjb × 8 
bytes (generated by the multiplication of Bjb and cij ). In our 
experiments, the Mjb consumes 8.4KB on average, which 
takes up 6.55% of the LDM for each CPE pair.

Then, it proceeds to the Sub-procedure 2, as shown in 
Fig. 6. We tile X

(1)
∈ I × JK that is generated from mode 1 

unfolding. Multiplying Mjb obtained from Sub-procedure 1 
and the corresponding vector from X

(1)
 generates the ele-

ments for each row of X
(1)

 . For instance, X
(1)ix1∼ix2

 denoted as 
X
(1)ib represents elements from row one and block b in X

(1)
 . 

Note that x
2
− x

1
= n

2
− n

1
 means that the number of ele-

ments within these two blocks equals. After that, we com-
pute ℕijb using Eq. (6). Then, the corresponding elements in 
each row of X

(1)
 are multiplied by mn

1
j∼n

2
j . When the multi-

plication is done, the memory space allocated for mn
1
j∼n

2
j in 

LDM is released in order to save space for the incoming 
computation. Then the CPE pair continues to obtain the next 
element, e.g., c

(i+1)j , from matrix C to compute the next ele-
ment of ℕ . Finally, we sum up all the elements in ℕ that have 
the same i and j indexes, and derive the element at row i and 
column j of N, e.g., N

0j =
∑

ℕ
0jb shown in Fig. 6. By tiling 

matrices into small data blocks and applying the computa-
tion iteratively, we can eliminate the problem of intermediate 
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data explosion and efficiently utilize the limited LDM on 
each CPE for better performance. We do not apply data tiling 
to Sub-procedure 3 and 4, since they generate small amount 
of intermediate data.

3.3  Coordinating computation within MapReduce

In this section, we present the customized design of key-
value pair in swTensor, which adapts to the MapReduce 
framework on Sunway to perform the computation of CP 
decomposition.

For Sub-procedure 1 ( M = C ⊙ B ), the input key of 
map function is (CRow, CCol, BlockID), where CRow and 
CCol represent the location of element in factor matrix C, 
e.g. c

(CRow,CCol) . The BlockID represents the block index of 
the CCol column in matrix B. Considering that the span 
of column width is too large to fin in the limited capacity 
of LDM, swMR tiles the data based on the available space 
of LDM and then generates a BlockID for each block. The 
input value is (BVal, Count), where BVal is an array storing 
the data from the corresponding column of matrix B and 
Count is the number of elements in BVal, as shown in Fig. 5. 
Therefore, we can obtain a particular element c

(CRow,CCol) 
from matrix C using the key. Then, c

(CRow,CCol) is multiplied 
with BVal to derive MVal. After the computation of Sub-
procedure 1, the output key is designed as (CRow, BlockID), 
which has the same meaning as input key. The output value 
is (MVal, Count), where Count represents the number of 
elements in MVal.

(6)ℕijb =

n
2
,x
2∑

n=n
1
,x=x

1

mnjX(1)ix

For Sub-procedure 2 ( N = X
(1)
M ), its input key-value pair 

is the output key-value pair from Sub-procedure 1, e.g., key 
= (CRow, BlockID) and value = (MVal, Count). According 
to Khatri-Rao product and tensor unfolding, the number of 
columns in matrix X

(1)
 equals the number of rows in matrix 

M, which is JK. Then, we tile each row of matrix X
(1)

 in the 
following way. First, we divide each row into K big blocks, 
where K is the row count of factor matrix C. Second, each 
big block is further divided into Count small blocks, where 
Count is obtained from input key-value pair. To implement 
the data tiling of matrix X

(1)
 , the map CPE obtains the cor-

responding data from X
(1)

 , as shown in Algorithm 2. We use 
double buffering technique to overlap the delay caused by 
accessing main memory with the computation. For instance, 
in Algorithm 2, when the map CPE finishes processing the 
current data block (line 9), it can continue to process next 
data block since it is already prefetched in the double buffer 
(line 14).

Fig. 6  Data tiling used in Sub-
procedure 2. Mjb obtained from 
Sub-procedure 1, is multiplied 
by the corresponding vector 
from X

1
 , which generates ℕijb . 

