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Abstract
Tensor methods have gained increasingly attention from various applications, including machine learning, quantum chemistry, 
healthcare analytics, social network analysis, data mining, and signal processing, to name a few. Sparse tensors and their 
algorithms become critical to further improve the performance of these methods and enhance the interpretability of their 
output. This work presents a sparse tensor algorithm benchmark suite (PASTA) for single- and multi-core CPUs. To the best 
of our knowledge, this is the first benchmark suite for sparse tensor world. PASTA targets on: (1) helping application users to 
evaluate different computer systems using its representative computational workloads; (2) providing insights to better utilize 
existed computer architecture and systems and inspiration for the future design. This benchmark suite is publicly released 
at https ://gitla b.com/tenso rworl d/pasta , under version 0.1.0.
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1 Introduction

Tensors draw increasing attention from various domains, such 
as machine learning, quantum chemistry, healthcare analytics, 
social network analysis, data mining, and signal processing, 
to name a few. Tensor methods have been noted for their abil-
ity to discover multi-dimensional inherent relationships from 
underlying application logic. A tensor is a multi-dimensional 
array, generalized matrices and vectors to more dimensions. 
In data-oriented tensor applications (Chi and Kolda 2012; 
Henderson et al. 2017; Ho et al. 2014b; Papalexakis and Sidi-
ropoulos 2011; Sidiropoulos et al. 2017), sparse tensors are 
often found, where most of its entries are zeros.

High-performance computing (HPC) now enters the era 
of extreme heterogeneity. As many general purpose accelera-
tors, such as Graphics Processing Unit (GPUs), Intel Xeon 
Phi, and Field-Programmable Gate Array (FPGAs), and 
domain-specific architectures, such as near-memory, thread 
migratory architecture Emu Hein et al. (2018) and Google 
Tensor processing unit (TPU) Jouppi et al. (2017), emerge, 
it is natural to ask whether the critical sparse-tensor based 
algorithms can be efficiently executed on these platforms, 
with their non-regular parallelism to be effectively exploited. 
However, the lack of a concrete, comprehensive, and easy 
to use sparse tensor algorithm benchmark suite prevents us 
from answering this question easily.

In this paper, we fill this gap by proposing a PArallel 
Sparse Tensor Algorithm benchmark suite called PASTA. 
PASTA incorporates various sparse tensor algorithms and 
operations, serving as a handy tool for application develop-
ers to assess different platforms, in terms of their tensor pro-
cessing capability. Consisting state-of-the-art sequential and 
parallel versions, while adopting the most popular sparse 
tensor format COO, PASTA can also supply a fair baseline 
for evaluating performance improvement brought by new 
sparse tensor methods. Application developers seeking to 
exploit tensor sparsity for further performance speedup may 
also find it useful as a good reference.

This paper makes the following contributions:
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• We show the importance of sparse tensor operations and 
tensor methods in diverse tensor applications (Sect. 3)

• We extract 12 computational sparse tensor operations as 
PASTA workloads: Tensor Element-Wise operations–
Tew-eq (addition/subtraction/multiplication/division) 
and Tew (addition/subtraction/multiplication), Tensor-
Scalar operations–TS addition/multiplication, Tensor-
Times-Vector operation (TTv), Tensor-Times-Matrix 
operation (TTm), and Matricized Tensor Times Khatri-
Rao Product (mTTkrP) (Sect. 4)

• We implement sequential and multicore parallel algo-
rithms for all workloads, based on the most popular coor-
dinate (COO) sparse tensor format. Our experiments and 
analysis show the usefulness of PASTA on single- and 
multi-core CPUs (Sects. 5, 6, 7)

2  Motivation

This work is motivated by first demonstrating the challenges 
of sparse tensor algorithms and then illustrating that existed 
libraries or toolsets cannot meet the requirements of a bench-
mark suite from diversity, timeliness, research support, and 
dataset four aspects.

2.1  Challenges of sparse tensor algorithms

We summarize the challenges of sparse tensor algorithms 
into five points:

The curse of dimensionality refers to the issue that the num-
ber of entries of an intermediate or output tensor can grow 
exponentially with the tensor order, resulting in significant 
computational and storage overheads. Even when the tensor is 
structurally sparse, meaning it consists mostly of zero entries, 
the execution time of one important tensor method, CANDE-
COMP/PARAFAC decomposition introduced in Sect. 3.1, gen-
erally grows quadratically with the number of non-zeros (Bader 
and Kolda 2007; Bader et al. 2017). And there is an increasing 
interest in applications involving a large number of dimensions 
De Lathauwer et al. (2017), Lebedev et al. (2014), Novikov 
et al. (2015), which makes this problem more difficult.

Mode orientation refers to the issue of a particular stor-
age format favoring the iteration of tensor modes in a cer-
tain sequence, which is of particular concern in the sparse 
case. Since most methods of interest require more than 
one sequence, being efficient for every sequence gener-
ally requires storing the tensor in multiple formats, thereby 
trading extra memory for speed. A question arises, that is 
whether one can achieve both a neutral mode orientation and 
compact storage which also helps reduce memory footprint.

Tensor transformation(s) refers to a common pattern for 
attaining speed in some implementations of tensor algorithms, 
which starts by reorganizing the tensor into a matrix and then 

perform equivalent matrix operations using highly tuned lin-
ear algebra libraries. Done naïvely, this approach appears to 
require an extra memory copy, which can even come to domi-
nate the overall running time. We observe instances in which 
such a copy consumes 70% or more of the total running time 
(in the case of a TTm operation).

Irregularity refers to two issues. The first is that a tensor 
may have dimension sizes that vary widely; the second is 
that a sparse tensor may have an irregular non-zero pattern, 
resulting in irregular memory references.

Arbitrary tensor orders generate various implementa-
tions of a tensor operation. For the sake of performance, 
programmers usually implement and optimize third-order 
tensor algorithms apart from higher-order ones. These 
implementations makes no one optimization method can fit 
all variations, e.g., different number of loops and diverse 
memory access behavior.

These challenges bring non-trivial computational and 
storage overheads, and some of them are even harder to over-
come than their counterparts in classical linear algebra. To 
overcome these challenges, it is necessary to build a sparse 
tensor benchmark suite to evaluate diverse algorithms and 
computer systems.

