
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing (2019) 1:111–130
https://doi.org/10.1007/s42514-019-00012-w

REGULAR PAPER

PASTA: a parallel sparse tensor algorithm benchmark suite

Jiajia Li1 · Yuchen Ma2 · Xiaolong Wu3 · Ang Li1 · Kevin Barker1

Received: 22 January 2019 / Accepted: 18 July 2019 / Published online: 5 August 2019
© China Computer Federation (CCF) 2019

Abstract
Tensor methods have gained increasingly attention from various applications, including machine learning, quantum chemistry,
healthcare analytics, social network analysis, data mining, and signal processing, to name a few. Sparse tensors and their
algorithms become critical to further improve the performance of these methods and enhance the interpretability of their
output. This work presents a sparse tensor algorithm benchmark suite (PASTA) for single- and multi-core CPUs. To the best
of our knowledge, this is the first benchmark suite for sparse tensor world. PASTA targets on: (1) helping application users to
evaluate different computer systems using its representative computational workloads; (2) providing insights to better utilize
existed computer architecture and systems and inspiration for the future design. This benchmark suite is publicly released
at https ://gitla b.com/tenso rworl d/pasta , under version 0.1.0.

Keywords Sparse tensor · Tensor methods · Benchmarking · High performance computing · Sparsity

1 Introduction

Tensors draw increasing attention from various domains, such
as machine learning, quantum chemistry, healthcare analytics,
social network analysis, data mining, and signal processing,
to name a few. Tensor methods have been noted for their abil-
ity to discover multi-dimensional inherent relationships from
underlying application logic. A tensor is a multi-dimensional
array, generalized matrices and vectors to more dimensions.
In data-oriented tensor applications (Chi and Kolda 2012;
Henderson et al. 2017; Ho et al. 2014b; Papalexakis and Sidi-
ropoulos 2011; Sidiropoulos et al. 2017), sparse tensors are
often found, where most of its entries are zeros.

High-performance computing (HPC) now enters the era
of extreme heterogeneity. As many general purpose accelera-
tors, such as Graphics Processing Unit (GPUs), Intel Xeon
Phi, and Field-Programmable Gate Array (FPGAs), and
domain-specific architectures, such as near-memory, thread
migratory architecture Emu Hein et al. (2018) and Google
Tensor processing unit (TPU) Jouppi et al. (2017), emerge,
it is natural to ask whether the critical sparse-tensor based
algorithms can be efficiently executed on these platforms,
with their non-regular parallelism to be effectively exploited.
However, the lack of a concrete, comprehensive, and easy
to use sparse tensor algorithm benchmark suite prevents us
from answering this question easily.

In this paper, we fill this gap by proposing a PArallel
Sparse Tensor Algorithm benchmark suite called PASTA.
PASTA incorporates various sparse tensor algorithms and
operations, serving as a handy tool for application develop-
ers to assess different platforms, in terms of their tensor pro-
cessing capability. Consisting state-of-the-art sequential and
parallel versions, while adopting the most popular sparse
tensor format COO, PASTA can also supply a fair baseline
for evaluating performance improvement brought by new
sparse tensor methods. Application developers seeking to
exploit tensor sparsity for further performance speedup may
also find it useful as a good reference.

This paper makes the following contributions:

 * Jiajia Li
 jiajia.li@pnnl.gov

 Yuchen Ma
 m13253@hotmail.com

 Xiaolong Wu
 wu1565@purdue.edu

 Ang Li
 ang.li@pnnl.gov

1 Pacific Northwest National Laboratory, 902 Battelle Blvd,
Richland, WA 99354, USA

2 Hangzhou Dianzi University, Hangzhou 310005, China
3 Purdue University, West Lafayette, IN 47907, USA

http://orcid.org/0000-0003-1270-4147
https://gitlab.com/tensorworld/pasta
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-019-00012-w&domain=pdf

112 J. Li et al.

1 3

• We show the importance of sparse tensor operations and
tensor methods in diverse tensor applications (Sect. 3)

• We extract 12 computational sparse tensor operations as
PASTA workloads: Tensor Element-Wise operations–
Tew-eq (addition/subtraction/multiplication/division)
and Tew (addition/subtraction/multiplication), Tensor-
Scalar operations–TS addition/multiplication, Tensor-
Times-Vector operation (TTv), Tensor-Times-Matrix
operation (TTm), and Matricized Tensor Times Khatri-
Rao Product (mTTkrP) (Sect. 4)

• We implement sequential and multicore parallel algo-
rithms for all workloads, based on the most popular coor-
dinate (COO) sparse tensor format. Our experiments and
analysis show the usefulness of PASTA on single- and
multi-core CPUs (Sects. 5, 6, 7)

2 Motivation

This work is motivated by first demonstrating the challenges
of sparse tensor algorithms and then illustrating that existed
libraries or toolsets cannot meet the requirements of a bench-
mark suite from diversity, timeliness, research support, and
dataset four aspects.

2.1 Challenges of sparse tensor algorithms

We summarize the challenges of sparse tensor algorithms
into five points:

The curse of dimensionality refers to the issue that the num-
ber of entries of an intermediate or output tensor can grow
exponentially with the tensor order, resulting in significant
computational and storage overheads. Even when the tensor is
structurally sparse, meaning it consists mostly of zero entries,
the execution time of one important tensor method, CANDE-
COMP/PARAFAC decomposition introduced in Sect. 3.1, gen-
erally grows quadratically with the number of non-zeros (Bader
and Kolda 2007; Bader et al. 2017). And there is an increasing
interest in applications involving a large number of dimensions
De Lathauwer et al. (2017), Lebedev et al. (2014), Novikov
et al. (2015), which makes this problem more difficult.

Mode orientation refers to the issue of a particular stor-
age format favoring the iteration of tensor modes in a cer-
tain sequence, which is of particular concern in the sparse
case. Since most methods of interest require more than
one sequence, being efficient for every sequence gener-
ally requires storing the tensor in multiple formats, thereby
trading extra memory for speed. A question arises, that is
whether one can achieve both a neutral mode orientation and
compact storage which also helps reduce memory footprint.

Tensor transformation(s) refers to a common pattern for
attaining speed in some implementations of tensor algorithms,
which starts by reorganizing the tensor into a matrix and then

perform equivalent matrix operations using highly tuned lin-
ear algebra libraries. Done naïvely, this approach appears to
require an extra memory copy, which can even come to domi-
nate the overall running time. We observe instances in which
such a copy consumes 70% or more of the total running time
(in the case of a TTm operation).

Irregularity refers to two issues. The first is that a tensor
may have dimension sizes that vary widely; the second is
that a sparse tensor may have an irregular non-zero pattern,
resulting in irregular memory references.

Arbitrary tensor orders generate various implementa-
tions of a tensor operation. For the sake of performance,
programmers usually implement and optimize third-order
tensor algorithms apart from higher-order ones. These
implementations makes no one optimization method can fit
all variations, e.g., different number of loops and diverse
memory access behavior.

These challenges bring non-trivial computational and
storage overheads, and some of them are even harder to over-
come than their counterparts in classical linear algebra. To
overcome these challenges, it is necessary to build a sparse
tensor benchmark suite to evaluate diverse algorithms and
computer systems.

2.2 Requirements for a benchmark suite

By surveying some benchmark suites (Bienia et al. 2008; Che
et al. 2009; Dixit 1991; KleinOsowski and Lilja 2002; Lee
et al. 1997; Poovey et al. 2009; Wang et al. 2014a) we present
the following four requirements for a benchmark suite.

Diversity. We analyze diversity from two aspects: application
diversity and platform diversity. Application diversity means a
benchmark suite should represent a broad and representative
applications. For example, EEMBC benchmark suite Poovey
et al. (2009) is developed for autonomous driving, mobile imag-
ing, the Internet of Things, mobile devices, and many other
applications; PARSEC benchmark suite Bienia et al. (2008)
covers computer vision, video encoding, financial analytics,
animation physics and image processing, etc.. Sparse tensor
methods have a broad application domains (refer to Sect. 3.2),
the workloads in our benchmark suite also need to represent the
diversity of these domains. Platform diversity is that a bench-
mark suite should support different computer architectures and
platforms, especially the emerging ones. For example, SPEC
benchmarks Dixit (1991) supports scientific applications on
diverse platforms: CPUs, distributed platforms, accelerators,
web servers, cloud platforms, etc. A recent Tartan benchmark
Li et al. (2018b) collected kernels from machine learning, data
analysis, high performance simulation, molecular dynamics and
so on and optimized them on multi-GPU platforms.

Timeliness. A benchmark suite should be kept updated by
including the state-of-the-art data structures, algorithms, and
optimization techniques. Especially for sparse data, the data

113PASTA: a parallel sparse tensor algorithm benchmark suite

1 3

structure is closely relevant to the performance of its algorithm.
This phenomenon has been observed from sparse matrices,
where different sparse formats behave quite differently on
diverse input matrices (Li et al. 2013; Sedaghati et al. 2015; Su
and Keutzer 2012; Zhao et al. 2018). As mentioned in the work
(Bienia et al. 2008), an outdated algorithm cannot well reflect
the current status of an application. This can easily mislead
the researchers using this benchmark suite to test a machine’s
behavior. As the computer architectures keep evolving, an
under-optimized code, e.g., sequential benchmark programs for
a multicore machine, cannot be a fair measurement. Optimized
implementations for architectures have to be taken account.

Research support. Research support also includes two
aspects: support of domain research and benchmarked
workload research. The former requires a benchmark suite
to be compatible, while the latter requires it to be extensible.
Since some workloads are still open research problems in an
application domain, a compatible workload should be able
to do easy comparison with other research work by support-
ing unified input/output format and interface to high-level
applications. The workload research mainly develops its
high performance, power or other efficiency. An extensible
workload is easy to be assembled with new data structures,
algorithms, and optimization techniques.

Dataset. Data becomes essential to data-intensive appli-
cations and their workloads which widely exist in real
world. Traditionally, two types of dataset are considered:
synthetic and real data. Real data comes directly from real-
world applications, which can best reflects the application
features. However, due to some factors such as information
protection, sensitive data, etc., researchers are usually short
of data. Thus, synthetic data are generated according to some
regulations and scenarios from applications.

2.3 PASTA in need

Some tensor libraries or toolsets have existed for sparse
tensor algorithms. The most popular libraries are Tensor
Toolbox (Bader et al. 2017) and TensorLab (Vervliet et al.
2016). They are both implemented using MATLAB. The
main shortcoming is that these two libraries are hard to be
implemented on various platforms, such as multicore CPUs
and GPUs, which violates the platform diversity require-
ment. Besides, their performance efficiency is low because
of MATLAB environment. Recently, many other highly per-
formance efficient libraries emerge, such as SPLATT (Smith
et al. 2015), Cyclops Tensor Framework (CTF) (Solomonik
and Hoefler 2015), DFacTo (Choi and Vishwanathan 2014),
GigaTensor (Kang et al. 2012), HyperTensor (Kaya and Uçar
2015), GenTen (Phipps and Kolda 2018), ParTI (Li et al.
2018a), to name a few. However, these libraries are specific
to one or two particular sparse tensor operations, this vio-
lates the application diversity requirement. Beyond these,

the requirements of timeliness, research support, and dataset
are barely met by these libraries. Our PASTA is proposed to
meet all the requirements from our continuous effort.

3 Tensor methods and applications

This section describes the broad applications of tensors
methods in diverse domains, along with the tensor methods
and their computational operations. The summarized form
is presented in Table 1.

3.1 Tensor methods

In this section, we summarize tensor methods in three cat-
egories: tensor decompositions, tensor network models,
and tensor regression. Though tensor network models also
belong to tensor decomposition methods, because of their
network format and more emphasizing on high-order ten-
sors, we discuss them separately.

3.1.1 Tensor decompositions

We introduce three low-rank tensor decompositions which
have applications for sparse data.

CPd . The CANDECOMP/PARAFAC decomposition
(CPd) was first introduced in 1927 by Hitchcock (Hitchcock
1927), and independently introduced by others (Carroll and
Chang 1970; Harshman 1970). CPd decomposes an Nth-
order tensor into a sum of component rank-one tensors with
different weights (Kolda and Bader 2009). In a low-rank
approximation, a tensor rank R is chosen to be a small num-
ber less than 100. From a data science standpoint, the results

Table 1 The relationship between tensor domains, tensor methods,
and workloads

Domains Tensor methods Workloads

Machine learning CPd, TPm, tucker,
TT, hTucker

TS, mTTkrP, TTv, TTm,
TTT

Healthcare analytics CPd mTTkrP

Social network analysis CPd, tucker TTm

Quantum chemistry CPd, tucker TS, Tew, TTm, mTTkrP,
TTT

Brain signal analysis CPd mTTkrP

Personalized web search CPd, tucker mTTkrP, TTm

Recommendation
systems

CPd, tucker mTTkrP, TTm

Signal processing CPd mTTkrP

Direct numerical simula-
tion

Tucker TTm

Power grid CPd, tucker mTTkrP, TTm

114 J. Li et al.

1 3

can be interpreted by viewing the tensor as being composed
of R latent rank-1 factors. CPd has proven both scalable and
effective in many applications in Sect. 3.2.