Then all elements in ℕ that have 
the same i and j indexes are sum 
up to derive the according ele-
ment for matrix N 
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For Sub-procedure 3 and 4 ( Q = (CTC ∗ BTB)† and 
Â = NQ ), Because CTC and BTB are computed in a same 
way, we take CTC for illustration. As mentioned in Sect. 3.1, 
we use transposed factor matrices for better memory effi-
ciency. Therefore we only store CT and BT . Fortunately, this 
does not affect computation of CTC . As shown in Fig. 7, the 
computation of CTC is equivalent to each row of CT multi-
plied by itself. The design of key is (RowID, BlockID), where 
RowID represents the row index and BlockID represents the 
block index of the CTVal. And the value is (CTVal, Count), 
where CTVal is an array with the corresponding data from 
CT and Count represents the size of CTVal. The output key 
is (RowID, ColID, BlockID), and the value is (val) where 
val is the result of CTC . Because Hadamard product is an 
element-wise operation, we design the key/value as (StartIn-
dex, EndIndex) and (AVal, BVal), respectively. Then BVal 
multiplies AVal in an element-wise way. Finally, Sub-pro-
cedure 4 ( Â = NQ ) only requires matrix multiplication to 
be performed. The design of key-value pair is similar to the 
computation of X

(1)
M.

3.4  Scaling beyond core group

One limitation of the current MapReduce framework on 
Sunway is that it can only utilize one CG, and thus can-
not scale across multiple Sunway processors. Since our CP 
decomposition swTensor is based on the above MapReduce 
framework, it hinders swTensor from handling much larger 
tensor data. Therefore, in order to overcome the scalability 
limitation, we extend swTensor using MPI so that it can run 
CP decomposition at large scale across multiple Sunway 
processors.

The fundamental idea for scaling the computation of 
CP decomposition is to use the MPE as master, which then 
divides factor matrices by columns and distributes the col-
umn partitions to other CGs for parallel processing with 
original design of swTensor unchanged. When the com-
putation on each CG is completed, the master MPE gath-
ers the partial results from all CGs and generates the final 
results. Note that we store the transposed factor matrices as 

described in Sect. 3.1, hence the factor matrices are actually 
divided by rows. For the ease of illustration, we describe our 
MPI extension based on the original matrix format.

For Sub-procedure 1, considering Kronecker products are 
column-wise operations, if we divide the factor matrices by 
rows, the elements of M are distributed across different CGs. 
In that case, the row size of X

(1)
 does not match the row size 

of M in Sub-procedure 2. In order to fulfill the computation 
in Sub-procedure 2, it requires large amount of data trans-
fers among CGs to gather the distributed elements of M and 
thus deteriorates the computation performance. Therefore, 
we partition the factor matrices by columns to ensure the 
matching of subsequent computation. Whereas for Sub-pro-
cedure 3, the CTC is computed by rows, therefore similar 
idea is also applied to partition the matrix across multiple 
CGs for vector multiplication. As for Hadamard products, 
since they are element-wise operations, the same data parti-
tion method also applies. For Sub-procedure 4, which is the 
matrix multiplication, we apply the same idea to partition 
the matrices by columns.

4  Performance auto‑tuning

4.1  Identifying the parameters

There are several parameters (e.g., px
1
 to px

6
 ) that could 

affect the performance of swTensor, which control the data 
tiling, LDM usage, DMA transfer and CPE parallelism in 
order to adapt to the Sunway architecture. For Sub-procedure 
1, it tiles the factor matrices B and C based on the number 
of CPE pairs by column, shown as Fig. 5. After data tiling, 
the CPE fetches the corresponding data blocks from B and 
C, and processes the data by column. For instance, When a 
CPE pair processes the data of column j, we need to obtain 
the data of cij and a data vector bn1j∼n2j of matrix B from 
main memory. Since the size of LDM is quite limited and we 
cannot load all data to LDM at once, parameter px

1
 is used 

to control the amount of data fetched to LDM each time. 
For Sub-procedure 2, to compute N

0jb , the corresponding 
data block of X

(1)0b needs to be loaded in LDM from main 
memory, as shown in Fig. 6. Since the LDM is also used to 
store the partial results of Mjb computed by Sub-procedure 2, 
there is not enough space to store the entire data block X

(1)0b . 
Therefore, we tile X

(1)0b and use parameter px
2
 to control 

the amount of data fetched from main memory for each tile.
In Sub-procedure 3 and 4, as shown in Fig. 7, the CPE 

loads the corresponding data of CT  and BT  from main 
memory to LDM. These two Sub-procedures suffer a simi-
lar problem of limited LDM and we apply a similar solu-
tion to tile the data fetched from main memory to LDM. 