2.2  Requirements for a benchmark suite

By surveying some benchmark suites (Bienia et al. 2008; Che 
et al. 2009; Dixit 1991; KleinOsowski and Lilja 2002; Lee 
et al. 1997; Poovey et al. 2009; Wang et al. 2014a) we present 
the following four requirements for a benchmark suite.

Diversity. We analyze diversity from two aspects: application 
diversity and platform diversity. Application diversity means a 
benchmark suite should represent a broad and representative 
applications. For example, EEMBC benchmark suite Poovey 
et al. (2009) is developed for autonomous driving, mobile imag-
ing, the Internet of Things, mobile devices, and many other 
applications; PARSEC benchmark suite Bienia et al. (2008) 
covers computer vision, video encoding, financial analytics, 
animation physics and image processing, etc.. Sparse tensor 
methods have a broad application domains (refer to Sect. 3.2), 
the workloads in our benchmark suite also need to represent the 
diversity of these domains. Platform diversity is that a bench-
mark suite should support different computer architectures and 
platforms, especially the emerging ones. For example, SPEC 
benchmarks Dixit (1991) supports scientific applications on 
diverse platforms: CPUs, distributed platforms, accelerators, 
web servers, cloud platforms, etc. A recent Tartan benchmark 
Li et al. (2018b) collected kernels from machine learning, data 
analysis, high performance simulation, molecular dynamics and 
so on and optimized them on multi-GPU platforms.

Timeliness. A benchmark suite should be kept updated by 
including the state-of-the-art data structures, algorithms, and 
optimization techniques. Especially for sparse data, the data 
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structure is closely relevant to the performance of its algorithm. 
This phenomenon has been observed from sparse matrices, 
where different sparse formats behave quite differently on 
diverse input matrices (Li et al. 2013; Sedaghati et al. 2015; Su 
and Keutzer 2012; Zhao et al. 2018). As mentioned in the work 
(Bienia et al. 2008), an outdated algorithm cannot well reflect 
the current status of an application. This can easily mislead 
the researchers using this benchmark suite to test a machine’s 
behavior. As the computer architectures keep evolving, an 
under-optimized code, e.g., sequential benchmark programs for 
a multicore machine, cannot be a fair measurement. Optimized 
implementations for architectures have to be taken account.

Research support. Research support also includes two 
aspects: support of domain research and benchmarked 
workload research. The former requires a benchmark suite 
to be compatible, while the latter requires it to be extensible. 
Since some workloads are still open research problems in an 
application domain, a compatible workload should be able 
to do easy comparison with other research work by support-
ing unified input/output format and interface to high-level 
applications. The workload research mainly develops its 
high performance, power or other efficiency. An extensible 
workload is easy to be assembled with new data structures, 
algorithms, and optimization techniques.

Dataset. Data becomes essential to data-intensive appli-
cations and their workloads which widely exist in real 
world. Traditionally, two types of dataset are considered: 
synthetic and real data. Real data comes directly from real-
world applications, which can best reflects the application 
features. However, due to some factors such as information 
protection, sensitive data, etc., researchers are usually short 
of data. Thus, synthetic data are generated according to some 
regulations and scenarios from applications.

2.3  PASTA in need

Some tensor libraries or toolsets have existed for sparse 
tensor algorithms. The most popular libraries are Tensor 
Toolbox (Bader et al. 2017) and TensorLab (Vervliet et al. 
2016). They are both implemented using MATLAB. The 
main shortcoming is that these two libraries are hard to be 
implemented on various platforms, such as multicore CPUs 
and GPUs, which violates the platform diversity require-
ment. Besides, their performance efficiency is low because 
of MATLAB environment. Recently, many other highly per-
formance efficient libraries emerge, such as SPLATT (Smith 
et al. 2015), Cyclops Tensor Framework (CTF) (Solomonik 
and Hoefler 2015), DFacTo (Choi and Vishwanathan 2014), 
GigaTensor (Kang et al. 2012), HyperTensor (Kaya and Uçar 
2015), GenTen (Phipps and Kolda 2018), ParTI (Li et al. 
2018a), to name a few. However, these libraries are specific 
to one or two particular sparse tensor operations, this vio-
lates the application diversity requirement. Beyond these, 

the requirements of timeliness, research support, and dataset 
are barely met by these libraries. Our PASTA is proposed to 
meet all the requirements from our continuous effort.

3  Tensor methods and applications

This section describes the broad applications of tensors 
methods in diverse domains, along with the tensor methods 
and their computational operations. The summarized form 
is presented in Table 1.

3.1  Tensor methods

In this section, we summarize tensor methods in three cat-
egories: tensor decompositions, tensor network models, 
and tensor regression. Though tensor network models also 
belong to tensor decomposition methods, because of their 
network format and more emphasizing on high-order ten-
sors, we discuss them separately.

3.1.1  Tensor decompositions

We introduce three low-rank tensor decompositions which 
have applications for sparse data.

CPd . The CANDECOMP/PARAFAC decomposition 
(CPd) was first introduced in 1927 by Hitchcock (Hitchcock 
1927), and independently introduced by others (Carroll and 
Chang 1970; Harshman 1970). CPd decomposes an Nth-
order tensor into a sum of component rank-one tensors with 
different weights (Kolda and Bader 2009). In a low-rank 
approximation, a tensor rank R is chosen to be a small num-
ber less than 100. From a data science standpoint, the results 

Table 1  The relationship between tensor domains, tensor methods, 
and workloads

Domains Tensor methods Workloads

Machine learning CPd, TPm, tucker, 
TT, hTucker

TS, mTTkrP, TTv, TTm, 
TTT

Healthcare analytics CPd mTTkrP

Social network analysis CPd, tucker TTm

Quantum chemistry CPd, tucker TS, Tew, TTm, mTTkrP, 
TTT

Brain signal analysis CPd mTTkrP

Personalized web search CPd, tucker mTTkrP, TTm

Recommendation 
systems

CPd, tucker mTTkrP, TTm

Signal processing CPd mTTkrP

Direct numerical simula-
tion

Tucker TTm

Power grid CPd, tucker mTTkrP, TTm
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can be interpreted by viewing the tensor as being composed 
of R latent rank-1 factors. CPd has proven both scalable and 
effective in many applications in Sect. 3.2.