Other variants of CPd exist by restructuring of the factors
or their constraints to accommodate diverse situations, such
as INDSCAL (Carroll and Chang 1970), CANDELINC (Car-
roll et al. 1980), PARAFAC2 (Harshman 1972; Perros et al.
2017), and DEDICOM (Harshman 1970). Many CPd meth-
ods have been proposed in a broad area of research, such as
Alternating Least Squares (ALS) based methods (Harshman
1970; Karlsson et al. 2016; Kaya and Uçar 2015; Kolda and
Bader 2009), block coordinate descent (BCD) based methods
(Li et al. 2015; Mohlenkamp 2010), Gradient Descent based
methods (Beutel et al. 2013; Ravindran et al. 2014; Smith
et al. 2016; Sorber et al. 2013), quasi-Newton and Nonlinear
Least Squares (NLS) based methods (Chi and Kolda 2012;
Hansen et al. 2015; Ishteva et al. 2011; Savas and Lim 2010;
Sorber et al. 2013; Tomasi and Bro 2006; Wright and Noce-
dal 1999), alternating optimization (AO) with the alternat-
ing direction method of multipliers (ADMM) based meth-
ods (Boyd et al. 2011; Smith et al. 2017a), exact line search
based methods (Rajih and Comon 2005; Sorber et al. 2016),
and randomized/sketching methods (Battaglino et al. 2018;
Cheng et al. 2016; Papalexakis et al. 2012; Reynolds et al.
2016; Song et al. 2016; Vervliet and Lathauwer 2016). Sparse
CPd comes from two aspects: the sparse tensor from appli-
cations (Bader and Kolda 2007; Chi and Kolda 2012; Choi
et al. 2018; Choi and Vishwanathan 2014; Kang et al. 2012;
Kaya and Uçar 2018; Kolda and Bader 2009; Li 2018; Li
et al. 2017, 2018c; Liu et al. 2017; Phipps and Kolda 2018;
Ravindran et al. 2014; Sidiropoulos et al. 2017; Smith and
Karypis 2016; Smith et al. 2017c, 2015) and the constrained
sparse factors from some CPd models (Henderson et al. 2017;
Ho et al. 2014b; Papalexakis and Sidiropoulos 2011).

The computational bottleneck of CPd is the matriced ten-
sor-times-Khatri-Rao product (mTTkrP) (will be described
in Sect. 4.6).

Tucker. Tucker decomposition, first introduced by Led-
yard R. Tucker Tucker (1966), provides a more general
decomposition. It decomposes an Nth-order tensor into
a small-sized Nth-order core tensor along with N factor
matrices that are all orthogonal. The core tensor models a
potentially complex pattern of mutual interaction between
tensor modes. Its size is determined by N ranks which can
be chosen according to the work (Kiers and der Kinderen
2003). In a low-rank approximation, the rank sizes are usu-
ally less than 100.

Some variants of Tucker decomposition are PARA TUC
K2 (Harshman and Lundy 1996), lossy Tucker decompo-
sition (Zhou et al. 2014), and so on. Methods for Tucker
decomposition include higher-order SVD (HOSVD) (De
Lathauwer et al. 2000a), truncated HOSVD (De Lathau-
wer et al. 2000a), Alternating Least Squares (ALS) based

methods (Kapteyn et al. 1986), the popular higher-order
orthogonal iteration (HOOI) (De Lathauwer et al. 2000b,
Newton–Grassmann optimization (Eldén and Savas 2009.
Sparse Tucker also comes from two aspects: the sparse ten-
sor from applications (Li 2018; Liu et al. 2017; Ma et al.
2018; Smith and Karypis 2017), and the constrained sparse
factors.

The computational tensor kernel of Tucker decomposi-
tion is the Tensor-Times-Matrix operation (TTm) (will be
described in Sect. 4.4).

TPm . Tensor power method (Anandkumar et al. 2014;
De Lathauwer et al. 2000b), is an approach for orthogo-
nal tensor decomposition, which decomposes a symmetric
tensor into a collection of orthogonal vectors with corre-
sponding positive scalars as weights. Some variations have
been proposed (Anandkumar et al. 2014; Yu et al. 2017).
When the tensor is sparse, we need to use sparse method
correspondingly.

The computational tensor kernel of tensor power
method is the Tensor-Times-Vector operation (TTv) (will be
described in Sect. 4.3).

3.1.2 Tensor network models

CPd and Tucker decompositions assume a model in which
all modes interact with all the other modes, which ignores
the situations where modes could interact in subgroups or
hierarchies. Tensor network models decompose a tensor in
tensor networks which expose more localized relationships
between modes. Tensor networks have flexibility in mod-
eling and compute/storage efficiency especially for high-
order tensors.

TT . Tensor Train (TT) decomposition, also called
Matrix Product State (MPS) in quantum physics commu-
nity (Cichocki et al. 2016; Grasedyck et al. 2013), was first
proposed by Ivan Oseledets in the work (Oseledets 2011).
TT decomposes a high-order tensor into a linear sequence of
tensor-times-tensor/matrix products. The contraction modes
are in small rank sizes in low-rank approximation.

The variants of TT include tensor chain (TC), tensor net-
works with cycles: Projected Entangled Pair States (PEPS)
(Orús 2014), Projected Entangled Pair Operators (PEPO)
(Evenbly and Vidal 2009), Honey–Comb Lattice (HCL)
(Giovannetti et al. 2008), Multi-scale Entanglement Renor-
malization Ansatz (MERA) (Orús 2014).

The computational tensor kernels of TT are the Tensor-
Scalar (TS), Tensor-Times-Matrix (TTm) and Tensor-Times-
Tensor (TTT) operations. TS and TTm will be described in
Sects. 4.2 and 4.4 respectively, and TTT will be one of our
future work.

hTucker. Hierarchical Tucker (hTucker) decomposition,
also called hierarchical tensor representation, was introduced
in Cichocki et al. (2016), Grasedyck (2010), Grasedyck et al.

115PASTA: a parallel sparse tensor algorithm benchmark suite

1 3

(2013), Hackbusch and Kühn (2009). hTucker recursively
splits the set of tensor modes, resulting a binary tree contain-
ing a subset of modes at each node. This binary tree is called
dimension tree, and the modes from different nodes do not
overlap. TT decomposition is a special case of hTucker
while the dimension tree is linear and extremely unbalanced.

Variants of hTucker include the Tree Tensor Network
States (TTNS) model (Nakatani and Chan 2013), multi-
layer multi-configuration time-dependent Hartree method
(ML-MCTDH) (Wang and Thoss 2003). Sparsity has been
considered by Perros et al. (2015) in the work.

The computational tensor kernels of hTucker are the
Tensor-Scalar (TS), Tensor-Times-Matrix (TTm) and Ten-
sor-Times-Tensor (TTT) operations. TS and TTm will be
described in Sects. 4.2 and 4.4 respectively, and TTT will be
one of our future work.

3.1.3 Tensor regression

Tensor regression is an extension of classical regression
model, but using tensors to represent input and covariates
data. Tensor regression approximates coefficient tensor with
a low-rank decomposition, thus tensor decomposition meth-
ods introduced above can be easily adopted here. Some ten-
sor regression methods have been proposed (Romera-Pare-
des et al. 2013; Signoretto et al. 2014; Wimalawarne et al.
2014; Yu and Liu 2016; Yu et al. 2017; Zhao et al. 2011;
Zhou et al. 2013).

3.2 Tensor applications

Tensor methods can be used in applications to expose the
inherent relationship in the observed data and to represent the
data in a more compressed way. This section does not keen to
give a thorough survey of tensor applications but emphasizes
on showing the broad application scenarios tensor methods
can be applied and useful in. Please refer to these surveys for
more complete tensor applications (Anandkumar et al. 2014;
Cichocki 2014; Cichocki et al. 2016, 2015; De Lathauwer
2008; Kolda and Bader 2009; Sidiropoulos et al. 2017).

3.2.1 Machine learning

The diversity needs of machine learning algorithms have pro-
moted the exploitation of various tensor-based decomposi-
tions, regressions, and techniques from this community. CPd,
Tucker and TT decompositions have been leveraged in the
context of neural networks (Hutchinson et al. 2013; Janzamin
et al. 2015; Lebedev et al. 2014; Novikov et al. 2018, 2015;
Setiawan et al. 2015; Socher et al. 2013; Yu et al. 2012, 2018),
with the weight matrix of a fully-connected layer or a convo-
lutional layer stored compressedly in a low-rank tensor, thus
reducing redundancies in the network parameterization. As

concerns improving theoretical aspects and understanding of
deep neural networks through tensors, Cohen et al. (2015)
analyzed the expressive power of deep architectures by draw-
ing analogies between shallow networks and the rank-1 CPd,
as well as between deep networks and the hTucker decom-
position. Novikov et al. applied TT in Google’s TensorFlow
(Abadi et al. 2015; Novikov et al. 2018), which expresses a
wide variety of algorithms as operators (graph nodes) that
communicate tensor objects through the graph’s edges. Other
Machine Learning applications include using TT to improve
Markov Random Field (MRF) inference problem (Novikov
et al. 2014) and extending standard Machine Learning algo-
rithms such as Support Vector Machines and Fisher discrimi-
nant analysis to handle tensor-based input (Tao et al. 2007).

3.2.2 Healthcare analytics

The work on tensor-based healthcare data analysis has been
driven by the need of improving the interpretability and
the robustness of underlying methods, with the goal that
healthcare professionals may eventually use consulting
tools based on these methods. As a result, recent work has
focused on modifying traditional tensor methods like CPd
by adding constraints that better describe the underlying
data and exploit domain knowledge. One particular focus
is handling sparsity, which is particularly important when
handling event-recording tensors describing healthcare data
(Ho et al. 2014c, a, b; Matsubara et al. 2014; Perros et al.
2015; Wang et al. 2015; Zhou et al. 2013).

3.2.3 Social network analysis

Some studies have been done on DBLP authorship data Papal-
exakis et al. (2013) by using dynamic/static tensor analysis
(include CPd, Tucker decompositions and their variants) to
demonstrate clustering (Kolda and Sun 2008; Sun et al. 2006),
find interesting events (or anomalies) in the users’ social activ-
ities (Papalexakis et al. 2012, 2015). Jiang et al. identified
patterns in human behavior through a dynamic tensor decom-
position of user interactions within a microblogging service
(Jiang et al. 2014). Sun et al. demonstrated a sampling-based
Tucker decomposition (Sun et al. 2009), to jointly model the
sender-recipient interaction and share content within business
networks. The work in Benson et al. (2015) utilizes tensors to
model higher-order structures, such as cycles or feed-forward
loops in a graph clustering framework.

3.2.4 Quantum chemistry

Tensors have a long history in quantum chemistry because
of the nature of high-dimensional data there (Khoromskaia
and Khoromskij 2018). Hartree–Fock (HF) is a method
of approximation for the energy of a quantum many-body

116 J. Li et al.

1 3

system and large-scale electronic structure calculations.
Koppl et al. proposed sparsity using local density fitting
in Hartree–Fock calculations, which heavily involves TTT
and TTm operations (Köppl and Werner 2016). Lewis et al.
introduced a clustered low-rank tensor format to exploit ele-
ment and rank sparsities (Lewis et al. 2016). Block sparsity
has been utilized in coupled-cluster singles and doubles
(CCSD) in the work (Calvin and Valeev 2016; Epifanovsky
et al. 2013; Kaliman and Krylov 2017; Manzer et al. 2017;
Peng et al. 2016). Scaled opposite spin second order Møller-
Plesset perturbation theory (SOS-MP2) method uses tensor
hypercontraction (ThC), approximating a electron Coulomb
repulsion integrals (ERI) tensor by decomposing into lower
order tensors, with sparsity (Song and Martínez 2016).

3.2.5 Data mining

Tensor decompositions have become a standard approach
in brain signal analysis due to multiple heterogeneous data
sources. Some recent methods have been surveyed in Cao
et al. (2015), Cichocki (2013). Electroencephalogram (EEG)
and fMRI data are treated as tensors and analyzed by differ-
ent tensor decompositions (e.g., CPd) to study the structure
of epileptic seizures (Acar et al. 2007, 2011a), better under-
stand the active brain regions and their behavior (Davidson
et al. 2013), (Latchoumane et al. 2012), do feature selection
(Cao et al. 2014), and model neuroimaging data (Mørup
et al. 2008). BrainQ is a widely available tensor dataset con-
sisting of a sparse tensor with (subject, brain-voxel, noun) as
dimensions and a matrix (noun, properties), which are meas-
ured from brain activity where individual subjects are shown
nouns. Factorizing this is known as a coupled factorization
(Acar et al. 2011b), and Papalexakis et al. demonstrated a
scalable method using random sampling (Papalexakis et al.
2014). On the supervised learning setting, Wang et al. used
fMRI data and adapted the Sparse Logistic Regression to
accept tensor input that consequently avoided the loss of
correlation information among different orders (Wang et al.
2014b).

Personalized web search tailors the results of a search
query for a particular user by utilizing the click history of
this user’s previous search results. Researchers constructed
tensors from (user, query, webpage) information and used
CPd (Kolda and Bader 2006) and Tucker decompositions
(Sun et al. 2005) to tackle this problem.