Fig. 7  An example to illustrate the computation of CTC . Each ele-
ment (e.g., ℂ

00
 ) in ℂ is derived by each row of CT multiplied by itself. 

Therefore, only CT needs to be stored in memory
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Hence, we use parameter px
3
 and px

4
 to control the amount 

of data fetched from matrices N and Q in main memory, 
respectively. In addition, the swMR framework also has two 
important parameters px

5
 and px

6
 that could impact the per-

formance of swTensor. The parameter px
5
 is an unbalanced 

threshold which judges whether load imbalance occurs 
between two CPEs within a CPE pair. When the perfor-
mance difference between the two CPEs is more than px

5
 , 

swMR realizes load imbalance occurs and adjusts the load 
for the next round of computation within a CPE pair for 
better performance. Whereas parameter px

6
 is the dynamic 

balancing ratio that controls the amount of computing load 
to be re-assigned from the heavy-loaded CPE to the light-
loaded CPE within a CPE pair.

4.2  Building analytic performance model

To derive the optimal settings for the parameters in swTensor 
through exhaustive search would take either a prohibitively 
long time, or too much human efforts, which is impractical 
in real-world. Therefore, we propose an auto-tuning scheme 
to identify the optimal parameter settings of swTensor. In 
order to use the auto-tuning scheme, we need to build an 
analytic performance model T(px

1
, px

2
, px

3
, px

4
, px

5
, px

6
) , 

which can precisely measure the performance of swTensor.
The valid range and constraint of the parameters in the 

performance model is as follows:

• 0 < px
1
< LDMsize, 0 < px

2
< LDMsize and 0 < px

1
+

px
2
< LDM

size
 , besides px

1
, px

2
∈ N.

• 0 < px
3
< LDMsize , 0 < px

4
< LDMsize and px

3
, px

4
∈ N.

• 0 ⩽ px
5
⩽ 5000 and px

5
∈ N.

• 0 ⩽ px
6
⩽ 1 and px

6
∈ R.

The whole procedure of swTensor is divided into 4 Sub-
procedures. Hence, the performance model T can be built 
as Eq. (7). Within each Sub-procedure, there are two types 
of operations: 1) computation including Khatri-Rao prod-
uct, Hadamard product and matrix operations; 2) accessing 
main memory through DMA. Since the computation result 
of Sub-procedure 1 is the input for Sub-procedure 2, we use 
Tsub1,2 to represent the combined performance of Sub-pro-
cedure 1 and 2, as shown in Eq. (8). Equation 8 can be fur-
ther expanded as Eq. (9). Note that in each Sub-procedure, 
the DMA data transfer is overlapped with the computation, 
therefore we consider the maximum execution time of the 
overlapped operations in Eq. (9).

(7)T =Tsub1 + Tsub2 + Tsub3 + Tsub4

(8)T =Tsub1,2 + Tsub3 + Tsub4

The constant value 3 in Eq. (9) means that there are three 
factor matrices to compute, whereas the constant value 6 
means that when we compute these three factor matrices, 
there are two types of computation to perform including 
matrix product and Hadamard product. TDMA means the time 
for DMA transfer, where Eq. (10) show the details on how 
to calculate the DMA transfer time. Since the calculation of 
TDMA is similar for each Sub-procedure, we omit the TDMA 
equations for other Sub-procedures.

The calculation of Tsub1,2 , Tsub3 and Tsub4 is shown in 
Eqs. (11–13), respectively. T

0
 and T

1
 represent the computa-

tion time of CPE 0 and CPE 1 within a CPE pair, respec-
tively. VDMA represents the DMA bandwidth, and Vflop repre-
sents the peak floating point performance of CPE. Note that 
the initial value of T

0
 and T

1
 is 1, where T

0
− T

1
= 0 means 

that the load on CPE 0 and CPE 1 is balanced. After the first 
round of computation, our implementation evaluates whether 
load imbalance occurs between two CPEs within a CPE pair. 
If load imbalance is detected, T

0
 and T

1
 will be updated to 

(1 − px
6
)Tsubpre and px

6
Tsubpre , respectively, where Tsubpre rep-

resents the execution time of previous Sub-procedure.