Other variants of CPd exist by restructuring of the factors 
or their constraints to accommodate diverse situations, such 
as INDSCAL (Carroll and Chang 1970), CANDELINC (Car-
roll et al. 1980), PARAFAC2 (Harshman 1972; Perros et al. 
2017), and DEDICOM (Harshman 1970). Many CPd meth-
ods have been proposed in a broad area of research, such as 
Alternating Least Squares (ALS) based methods (Harshman 
1970; Karlsson et al. 2016; Kaya and Uçar 2015; Kolda and 
Bader 2009), block coordinate descent (BCD) based methods 
(Li et al. 2015; Mohlenkamp 2010), Gradient Descent based 
methods (Beutel et al. 2013; Ravindran et al. 2014; Smith 
et al. 2016; Sorber et al. 2013), quasi-Newton and Nonlinear 
Least Squares (NLS) based methods (Chi and Kolda 2012; 
Hansen et al. 2015; Ishteva et al. 2011; Savas and Lim 2010; 
Sorber et al. 2013; Tomasi and Bro 2006; Wright and Noce-
dal 1999), alternating optimization (AO) with the alternat-
ing direction method of multipliers (ADMM) based meth-
ods (Boyd et al. 2011; Smith et al. 2017a), exact line search 
based methods (Rajih and Comon 2005; Sorber et al. 2016), 
and randomized/sketching methods (Battaglino et al. 2018; 
Cheng et al. 2016; Papalexakis et al. 2012; Reynolds et al. 
2016; Song et al. 2016; Vervliet and Lathauwer 2016). Sparse 
CPd comes from two aspects: the sparse tensor from appli-
cations (Bader and Kolda 2007; Chi and Kolda 2012; Choi 
et al. 2018; Choi and Vishwanathan 2014; Kang et al. 2012; 
Kaya and Uçar 2018; Kolda and Bader 2009; Li 2018; Li 
et al. 2017, 2018c; Liu et al. 2017; Phipps and Kolda 2018; 
Ravindran et al. 2014; Sidiropoulos et al. 2017; Smith and 
Karypis 2016; Smith et al. 2017c, 2015) and the constrained 
sparse factors from some CPd models (Henderson et al. 2017; 
Ho et al. 2014b; Papalexakis and Sidiropoulos 2011).

The computational bottleneck of CPd is the matriced ten-
sor-times-Khatri-Rao product (mTTkrP) (will be described 
in Sect. 4.6).

Tucker. Tucker decomposition, first introduced by Led-
yard R. Tucker Tucker (1966), provides a more general 
decomposition. It decomposes an Nth-order tensor into 
a small-sized Nth-order core tensor along with N factor 
matrices that are all orthogonal. The core tensor models a 
potentially complex pattern of mutual interaction between 
tensor modes. Its size is determined by N ranks which can 
be chosen according to the work (Kiers and der Kinderen 
2003). In a low-rank approximation, the rank sizes are usu-
ally less than 100.

Some variants of Tucker decomposition are PARA TUC 
K2 (Harshman and Lundy 1996), lossy Tucker decompo-
sition (Zhou et al. 2014), and so on. Methods for Tucker 
decomposition include higher-order SVD (HOSVD) (De 
Lathauwer et al. 2000a), truncated HOSVD (De Lathau-
wer et al. 2000a), Alternating Least Squares (ALS) based 

methods (Kapteyn et al. 1986), the popular higher-order 
orthogonal iteration (HOOI) (De Lathauwer et al. 2000b, 
Newton–Grassmann optimization (Eldén and Savas 2009. 
Sparse Tucker also comes from two aspects: the sparse ten-
sor from applications (Li 2018; Liu et al. 2017; Ma et al. 
2018; Smith and Karypis 2017), and the constrained sparse 
factors.

The computational tensor kernel of Tucker decomposi-
tion is the Tensor-Times-Matrix operation (TTm) (will be 
described in Sect. 4.4).

TPm . Tensor power method (Anandkumar et al. 2014; 
De Lathauwer et al. 2000b), is an approach for orthogo-
nal tensor decomposition, which decomposes a symmetric 
tensor into a collection of orthogonal vectors with corre-
sponding positive scalars as weights. Some variations have 
been proposed (Anandkumar et al. 2014; Yu et al. 2017). 
When the tensor is sparse, we need to use sparse method 
correspondingly.

The computational tensor kernel of tensor power 
method is the Tensor-Times-Vector operation (TTv) (will be 
described in Sect. 4.3).

3.1.2  Tensor network models

CPd and Tucker decompositions assume a model in which 
all modes interact with all the other modes, which ignores 
the situations where modes could interact in subgroups or 
hierarchies. Tensor network models decompose a tensor in 
tensor networks which expose more localized relationships 
between modes. Tensor networks have flexibility in mod-
eling and compute/storage efficiency especially for high-
order tensors.

TT . Tensor Train (TT) decomposition, also called 
Matrix Product State (MPS) in quantum physics commu-
nity (Cichocki et al. 2016; Grasedyck et al. 2013), was first 
proposed by Ivan Oseledets in the work (Oseledets 2011). 
TT decomposes a high-order tensor into a linear sequence of 
tensor-times-tensor/matrix products. The contraction modes 
are in small rank sizes in low-rank approximation.

The variants of TT include tensor chain (TC), tensor net-
works with cycles: Projected Entangled Pair States (PEPS) 
(Orús 2014), Projected Entangled Pair Operators (PEPO) 
(Evenbly and Vidal 2009), Honey–Comb Lattice (HCL) 
(Giovannetti et al. 2008), Multi-scale Entanglement Renor-
malization Ansatz (MERA) (Orús 2014).

The computational tensor kernels of TT are the Tensor-
Scalar (TS), Tensor-Times-Matrix (TTm) and Tensor-Times-
Tensor (TTT) operations. TS and TTm will be described in 
Sects. 4.2 and 4.4 respectively, and TTT will be one of our 
future work.

hTucker. Hierarchical Tucker (hTucker) decomposition, 
also called hierarchical tensor representation, was introduced 
in Cichocki et al. (2016), Grasedyck (2010), Grasedyck et al. 
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(2013), Hackbusch and Kühn (2009). hTucker recursively 
splits the set of tensor modes, resulting a binary tree contain-
ing a subset of modes at each node. This binary tree is called 
dimension tree, and the modes from different nodes do not 
overlap. TT decomposition is a special case of hTucker 
while the dimension tree is linear and extremely unbalanced.

Variants of hTucker include the Tree Tensor Network 
States (TTNS) model (Nakatani and Chan 2013), multi-
layer multi-configuration time-dependent Hartree method 
(ML-MCTDH) (Wang and Thoss 2003). Sparsity has been 
considered by Perros et al. (2015) in the work.