Recommendation systems have also found tensor meth-
ods effective to resolve overloaded tags. Some approaches
have been explored using CPd and Tucker decompositions
and their variants on collaborative filtering (Xu et al. 2006),
a tag-recommendation engine (Karatzoglou et al. 2010),
(Rendle et al. 2009), (Symeonidis et al. 2008), personalized
tags (Fang and Pan 2014), and sparse international relation-
ships (Schein et al. 2015).

3.2.6 Signal processing

There has been an extensive research from the Signal Pro-
cessing community, which examines theoretical aspects of
tensor methods (Jiang and Sidiropoulos 2004) such as iden-
tifiability, or improves existing decompositions (Bro et al.
1999; Sidiropoulos et al. 2000). A tutorial addressing sig-
nal processing applications can be found in Cichocki et al.
(2015). Please refer to the survey Sidiropoulos et al. (2017)
for more complete applications in signal processing.

3.2.7 Other areas

The usage of tensors and tensor decompositions as tools
facilitating the extraction of useful information out of com-
plex data is not limited to the categories mentioned above.
For example, Benson, et al. used Tucker decomposition to
compress scientific data obtained by Direct Numerical Simu-
lation (DNS) (Austin et al. 2016). Song et al. applied CPd
to forecast of the power demand and detect anomalies in
smart electrical grid (Song et al. 2017). A variant of Tucker
decomposition was used in AC optimal power flow in the
work (Oh 2016). TT was used in the hierarchical uncertainty
quantification to reduce the computational cost of circuit
simulation (Zhang et al. 2015). Electronic design automation
(EDA) problems employed CPd, Tucker, and TT decomposi-
tions to ease the suffer of the curse of dimensionality (Zhang
et al. 2017). Motion control problems in the context of robot-
ics took TT into consider for its compressed representations
(Gorodetsky et al. 2008).

4 Benchmark workloads

This section we describe the workloads in PASTA, which
includes element-wise addition/subtraction/multiplication/
division, tensor-scalar, tensor-times-vector, tensor-times-
matrix, and tensor-times-matrix sequence operations. We
referred to the surveys (Anandkumar et al. 2014; Cichocki
2014; Cichocki et al. 2016, 2015; De Lathauwer 2008; Kolda
and Bader 2009; Sidiropoulos et al. 2017) and papers Li
(2018) for these definitions.

A tensor, abstractly defined, is a function of three or
more indices. In computational data analytics, one may
regard a tensor as a multidimensional array, where each
of its dimensions is also called a mode and the number of
dimensions or modes is its order. For example, a scalar is
a tensor of order 0; a vector is a tensor of order 1; and a
matrix, order 2, with two modes (its rows and its columns).
Notationally, we represent tensors as calligraphic capital let-
ters, e.g., X ∈ ℝ

I×J×K ; matrices by boldface capital letters,
e.g., � ∈ ℝ

I×J ; vectors by boldface lowercase letters, e.g.,
� ∈ ℝ

I ; and scalars by lowercase letters, such as xijk for the

117PASTA: a parallel sparse tensor algorithm benchmark suite

1 3

(i, j, k) element of a third-order tensor X . A slice is a two-
dimensional cross-section of a tensor, achieved by fixing
all mode indices but two, e.g., �∶∶k = X(∶, ∶, k) in MAT-
LAB notation. A fiber is a vector extracted from a tensor
along some mode, selected by fixing all indices but one,
e.g., �∶jk = X(∶, j, k).

A tensor can be reshaped to a matrix, which is called
matricization. For a tensor X ∈ ℝ

I1×⋯×In×⋯×IN , its matri-
cized tensor along with mode-n is �(n) ∈ ℝ

I1⋯In−1In+1⋯IN×In .
A matrix can be also reshaped to a tensor by splitting one
mode into two or more.

4.1 Tensor element‑wise operations

Tensor element-wise (Tew) operations include addition, sub-
traction, multiplication, and division operations, which are
applied to every corresponding pair of elements from two
tensor objects if they have the same order and shape (dimen-
sion sizes). For example, element-wise tensor addition of
X,Y ∈ ℝ

I1×⋯×IN is Z = X. +Y , where

Similarly for element-wise tensor subtraction Z = X. −Y ,
multiplication Z = X. ∗ Y , and division Z = X.∕Y . When
the two input tensors have exactly the same non-zero distri-
bution, element-wise operations can be easily implemented
by iterating all non-zeros of the two sparse tensors and doing
the corresponding operation for each element. The tricky
cases are when the non-zero patterns of tensors X and Y are
different and even worse they could be in different shapes.
For these two cases, we cannot easily predict the output ten-
sor Z ’s storage space before computation. These two cases
we use dynamic vectors and an optimization strategy for
parallel algorithms.

4.2 Tensor‑scalar operations

A Tensor-Scalar (TS) operation is the addition (TSA) /sub-
traction (TSS) /multiplication (TSm) /division (TSd) of a ten-
sor X ∈ ℝ

I1×IN with a scalar s ∈ ℝ for every non-zero entry.
For example, the TSm operation, denoted by Y = X × s , is
defined as

Since Y = X × s is the same with Y = X∕s−1 and Y = X + s
is the same with Y = X − (−s) , so implementing TSA and
TSm is enough.

4.3 Tensor‑times‑vector operation

The tensor-times-vector (TTv) in mode n is the multiplica-
tion of a tensor X ∈ ℝ

I1×⋯×In×⋯×IN with a vector � ∈ ℝ
In ,

along mode n, and is denoted by Y = X ×n � . This results

(1)zi1…iN
= xi1…iN

+ yi1…iN
.

(2)yi1…in−1rin+1…iN
= s × xi1…in−1inin+1…iN

.

in a I1 ×⋯ × In−1 × In+1 ×⋯ × IN tensor which has one less
dimension. Its operation is defined as

4.4 Tensor‑times‑matrix operation

The tensor-times-matrix (TTm) in mode n, also known
as the n-mode product, is the multiplication of a ten-
sor X ∈ ℝ

I1×⋯×In×⋯×IN with a matrix � ∈ ℝ
In×R , along

mode n, and is denoted by Y = X ×n �.1 This results in a
I1 ×⋯ × In−1 × R × In+1 ×⋯ × IN tensor, and its operation
is defined as

TTm is a special case of tensor contraction. We consider TTm
specifically because of its more common usage in tensor
decompositions for data analysis, such as the Tucker decom-
position. Also, note that R is typically much smaller than In
in such decompositions, and typically R < 100.

TTm is also equivalent to a matrix-matrix multiplication
in the following form:

Therefore, one feasible way to implement an TTm is to first
matricize the tensor, then use an optimized matrix-matrix
multiplication to compute the matricized output Y , and,
finally, tensorize to obtain Y . However it has the tensor-
matrix transformation as the extra overhead and does not
work well for sparse tensors.

4.5 Kronecker and Khatri‑Rao products

Kronecker and Khatri-Rao products are both matrix prod-
ucts. The Kronecker product generalizes the outer product
for matrices. Given � ∈ ℝ

I×J and � ∈ ℝ
K×L , the Kronecker

product �⊗ � ∈ ℝ
IK×JL is

The Khatri-Rao product is a “matching column-wise” Kro-
necker product between two matrices with the same number

(3)yi1…in−1in+1…iN
=

In∑
in=1

xi1…in−1inin+1…iN
vin .

(4)yi1…in−1rin+1…iN
=

In∑
in=1

xi1…in−1inin+1…iN
uinr.

(5)Y = X ×n � ⇔ �(n) = ��(n).

(6)�⊗ � =

⎡⎢⎢⎢⎣

u11� u12� ⋯ u1J�

u21� u22� ⋯ u2J�

⋮ ⋮ ⋱ ⋮

uI1� uI2� ⋯ uIJ�

⎤⎥⎥⎥⎦

1 Our convention for the dimensions of � differs from that of Kolda
and Bader’s definition (Kolda and Bader 2009). In particular, we
transpose the matrix modes � , which leads to a more efficient TTm
under the row-major storage convention of the C language.

118 J. Li et al.

1 3

of columns. Given matrices � ∈ ℝ
I×R and � ∈ ℝ

J×R , their
Khatri-Rao product is denoted by �⊙ � ∈ ℝ

(IJ)×R,

where �r and �r , r = 1,… ,R , are columns of � and �.
Kronecker and Khatri-Rao products appear frequently in

tensor decompositions that are formulated as matrix opera-
tions. However, such formulations typically also require
redundant computation or extra storage to hold matrix oper-
ands, so in practice these operations are tend to be not imple-
mented directly but rather integrated into tensor operations.

4.6 Tensor‑times‑matrix sequence operation

There are two types of tensor-times-matrix sequence opera-
tions, TTm chain and mTTkrP. TTm chain is a sequence of
TTm operations with one’s output as the next one’s input. An
alternative way to think TTm chain is a matriced tensor times
the Kronecker product of matrices. mTTkrP, matricized ten-
sor times Khatri-Rao product, is a matricized tensor times
the Khatri-Rao product of matrices. For an Nth-order tensor
X and given matrices �(1),… ,�(N) , the mode-n mTTkrP is

where �(n) is the mode-n matricization of tensor X , ⊙ is the
Khatri-Rao product.

4.7 Others

We also provide the transformation between tensors and
matrices and some sorting algorithms for sparse tensors.

(7)�⊙ � =
[
�1 ⊗ �1, �2 ⊗ �2,… , �R ⊗ �R

]
,

(8)
�̃

(n) =�(n)

(
⊙

i≠n

i=1,…,N
�i

)

=�(n)

(
�

(N)
⊙⋯⊙ �

(n+1)
⊙ �

(n−1)
⊙⋯⊙ �

(1)
)
,

5 Data structures, algorithms,
and implementations

5.1 Data structures

Since COO Kolda and Bader (2009) is the simplest and
arguably de facto standard way to store a sparse tensor, and
it is mode generic, we only support COO format in this
work. Other state-of-the-art formats (Li et al. 2018c; Nisa
et al. 2019; Smith and Karypis 2015) will be included as our
future work. We use inds and val to represent the indices and
values of the non-zeros of a sparse tensor respectively. val
is a size-M array of floating-point numbers, inds is a size-M
array of integer tuples. Figure 1 shows a 4 × 4 × 3 sparse
tensor in COO format. The indices of each mode are repre-
sented as i, j, and k. Observe that some indices in inds repeat,
for example, entries (1, 0, 0) and (1, 0, 2) have the same i
and j indices. This redundancy suggests some compression
of this indexing metadata should be possible, as proposed in
some work (Liu et al. 2017; Smith et al. 2015).

5.2 Algorithms

This section describes the sequential algorithms for the
workloads in Sect. 4. All algorithms directly operates on
the input sparse tensor(s) without explicit tensor-matrix
transformation.

Fig. 1 COO format of an exam-
ple 4 × 4 × 3 tensor

i j k val

0 0 0 1

0 1 0 2

1 0 0 3

1 0 2 4

2 1 0 5

2 2 2 6

3 0 1

3 3 2

7

8

119PASTA: a parallel sparse tensor algorithm benchmark suite

1 3

5.2.1 Tew

As mentioned in Sect. 4.1, Tew operation has two cases: one
is between two tensors in exactly the same shape and non-
zero distribution; the other only requires the two tensors are
in the same tensor order.

For the first case, we show Tew addition as an example
in Algorithm 1. The output tensor has the same shape and
non-zero distribution with the two input tensors, thus it can
be pre-allocated. Then the calculation simply does addition
by looping all non-zeros.

For the second case, its algorithm is shown in Algo-
rithm 2. The output tensor size is set by the maximum
dimension size of the two input tensors. Since we do not
know the number of the output non-zeros, we cannot pre-
allocate the space of the output tensor Z but using dynamic
allocation to append non-zeros. First, we need to sort tensors
X and Y in the order of mode 1 ≻ 2 ≻ 3 , then compare the
indices in lexicographical order for each non-zero pair-to-
pair, e.g., indices (2, 1, 1) > (1, 1, 2) > (1, 1, 1) . If two indices
are the equal, then we append the indices and the sum of the
two non-zero values to the output Z . Otherwise, we append
the smaller indices and its corresponding value to Z . Only
if we run out of non-zeros in either X or Y , we append the
rest indices and values of the other one to Z .

120 J. Li et al.

1 3

5.2.2 TS

TS algorithm is simple. The output Y can be pre-allocated
and computed by looping all non-zeros. Algorithm 3 shows
the TSm algorithm.

5.2.3 TTv

TTv algorithm in mode-n is shown in Algorithm 4. It first
pre-compute the number of fibers MF of input tensor X and

the beginning positions of each fiber. Then we can pre-allo-
cate the output tensor Y with MF , because this product does
not influence the non-zero layout for I and J modes. The

algorithm loops all the fibers of X , and a reduction happens
for all non-zeros in each fiber.