(9)

T = 3

(
TDMAinit +

n−2∑
max(TDMA, Tsub1,2) + Tsub1,2last

)

+ 6

(
TDMAinit +

n−2∑
max(TDMA, Tsub3) + Tsub3last

)

+ 3

(
TDMAinit +

n−2∑
max(TDMA, Tsub4) + Tsub4last

)

(10)

TDMA =

⎧⎪⎨⎪⎩

(1−px
6

T0−T1

T0(1)
)(px

1
+px

2
)

VDMA

, ��T0 − T
1
�� ⩾ px

5

px
1
+px

2

VDMA

, ��T0 − T
1
�� < px

5
, init_round

(11)

Tsub1,2 =

⎧⎪⎨⎪⎩

�
1−px

6

T0−T1

T0(1)

�
(px

1
+px

2
)+px

1

Vflop

, ��T0 − T
1
�� ⩾ px

5

2px
1
+px

2

Vflop

, ��T0 − T
1
�� < px

5
, last_round

(12)

Tsub3 =

⎧⎪⎨⎪⎩

�
1−px

6

T0−T1

T0(1)

�
px

3

Vflop

, ��T0 − T
1
�� ⩾ px

5

px
3

Vflop

, ��T0 − T
1
�� < px

5
, last_round

(13)

Tsub3 =

⎧⎪⎨⎪⎩

�
1−px

6

T0−T1

T0(1)

�
px

4

Vflop

, ��T0 − T
1
�� ⩾ px

5

px
4

Vflop

, ��T0 − T
1
�� < px

5
, last_round
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4.3  Auto‑tuning using simulated annealing 
algorithm

Based on the above analytic performance model, we use sim-
ulated annealing algorithm (Bertsimas and Tsitsiklis 1993; 
Aarts et al. 2007) to determine the optimal parameter settings. 
The simulated annealing algorithm tries to find the global opti-
mal solution by accepting, with probability, a worse solution to 
step out local optimal solution.The auto-tuning procedure for 
swTensor is shown in Fig. 8. We first initialize the parameters 
randomly, within their value range. T means the temperature 
that we use in an auto-tuning algorithm, � means the ratio 
when decreasing the temperature, solution represents a set of 
parameter settings, and f represents the analytic performance 
model. For each iteration of the algorithm, a new solution 
named as neighbor solution, is generated and then the algo-
rithm computes the increment dE of the analytic performance 
model f. If dE is less than zero then algorithm accepts the 
neighbor solution as a current solution, otherwise the neighbor 
solution is accepted with probability p = exp(−dE∕T) . If the 
iteration meets the termination condition of the algorithm, the 
current solution will be the final optimal solution, otherwise 
the algorithm decreases the temperature to T = � × T  , and 
generates a new neighbor solution to start over the iteration. In 
our case, the simulated annealing algorithm takes 24 minutes 
to derive the global optimal parameter settings, which is more 
efficient than exhaustive search.

5  Evaluation

In this section, we first compare the performance of swTen-
sor with existing work running on a CPU cluster with 
equivalent computation capability to a Sunway CG. Then, 
we build the roofline model to show how effectively our 
swTensor adapted to the Sunway architecture. Moreover, 
we present the performance results when scaling swTensor 
beyond a single CG. Finally, we use several real-world data-
sets to further demonstrate the performance advantage of 
swTensor. We provide performance comparison with exist-
ing works that are also based on MapReduce framework 
such as BigTensor and CSTF.

5.1  Experimental setup

We conduct the experiments on a Sunway SW26010 pro-
cessor, which contains four CGs. Each CG consists of one 
MPE and 64 CPEs. Each Sunway processor has 32GB DDR3 
memory. The detailed specifications of SW26010 are listed 
in Table 1. We compare the performance of swTensor with 
BigTensor (Park et al. 2016) and CSTF (Blanco et al. 2018), 
which are state-of-the-art tenor decomposition frameworks 

running on CPU. To provide a fair comparison, we run 
BigTensor on a CPU cluster of 10 nodes, which delivers 
equivalent peak floating point performance to a Sunway 
CG. The detailed specifications of each CPU node are also 
listed in Table 1. Moreover, we also port BigTensor to Sun-
way (denoted as swBT) without the optimizations proposed 
in swTensor to better understand the effectiveness of our 
approach. In order to evaluate the performance of swTensor 
under different sizes of tensor, we synthetically generate ran-
dom tensor data (Kolda and Bader 2009) of size I × J × K , 
ranging from 2 × 10

3 to 9 × 10
3 and the number of nonzeros 

ranging from 2 × 10
5 to 6 × 10

5 . The datasets evaluated are 
shown in Table 2.