The computational tensor kernels of hTucker are the 
Tensor-Scalar (TS), Tensor-Times-Matrix (TTm) and Ten-
sor-Times-Tensor (TTT) operations. TS and TTm will be 
described in Sects. 4.2 and 4.4 respectively, and TTT will be 
one of our future work.

3.1.3  Tensor regression

Tensor regression is an extension of classical regression 
model, but using tensors to represent input and covariates 
data. Tensor regression approximates coefficient tensor with 
a low-rank decomposition, thus tensor decomposition meth-
ods introduced above can be easily adopted here. Some ten-
sor regression methods have been proposed (Romera-Pare-
des et al. 2013; Signoretto et al. 2014; Wimalawarne et al. 
2014; Yu and Liu 2016; Yu et al. 2017; Zhao et al. 2011; 
Zhou et al. 2013).

3.2  Tensor applications

Tensor methods can be used in applications to expose the 
inherent relationship in the observed data and to represent the 
data in a more compressed way. This section does not keen to 
give a thorough survey of tensor applications but emphasizes 
on showing the broad application scenarios tensor methods 
can be applied and useful in. Please refer to these surveys for 
more complete tensor applications (Anandkumar et al. 2014; 
Cichocki 2014; Cichocki et al. 2016, 2015; De Lathauwer 
2008; Kolda and Bader 2009; Sidiropoulos et al. 2017).

3.2.1  Machine learning

The diversity needs of machine learning algorithms have pro-
moted the exploitation of various tensor-based decomposi-
tions, regressions, and techniques from this community. CPd, 
Tucker and TT decompositions have been leveraged in the 
context of neural networks (Hutchinson et al. 2013; Janzamin 
et al. 2015; Lebedev et al. 2014; Novikov et al. 2018, 2015; 
Setiawan et al. 2015; Socher et al. 2013; Yu et al. 2012, 2018), 
with the weight matrix of a fully-connected layer or a convo-
lutional layer stored compressedly in a low-rank tensor, thus 
reducing redundancies in the network parameterization. As 

concerns improving theoretical aspects and understanding of 
deep neural networks through tensors, Cohen et al. (2015) 
analyzed the expressive power of deep architectures by draw-
ing analogies between shallow networks and the rank-1 CPd, 
as well as between deep networks and the hTucker decom-
position. Novikov et al. applied TT in Google’s TensorFlow 
(Abadi et al. 2015; Novikov et al. 2018), which expresses a 
wide variety of algorithms as operators (graph nodes) that 
communicate tensor objects through the graph’s edges. Other 
Machine Learning applications include using TT to improve 
Markov Random Field (MRF) inference problem (Novikov 
et al. 2014) and extending standard Machine Learning algo-
rithms such as Support Vector Machines and Fisher discrimi-
nant analysis to handle tensor-based input (Tao et al. 2007).

3.2.2  Healthcare analytics

The work on tensor-based healthcare data analysis has been 
driven by the need of improving the interpretability and 
the robustness of underlying methods, with the goal that 
healthcare professionals may eventually use consulting 
tools based on these methods. As a result, recent work has 
focused on modifying traditional tensor methods like CPd 
by adding constraints that better describe the underlying 
data and exploit domain knowledge. One particular focus 
is handling sparsity, which is particularly important when 
handling event-recording tensors describing healthcare data 
(Ho et al. 2014c, a, b; Matsubara et al. 2014; Perros et al. 
2015; Wang et al. 2015; Zhou et al. 2013).

3.2.3  Social network analysis

Some studies have been done on DBLP authorship data Papal-
exakis et al. (2013) by using dynamic/static tensor analysis 
(include CPd, Tucker decompositions and their variants) to 
demonstrate clustering (Kolda and Sun 2008; Sun et al. 2006), 
find interesting events (or anomalies) in the users’ social activ-
ities (Papalexakis et al. 2012, 2015). Jiang et al. identified 
patterns in human behavior through a dynamic tensor decom-
position of user interactions within a microblogging service 
(Jiang et al. 2014). Sun et al. demonstrated a sampling-based 
Tucker decomposition (Sun et al. 2009), to jointly model the 
sender-recipient interaction and share content within business 
networks. The work in Benson et al. (2015) utilizes tensors to 
model higher-order structures, such as cycles or feed-forward 
loops in a graph clustering framework.

3.2.4  Quantum chemistry

Tensors have a long history in quantum chemistry because 
of the nature of high-dimensional data there (Khoromskaia 
and Khoromskij 2018). Hartree–Fock (HF) is a method 
of approximation for the energy of a quantum many-body 
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system and large-scale electronic structure calculations. 
Koppl et al. proposed sparsity using local density fitting 
in Hartree–Fock calculations, which heavily involves TTT 
and TTm operations (Köppl and Werner 2016). Lewis et al. 
introduced a clustered low-rank tensor format to exploit ele-
ment and rank sparsities (Lewis et al. 2016). Block sparsity 
has been utilized in coupled-cluster singles and doubles 
(CCSD) in the work (Calvin and Valeev 2016; Epifanovsky 
et al. 2013; Kaliman and Krylov 2017; Manzer et al. 2017; 
Peng et al. 2016). Scaled opposite spin second order Møller-
Plesset perturbation theory (SOS-MP2) method uses tensor 
hypercontraction (ThC), approximating a electron Coulomb 
repulsion integrals (ERI) tensor by decomposing into lower 
order tensors, with sparsity (Song and Martínez 2016).

3.2.5  Data mining

Tensor decompositions have become a standard approach 
in brain signal analysis due to multiple heterogeneous data 
sources. Some recent methods have been surveyed in Cao 
et al. (2015), Cichocki (2013). Electroencephalogram (EEG) 
and fMRI data are treated as tensors and analyzed by differ-
ent tensor decompositions (e.g., CPd) to study the structure 
of epileptic seizures (Acar et al. 2007, 2011a), better under-
stand the active brain regions and their behavior (Davidson 
et al. 2013), (Latchoumane et al. 2012), do feature selection 
(Cao et al. 2014), and model neuroimaging data (Mørup 
et al. 2008). BrainQ is a widely available tensor dataset con-
sisting of a sparse tensor with (subject, brain-voxel, noun) as 
dimensions and a matrix (noun, properties), which are meas-
ured from brain activity where individual subjects are shown 
nouns. Factorizing this is known as a coupled factorization 
(Acar et al. 2011b), and Papalexakis et al. demonstrated a 
scalable method using random sampling (Papalexakis et al. 
2014). On the supervised learning setting, Wang et al. used 
fMRI data and adapted the Sparse Logistic Regression to 
accept tensor input that consequently avoided the loss of 
correlation information among different orders (Wang et al. 
2014b).