121PASTA: a parallel sparse tensor algorithm benchmark suite

1 3

5.2.4 TTm

TTm algorithm is illustrated in Algorithm 5. Similarly to
TTv algorithm, we obtain the number of fibers MF and the
beginning positions of each fiber then MF × R space are allo-
cated for the output tensor Y . The algorithm loops all the
MF fibers and does a reduction between sized-R vectors.
This TTm algorithm directly operates on the input sparse
tensor by avoiding tensor transformation. The explanation
of Algorithm 5 can be found in the work Li et al. (2016),
Ma et al. (2018).

5.2.5 mTTkrP

mTTkrP algorithm, well studied in recent work (Li et al.
2019; Nisa et al. 2019; Smith et al. 2015), is shown in Algo-
rithm 6, the output matrix of which is initialized before and
only needs to be updated. This algorithm loops all non-zeros
of the tensor X and times the corresponding two matrix vec-
tors, to update the designated output matrix vector. Readers

122 J. Li et al.

1 3

can refer more details of this algorithm in Bader and Kolda
(2007).

According to the above algorithms, we compute the stor-
age, the number of floating-point operations (Flops), the
amount of memory access in bytes, and the arithmetic inten-
sity (the ratio of #Flops/#Bytes) in Table 2. For simplicity,
we use a cubical third-order sparse tensor X ∈ ℝ

I×I×I with
M non-zeros and MF fibers as an example. Because of the
irregular access pattern of sparse tensors, the memory access
does not consider the cache effect. All workloads have arith-
metic intensity less than 1, thus it is hard to easily achieve
good performance on common architectures. While mTTkrP
has the most Flops and memory access, its arithmetic inten-
sity is smaller than TTm, which it ∼ 1∕2 . Tew and TS have
the smallest arithmetic intensity and the largest storage due
to the output tensor. Despite of different algorithm behavior,
these algorithms are generally considered memory intensive,
which demonstrates the emphasis of our PASTA.

5.3 Multicore implementations

Some workloads are easy to parallelize. We parallelize the
loop of all non-zeros in Tew-eq (Algorithm 1) and TS (Algo-
rithm 3). For TTv (Algorithm 4) and TTm (Algorithm 5), the
loop of fibers is parallelized because each fiber computation
is independent.

Tew (Algorithm 2) is difficult to be parallelized because
of its dynamic append operations and no pre-allocation
available. We partition the two tensors in such a way that
there is no overlap between their indices, then we run Tew
algorithm locally for a sub-tensor in each thread and append
the results to a local output buffer. The partitioning first split
one of the two tensors (say X) by slices and meanwhile tend
to evenly distribute its non-zeros. This makes sure that all
non-zeros of a slice cannot be split into two partitions. Then
the partitioning of the other tensor (say Y) is according to
this slice partitioning strategy. In this case, we assure every
partition does not overlap with each other, thus they can
independently computed in parallel.

We parallelize the loop of all non-zeros of mTTkrP (Algo-
rithm 6) as well, but Line 4 may have data race by writing
into the same location of �̃ . We implemented two solutions:
(1) use atomics to protect the correctness, but the perfor-
mance suffers much; (2) employ privatization approach to
allocate a thread-local buffer. The data is first written to this
buffer by each thread privately, then a global reduction for
the buffers is used to get the final results. In this case, we can
generally get better performance than using atomics.

Table 2 The analysis of data
storage and their algorithms
for third-order cubical tensors
(X ∈ ℝ

I×I×I)

We consider all input tensors with M nonzero entries and M
F
 fibers, I ≪ M

F
≪ M . The indices use 32 bits,

and values are single-precision floating-point numbers with 32 bits

Workloads Storage (bytes) Work (flops) Memory access (bytes) Arithmetic
intensity
(AI)

Tew 48M M 36M 1 / 36
TS 32M M 32M 1 / 32
TTv (16M + 12M

F
) 2M (12M + 20M

F
) ∼ 1∕6

TTm (16M + 16M
F
R + 4IR) 2MR 4MR + 8M + 12M

F
R + 8M

F
∼ 1∕2

mTTkrP (16M + 12IR) 3MR 12MR + 16M ∼ 1∕4

Table 3 Description of sparse tensors

Tensors Order Dimensions #Non-zeros Density

vast 3 165K × 11K × 2 26M 6.9 × 10
−3

nell2 3 12K × 9K × 29K 77M 2.4 × 10
−5

choa 3 712K × 10K × 767 27M 5.0 × 10
−6

darpa 3 22K × 22K × 24M 28M 2.4 × 10
−9

fb-m 3 23M × 23M × 166 100M 1.1 × 10
−9

fb-s 3 39M × 39M × 532 140M 1.7 × 10
−10

deli 3 533K × 17M × 2.5M 140M 6.1 × 10
−12

nell1 3 2.9M × 2.1M × 25M 144M 9.1 × 10
−13

crime 4 6K × 24 × 77 × 32 5M 1.5 × 10
−2

nips 4 2K × 3K × 14K × 17 3M 1.8 × 10
−6

enron 4 6K × 6K × 244K × 1K 54M 5.5 × 10
−9

flickr4d 4 320K × 28M × 1.6M × 731 113M 1.1 × 10
−14

deli4d 4 533K × 17M × 2.5M × 1K 140M 4.3 × 10
−15

Ti
m

e
(s

ec
)

0.00

0.03

0.06

0.09

0.12

0.15
omp

seq

deli4denronnipscrimenell1delifb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

0.005
0.001

0.002
0.001

Fig. 2 Tew-eq-addition for sparse tensors in the same shape and non-
zero pattern

123PASTA: a parallel sparse tensor algorithm benchmark suite

1 3

For these parallel implementations, we have not consid-
ered the NUMA effect, which will be another piece of our
future work.

6 Dataset

PASTA now only considers real-world data as input. The
sparse tensors derived from real-world applications, that
appear in Table 3, ordered by decreasing non-zero density
separately for third- and fourth-order tensors. Most of these
tensors are included in The Formidable Repository of Open
Sparse Tensors and Tools (FROSTT) dataset (Refer to the
details in Smith et al. 2017b). The darpa (source IP-desti-
nation IP-time triples), fb-m, and fb-s (short for “freebase-
music” and “freebase-sampled”, entity-entity-relation tri-
ples) are from the dataset of HaTen2 (Jeon et al. 2015), and
choa is built from electronic health records (EHRs) of pedi-
atric patients at Children’s Healthcare of Atlanta (CHOA)
(Perros et al. 2017). These tensors from different applica-
tions have diverse nonzero distribution features.

7 Experiments

We tested these schemes experimentally on a Linux-based
Intel Xeon E5-2698 v3 multicore server platform with 32
physical cores distributed on two sockets, each with 2.3 GHz
frequency. The processor microarchitecture is Haswell,

having 32 KiB L1 data cache and 128 GiB memory. The
code artifact is written in the C language using OpenMP par-
allelization, and was compiled using icc 18.0.1. All experi-
ments use 32 threads for parallel code except being pointed
out otherwise. The execution time are all averaged by five
runs. For TTm and mTTkrP, we set the rank R = 16.

We demonstrate the sequential and multicore parallel
performance for every workload on the dataset (Table 3).

7.1 Tew

Figures 2 and 3 show the execution time of the two cases
of Tew addition (Algorithm 1 and 2): in the same non-zero
pattern and only in the same tensor order, on all third- and
fourth-order tensors. We use the same tensor for the two
input for Tew-eq and Tew to better show the algorithm
effect. We observe for both cases, parallel Tew outper-
forms sequential Tew. However, the speedup of Tew-eq is
3.64 − 5.18× , while the speedup of Tew is much smaller,
which is 1.13 − 1.70× . This is because: (1) the parallel strat-
egy of Tew could have a lot more load imbalance than Tew-
eq’s even non-zero parallelization; (2) some tensors cannot
fully use all 32 threads due to the slice partitioning (a heavy
slice cannot be further partitioned in Algorithm 2). Besides,
due to the dynamic append operation, the sequential Tew
is tens of times slower than sequential Tew-eq. From our
experiments, Tew subtraction, multiplication, and division
behave very similar to Tew addition in execution time.

Ti
m

e
(s

ec
)

0

2

4

6

8

10
omp

seq

deli4denronnipscrimenell1delifb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Fig. 3 Tew-addition for sparse tensors in the same order

Ti
m

e
(s

ec
)

0.00

0.01

0.02

0.03

0.04

0.05

0.06
omp

seq

deli4denronnipscrimenell1delifb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

0.002
0.0004

0.0007
0.0003

Fig. 4 TSm execution time
Ti

m
e

(s
ec

)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

omp

seq

deli4denronnipscrimenell1delifb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Fig. 5 TTv: the sum of execution time of all the modes

Ti
m

e
(s

ec
)

0

5

10

15

20

25
omp

seq

deli4denronnipscrimenell1delifb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Fig. 6 TTm: the sum of execution time of all the modes

124 J. Li et al.

1 3

7.2 TS

Figure 4 plots the sequential and parallel execution time
of TSm. Parallel TSm achieves 2.17 − 5.92× speedup over
sequential TSm, this is comparable to Tew-eq in Fig. 2. The
sequential TSm executes faster than the sequential Tew,
which verifies the analysis in Table 2 and that these two
algorithms are memory-bound. (Because they have the same
#Flops, compute-bound algorithms should have similar exe-
cution time.) From the experiments, the execution times of
sequential and parallel TSA are very close to TSm.

7.3 TTv

We illustrate sequential and parallel TTv time in Fig. 5. Par-
allel TTv outperforms sequential case by 5.21 − 12.45× , this
is much higher than the speedup of Tew-eq, Tew, and TSm.
This behavior again matches the analysis in Table 2 that
TTv has higher arithmetic intensity. Since higher arithmetic
intensity potentially generates less memory contention, thus
multicore parallelization could benefit more.

7.4 TTm

Figure 6 shows the sequential and parallel execution time
of TTm. The speedup of parallel TTm over sequential case
is 4.09 − 15.67× which is comparable with TTv ’s. This
also verifies the analysis that TTm has the highest arithme-
tic intensity. Sequential TTm is 4.91 − 11.11× slower than
sequential TTv, that shows the different behavior of timing
a dense vector versus a dense matrix.

7.5 mTTkrP

We use privatization technique for parallel mTTkrP, because
it performs better than atomics technique on most of ten-
sors. The execution time of sequential and parallel mTTkrP is
shown in Fig. 7, where the parallel case gains 0.77 − 9.49×
speedup. For tensor darpa, the only case parallel mTTkrP is
slower than sequential one because of its large thread-local
buffer which consumes a large portion of time to do reduc-
tion. The atomics parallel approach could be better in this
case, 7.93 versus 7.32 (sequential mTTkrP), but there is still
not speedup for this tensor. mTTkrP obtains smaller speedup
than TTm and TTv mainly because data race exists in the
output. Even we use privatization technique to avoid the data
race, the extra reduction still take nontrivial amount of time.

Figure 8 illustrates the performance of all workloads
in GFLOPS (Giga floating-point operations per second).
Generally, TSm and TTm obtain the highest performance
numbers. Tew and TSm have good spacial locality, while
TSm has a relatively higher arithmetic intensity. Irregular
memory access exists in TTv, TTm, and mTTkrP, while TTm
gets the largest arithmetic intensity. From our experiments
and analysis above, these relatively simple workloads can
well reflect some architecture characteristics. This can help
architecture designers and application users to evaluate com-
puter systems.

8 Conclusion

This work presents a sparse tensor algorithm benchmark
suite (PASTA) for single-core and multi-core CPUs, which
is the first sparse tensor benchmark to the best of our knowl-
edge. PASTA consists of Tew, TS, TTv, TTm, mTTkrP work-
loads to represent sparse tensor algorithms from different
tensor methods in a various application scenarios. Besides,
these workloads can reflect computer architecture features
differently from our analysis.

As a benchmark suite, PASTA already processes good
properties such as application and machine diversity, state-
of-the-art data structures, algorithms, and optimization
techniques included, compatibility for research support,
and real-world data set. Some future work should be done
to make PASTA more complete and robust: (1) more com-
puter systems support, such as GPUs, FPGAs, and distrib-
uted systems; (2) more workloads especially tensor-times-
tensor product (TTT); (3) more state-of-the-art sparse tensor
formats, e.g., hierarchical COO (HiCOO) and compressed
sparse fiber (CSF) format; (4) synthetic data generation for
more precise machine performance measurement. PASTA
is an open-source project and a continuously effort to keep
its timeliness.

Ti
m

e
(s

ec
)

0

10

20

30

40

50
omp

seq

deli4denronnipscrimenell1delifb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Fig. 7 mTTkrP: the sum of execution time of all the modes

Pe
rf

or
m

an
ce

 (G
FL

O
PS

)

0

5

10

15

20
MTTKRP

TTM

TTV

TSM

TEW-eq-add

deli4denronnipscrimenell1delifb-sfb-mdarpachoanell2vast

3-D Tensors 4-D Tensors

Fig. 8 Performance comparison between tensor workloads

125PASTA: a parallel sparse tensor algorithm benchmark suite

1 3

Acknowledgements This research was partially funded by the US
Department of Energy, Office for Advanced Scientific Computing
(ASCR) under Award No. 66150: “CENATE: The Center for Advanced
Technology Evaluation”. Pacific Northwest National Laboratory
(PNNL) is a multiprogram national laboratory operated for DOE by
Battelle Memorial Institute under Contract DE-AC05-76RL01830.
This work was partially supported by the High Performance Data
Analytics (HPDA) program at Pacific Northwest National Laboratory.