5.2  Performance

We compare the performance of swTensor running on a 
CG of Sunway processor to BigTensor and CSTF running 
on a CPU cluster of 10 nodes due to the equivalent peak 
performance as shown in Table 1. This experimental setup 
intends to provide a fair comparison on processors with 
similar computation capacity. The performance results are 
shown in Fig. 9. It is clear that swTensor achieves better 
performance than BigTensor and CSTF across all tensor 
sizes with the average speedup of 1.36 × and 1.24 × , respec-
tively. Especially, when the tensor size is small, swTensor 
achieves more speedup over BigTensor and CSTF on the 
same dataset. The largest speedup achieved by swTensor is 
1.62× and 1.56× running on dataset1 compared to BigTen-
sor and CSTF, respectively. However, as the tensor size 
increases, the execution time of swTensor, BigTensor and 
CSTF increases accordingly. The performance advantage of 
swTensor becomes less significant compared to BigTensor 
and CSTF when the tensor size is large. When running on 
dataset5, the performance of swTensor is only 1.12 × and 

256 256 256 256 500 0.1

269 280 273 293 684 0.2

dE = f(nei_solution)
        -f(cur_solution)

cur_solution = nei_solution

A random solution & initial
temperature

Generate a neighbor 
solution

Compare with neighbor 
solution

Accept neighbor solution with 
probability

Continue or decrease the 
temperature

initial
solution

neighbor 
solution

If dE<0

If dE>0

temperature T=1500

Fig. 8  The performance auto-tuning mechanism using simulated 
annealing
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1.03 × better than BigTensor and CSTF, respectively. The 
reason for the diminishing speedup of swTensor when the 
tensor size scales is due to the limited capacity of LDM on 
each CG. As the tensor size becomes too large to be cached 
in LDM of all CPEs, more data accesses are inevitable to 
read and write from main memory, which degrades the per-
formance of swTensor. This observation justifies our contri-
bution to scale swTensor to multiple CGs in order to handle 
larger tensor size. We also notice that swBT achieves the 
worst performance among all the CPD implementations. The 
results are as expected because swBT does not apply all the 
optimizations proposed in swTensor such as data tiling and 
coordinated computation, which leads to inefficient adapta-
tion to the Sunway architecture. Since the performance of 
swBT is far below the rest of CPD implementations, we do 
not include swBT in the following evaluation of scalability 
and case study.

5.3  Roofline model analysis

To better understand how effective our swTensor is adapted 
to the Sunway architecture, we build a roofline model of a 
Sunway CG using similar approach in Xu et al. (2017). Note 
that the roofline model of Sunway has already been validated 
in Xu et al. (2017) with thorough experiments. Since the 

performance counters are quite limited on Sunway CPEs, 
it is difficult to measure the operational intensity of swTen-
sor during runtime. Therefore, we calculate the operational 
intensity through algorithm analysis, which is also adopted 
in Williams et al. (2009). Note that the attainable perfor-
mance of swTensor is still measured for the experiment run.

The advantage of roofline model is that it builds up rela-
tionships among peak floating point performance, opera-
tional intensity and memory bandwidth, which is quite 
illustrative to reveal the intrinsic characteristics of the 
application and provide guidance for performance optimi-
zation. To derive the operational intensity of CP decomposi-
tion, we analyze the computation procedure and realize the 
major floating point computation happens during step 2 as 
described in Sect. 3.1. The amount of floating point opera-
tions is JK × 2 × I × R , where R is the rank of the tensor. 
In each iteration, the computation procedure is the same. 
Therefore, we only need to calculate the operational inten-
sity for one iteration. In each iteration, there are three factor 
matrices accessed including A, B and C. Take the industry 
YELP dataset (Yelp dataset challenge 2019) for example, the 
calculation of operational intensity for CP decomposition is 
shown in Eq. (14).