Personalized web search tailors the results of a search 
query for a particular user by utilizing the click history of 
this user’s previous search results. Researchers constructed 
tensors from (user, query, webpage) information and used 
CPd (Kolda and Bader 2006) and Tucker decompositions 
(Sun et al. 2005) to tackle this problem.

Recommendation systems have also found tensor meth-
ods effective to resolve overloaded tags. Some approaches 
have been explored using CPd and Tucker decompositions 
and their variants on collaborative filtering (Xu et al. 2006), 
a tag-recommendation engine (Karatzoglou et al. 2010), 
(Rendle et al. 2009), (Symeonidis et al. 2008), personalized 
tags (Fang and Pan 2014), and sparse international relation-
ships (Schein et al. 2015).

3.2.6  Signal processing

There has been an extensive research from the Signal Pro-
cessing community, which examines theoretical aspects of 
tensor methods (Jiang and Sidiropoulos 2004) such as iden-
tifiability, or improves existing decompositions (Bro et al. 
1999; Sidiropoulos et al. 2000). A tutorial addressing sig-
nal processing applications can be found in Cichocki et al. 
(2015). Please refer to the survey Sidiropoulos et al. (2017) 
for more complete applications in signal processing.

3.2.7  Other areas

The usage of tensors and tensor decompositions as tools 
facilitating the extraction of useful information out of com-
plex data is not limited to the categories mentioned above. 
For example, Benson, et al. used Tucker decomposition to 
compress scientific data obtained by Direct Numerical Simu-
lation (DNS) (Austin et al. 2016). Song et al. applied CPd 
to forecast of the power demand and detect anomalies in 
smart electrical grid (Song et al. 2017). A variant of Tucker 
decomposition was used in AC optimal power flow in the 
work (Oh 2016). TT was used in the hierarchical uncertainty 
quantification to reduce the computational cost of circuit 
simulation (Zhang et al. 2015). Electronic design automation 
(EDA) problems employed CPd, Tucker, and TT decomposi-
tions to ease the suffer of the curse of dimensionality (Zhang 
et al. 2017). Motion control problems in the context of robot-
ics took TT into consider for its compressed representations 
(Gorodetsky et al. 2008).

4  Benchmark workloads

This section we describe the workloads in PASTA, which 
includes element-wise addition/subtraction/multiplication/
division, tensor-scalar, tensor-times-vector, tensor-times-
matrix, and tensor-times-matrix sequence operations. We 
referred to the surveys (Anandkumar et al. 2014; Cichocki 
2014; Cichocki et al. 2016, 2015; De Lathauwer 2008; Kolda 
and Bader 2009; Sidiropoulos et al. 2017) and papers Li 
(2018) for these definitions.

A tensor, abstractly defined, is a function of three or 
more indices. In computational data analytics, one may 
regard a tensor as a multidimensional array, where each 
of its dimensions is also called a mode and the number of 
dimensions or modes is its order. For example, a scalar is 
a tensor of order 0; a vector is a tensor of order 1; and a 
matrix, order 2, with two modes (its rows and its columns). 
Notationally, we represent tensors as calligraphic capital let-
ters, e.g., X ∈ ℝ

I×J×K ; matrices by boldface capital letters, 
e.g., � ∈ ℝ

I×J ; vectors by boldface lowercase letters, e.g., 
� ∈ ℝ

I ; and scalars by lowercase letters, such as xijk for the 
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(i, j, k) element of a third-order tensor X  . A slice is a two-
dimensional cross-section of a tensor, achieved by fixing 
all mode indices but two, e.g., �∶∶k = X(∶, ∶, k) in MAT-
LAB notation. A fiber is a vector extracted from a tensor 
along some mode, selected by fixing all indices but one, 
e.g., �∶jk = X(∶, j, k).

A tensor can be reshaped to a matrix, which is called 
matricization. For a tensor X ∈ ℝ

I1×⋯×In×⋯×IN , its matri-
cized tensor along with mode-n is �(n) ∈ ℝ

I1⋯In−1In+1⋯IN×In . 
A matrix can be also reshaped to a tensor by splitting one 
mode into two or more.

4.1  Tensor element‑wise operations

Tensor element-wise (Tew) operations include addition, sub-
traction, multiplication, and division operations, which are 
applied to every corresponding pair of elements from two 
tensor objects if they have the same order and shape (dimen-
sion sizes). For example, element-wise tensor addition of 
X,Y ∈ ℝ

I1×⋯×IN is Z = X. +Y , where

Similarly for element-wise tensor subtraction Z = X. −Y , 
multiplication Z = X. ∗ Y , and division Z = X.∕Y . When 
the two input tensors have exactly the same non-zero distri-
bution, element-wise operations can be easily implemented 
by iterating all non-zeros of the two sparse tensors and doing 
the corresponding operation for each element. The tricky 
cases are when the non-zero patterns of tensors X  and Y are 
different and even worse they could be in different shapes. 
For these two cases, we cannot easily predict the output ten-
sor Z ’s storage space before computation. These two cases 
we use dynamic vectors and an optimization strategy for 
parallel algorithms.

4.2  Tensor‑scalar operations

A Tensor-Scalar (TS) operation is the addition (TSA) /sub-
traction (TSS) /multiplication (TSm) /division (TSd) of a ten-
sor X ∈ ℝ

I1×IN with a scalar s ∈ ℝ for every non-zero entry. 
For example, the TSm operation, denoted by Y = X × s , is 
defined as

Since Y = X × s is the same with Y = X∕s−1 and Y = X + s 
is the same with Y = X − (−s) , so implementing TSA and 
TSm is enough.

4.3  Tensor‑times‑vector operation

The tensor-times-vector (TTv) in mode n is the multiplica-
tion of a tensor X ∈ ℝ

I1×⋯×In×⋯×IN with a vector � ∈ ℝ
In , 

along mode n, and is denoted by Y = X ×n � . This results 

(1)zi1…iN
= xi1…iN

+ yi1…iN
.