References

Abadi, M., et al.: Large-Scale Machine Learning on Heterogeneous
Systems, 2015. TensorFlow, Google Brain Team, California
(2015)

Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., Yener, B.: Multiway
analysis of epilepsy tensors. Bioinformatics 23(13), i10–i18
(2007). https ://doi.org/10.1093/bioin forma tics/btm21 0

Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor
factorizations for incomplete data. Chemometr. Intell. Lab. Syst.
106(1), 41–56 (2011)

Acar, E., Kolda, T.G., Dunlavy, D.M.: All-at-once optimization for
coupled matrix and tensor factorizations. (2011)

Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Ten-
sor decompositions for learning latent variable models. J. Mach.
Learn. Res. 15(1), 2773–2832 (2014)

Austin, W., Ballard, G., Kolda, T.G.: Parallel tensor compression for
large-scale scientific data. In: 2016 IEEE international parallel
and distributed processing symposium (IPDPS), pp. 912–922.
https ://doi.org/10.1109/IPDPS .2016.67

Bader, B.W., Kolda, T.G.: Efficient MATLAB computations with
sparse and factored tensors. SIAM J. Sci. Comput. 30(1), 205–
231 (2007). https ://doi.org/10.1137/06067 6489

Bader, B.W., Kolda, T.G. et al. MATLAB Tensor Toolbox (Version
3.0-dev) (2017). https ://www.tenso rtool box.org

Battaglino, C., Ballard, G., Kolda, T.G.: A practical randomized CP
tensor decomposition. SIAM J. Matrix Anal. Appl. 39(2), 876–
901 (2018)

Benson, A.R., Gleich, D.F., Leskovec, J.: Tensor spectral clustering for
partitioning higher-order network structures. arXiv :1502.05058
(2015)

Beutel, A., Kumar, A., Papalexakis, E., Talukdar, P.P., Faloutsos, C.,
Xing, E.P.: FLEXIFACT: scalable flexible factorization of cou-
pled tensors on hadoop. In: NIPS 2013 big learning workshop
(2013)

Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark
suite: characterization and architectural implications. In Proceed-
ings of the 17th international conference on parallel architectures
and compilation techniques, ACM, pp. 72–81 (2008)

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed
optimization and statistical learning via the alternating direction
method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122
(2011). https ://doi.org/10.1561/22000 00016

Bro, R., Sidiropoulos, N.D., Giannakis, G.B.: A fast least squares algo-
rithm for separating trilinear mixtures. In Independent Compo-
nent Analysis (1999)

Calvin, J.A., Valeev, E.F.: TiledArray: a massively-parallel, block-
sparse tensor framework (Version v0.6.0). Available from https
://githu b.com/valee vgrou p/tiled array . (2016)

Cao, B., He, L., Kong, X., Philip, S.Y., Hao, Z., Ragin, A.B.: Tensor-
based multi-view feature selection with applications to brain
diseases. In: Data Mining (ICDM), 2014 IEEE international
conference on, pp. 40–49 (2014). https ://doi.org/10.1109/
ICDM.2014.26

Cao, B., Kong, X., Yu, P.S.: A review of heterogeneous data mining
for brain disorders. arXiv :abs/1508.01023 (2015)

Carroll, J.D., Chang, J.-J.: Analysis of individual differences in multidi-
mensional scaling via an n-way generalization of “Eckart-Young”
decomposition. Psychometrika 35(3), 283–319 (1970). https ://
doi.org/10.1007/BF023 10791

Carroll, J.D., Pruzansky, S., Kruskal, J.B.: CANDELINC: a general
approach to multidimensional analysis of many-way arrays with
linear constraints on parameters. Psychometrika 45(1980), 3–24
(1980)

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.,
Skadron, K.: Rodinia: A benchmark suite for heterogeneous com-
puting. In 2009 IEEE international symposium on workload char-
acterization (IISWC), pp. 44–54 (2009). https ://doi.org/10.1109/
IISWC .2009.53067 97

Cheng, D., Peng, R., Liu, Y., Perros, I.: SPALS: fast alternating least
squares via implicit leverage scores sampling. In Lee, D.D.,
Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.),
Advances in neural information processing systems 29, Curran
Associates, Inc., pp. 721–729. http://paper s.nips.cc/paper /6436-
spals -fast-alter natin g-least -squar es-via-impli cit-lever age-score
s-sampl ing.pdf (2016)

Chi, E.C., Kolda, T.G.: On tensors, sparsity, and nonnegative factori-
zations. SIAM J. Matrix Anal. Appl. 33(4), 1272–1299 (2012)

Choi, J., Liu, X., Smith, S., Simon, T.: Blocking optimization tech-
niques for sparse tensor computation. pp. 568–577 (2018). https
://doi.org/10.1109/IPDPS .2018.00066

Choi, J.H., Vishwanathan, S.: DFacTo: Distributed Factorization of
Tensors. In: Ghahramani, Z., Welling, M.C., Cortes, N.D., Law-
rence, Weinberger, K.Q. (eds.), Advances in neural information
processing systems 27, Curran Associates, Inc., pp. 1296–1304
(2014)

Cichocki, A.: Tensor decompositions: a new concept in brain data
analysis? arXiv :1305.0395 (2013)

Cichocki, A.: Era of big data processing: a new approach via tensor net-
works and tensor decompositions. arXiv :abs/1403.2048 (2014)

Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q.,
Caiafa, C., Phan, H.A.: Tensor decompositions for signal pro-
cessing applications: from two-way to multiway component
analysis. Signal Process. Magz. IEEE 32(2), 145–163 (2015).
https ://doi.org/10.1109/MSP.2013.22974 39

Cichocki, A., Lee, N., Oseledets, I.V., Phan, A., Zhao, Q., Mandic,
D.: Low-rank tensor networks for dimensionality reduction and
large-scale optimization problems: perspectives and challenges
PART 1. (2016). arXiv :cs.NA/1609.00893

Cohen, N., Sharir, O., Shashua, A.: On the expressive power of deep
learning: a tensor analysis. arXiv :abs/1509.05009 (2015)

Davidson, I., Gilpin, S., Carmichael, O., Walker, P.: Network discovery
via constrained tensor analysis of fMRI Data. In: Proceedings
of the 19th ACM SIGKDD international conference on knowl-
edge discovery and data mining(KDD ’13). ACM, New York,
pp. 194–202 (2013). https ://doi.org/10.1145/24875 75.24876 19

De Lathauwer, L.: Decompositions of a higher-order tensor in
block terms-part I: lemmas for partitioned matrices. SIAM
J. Matrix Anal. Appl. 30(3), 1022–1032 (2008). https ://doi.
org/10.1137/06066 1685

De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singu-
lar value decomposition. SIAM J. Matrix Anal. Appl. 21(2000),
1253–1278 (2000)

De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1
and Rank-(R1,R2,.,RN) approximation of higher-order tensors.
SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000). https ://
doi.org/10.1137/S0895 47989 83469 95

De Lathauwer, L., Vervliet, N., Boussé, M., Debals, O.: Dealing with
curse and blessing of dimensionality through tensor decomposi-
tions. (2017)

https://doi.org/10.1093/bioinformatics/btm210
https://doi.org/10.1109/IPDPS.2016.67
https://doi.org/10.1137/060676489
https://www.tensortoolbox.org
http://arxiv.org/abs/1502.05058
https://doi.org/10.1561/2200000016
https://github.com/valeevgroup/tiledarray
https://github.com/valeevgroup/tiledarray
https://doi.org/10.1109/ICDM.2014.26
https://doi.org/10.1109/ICDM.2014.26
http://arxiv.org/abs/abs/1508.01023
https://doi.org/10.1007/BF02310791
https://doi.org/10.1007/BF02310791
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
http://papers.nips.cc/paper/6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf
http://papers.nips.cc/paper/6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf
http://papers.nips.cc/paper/6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf
https://doi.org/10.1109/IPDPS.2018.00066
https://doi.org/10.1109/IPDPS.2018.00066
http://arxiv.org/abs/1305.0395
http://arxiv.org/abs/abs/1403.2048
https://doi.org/10.1109/MSP.2013.2297439
http://arxiv.org/abs/cs.NA/1609.00893
http://arxiv.org/abs/abs/1509.05009
https://doi.org/10.1145/2487575.2487619
https://doi.org/10.1137/060661685
https://doi.org/10.1137/060661685
https://doi.org/10.1137/S0895479898346995
https://doi.org/10.1137/S0895479898346995

126 J. Li et al.

1 3

Dixit, K.M.: The SPEC benchmarks. Parallel Comput. 17(10–11),
1195–1209 (1991)

Eldén, L., Savas, B.: A Newton–Grassmann method for computing
the best multilinear rank-(r

1
, r

2
, r

3
) approximation of a tensor.

SIAM J. Matrix Anal. Appl. 31(2), 248–271 (2009). https ://doi.
org/10.1137/07068 8316

Epifanovsky, E., Wormit, M., Kuś, T., Landau, A., Zuev, D., Khisty-
aev, K., Manohar, P., Kaliman, I., Dreuw, A., Krylov, A.I.: New
implementation of high-level correlated methods using a general
block tensor library for high-performance electronic structure
calculations. J. Comput. Chem. 34(26), 2293–2309 (2013). https
://doi.org/10.1002/jcc.23377

Evenbly, G., Vidal, G.: Algorithms for entanglement renormalization.
Phys. Rev. B 79(14), 144108 (2009)

Fang, X., Pan, R.: Fast DTT: a near linear algorithm for decomposing
a tensor into factor tensors. In: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and
data mining. ACM, pp. 967–976 (2014)

Giovannetti, V., Montangero, S., Fazio, R.: Quantum multiscale
entanglement renormalization ansatz channels. Phys. Rev. Lett.
101(18), 180503 (2008)

Gorodetsky, A.A., Sertac, K., Youssef, M.M.: Efficient high-dimen-
sional stochastic optimal motion control using tensor-train
decomposition (2008)

Grasedyck, L.: Hierarchical singular value decomposition of tensors.
SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2010). https ://
doi.org/10.1137/09076 4189

Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank
tensor approximation techniques. GAMM-Mitteilungen 36(1),
53–78 (2013)

Hackbusch, W., Kühn, S.: A new scheme for the tensor representa-
tion. J. Fourier Anal. Appl. 15(5), 706–722 (2009). https ://doi.
org/10.1007/s0004 1-009-9094-9

Hansen, S., Plantenga, T., Kolda, T.G.: Newton-based optimization
for Kullback–Leibler nonnegative tensor factorizations. Optim.
Methods Softw. 30(2015), 1002–1029 (2015)

Harshman, R., Lundy, M.: Uniqueness proof for a family of models
sharing features of Tucker’s three-mode factor analysis and
PARAFAC/Candecomp. Psychometrika 61(1), 133–154 (1996).
http://EconP apers .repec .org/RePEc :spr:psych o:v:61:y:1996:i:
1:p:133-154

Harshman, R.A.: Foundations of the PARAFAC procedure: models
and conditions for an “explanatory” multi-modal factor analysis.
UCLA Work. Pap. Phonetic 16(1), 84 (1970)

Harshman, R.A.: PARAFAC2: mathematical and technical notes.
UCLA Work. Pap. Phonetic 22, 30–44 (1972)

Hein, E., Conte, T., Young, J.S., Eswar, S., Li, J., Lavin, P., Vuduc,
R., Riedy, J.: An initial characterization of the Emu Chick. 2018
IEEE international parallel and distributed processing sympo-
sium workshops, p. 10 (2018)

Henderson, J., Ho, J.C., Kho, A.N., Denny, J.C., Malin, B.A., Sun,
J., Ghosh, J.: Granite: diversified, sparse tensor factorization
for electronic health record-based phenotyping. In: 2017 IEEE
international conference on healthcare informatics (ICHI), pp.
214–223 (2017). https ://doi.org/10.1109/ICHI.2017.61

Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of
products. J. Math. Phys 6(1), 164–189 (1927)

Ho, J.C., Ghosh, J., Steinhubl, S.R., Stewart, W.F., Denny, J.C., Malin,
B.A., Sun, J.: Limestone: high-throughput candidate phenotype
generation via tensor factorization. J. Biomed. Inf. 52(2014),
199–211 (2014c)

Ho, J.C., Ghosh, J., Sun, J.: Extracting phenotypes from patient claim
records using nonnegative tensor factorization. In: Brain infor-
matics and health, Springer, pp. 142–151 (2014a)

Ho, J.C., Ghosh, J., Sun, J.: Marble: high-throughput phenotyp-
ing from electronic health records via sparse nonnegative

tensor factorization. In: Proceedings of the 20th ACM SIG-
KDD international conference on knowledge discovery and data
mining(KDD ’14), ACM, New York, pp. 115–124 (2014b). https
://doi.org/10.1145/26233 30.26236 58

Hutchinson, B., Deng, L., Dong, Y.: Tensor deep stacking networks.
Pattern Anal. Mach. Intell. IEEE Trans. 35(8), 1944–1957 (2013)