The roofline model of a Sunway CG is shown in Fig. 10. The 
ridge point of the roofline model is 33.19, which means the 
application with operational intensity larger than the ridge 
point is no longer memory bounded. It is obvious that our 
swTensor reaches the operational intensity of 9.34, which is 
still under the slope of the roofline model and thus mostly 
bounded by the memory bandwidth. In the case of dataset 
(Yelp dataset challenge 2019), our swTensor achieves the 
performance of 523.39GFLOPS on a Sunway CG, which 

(14)

OperationalIntensity = Flops∕Bytes

= 2268GFlop ∗ 3∕728.5 ∗ 10
9Bytes

= 9.34

Table 1  The hardware and software specifications of the Sunway pro-
cessor and CPU cluster

Specifications Sunway SW26010 Xeon E5620

Hardware Core 1 MPE@1.45GHz and 
64 CPEs@1.45GHz 
per CG

4 cores@2.4GHz

Node 4 CGs 2 Xeon E5620
Memory 32GB (8GB per CG) 12GB
GFLOPS 750 (per CG) 768 (10 nodes)

Software OS customized CentOS v6.5
MapReduce swMR (Zhong et al. 

2018)
Hadoop v2.9.0

JDK – OpenJDK v1.8.0
MPI MVAPICH2 v2.2a –
Compiler sw5cc v5.421 –

Table 2  The tensor datasets evaluated in the experiments

I, J, K indicates the dimension of the tensor data

Data I J K Nonzeros

Dataset1 2 × 10
3

2 × 10
3

2 × 10
3

2 × 10
5

Dataset2 4 × 10
3

4 × 10
3

4 × 10
3

3 × 10
5

Dataset3 6 × 10
3

6 × 10
3

6 × 10
3

4 × 10
5

Dataset4 7 × 10
3

7 × 10
3

7 × 10
3

5 × 10
5

Dataset5 9 × 10
3

9 × 10
3

9 × 10
3

6 × 10
5

Fig. 9  The performance comparison of swTensor, BigTensor, swBT 
and CSTF on synthetic datasets
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reaches 69.78% efficiency of the theoretical peak perfor-
mance of a Sunway CG. Indicated by the roofline model, 
there is still 30.22% performance space for further optimiza-
tion. Therefore, to further exploit the computation power of 
a Sunway CG, we need to improve the operational intensity 
through vectorization and instruction re-ordering (Xu et al. 
2017). However, we leave it for future work.

5.4  Scalability

To evaluate the scalability, we run swTensor across multi-
ple Sunway nodes (each Sunway node contains one Sunway 
processor that consists of four CGs) ranging from 1 to 10. 
We also run BigTensor and CSTF on CPU cluster for com-
parison. The performance of a single node is used as the 
baseline. As shown in Fig. 11, swTensor exhibits much better 
scalability than BigTensor and CSTF on different datasets as 
the number of nodes scales. For small (Dataset1), medium 
(Dataset3) and large (Dataset5) size of tensor data, swTensor 
achieves 3.11 × , 2.91 × and 2.76 × speedup, respectively 
when scaling to 10 nodes. Whereas for BigTensor, the 
speedup is only 2.32 × , 2.12 × and 1.92 × , respectively. For 
CSTF the speedup is only 1.21 × , 1.30 × and 1.36 × , respec-
tively. The scalability of CSTF is worse than both BigTensor 
and swTensor due to the overhead of massive intermediate 
data generated during the computation. We also notice that 
the scalability of swTensor is far from linear, one reason for 
the sub-optimal scalability of swTensor could be attributed 
to our inefficient MPI implementation, which requires fur-
ther optimization. Another reason could be, as the number 
of CGs increases while the size of tensor data stays constant, 
the computation assigned to each CG becomes insufficient 
to amortize the overhead of MPI communication. However, 
the concrete reasons still require further investigation in our 
future work.