(2)yi1…in−1rin+1…iN
= s × xi1…in−1inin+1…iN

.

in a I1 ×⋯ × In−1 × In+1 ×⋯ × IN tensor which has one less 
dimension. Its operation is defined as

4.4  Tensor‑times‑matrix operation

The tensor-times-matrix (TTm) in mode n, also known 
as the n-mode product, is the multiplication of a ten-
sor X ∈ ℝ

I1×⋯×In×⋯×IN with a matrix � ∈ ℝ
In×R , along 

mode n, and is denoted by Y = X ×n �.1 This results in a 
I1 ×⋯ × In−1 × R × In+1 ×⋯ × IN tensor, and its operation 
is defined as

TTm is a special case of tensor contraction. We consider TTm 
specifically because of its more common usage in tensor 
decompositions for data analysis, such as the Tucker decom-
position. Also, note that R is typically much smaller than In 
in such decompositions, and typically R < 100.

TTm is also equivalent to a matrix-matrix multiplication 
in the following form:

Therefore, one feasible way to implement an TTm is to first 
matricize the tensor, then use an optimized matrix-matrix 
multiplication to compute the matricized output Y , and, 
finally, tensorize to obtain Y . However it has the tensor-
matrix transformation as the extra overhead and does not 
work well for sparse tensors.

4.5  Kronecker and Khatri‑Rao products

Kronecker and Khatri-Rao products are both matrix prod-
ucts. The Kronecker product generalizes the outer product 
for matrices. Given � ∈ ℝ

I×J and � ∈ ℝ
K×L , the Kronecker 

product �⊗ � ∈ ℝ
IK×JL is

The Khatri-Rao product is a “matching column-wise” Kro-
necker product between two matrices with the same number 

(3)yi1…in−1in+1…iN
=

In∑
in=1

xi1…in−1inin+1…iN
vin .

(4)yi1…in−1rin+1…iN
=

In∑
in=1

xi1…in−1inin+1…iN
uinr.

(5)Y = X ×n � ⇔ �(n) = ��(n).

(6)�⊗ � =

⎡⎢⎢⎢⎣

u11� u12� ⋯ u1J�

u21� u22� ⋯ u2J�

⋮ ⋮ ⋱ ⋮

uI1� uI2� ⋯ uIJ�

⎤⎥⎥⎥⎦

1 Our convention for the dimensions of � differs from that of Kolda 
and Bader’s definition (Kolda and Bader 2009). In particular, we 
transpose the matrix modes � , which leads to a more efficient TTm 
under the row-major storage convention of the C language.
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of columns. Given matrices � ∈ ℝ
I×R and � ∈ ℝ

J×R , their 
Khatri-Rao product is denoted by �⊙ � ∈ ℝ

(IJ)×R,

where �r and �r , r = 1,… ,R , are columns of � and �.
Kronecker and Khatri-Rao products appear frequently in 

tensor decompositions that are formulated as matrix opera-
tions. However, such formulations typically also require 
redundant computation or extra storage to hold matrix oper-
ands, so in practice these operations are tend to be not imple-
mented directly but rather integrated into tensor operations.

4.6  Tensor‑times‑matrix sequence operation

There are two types of tensor-times-matrix sequence opera-
tions, TTm chain and mTTkrP. TTm chain is a sequence of 
TTm operations with one’s output as the next one’s input. An 
alternative way to think TTm chain is a matriced tensor times 
the Kronecker product of matrices. mTTkrP, matricized ten-
sor times Khatri-Rao product, is a matricized tensor times 
the Khatri-Rao product of matrices. For an Nth-order tensor 
X  and given matrices �(1),… ,�(N) , the mode-n mTTkrP is

where �(n) is the mode-n matricization of tensor X  , ⊙ is the 
Khatri-Rao product.

4.7  Others

We also provide the transformation between tensors and 
matrices and some sorting algorithms for sparse tensors.

(7)�⊙ � =
[
�1 ⊗ �1, �2 ⊗ �2,… , �R ⊗ �R

]
,

(8)
�̃

(n) =�(n)

(
⊙

i≠n

i=1,…,N
�i

)

=�(n)

(
�

(N)
⊙⋯⊙ �

(n+1)
⊙ �

(n−1)
⊙⋯⊙ �

(1)
)
,

5  Data structures, algorithms, 
and implementations

5.1  Data structures

Since COO Kolda and Bader (2009) is the simplest and 
arguably de facto standard way to store a sparse tensor, and 
it is mode generic, we only support COO format in this 
work. Other state-of-the-art formats (Li et al. 2018c; Nisa 
et al. 2019; Smith and Karypis 2015) will be included as our 
future work. We use inds and val to represent the indices and 
values of the non-zeros of a sparse tensor respectively. val 
is a size-M array of floating-point numbers, inds is a size-M 
array of integer tuples. Figure 1 shows a 4 × 4 × 3 sparse 
tensor in COO format. The indices of each mode are repre-
sented as i, j, and k. Observe that some indices in inds repeat, 
for example, entries (1, 0, 0) and (1, 0, 2) have the same i 
and j indices. This redundancy suggests some compression 
of this indexing metadata should be possible, as proposed in 
some work (Liu et al. 2017; Smith et al. 2015).

5.2  Algorithms

This section describes the sequential algorithms for the 
workloads in Sect. 4. All algorithms directly operates on 
the input sparse tensor(s) without explicit tensor-matrix 
transformation. 

Fig. 1  COO format of an exam-
ple 4 × 4 × 3 tensor

i j k val

0 0 0 1

0 1 0 2

1 0 0 3

1 0 2 4

2 1 0 5

2 2 2 6

3 0 1

3 3 2

7

8
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5.2.1  Tew

As mentioned in Sect. 4.1, Tew operation has two cases: one 
is between two tensors in exactly the same shape and non-
zero distribution; the other only requires the two tensors are 
in the same tensor order.

For the first case, we show Tew addition as an example 
in Algorithm 1. The output tensor has the same shape and 
non-zero distribution with the two input tensors, thus it can 
be pre-allocated. Then the calculation simply does addition 
by looping all non-zeros. 