Ishteva, M., Absil, P., Van Huffel, S., De Lathauwer, L.: Best low mul-
tilinear rank approximation of higher-order tensors, based on the
Riemannian trust-region scheme. SIAM J. Matrix Anal. Appl.
32(1), 115–135 (2011). https ://doi.org/10.1137/09076 4827

Janzamin, M., Sedghi, H., Anandkumar, A.: Generalization bounds
for neural networks through tensor factorization. arXiv
:abs/1506.08473 (2015)

Jeon, I., Papalexakis, E.E., Kang, U., Faloutsos, C.: HaTen2: billion-
scale tensor decompositions (Version 1.0). http://datal ab.snu.
ac.kr/haten 2/. (2015)

Jiang, M., Cui, P., Wang, F., Xu, X., Zhu, W., Yang, S.: FEMA: flex-
ible evolutionary multi-faceted analysis for dynamic behavioral
pattern discovery. In: Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data min-
ing, ACM, pp. 1186–1195 (2014)

Jiang, T., Sidiropoulos, N.D.: Kruskal’s permutation lemma and the
identification of CANDECOMP/PARAFAC and bilinear models
with constant modulus constraints. Signal Process. IEEE Trans.
52(9), 2625–2636 (2004)

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa,
R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R.,
Cantin, P.-l., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M.,
Dean, J., Gelb, B., Ghaemmaghami, T.V., Gottipati, R., Gulland,
W., Hagmann, R., Ho, C.R., Hogberg, D., Hu, J., Hundt, R., Hurt,
D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H.,
Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J.,
Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G.,
Maggiore, A., Mahony, M., Miller, K., Nagarajan, R., Naraya-
naswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penu-
konda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani,
E., Severn, C., Sizikov, G., Snelham, M., Souter, J., Steinberg,
D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tut-
tle, E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., Yoon,
D.H.: In-datacenter performance analysis of a tensor processing
unit. In: Proceedings of the 44th annual international symposium
on computer architecture(ISCA ’17). ACM, New York, NY, pp.
1–12.https ://doi.org/10.1145/30798 56.30802 46

Kaliman, I.A., Krylov, A.I.: New algorithm for tensor contractions on
multi-core CPUs, GPUs, and accelerators enables CCSD and
EOM-CCSD calculations with over 1000 basis functions on a
single compute node. J. Comput. Chem. 38(11), 842–853 (2017).
https ://doi.org/10.1002/jcc.24713

Kang, U., Papalexakis, E., Harpale, A., Faloutsos, C.: GigaTensor: scal-
ing tensor analysis up by 100 times - algorithms and discoveries.
In: Proceedings of the 18th ACM SIGKDD international confer-
ence on knowledge discovery and data mining(KDD ’12). ACM,
New York, pp. 316–324 (2012). https ://doi.org/10.1145/23395
30.23395 83

Kapteyn, A., Neudecker, H., Wansbeek, T.: An approach to n-mode
components analysis. Psychometrika 51(2), 269–275 (1986).
https ://doi.org/10.1007/BF022 93984

Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse
recommendation: N-dimensional tensor factorization for context-
aware collaborative filtering. In: Proceedings of the 4th ACM
conference on recommender systems(RecSys ’10). ACM, New
York, pp. 79–86 (2010). https ://doi.org/10.1145/18647 08.18647
27

Karlsson, L., Kressner, D., Uschmajew, A.: Parallel algorithms for ten-
sor completion in the CP format. Parallel Comput. 57(2016),
222–234 (2016). https ://doi.org/10.1016/j.parco .2015.10.002

https://doi.org/10.1137/070688316
https://doi.org/10.1137/070688316
https://doi.org/10.1002/jcc.23377
https://doi.org/10.1002/jcc.23377
https://doi.org/10.1137/090764189
https://doi.org/10.1137/090764189
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1007/s00041-009-9094-9
http://EconPapers.repec.org/RePEc:spr:psycho:v:61:y:1996:i:1:p:133-154
http://EconPapers.repec.org/RePEc:spr:psycho:v:61:y:1996:i:1:p:133-154
https://doi.org/10.1109/ICHI.2017.61
https://doi.org/10.1145/2623330.2623658
https://doi.org/10.1145/2623330.2623658
https://doi.org/10.1137/090764827
http://arxiv.org/abs/abs/1506.08473
http://arxiv.org/abs/abs/1506.08473
http://datalab.snu.ac.kr/haten2/
http://datalab.snu.ac.kr/haten2/
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1002/jcc.24713
https://doi.org/10.1145/2339530.2339583
https://doi.org/10.1145/2339530.2339583
https://doi.org/10.1007/BF02293984
https://doi.org/10.1145/1864708.1864727
https://doi.org/10.1145/1864708.1864727
https://doi.org/10.1016/j.parco.2015.10.002

127PASTA: a parallel sparse tensor algorithm benchmark suite

1 3

Kaya, O., Uçar, B.: Scalable sparse tensor decompositions in distrib-
uted memory systems. In: Proceedings of the international con-
ference for high performance computing, networking, storage
and analysis(SC ’15). ACM, New York, Article 77, p. 11 (2015).
https ://doi.org/10.1145/28075 91.28076 24

Kaya, O., Uçar, B.: Parallel candecomp/parafac decomposition of
sparse tensors using dimension trees. SIAM J. Sci. Comput.
40(1), C99–C130 (2018). https ://doi.org/10.1137/16M11 02744

Khoromskaia, V., Khoromskij, B.N.: Tensor numerical methods in
quantum chemistry. Walter de Gruyter GmbH & Co KG (2018)

Kiers, H.A.L., der Kinderen, A.: A fast method for choosing the num-
bers of components in Tucker3 analysis. Br. J. Math. Stat. Psy-
chol. 56(1), 119–125 (2003)

KleinOsowski, A.J., Lilja, D.J.: MinneSPEC: a new SPEC benchmark
workload for simulation-based computer architecture research.
IEEE Comput. Archit. Lett. 1(1), 7–7 (2002)

Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM
Rev. 51(3), 455–500 (2009). https ://doi.org/10.1137/07070 111X

Kolda, T.G., Bader, B.W.: The TOPHITS model for higher-order web
link analysis. Workshop Link Anal. Counterterror. Secur. 7,
26–29 (2006)

Kolda, T.G., Sun, J.: Scalable tensor decompositions for multi-aspect
data mining. In: Proceedings of the 2008 eighth IEEE interna-
tional conference on data mining(ICDM ’08). IEEE Computer
Society, Washington, DC, pp. 363–372 (2008). https ://doi.
org/10.1109/ICDM.2008.89

Köppl, C., Werner, H.-J.: Parallel and low-order scaling implemen-
tation of hartree-fock exchange using local density fitting. J.
Chem. Theory Comput. 12(7), 3122–3134 (2016). https ://doi.
org/10.1021/acs.jctc.6b002 51

Latchoumane, C.-F.V. Vialatte, F.-B., Solé-Casals, J., Maurice, M.,
Wimalaratna, S.R. Hudson, N., Jeong, J., Cichocki, A.: Multiway
array decomposition analysis of EEGs in Alzheimer’s disease. J.
Neurosci. Methods207(1), 41–50 (2012)

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.:
Speeding-up convolutional neural networks using fine-tuned CP-
decomposition. arXiv :1412.6553 (2014)

Lee, C, Potkonjak, M, Mangione-Smith, W.H., MediaBench: a tool
for evaluating and synthesizing multimedia and communications
systems. In Proceedings of the 30th annual ACM/IEEE interna-
tional symposium on Microarchitecture, IEEE Computer Society,
pp. 330–335 (1997)

Lewis, C.A., Calvin, J.A., Valeev, E.F.: Clustered low-rank tensor for-
mat: introduction and application to fast construction of Hartree-
Fock exchange. J. Chem. Theory Comput. 12(12), 5868–5880
(2016). https ://doi.org/10.1021/acs.jctc.6b008 84

Li, A., Song, S.L., Chen, J., Liu, X., Tallent, N., Barker, K.: Tartan:
evaluating modern GPU interconnect via a multi-GPU bench-
mark suite. In: 2018 IEEE international symposium on workload
characterization (IISWC), IEEE, pp. 191–202 (2018)

Li, J.: Scalable tensor decompositions in high performance computing
environments. Ph.D. Dissertation. Georgia Institute of Technol-
ogy, Atlanta, GA (2018)

Li, J., Choi, J., Perros, I., Sun, J., Vuduc, R.: Model-driven sparse CP
decomposition for higher-order tensors. In: 2017 IEEE interna-
tional parallel and distributed processing symposium (IPDPS),
pp. 1048–1057 (2017). https ://doi.org/10.1109/IPDPS .2017.80

Li, J., Ma, Y., Vuduc, R.: ParTI!: a parallel tensor infrastructure for
multicore CPU and GPUs (Version 1.0.0). https ://githu b.com/
hpcga rage/ParTI . (2018)

Li, J., Ma, Y., Yan, C., Vuduc, R.: Optimizing sparse tensor times
matrix on multi-core and many-core architectures. In: Proceed-
ings of the 6th workshop on irregular applications: architectures
and algorithms (IA3 ’16). IEEE Press, Piscataway, pp. 26–33
(2016). https ://doi.org/10.1109/IA3.2016.10

Li, J., Sun, J., Vuduc, R.: HiCOO: hierarchical storage of sparse ten-
sors. In: Proceedings of the ACM/IEEE international conference
on high performance computing, networking, storage and analy-
sis (SC), Dallas, TX (2018)

Li, J., Tan, G., Chen, M., Sun, N.: SMAT: an input adaptive auto-
tuner for sparse matrix-vector multiplication. In: Proceedings of
the 34th ACM SIGPLAN conference on programming language
design and implementation(PLDI ’13), ACM, New York, pp.
117–126 (2013). https ://doi.org/10.1145/24919 56.24621 81

Li, J., Uçar, B., Çatalyürek, Ü.V., Sun, J., Barker, K., Vuduc, R.: Effi-
cient and effective sparse tensor reordering. In: Proceedings
of the ACM international conference on supercomputing(ICS
’19). ACM, New York, pp. 227–237 (2019). https ://doi.
org/10.1145/33303 45.33303 66

Li, Z., Uschmajew, A., Zhang, S.: On Convergence of the maximum
block improvement method. SIAM J. Optim. 25(1), 210–233
(2015). https ://doi.org/10.1137/13093 9110

Liu, B., Wen, C., Sarwate, A.D., and Dehnavi, M.M.: A unified
optimization approach for sparse tensor operations on GPUs.
In: 2017 IEEE international conference on cluster computing
(CLUSTER), pp. 47–57 (2017). https ://doi.org/10.1109/CLUST
ER.2017.75

Ma, Y., Li, J., Wu, X., Yan, C., Sun, J., Vuduc, R.: Optimizing sparse
tensor times matrix on GPUs. J. Parallel Distrib. Comput. (2018).
https ://doi.org/10.1016/j.jpdc.2018.07.018

Manzer, S., Epifanovsky, E., Krylov, A.I., Head-Gordon, M.: A gen-
eral sparse tensor framework for electronic structure theory. J.
Chem. Theory Comput. 13(3), 1108–1116 (2017). https ://doi.
org/10.1021/acs.jctc.6b008 53

Matsubara, Y., Sakurai, Y., van Panhuis, W.G., Faloutsos, C.: FUN-
NEL: automatic mining of spatially coevolving epidemics. In:
Proceedings of the 20th ACM SIGKDD international conference
on knowledge discovery and data mining, ACM, pp. 105–114
(2014)

Mohlenkamp, M.J.: Musings on multilinear fitting (2010)
Mørup, M., Hansen, L.K., Arnfred, S.M., Lim, L., Madsen, K.H.:

Shift invariant multilinear decomposition of neuroimaging data.
Accept Publ. NeuroImage 42(4), 1439–50 (2008). http://www2.
imm.dtu.dk/pubdb /p.php?5551

Nakatani, N., Chan, G.K.-L.: Efficient tree tensor network states
(TTNS) for quantum chemistry: generalizations of the density
matrix renormalization group algorithm. J. Chem. Phys. 138(13),
134113 (2013). https ://doi.org/10.1063/1.47986 39

Nisa, I., Li, J., Sukumaran-Rajam, A., Vuduc, R.W., Sadayappan,
P.: Load-balanced Sparse MTTKRP on GPUs. (2019). arXiv
:1904.03329

Novikov, A., Izmailov, P., Khrulkov, V., Figurnov, M., Oseledets,
I.V.: Tensor train decomposition on TensorFlow (T3F). arXiv
:abs/1801.01928 (2018)

Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.: Tensorizing neu-
ral networks. arXiv :abs/1509.06569 (2015)

Novikov, A., Rodomanov, A., Osokin, A., Vetrov, D.: Putting MRFs
on a tensor train. In: Tony J., Eric P.X. (Eds.), Proceedings of
the 31st international conference on machine learning (ICML-
14), JMLR Workshop and Conference Proceedings, pp. 811–819
(2014). http://jmlr.org/proce eding s/paper s/v32/novik ov14.pdf