5.5  Case study

In addition to the synthetic datasets, we evaluate swTensor 
with several real-world datasets as listed in Table 3. The 
YELP dataset (Yelp dataset challenge 2019) contains hun-
dreds of thousands of reviews across 10,100 businesses, 
whereas the ML-20M dataset (Harper and Konstan 2016) 
contains 10,000,054 ratings and 95,580 tags applied to 
10,681 movies from MovieLens. The nell1 and dellicious3d 
datasets are from FROSTT (Smith et al. 2017), where nell1 
represents tensor with noun-verb-noun triplets, and delli-
cious3d is a user-item-tag tensor crawled from tagging sys-
tems. As shown in Fig. 12a, swTensor achieves better per-
formance than BigTensor and CSTF on YELP and ML-20M 
datasets. For the YELP dataset, swTensor achieves 1.31 × and 
1.18 × speedup compared to BigTensor and CSTF, respec-
tively, whereas for the ML-20M dataset swTensor achieves 
1.33 × and 1.22 × speedup, respectively. In Fig. 12b, on nell1 
and dellicious3d datasets, swTensor and CSTF achieve simi-
lar performance, both of which are better than BigTensor. 
Note that the reason why the performance of CSTF com-
pared to BigTensor is different from the results reported in 
Blanco et al. (2018) can be understood from two aspects: (1) 
The hardware settings of the experiment platforms are not 
exactly the same. Except CPU, the performance specifica-
tions of memory and disk subsystems may also be different. 
(2) The CSTF is implemented on top of Spark, which is more 
sensitive to CPU performance compared to BigTensor that is 
implemented on top of Hadoop. In our experiment platform, 
the CPU is less powerful compared to Blanco et al. (2018) in 
terms of both core number as well as CPU frequency, which 
constrains the performance advantage of CSTF compared 
to BigTensor. Nevertheless, the results with the real-world 
datasets also demonstrate the effectiveness of our swTensor 
for supporting tensor decomposition on Sunway architecture.
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Fig. 10  The roofline model of a Sunway CG when running swTensor 
with the YELP dataset
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Fig. 11  The scalability of swTensor, BigTensor and CSTF running on 
different datasets across multiple nodes
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6  Related work

There are many research works that have been devoting sig-
nificant efforts to optimize the algorithm of tensor decom-
position. The computation of MTTKRP is identified to be 
the major performance bottleneck by carefully analyzing 
and instrumenting the computation of MTTKRP (Choi et al. 
2018). Moreover, the authors in Choi et al. (2018) combine 
two data blocking methods and apply it to the MTTKRP, 
which achieves considerable speedup. eALS (element-wise 
Alternating Least Squares) (He et al. 2016), based on the 
traditional ASL algorithm, offers a new way to optimize 
tensor decomposition for online recommendation system. 
The dynamically changing features in real-world data are 
taken into consideration by eALS. A highly scalable ten-
sor decomposition scheme, which is effective for speedup 
relation extraction, has been proposed by Chang et  al. 
(2014). DFacTo (Choi and Vishwanathan 2014) presents 
a distributed algorithm that exploits the properties of the 
Khatri-Rao product to accelerate Alternating Least Squares 
(ALS) and Gradient Descent (GD) algorithms used in tensor 
factorization.

Besides, tensor decomposition has been adapted to vari-
ous hardware architectures for better performance. On the 
Intel many-core processor KNL (Knights Landing), the 
computation of CP decomposition is balanced among the 
processing units, which leads to 1.8 × performance speedup 
(Smith et  al. 2017). Li et  al. (2016); Ma et  al. (2019) 

propose an optimized design of sparse tensor-times-dense 
matrix multiply on GPU that exploits fine thread granular-
ity, coalesced memory access, rank blocking and fast shared 
memory. F-COO (Liu et al. 2017) proposes a unified tensor 
format along with GPU-specific optimizations that leverages 
the similar computation patterns between tensor operations. 
The implementation using F-COO achieves better perfor-
mance than the implementation using vendor libraries on 
GPU. Most recently, balanced-CSF (Nisa e al. 2019) (bal-
anced compressed sparse fiber) format has been proposed on 
GPU that extends the CSF format to better utilize the mas-
sive parallelism on GPU for accelerating the irregular com-
putation of sparse MTTKRP with load balance. GTA (Oh 
et al. 2019) provides a general framework for Tucker factori-
zation on both CPU and GPU that implements alternating 
least squares with a row-wise update in parallel, which effec-
tively accelerates the factor matrice update process with less 
memory consumption. Phipps and Kolda (2019) propose a 
portable approach to determine the level of parallelism for 
MTTKRP on different architectures, which includes fine-
grained parallelism, portable thread-local arrays and atomic-
write contention avoidance.