For the second case, its algorithm is shown in Algo-
rithm 2. The output tensor size is set by the maximum 
dimension size of the two input tensors. Since we do not 
know the number of the output non-zeros, we cannot pre-
allocate the space of the output tensor Z but using dynamic 
allocation to append non-zeros. First, we need to sort tensors 
X  and Y in the order of mode 1 ≻ 2 ≻ 3 , then compare the 
indices in lexicographical order for each non-zero pair-to-
pair, e.g., indices (2, 1, 1) > (1, 1, 2) > (1, 1, 1) . If two indices 
are the equal, then we append the indices and the sum of the 
two non-zero values to the output Z . Otherwise, we append 
the smaller indices and its corresponding value to Z . Only 
if we run out of non-zeros in either X  or Y , we append the 
rest indices and values of the other one to Z . 
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5.2.2  TS

TS algorithm is simple. The output Y can be pre-allocated 
and computed by looping all non-zeros. Algorithm 3 shows 
the TSm algorithm. 

5.2.3  TTv

TTv algorithm in mode-n is shown in Algorithm 4. It first 
pre-compute the number of fibers MF of input tensor X  and 

the beginning positions of each fiber. Then we can pre-allo-
cate the output tensor Y with MF , because this product does 
not influence the non-zero layout for I and J modes. The 

algorithm loops all the fibers of X  , and a reduction happens 
for all non-zeros in each fiber. 
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5.2.4  TTm

TTm algorithm is illustrated in Algorithm 5. Similarly to 
TTv algorithm, we obtain the number of fibers MF and the 
beginning positions of each fiber then MF × R space are allo-
cated for the output tensor Y . The algorithm loops all the 
MF fibers and does a reduction between sized-R vectors. 
This TTm algorithm directly operates on the input sparse 
tensor by avoiding tensor transformation. The explanation 
of Algorithm 5 can be found in the work Li et al. (2016), 
Ma et al. (2018). 

5.2.5  mTTkrP

mTTkrP algorithm, well studied in recent work (Li et al. 
2019; Nisa et al. 2019; Smith et al. 2015), is shown in Algo-
rithm 6, the output matrix of which is initialized before and 
only needs to be updated. This algorithm loops all non-zeros 
of the tensor X  and times the corresponding two matrix vec-
tors, to update the designated output matrix vector. Readers 
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can refer more details of this algorithm in Bader and Kolda 
(2007).

According to the above algorithms, we compute the stor-
age, the number of floating-point operations (Flops), the 
amount of memory access in bytes, and the arithmetic inten-
sity (the ratio of #Flops/#Bytes) in Table 2. For simplicity, 
we use a cubical third-order sparse tensor X ∈ ℝ

I×I×I with 
M non-zeros and MF fibers as an example. Because of the 
irregular access pattern of sparse tensors, the memory access 
does not consider the cache effect. All workloads have arith-
metic intensity less than 1, thus it is hard to easily achieve 
good performance on common architectures. While mTTkrP 
has the most Flops and memory access, its arithmetic inten-
sity is smaller than TTm, which it ∼ 1∕2 . Tew and TS have 
the smallest arithmetic intensity and the largest storage due 
to the output tensor. Despite of different algorithm behavior, 
these algorithms are generally considered memory intensive, 
which demonstrates the emphasis of our PASTA.

5.3  Multicore implementations

Some workloads are easy to parallelize. We parallelize the 
loop of all non-zeros in Tew-eq (Algorithm 1) and TS (Algo-
rithm 3). For TTv (Algorithm 4) and TTm (Algorithm 5), the 
loop of fibers is parallelized because each fiber computation 
is independent.

Tew (Algorithm 2) is difficult to be parallelized because 
of its dynamic append operations and no pre-allocation 
available. We partition the two tensors in such a way that 
there is no overlap between their indices, then we run Tew 
algorithm locally for a sub-tensor in each thread and append 
the results to a local output buffer. The partitioning first split 
one of the two tensors (say X  ) by slices and meanwhile tend 
to evenly distribute its non-zeros. This makes sure that all 
non-zeros of a slice cannot be split into two partitions. Then 
the partitioning of the other tensor (say Y ) is according to 
this slice partitioning strategy. In this case, we assure every 
partition does not overlap with each other, thus they can 
independently computed in parallel.

We parallelize the loop of all non-zeros of mTTkrP (Algo-
rithm 6) as well, but Line 4 may have data race by writing 
into the same location of �̃ . We implemented two solutions: 
(1) use atomics to protect the correctness, but the perfor-
mance suffers much; (2) employ privatization approach to 
allocate a thread-local buffer. The data is first written to this 
buffer by each thread privately, then a global reduction for 
the buffers is used to get the final results. In this case, we can 
generally get better performance than using atomics.

Table 2  The analysis of data 
storage and their algorithms 
for third-order cubical tensors 
( X ∈ ℝ

I×I×I)

We consider all input tensors with M nonzero entries and M
F
 fibers, I ≪ M

F
≪ M . The indices use 32 bits, 

and values are single-precision floating-point numbers with 32 bits

Workloads Storage (bytes) Work (flops) Memory access (bytes) Arithmetic 
intensity 
(AI)

Tew 48M M 36M 1 / 36
TS 32M M 32M 1 / 32
TTv (16M + 12M

F
) 2M (12M + 20M

F
) ∼ 1∕6

TTm (16M + 16M
F
R + 4IR) 2MR 4MR + 8M + 12M

F
R + 8M

F
∼ 1∕2

mTTkrP (16M + 12IR) 3MR 12MR + 16M ∼ 1∕4

Table 3  Description of sparse tensors

Tensors Order Dimensions #Non-zeros Density

vast 3 165K × 11K × 2 26M 6.9 × 10
−3

nell2 3 12K × 9K × 29K 77M 2.4 × 10
−5

choa 3 712K × 10K × 767 27M 5.0 × 10
−6

darpa 3 22K × 22K × 24M 28M 2.4 × 10
−9

fb-m 3 23M × 23M × 166 100M 1.1 × 10
−9

fb-s 3 39M × 39M × 532 140M 1.7 × 10
−10

deli 3 533K × 17M × 2.5M 140M 6.1 × 10
−12

nell1 3 2.9M × 2.1M × 25M 144M 9.1 × 10
−13

crime 4 6K × 24 × 77 × 32 5M 1.5 × 10
−2

nips 4 2K × 3K × 14K × 17 3M 1.8 × 10
−6

enron 4 6K × 6K × 244K × 1K 54M 5.5 × 10
−9

flickr4d 4 320K × 28M × 1.6M × 731 113M 1.1 × 10
−14

deli4d 4 533K × 17M × 2.5M × 1K 140M 4.3 × 10
−15
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Fig. 2  Tew-eq-addition for sparse tensors in the same shape and non-
zero pattern
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For these parallel implementations, we have not consid-
ered the NUMA effect, which will be another piece of our 
future work.