Oh, H.: Tensors in power system computation I: distributed compu-
tation for optimal power flow, DC OPF. arXiv :abs/1605.06735
(2016)

Orús, R.: A practical introduction to tensor networks: matrix product
states and projected entangled pair states. Ann. Phys. 349(2014),
117–158 (2014)

Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput.
33(5), 2295–2317 (2011). https ://doi.org/10.1137/09075 2286

Papalexakis, E.E., Akoglu, L., Ienco, D.: Do more views of a graph
help? Community detection and clustering in multi-graphs. In:

https://doi.org/10.1145/2807591.2807624
https://doi.org/10.1137/16M1102744
https://doi.org/10.1137/07070111X
https://doi.org/10.1109/ICDM.2008.89
https://doi.org/10.1109/ICDM.2008.89
https://doi.org/10.1021/acs.jctc.6b00251
https://doi.org/10.1021/acs.jctc.6b00251
http://arxiv.org/abs/1412.6553
https://doi.org/10.1021/acs.jctc.6b00884
https://doi.org/10.1109/IPDPS.2017.80
https://github.com/hpcgarage/ParTI
https://github.com/hpcgarage/ParTI
https://doi.org/10.1109/IA3.2016.10
https://doi.org/10.1145/2491956.2462181
https://doi.org/10.1145/3330345.3330366
https://doi.org/10.1145/3330345.3330366
https://doi.org/10.1137/130939110
https://doi.org/10.1109/CLUSTER.2017.75
https://doi.org/10.1109/CLUSTER.2017.75
https://doi.org/10.1016/j.jpdc.2018.07.018
https://doi.org/10.1021/acs.jctc.6b00853
https://doi.org/10.1021/acs.jctc.6b00853
http://www2.imm.dtu.dk/pubdb/p.php?5551
http://www2.imm.dtu.dk/pubdb/p.php?5551
https://doi.org/10.1063/1.4798639
http://arxiv.org/abs/1904.03329
http://arxiv.org/abs/1904.03329
http://arxiv.org/abs/abs/1801.01928
http://arxiv.org/abs/abs/1801.01928
http://arxiv.org/abs/abs/1509.06569
http://jmlr.org/proceedings/papers/v32/novikov14.pdf
http://arxiv.org/abs/abs/1605.06735
https://doi.org/10.1137/090752286

128 J. Li et al.

1 3

Proceedings of the 16th international conference on information
fusion, FUSION 2013, Istanbul, July 9–12, 2013, pp. 899–905.
http://ieeex plore .ieee.org/xpl/freea bs_all.jsp?arnum ber=66410
90

Papalexakis, E.E., Faloutsos, C., Mitchell, T.M., Talukdar, P.P., Sidi-
ropoulos, N.D., Murphy, B.: Turbo-SMT: accelerating coupled
sparse matrix-tensor factorizations by 200x. Chapter 14, pp.
118–126 (2014). https ://doi.org/10.1137/1.97816 11973 440.14

Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: ParCube: sparse
parallelizable tensor decompositions. In: Proceedings of the 2012
European conference on machine learning and knowledge discov-
ery in databases - Volume Part I (ECML PKDD’12). Springer,
Berlin, pp. 521–536 (2012). https ://doi.org/10.1007/978-3-642-
33460 -3_39

Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: ParCube: sparse
parallelizable CANDECOMP-PARAFAC tensor decomposition.
ACM Trans. Knowl. Discov. Data 10, 1, Article 3, pp. 25 (2015).
https ://doi.org/10.1145/27299 80

Papalexakis, E.E., Sidiropoulos, N.D.: Co-clustering as multilinear
decomposition with sparse latent factors. In: Acoustics, speech
and signal processing (ICASSP), 2011 IEEE international confer-
ence on. IEEE, 2064–2067 (2011)

Peng, C., Calvin, J.A., Pavošević, F., Zhang, J., Valeev, E.F.: Massively
parallel implementation of explicitly correlated coupled-cluster
singles and doubles using tiledarray framework. J. Phys. Chem.
A 120(51), 10231–10244 (2016). https ://doi.org/10.1021/acs.
jpca.6b101 50

Perros, I, Chen, R, Vuduc, R, Sun, J.: Sparse hierarchical tucker fac-
torization and its application to healthcare. In: Proceedings
of the 2015 IEEE international conference on data mining
(ICDM)(ICDM ’15). IEEE Computer Society, Washington, DC,
pp. 943–948 (2015). https ://doi.org/10.1109/ICDM.2015.29

Perros, I., Papalexakis, E.E., Wang, F., Vuduc, R., Searles, E., Thomp-
son, M., Sun, J.: SPARTan: scalable PARAFAC2 for large &
sparse data. In: Proceedings of the 23rd ACM SIGKDD inter-
national conference on knowledge discovery and data mining
(KDD ’17). ACM, New York, pp. 375–384 (2017). https ://doi.
org/10.1145/30979 83.30980 14

Phipps, E.T., Kolda, T.G.: Software for sparse tensor decomposition on
emerging computing architectures. arXiv :abs/1809.09175 (2018)

Poovey, J.A., Conte, T.M.: Markus Levy, and Shay Gal-On. 2009. A
benchmark characterization of the EEMBC benchmark suite.
IEEE micro 29, 5 (2009)

Rajih, M., Comon, P.: Enhanced line search: a novel method to accel-
erate Parafac. In: 2005 13th European signal processing confer-
ence, pp. 1–4 (2005)

Ravindran, N., Sidiropoulos, N.D., Smith, S., Karypis, G.: Memory-
efficient parallel computation of tensor and matrix products for
big tensor decompositions. Proceedings of the Asilomar confer-
ence on signals, systems, and computers (2014)

Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme,
L.: Learning optimal ranking with tensor factorization for tag
recommendation. In: Proceedings of the 15th ACM SIGKDD
international conference on knowledge discovery and data min-
ing (KDD ’09), ACM, New York, pp. 727–736 (2009). https ://
doi.org/10.1145/15570 19.15571 00

Reynolds, M., Doostan, A., Beylkin, G.: Randomized alternating least
squares for canonical tensor decompositions: application to a
PDE with random data. SIAM J. Sci. Comput. 38(5), A2634–
A2664 (2016). https ://doi.org/10.1137/15M10 42802

Romera-Paredes, B., Aung, M.H., Bianchi-Berthouze, N., Pontil,
M.: Multilinear multitask learning. In Proceedings of the 30th
international conference on international conference on machine
learning, Volume 28 (ICML’13). JMLR.org, III–1444–III–1452
(2013). http://dl.acm.org/citat ion.cfm?id=30428 17.30430 98

Savas, B., Lim, L.: Quasi-Newton methods on Grassmannians and mul-
tilinear approximations of tensors. SIAM J. Sci. Comput. 32(6),
3352–3393 (2010). https ://doi.org/10.1137/09076 3172

Schein, A., Paisley, J., Blei, D.M., Wallach, H.: Bayesian poisson ten-
sor factorization for inferring multilateral relations from sparse
dyadic event counts. In: Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data min-
ing, (KDD ’15). ACM, New York, pp. 1045–1054 (2015). https
://doi.org/10.1145/27832 58.27834 14

Sedaghati, N., Mu, T., Pouchet, L.-N., Parthasarathy, S., Sadayappan,
P.: Automatic selection of sparse matrix representation on GPUs.
In: Proceedings of the 29th ACM on international conference on
supercomputing (ICS ’15). ACM, New York, pp. 99–108 (2015).
https ://doi.org/10.1145/27512 05.27512 44

Setiawan, H., Huang, Z., Devlin, J., Lamar, T., Zbib, R., Schwartz,
R.M., Makhoul, J.: Statistical machine translation features with
multitask tensor networks. In: Proceedings of the 53rd annual
meeting of the association for computational linguistics and the
7th international joint conference on natural language processing
of the Asian Federation of natural language processing, ACL
2015, July 26-31, 2015, Beijing, Volume 1: Long Papers, pp.
31–41. (2015). http://aclwe b.org/antho logy/P/P15/P15-1004.pdf

Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis,
E.E., Faloutsos, C.: Tensor decomposition for signal process-
ing and machine learning. IEEE Trans. Signal Process. 65(13),
3551–3582 (2017). https ://doi.org/10.1109/TSP.2017.26905 24

Sidiropoulos, N.D., Giannakis, G.B., Bro, R.: Blind PARAFAC receiv-
ers for DS-CDMA systems. Signal Process. IEEE Trans. 48(3),
810–823 (2000)

Signoretto, M., Dinh, Q.T., De Lathauwer, L., Suykens, J.A.K.: Learn-
ing with tensors: a framework based on convex optimization and
spectral regularization. Mach. Learn. 94(3), 303–351 (2014).
https ://doi.org/10.1007/s1099 4-013-5366-3

Smith, S., Beri, A., Karypis, G.: Constrained tensor factorization with
accelerated AO-ADMM. In: 46th international conference on
parallel processing (ICPP ’17). IEEE (2017)

Smith, S., Choi, J.W., Li, J., Vuduc, R., Park, J., Liu, X., Karypis, G.:
FROSTT: the formidable repository of open sparse tensors and
tools (2017). http://frost t.io/

Smith, S., Karypis, G.: Tensor-Matrix products with a compressed
sparse tensor. In: Proceedings of the 5th workshop on irregular
applications: architectures and algorithms. ACM, 7 (2015)

Smith, S, Karypis, G: A medium-grained algorithm for distributed
sparse tensor factorization. In: Parallel and distributed process-
ing symposium (IPDPS), 2016 IEEE international, IEEE (2016)

Smith, S., Karypis, G.: Accelerating the tucker decomposition with
compressed sparse tensors. In: European conference on parallel
processing, Springer, New York (2017)

Smith, S., Park, J., Karypis, G.: An exploration of optimization algo-
rithms for high performance tensor completion. Proceedings of
the 2016 ACM/IEEE conference on supercomputing (2016)

Smith, S., Park, J., Karypis, G.: Sparse tensor factorization on many-
core processors with high-bandwidth memory. 31st IEEE
international parallel & distributed processing symposium
(IPDPS’17) (2017)

Smith, S., Ravindran, N., Sidiropoulos, N., Karypis, G.: SPLATT: effi-
cient and parallel sparse tensor-matrix multiplication. In: Pro-
ceedings of the 29th IEEE international parallel & distributed
processing symposium, (IPDPS) (2015)

Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural
tensor networks for knowledge base completion. In: Advances
in neural information processing systems, pp. 926–934 (2013)

Solomonik, E., Hoefler, T.: Sparse tensor algebra as a parallel program-
ming model. (2015). arXiv :cs.MS/1512.00066

Song, C., Martínez, T.J.: Atomic orbital-based SOS-MP2 with ten-
sor hypercontraction. I. GPU-based tensor construction and

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6641090
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6641090
https://doi.org/10.1137/1.9781611973440.14
https://doi.org/10.1007/978-3-642-33460-3_39
https://doi.org/10.1007/978-3-642-33460-3_39
https://doi.org/10.1145/2729980
https://doi.org/10.1021/acs.jpca.6b10150
https://doi.org/10.1021/acs.jpca.6b10150
https://doi.org/10.1109/ICDM.2015.29
https://doi.org/10.1145/3097983.3098014
https://doi.org/10.1145/3097983.3098014
http://arxiv.org/abs/abs/1809.09175
https://doi.org/10.1145/1557019.1557100
https://doi.org/10.1145/1557019.1557100
https://doi.org/10.1137/15M1042802
http://dl.acm.org/citation.cfm?id=3042817.3043098
https://doi.org/10.1137/090763172
https://doi.org/10.1145/2783258.2783414
https://doi.org/10.1145/2783258.2783414
https://doi.org/10.1145/2751205.2751244
http://aclweb.org/anthology/P/P15/P15-1004.pdf
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1007/s10994-013-5366-3
http://frostt.io/
http://arxiv.org/abs/cs.MS/1512.00066

129PASTA: a parallel sparse tensor algorithm benchmark suite

1 3

exploiting sparsity. J. Chem. Phys. 144(17), 174111 (2016). https
://doi.org/10.1063/1.49484 38

Song, H.A., Hooi, B., Jereminov, M., Pandey, A., Pileggi, L.T.,
Faloutsos, C.: PowerCast: mining and forecasting power grid
sequences. In: ECML/PKDD (2017)

Song, Z., Woodruff, D.P., Zhang, H.: Sublinear time orthogonal tensor
decomposition. In: Proceedings of the 30th international confer-
ence on neural information processing systems (NIPS’16), Cur-
ran Associates Inc., USA, 793–801 (2016). http://dl.acm.org/citat
ion.cfm?id=31570 96.31571 85

Sorber, L., Domanov, I., Barel, M., Lathauwer, L.: Exact line and plane
search for tensor optimization. Comput. Optim. Appl. 63(1),
121–142 (2016). https ://doi.org/10.1007/s1058 9-015-9761-5

Sorber, L., Van Barel, M., De Lathauwer, L.: Optimization-based algo-
rithms for tensor decompositions: canonical polyadic decompo-
sition, decomposition in rank-(L

r
, L

r
, 1) terms, and a new gen-

eralization. SIAM J. Optim. 23(2), 695–720 (2013). https ://doi.
org/10.1137/12086 8323