Moreover, there are research works adapting CP decom-
position to MapReduce framework to accelerate tensor 
decomposition with better parallelism and automatic scal-
ability. FlexiFaCT (Beutel et al. 2014), HaTen2 (Jeon et al. 
2015), Gigatensor (Kang et al. 2012) and BigTensor (Park 
et al. 2016) all take advantage of MapReduce framework 
to accelerate tensor decomposition on cluster. FlexiFaCT 

Table 3  The real-world tensor 
datasets

I, J, K indicates the dimension of the tensor data

Data I J K Nonzeros

YELP (Yelp dataset challenge 2019) 70 × 10
3

15 × 10
3 108 334 × 10

3

ML-20M (Harper and Konstan 2016) 71 × 10
3

10 × 10
3 157 10 × 10

6

nell1 (Smith et al. 2017) 2 × 10
6

2 × 10
6

25 × 10
6

144 × 10
6

dellicious3d (Smith et al. 2017) 532 × 10
3

17 × 10
6

2 × 10
6

140 × 10
6

(a) (b)

Fig. 12  The performance comparison of swTensor, BigTensor and CSTF on real-world datasets
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supports decomposition on both matrix and tensor by using 
stochastic gradient descent on different objective functions. 
HaTen2 reduces the amount of intermediate data and the 
number of computing jobs when the data size is tremendous. 
GigaTensor uses a novel computing algorithm to avoid inter-
mediate data explosion as well as reduce the number of float-
ing point operations, which demonstrates its effectiveness 
by evaluating with real-world datasets. CSTF (Blanco et al. 
2018) proposes a novel queuing strategy to exploit the data 
reuse between the computation procedures in CP decom-
position that reduces the communication cost significantly.

In the meanwhile, there are surging research works 
(Zhong et al. 2018; Liu et al. 2018; Hu et al. 2019; Liu et al. 
2019; Han et al. 2019; Chen et al. 2018; Li et al. 2018a, b; 
Duan et al. 2018) based on Sunway architecture in the past 
few years, which provide valuable experience to our work. 
The achievable performance by leveraging the architecture 
features of Sunway such as memory architecture, CPEs and 
register communication, is quantitatively measured by Xu 
et al. (2017) with both memory-bound and computing-bound 
benchmarks. The observations described in Xu et al. (2017) 
provide useful insights for performance optimization on 
Sunway architecture. swMR (Zhong et al. 2018), a MapRe-
duce programming framework based on Sunway architec-
ture, leverages the computing resources of Sunway proces-
sor to automatically parallelize the map/reduce processing 
and optimize the performance using the unique architectural 
features such as CPEs and register communication. A sparse 
matrix vector multiplication algorithm optimized for Sunway 
architecture, is proposed by Liu et al. (2018). The proposed 
technique optimizes the sparse matrix vector multiplication 
by tiling resource and data into three levels, and then lev-
erage register communication and local device memory to 
implement effective data transfer and better usage of CPEs. 
Li et al. (2018b) re-designs the computation of sparse trian-
gular solver (SpTRSV) by assigning different roles to CPEs 
within a CG on Sunway processor. This multi-role design 
provides an efficient implementation of SpTRSV on Sunway 
by carefully manipulating the local device memory and reg-
ister communication for synchronization.

7  Conclusion and future work

In this paper, we present an efficient implementation of ten-
sor decomposition swTensor by adapting the architecture 
features of Sunway many-core architecture. Specifically, we 
leverage the Sunway MapReduce framework swMR for auto-
parallelization of tensor decomposition, and tile the tensor 
data based on the 32 CPE pairs in swMR for load balance. 
In addition, we design customized key-value pairs to uti-
lize the parallel processing of swMR and divide the origi-
nal CP decomposition into four sub-procedures in order to 

avoid intermediate data explosion with the limited LDM on 
Sunway. Moreover, we propose a performance auto-tuning 
mechanism to search for the optimal parameter settings for 
swTensor. The experiment results show that swTensor per-
forms better than the state-of-the-art BigTensor and CSTF 
in both performance and scalability. For the future work, 
we would like to extend swTensor to support more types of 
tensor decomposition such as Tucker decomposition (Tucker 
1963), which are widely used in various application fields. 
Moreover, we would like to further optimize the MPI imple-
mentation of swTensor so that it can process tensor data 
with massive size by utilizing the Sunway processors at large 
scale.
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