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Abstract
The objective of the present work is the computational micromechanical analysis of unidirectional fiber-reinforced compos-
ites, considering defects. The micromechanical model uses refined beam theories based on the Carrera unified formulation 
(CUF) and involves using the component-wise (CW) approach, resulting in a high-fidelity model. Defects are introduced 
in the representative volume element (RVE) in the form of matrix voids by modifying the material properties of a certain 
quantity of the Gauss points associated with the matrix. The quantity of Gauss points thus modified is based on the required 
void volume fraction, and the resulting set is prescribed a material property with negligible stiffness to model voids. Two 
types of void distribution are considered in the current work—randomly distributed voids within the matrix and voids 
clustered in a region of the RVE. The current study investigates the influence of the volume fraction of voids present in the 
matrix and their distribution throughout the RVE domain on the macroscale mechanical response. Material nonlinearity is 
considered for the matrix phase. Numerical assessments are performed to investigate the influence of the volume fraction 
and the distribution of the voids on the macroscopic response.
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1  Introduction

Fiber-reinforced composites are a popular engineering 
material in the aerospace and automobile industry owing 
to their high specific strength and stiffness. However, 
manufacturing limitations lead to various kinds of imper-
fections, especially in the microstructure, such as fiber 
misalignment and matrix voids. Such defects can have 
significant influences on the global mechanical properties 
of the structure. The proper characterization of voids and 

defects in the microstructure is, therefore, an important 
issue in the analysis of composite structures. A very com-
mon microstructural defect is the presence of voids in the 
matrix, which are formed due to trapped air during the cur-
ing of the composite. Voids have a significant influence on 
matrix-dominated mechanical properties such as compres-
sive and interlaminar shear strength [1], and cause locali-
zation of stresses, thus acting as sites for failure initiation. 
From an experimental viewpoint, ultrasonic attenuation 
is an effective non-destructive approach to analyze such 
microstructural defects, since voids scatter elastic waves 
[2]. Various experimental studies involved the determina-
tion of the void morphology within the microstructure, 
both for unidirectional [3] and woven [4] composites. The 
influence of microstructural defects on mechanical proper-
ties has been studied by various researchers using compu-
tational mechanics. Such numerical approaches typically 
employ the finite-element method due to its wide appli-
cability. For instance, finite-element analysis (FEA) was 
used to study the effects of void geometry on the elastic 
properties of unidirectional fiber-reinforced composites 
[5]. The effect of voids on the mechanical properties of 
3D-woven carbon/carbon composites was investigated 
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in [6, 7]. The effect of matrix defects on the interlami-
nar tensile fatigue behavior of carbon/epoxy composites 
was investigated in [8], and on the transverse mechanical 
properties of unidirectional composites in [9]. The aim 
of the present work is to investigate the effect of micro-
structural voids on the macroscale mechanical response of 
unidirectional fiber-reinforced composites. The analysis is 
based on the Carrera Unified Formulation (CUF), where 
expansion functions are employed to enhance the cross-
sectional kinematics of 1D finite elements [10]. In particu-
lar, the current work uses the Component-Wise approach, 
where Lagrange polynomials are used as expansion func-
tions thus leading to the explicit modeling of the various 
constituents in the microstructure. The use of such higher 
order structural theories leads to an accurate evaluation of 
the 3D stress state, while avoiding the computational costs 
associated with 3D-FEA. Previous works on the topic of 
micromechanical analysis include the development of a 
micromechanics framework [11, 12] and its application 
to the progressive failure analysis of fiber-reinforced 
composites [13]. These works demonstrated the computa-
tional efficiency of the CUF micromechanics framework 
compared to standard 3D-FEA approaches, and the pre-
sent work extends the previous work by modeling a more 
realistic microstructure of unidirectional fiber-reinforced 
composites, by considering matrix defects such as voids. 
The paper is arranged as follows—Sect. 2 introduces CUF, 
while Sect. 3 describes the micromechanics framework. 
Some numerical assessments are presented in Sect. 4, fol-
lowed by the conclusions in Sect. 5.

2 � 1D Structural Theories

2.1 � Carrera Unified Formulation

Consider a beam element as shown in Fig. 1. The general-
ized displacement field is given by

where u is the displacement field and F 
�
(x,z) is the expan-

sion function across the cross-section. u
�
 is the generalized 

displacement vector, and M is the number of terms in the 
expansion function. The choice of F 

�
 and M is arbitrary. The 

present work considers the component-wise (CW) approach, 
which exploits Lagrange polynomials to enhance the cross-
section kinematic field of 1D finite elements. In addition, 
this approach leads to purely displacement degrees of free-
dom in the system. As an example, the displacement field 
obtained by a quadratic Lagrange polynomial is

Further details on the use of Lagrange polynomials as a class 
of expansion functions can be found in [14].

2.2 � Finite‑Element Formulation

The stress and strain fields are given by

Considering linear strains, the strain–displacement relation 
is given by

where D is the linear differentiation operator. The constitu-
tive law makes use of the elastoplastic stress–strain relation,

where �cep stands for the consistent elastoplastic tangent 
material matrix. The present work models matrix nonlineari-
ties using the von Mises plasticity model. The structure is 
modeled using 1D finite elements with standard shape func-
tions N i(y), and the resulting displacement field is written as
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Fig. 1   Arbitrary beam element in CUF coordinate system
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where u
�i is the nodal displacement field. For the quasi-static 

nonlinear problem, the principle of virtual work is herein 
recalled

where �Lint is the virtual variation of the strain energy and 
� Lext is the virtual variation of the work of the external 
loads. The virtual variation of the internal work can be 
expressed as

where V is the volume of the body. Introducing the constitu-
tive relations,

Looping through the four indices i, j, � , s results in the ele-
ment stiffness matrix, which is then assembled to generate 
the global stiffness matrix.