Su, B.-Y., Keutzer, K.: clSpMV: a cross-platform OpenCL SpMV
Framework on GPUs. In: Proceedings of the 26th ACM inter-
national conference on supercomputing (ICS ’12). ACM, New
York, pp. 353–364 (2012). https ://doi.org/10.1145/23045
76.23046 24

Sun, J., Papadimitriou, S., Lin, C.-Y., Cao, N., Liu, S., Qian, W.: Multi-
Vis: content-based social network exploration through multi-way
visual analysis. In: SDM, Vol. 9. SIAM, 1063–1074 (2009)

Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic
tensor analysis. In: Proceedings of the 12th ACM SIGKDD inter-
national conference on knowledge discovery and data mining
(KDD ’06). ACM, New York, pp. 374–383 (2006). https ://doi.
org/10.1145/11504 02.11504 45

Sun, J.-T., Zeng, H.-J., Liu, H., Lu, Y., Chen, Z.: CubeSVD: a novel
approach to personalized web search. In: Proceedings of the
14th international conference on world wide web (WWW ’05).
ACM, New York, 382–390 (2005). https ://doi.org/10.1145/10607
45.10608 03

Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommenda-
tions based on tensor dimensionality reduction. In: Proceedings
of the 2008 ACM conference on recommender systems, (Rec-
Sys ’08). ACM, New York, NY, pp. 43–50 (2008). https ://doi.
org/10.1145/14540 08.14540 17

Tao, D., Li, X., Xindong, W., Weiming, H., Maybank, S.J.: Supervised
tensor learning. Knowl. Inf. Syst. 13(1), 1–42 (2007). https ://doi.
org/10.1007/s1011 5-006-0050-6

Tomasi, G., Bro, R.: A comparison of algorithms for fitting the PARA-
FAC model. Comput. Stat. Data Anal. 50(7), 1700–1734 (2006).
https ://doi.org/10.1016/j.csda.2004.11.013

Tucker, L.R.: Some mathematical notes on three-mode factor analysis.
Psychometrika 31(3), 279–311 (1966). https ://doi.org/10.1007/
BF022 89464

Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.:
Tensorlab (Version 3.0). http://www.tenso rlab.net. (2016)

Vervliet, N., De Lathauwer, L.: A randomized block sampling approach
to canonical polyadic decomposition of large-scale tensors. IEEE
J. Select. Top. Signal Process. 10(2), 284–295 (2016). https ://doi.
org/10.1109/JSTSP .2015.25032 60

Wang, F., Zhang, P., Qian, B., Wang, X., Davidson, I.: Clinical risk
prediction with multilinear sparse logistic regression. In: Pro-
ceedings of the 20th ACM SIGKDD international conference
on knowledge discovery and data mining, ACM, pp. 145–154
(2014)

Wang, H., Thoss, M.: Multilayer formulation of the multiconfiguration
time-dependent Hartree theory. J. Chem. Phys. 119(3), 1289–
1299 (2003). https ://doi.org/10.1063/1.15801 11

Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z.,
Shi, Y., Zhang, S., Zheng, C., Lu, G., Zhan, K., Li, X., Qiu, B.:

. BigDataBench: a big data benchmark suite from internet ser-
vices. In: 2014 IEEE 20th international symposium on high per-
formance computer architecture (HPCA), pp. 488–499 (2014).
https ://doi.org/10.1109/HPCA.2014.68359 58

Wang, Y., Chen, R., Ghosh, J., Denny, J.C., Kho, A., Chen, Y., Malin,
B.A., Sun, J.: Rubik: knowledge guided tensor factorization and
completion for health data analytics. In: Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery
and data mining (KDD ’15), ACM, New York, pp. 1265–1274
(2015). https ://doi.org/10.1145/27832 58.27833 95

Wimalawarne, K., Sugiyama, M., Tomioka, R.: Multitask learning
meets tensor factorization: task imputation via convex optimi-
zation. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N.D., Weinberger, K.Q. (eds.), Advances in neural information
processing systems 27, Curran Associates, Inc., 2825–2833
(2014). http://paper s.nips.cc/paper /5628-multi task-learn ing-
meets -tenso r-facto rizat ion-task-imput ation -via-conve x-optim
izati on.pdf

Wright, S., Nocedal, J.: Numerical optimization. Spring. Sci. 35(67–
68), 7 (1999)

Xu, Y., Zhang, L., Liu, W.: Cubic analysis of social bookmarking for
personalized recommendation. In: Xiaofang, Z., Jianzhong, L.,
HengTao, Shen., Masaru, K., Yanchun, Z. (Eds.), Frontiers of
WWW research and development-APWeb 2006, Lecture notes
in computer science, Vol. 3841. Springer, Berlin, pp. 733–738
(2006). https ://doi.org/10.1007/11610 113_66

Yu, D., Deng, L., Seide, F.: Large vocabulary speech recognition using
deep tensor neural networks. In: INTERSPEECH (2012)

Yu, Q.R., Liu, Y.: Learning from multiway data: simple and efficient
tensor regression. arXiv :abs/1607.02535 (2016)

Yu, R., Li, G., Liu, Y.: Tensor regression meets gaussian processes.
arXiv :1710.11345 (2017)

Yu, R., Zheng, S., Anandkumar, A., Yue, Y.: Long-term forecasting
using tensor-train RNNs. (2018). https ://openr eview .net/forum
?id=HJJ0w --0W

Zhang, Z., Batselier, K., Liu, H., Daniel, L., Wong, N.: Tensor com-
putation: a new framework for high-dimensional problems in
EDA. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 36(4),
521–536 (2017)

Zhang, Z., Yang, X., Oseledets, I.V., Karniadakis, G.E., Daniel, L.:
Enabling high-dimensional hierarchical uncertainty quantifica-
tion by ANOVA and tensor-train decomposition. IEEE Trans.
Comput. Aided Des. Integr. Circ. Syst. 34(1), 63–76 (2015)

Zhao, Q., Caiafa, C.F., Mandic, D.P., Zhang, L., Ball, T., Schulze-
bonhage, A., Cichocki, A.S.: Multilinear subspace regression: an
orthogonal tensor decomposition approach. In: Shawe-Taylor, J.,
Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q., (eds.),
Advances in neural information processing systems 24, Curran
Associates, Inc., 1269–1277 (2011). http://paper s.nips.cc/paper
/4328-multi linea r-subsp ace-regre ssion -an-ortho gonal -tenso
r-decom posit ion-appro ach.pdf

Zhao, Y., Li, J., Liao, C., Shen, X.: Bridging the gap between deep
learning and sparse matrix format selection. In: Proceedings of
the 23rd ACM SIGPLAN symposium on principles and practice
of parallel programming (PPoPP ’18), ACM, New York, pp.
94–108 (2018). https ://doi.org/10.1145/31784 87.31784 95

Zhou, G., Cichocki, A., Xie, S.: Decomposition of big tensors with low
multilinear rank. arXiv :abs/1412.1885 (2014)

Zhou, H., Li, L., Zhu, H.: Tensor regression with applications in neu-
roimaging data analysis. J. Am. Stat. Assoc. 108(502), 540–552
(2013). https ://doi.org/10.1080/01621 459.2013.77649 9

https://doi.org/10.1063/1.4948438
https://doi.org/10.1063/1.4948438
http://dl.acm.org/citation.cfm?id=3157096.3157185
http://dl.acm.org/citation.cfm?id=3157096.3157185
https://doi.org/10.1007/s10589-015-9761-5
https://doi.org/10.1137/120868323
https://doi.org/10.1137/120868323
https://doi.org/10.1145/2304576.2304624
https://doi.org/10.1145/2304576.2304624
https://doi.org/10.1145/1150402.1150445
https://doi.org/10.1145/1150402.1150445
https://doi.org/10.1145/1060745.1060803
https://doi.org/10.1145/1060745.1060803
https://doi.org/10.1145/1454008.1454017
https://doi.org/10.1145/1454008.1454017
https://doi.org/10.1007/s10115-006-0050-6
https://doi.org/10.1007/s10115-006-0050-6
https://doi.org/10.1016/j.csda.2004.11.013
https://doi.org/10.1007/BF02289464
https://doi.org/10.1007/BF02289464
http://www.tensorlab.net
https://doi.org/10.1109/JSTSP.2015.2503260
https://doi.org/10.1109/JSTSP.2015.2503260
https://doi.org/10.1063/1.1580111
https://doi.org/10.1109/HPCA.2014.6835958
https://doi.org/10.1145/2783258.2783395
http://papers.nips.cc/paper/5628-multitask-learning-meets-tensor-factorization-task-imputation-via-convex-optimization.pdf
http://papers.nips.cc/paper/5628-multitask-learning-meets-tensor-factorization-task-imputation-via-convex-optimization.pdf
http://papers.nips.cc/paper/5628-multitask-learning-meets-tensor-factorization-task-imputation-via-convex-optimization.pdf
https://doi.org/10.1007/11610113_66
http://arxiv.org/abs/abs/1607.02535
http://arxiv.org/abs/1710.11345
https://openreview.net/forum?id=HJJ0w--0W
https://openreview.net/forum?id=HJJ0w--0W
http://papers.nips.cc/paper/4328-multilinear-subspace-regression-an-orthogonal-tensor-decomposition-approach.pdf
http://papers.nips.cc/paper/4328-multilinear-subspace-regression-an-orthogonal-tensor-decomposition-approach.pdf
http://papers.nips.cc/paper/4328-multilinear-subspace-regression-an-orthogonal-tensor-decomposition-approach.pdf
https://doi.org/10.1145/3178487.3178495
http://arXiv.org/abs/abs/1412.1885
https://doi.org/10.1080/01621459.2013.776499

130 J. Li et al.

1 3

Jiajia Li is a Research Scientist at
High Performance Computing
group of Pacific Northwest
National Laboratory (PNNL),
Richland, WA. Her current
research emphasizes on optimiz-
ing tensor algorithms such as
tensor decompositions and fun-
damental tensor operations espe-
cially for sparse data by utilizing
various parallel architectures.
She has received her Ph.D.
degree in Computational Science
and Engineering at Georgia
Institute of Technology. She also
has received a Ph.D. degree from

Institute of Computing Technology at Chinese Academy of Sciences
and her B.S. in Computational Mathematics from Dalian University of
Technology.

Yuchen Ma is an under-graduate
student at Zhuoyue Honors Col-
lege, Hangzhou Dianzi Univer-
sity, China.

Xiaolong Wu is a Ph.D. student
in Electrical and Computer Engi-
neering at Purdue University. He
has received his Master degree
from the school of Computer sci-
ence in Virginia Polytechnic
Institute and State University.

Ang Li received his Bachelor
degree from the CS department
of Zhejiang University, Hang-
zhou, China, in 2010. From 2010
to 2012, he worked in industry as
a software developer. In 2016, he
received his joint two PhD
degrees from the ECE depart-
ment of National University of
Singapore, Singapore and the EE
department of Eindhoven Uni-
versity of Technology, Eind-
hoven, Netherlands. He is now
working as a research scientist in
the HPC group of Pacific North-
west National Laboratory, USA.

Kevin Barker Kevin is the Group
Lead for the High-Performance
Computing group in PNNL’s
Advanced Computing, Mathe-
matics, and Data division. He
received his Ph.D. in computer
science from the College of Wil-
liam and Mary in 2004 in the
area of adaptive and dynamic
middle-ware for large-scale par-
allel applications. Since that
time, he has been with the DOE
National Laboratory complex
working in the area of perfor-
mance modeling, large-scale
system design, and advanced

architectures. Kevin’s current research involves understanding the
implications of emerging and novel computing architectures on work-
load performance, energy efficiency, and cybersecurity.

	PASTA: a parallel sparse tensor algorithm benchmark suite
	Abstract
	1 Introduction
	2 Motivation
	2.1 Challenges of sparse tensor algorithms
	2.2 Requirements for a benchmark suite
	2.3 PASTA in need

	3 Tensor methods and applications
	3.1 Tensor methods
	3.1.1 Tensor decompositions
	3.1.2 Tensor network models
	3.1.3 Tensor regression

	3.2 Tensor applications
	3.2.1 Machine learning
	3.2.2 Healthcare analytics
	3.2.3 Social network analysis
	3.2.4 Quantum chemistry
	3.2.5 Data mining
	3.2.6 Signal processing
	3.2.7 Other areas

	4 Benchmark workloads
	4.1 Tensor element-wise operations
	4.2 Tensor-scalar operations
	4.3 Tensor-times-vector operation
	4.4 Tensor-times-matrix operation
	4.5 Kronecker and Khatri-Rao products
	4.6 Tensor-times-matrix sequence operation
	4.7 Others

	5 Data structures, algorithms, and implementations
	5.1 Data structures
	5.2 Algorithms
	5.2.1 Tew
	5.2.2 Ts
	5.2.3 Ttv
	5.2.4 Ttm
	5.2.5 Mttkrp

	5.3 Multicore implementations

	6 Dataset
	7 Experiments
	7.1 Tew
	7.2 Ts
	7.3 Ttv
	7.4 Ttm
	7.5 Mttkrp

	8 Conclusion
	Acknowledgements
	References