6  Dataset

PASTA now only considers real-world data as input. The 
sparse tensors derived from real-world applications, that 
appear in Table 3, ordered by decreasing non-zero density 
separately for third- and fourth-order tensors. Most of these 
tensors are included in The Formidable Repository of Open 
Sparse Tensors and Tools (FROSTT) dataset (Refer to the 
details in Smith et al. 2017b). The darpa (source IP-desti-
nation IP-time triples), fb-m, and fb-s (short for “freebase-
music” and “freebase-sampled”, entity-entity-relation tri-
ples) are from the dataset of HaTen2 (Jeon et al. 2015), and 
choa is built from electronic health records (EHRs) of pedi-
atric patients at Children’s Healthcare of Atlanta (CHOA) 
(Perros et al. 2017). These tensors from different applica-
tions have diverse nonzero distribution features.

7  Experiments

We tested these schemes experimentally on a Linux-based 
Intel Xeon E5-2698 v3 multicore server platform with 32 
physical cores distributed on two sockets, each with 2.3 GHz 
frequency. The processor microarchitecture is Haswell, 

having 32 KiB L1 data cache and 128 GiB memory. The 
code artifact is written in the C language using OpenMP par-
allelization, and was compiled using icc 18.0.1. All experi-
ments use 32 threads for parallel code except being pointed 
out otherwise. The execution time are all averaged by five 
runs. For TTm and mTTkrP, we set the rank R = 16.

We demonstrate the sequential and multicore parallel 
performance for every workload on the dataset (Table 3).

7.1  Tew

Figures 2 and 3 show the execution time of the two cases 
of Tew addition (Algorithm 1 and 2): in the same non-zero 
pattern and only in the same tensor order, on all third- and 
fourth-order tensors. We use the same tensor for the two 
input for Tew-eq and Tew to better show the algorithm 
effect. We observe for both cases, parallel Tew outper-
forms sequential Tew. However, the speedup of Tew-eq is 
3.64 − 5.18× , while the speedup of Tew is much smaller, 
which is 1.13 − 1.70× . This is because: (1) the parallel strat-
egy of Tew could have a lot more load imbalance than Tew-
eq’s even non-zero parallelization; (2) some tensors cannot 
fully use all 32 threads due to the slice partitioning (a heavy 
slice cannot be further partitioned in Algorithm 2). Besides, 
due to the dynamic append operation, the sequential Tew 
is tens of times slower than sequential Tew-eq. From our 
experiments, Tew subtraction, multiplication, and division 
behave very similar to Tew addition in execution time.
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7.2  TS

Figure 4 plots the sequential and parallel execution time 
of TSm. Parallel TSm achieves 2.17 − 5.92× speedup over 
sequential TSm, this is comparable to Tew-eq in Fig. 2. The 
sequential TSm executes faster than the sequential Tew, 
which verifies the analysis in Table 2 and that these two 
algorithms are memory-bound. (Because they have the same 
#Flops, compute-bound algorithms should have similar exe-
cution time.) From the experiments, the execution times of 
sequential and parallel TSA are very close to TSm.

7.3  TTv

We illustrate sequential and parallel TTv time in Fig. 5. Par-
allel TTv outperforms sequential case by 5.21 − 12.45× , this 
is much higher than the speedup of Tew-eq, Tew, and TSm. 
This behavior again matches the analysis in Table 2 that 
TTv has higher arithmetic intensity. Since higher arithmetic 
intensity potentially generates less memory contention, thus 
multicore parallelization could benefit more.

7.4  TTm

Figure 6 shows the sequential and parallel execution time 
of TTm. The speedup of parallel TTm over sequential case 
is 4.09 − 15.67× which is comparable with TTv ’s. This 
also verifies the analysis that TTm has the highest arithme-
tic intensity. Sequential TTm is 4.91 − 11.11× slower than 
sequential TTv, that shows the different behavior of timing 
a dense vector versus a dense matrix.

7.5  mTTkrP

We use privatization technique for parallel mTTkrP, because 
it performs better than atomics technique on most of ten-
sors. The execution time of sequential and parallel mTTkrP is 
shown in Fig. 7, where the parallel case gains 0.77 − 9.49× 
speedup. For tensor darpa, the only case parallel mTTkrP is 
slower than sequential one because of its large thread-local 
buffer which consumes a large portion of time to do reduc-
tion. The atomics parallel approach could be better in this 
case, 7.93 versus 7.32 (sequential mTTkrP), but there is still 
not speedup for this tensor. mTTkrP obtains smaller speedup 
than TTm and TTv mainly because data race exists in the 
output. Even we use privatization technique to avoid the data 
race, the extra reduction still take nontrivial amount of time.

Figure 8 illustrates the performance of all workloads 
in GFLOPS (Giga floating-point operations per second). 
Generally, TSm and TTm obtain the highest performance 
numbers. Tew and TSm have good spacial locality, while 
TSm has a relatively higher arithmetic intensity. Irregular 
memory access exists in TTv, TTm, and mTTkrP, while TTm 
gets the largest arithmetic intensity. From our experiments 
and analysis above, these relatively simple workloads can 
well reflect some architecture characteristics. This can help 
architecture designers and application users to evaluate com-
puter systems.

8  Conclusion

This work presents a sparse tensor algorithm benchmark 
suite (PASTA) for single-core and multi-core CPUs, which 
is the first sparse tensor benchmark to the best of our knowl-
edge. PASTA consists of Tew, TS, TTv, TTm, mTTkrP work-
loads to represent sparse tensor algorithms from different 
tensor methods in a various application scenarios. Besides, 
these workloads can reflect computer architecture features 
differently from our analysis.

As a benchmark suite, PASTA already processes good 
properties such as application and machine diversity, state-
of-the-art data structures, algorithms, and optimization 
techniques included, compatibility for research support, 
and real-world data set. Some future work should be done 
to make PASTA more complete and robust: (1) more com-
puter systems support, such as GPUs, FPGAs, and distrib-
uted systems; (2) more workloads especially tensor-times-
tensor product (TTT); (3) more state-of-the-art sparse tensor 
formats, e.g., hierarchical COO (HiCOO) and compressed 
sparse fiber (CSF) format; (4) synthetic data generation for 
more precise machine performance measurement. PASTA 
is an open-source project and a continuously effort to keep 
its timeliness.
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