3 � Micromechanical Analysis

Considering the CW approach, the representative volume 
element (RVE) is modeled using 1D-CUF theories, where 
the beam models the RVE depth and Lagrange elements 
model the cross-section, i.e., the x2–x3 plane, as shown in 
Fig. 2. The micromechanics framework is based on the peri-
odic nature of the RVE, and periodic boundary conditions 
(PBC) are applied to ensure displacement compatibility 
across the faces of the RVE [15]. The displacements applied 
on opposite RVE surface pairs are given by

where 𝜖ik is the applied macroscopic strain, indices j+ and 
j− represent the positive and negative directions, respec-
tively, along xk . The homogenized stress ( ̄𝜎ij ) and strain ( ̄𝜖ij ) 
response is obtained by volume averaging the microscopic 
fields ( �ij , �ij ) [16],

(7)�Lint = �Lext,

(8)�Lint = ∫V

��
T
� dV ,

(9)�Lint = �u
T
sj

(
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D
T
sj
C
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D
�i dV

)

u
�i.

(10)u
j+

i
(x, y, z) − u

j−

i
(x, y, z) = 𝜖ik(x

j+

k
− x

j−

k
),

where V is the RVE volume. The constitutive relation for the 
homogenized medium reads as

where C̄ijkl is the homogenized material matrix. A detailed 
explanation of the 1D micromechanics framework in CUF 
is given in [11].

Matrix voids within the RVE are modeled by select-
ing a certain quantity of Gauss points associated with the 
matrix constituent and assigning a material property to them 
with negligible stiffness. The number of such Gauss points 
depends on the required void volume fraction specified by 
the user. The distribution of the voids can also be specified 
by controlling the selection procedure of the matrix Gauss 
point set. Further details on the modeling of matrix voids 
within the RVE may be found in [12]. Two types of void 
distribution are considered in the current work—randomly 
distributed voids within the matrix, and voids clustered in a 
region of the RVE. The current study investigates the influ-
ence of the volume fraction of voids present in the matrix, 
as well as their distribution throughout the RVE domain, on 
the macroscale mechanical response.

4 � Numerical Results

4.1 � Micromechanical Analysis of RVE Without 
Defects

The first numerical assessment involves the micromechani-
cal analysis of a pristine RVE, i.e., without defects. A ran-
domly distributed RVE is considered with a fiber volume 
fraction V f  = 0.47. The 1D-CUF model consists of 2 four-
node beam (B4) elements in the 11-direction to describe the 
RVE depth, and 277 nine-node bi-quadratic expansions (L9) 

(11)𝜖ij =
1

V ∫V

𝜖ijdV

(12)𝜎̄ij =
1

V ∫V

𝜎ijdV

(13)𝜎̄ij = C̄ijkl𝜖ij,

Fig. 2   Component-wise mod-
eling of the RVE using 1D CUF
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to describe the cross-section. A schematic representation of 
the RVE architecture, as well as its discretization, is shown 
in Fig. 3. The fiber constituent is modeled as a linear-elastic 
material. Nonlinearity is introduced within the matrix con-
stituent, modeled as an elastoplastic material based on the 
J2 plasticity theory. Further details on the implementation 
of this constitutive model within CUF is found in [17]. The 
constituent material properties are listed in Table 1 and the 
plasticity curve, which defines the nonlinear matrix behav-
ior, is plotted in Fig. 4. Two load cases have been considered 
in the current assessment, where strains are applied in the 
22- and 23-direction of the RVE, respectively. The mag-
nitude of applied strain in both cases is 0.02. The macro-
scopic stress–strain response for the loading cases is plotted 
in Fig. 5. Dehomogenization is also performed to obtain the 
local stress and strain fields within the RVE. The von Mises 
stress field (MPa) and equivalent plastic strain distribution 
for the case of 22-direction loading is shown in Fig. 6, while 
that for the case of 23-direction loading is shown in Fig. 7.

4.2 � Micromechanical Analysis of RVE with Defects

The RVE shown in Fig. 3 is considered again, now with 
defects in the form of matrix voids. A void volume frac-
tion of 2% has been used for the current assessment. Two 
versions of the RVE are analyzed, one with randomly 
distributed voids and the other with clustered voids, to 
investigate the effect of void distribution on the microscale 
fields. The two RVEs with different void distributions are 
schematically shown in Fig. 8. Dehomogenization analysis 

is carried out to determine the local stress and strain fields 
within the RVE. In this case, a strain in applied in the 
22-direction. The distribution of the von Mises stress and 
equivalent plastic strains for the case of the randomly dis-
tributed voids is given in Fig. 9, while that for the case of 
clustered voids is shown in Fig. 10. The following obser-
vations are made:

–	 Stress concentration occurs in the vicinity of the voids, 
and the stress magnitude increases compared to the pris-
tine RVE. This is seen by comparing the von Mises stress 
fields in Fig. 6 with those in Figs. 9 and 10.

–	 The increased magnitude of von Mises stresses leads to 
higher plasticity, as seen in Figs. 9 and 10.

–	 Clustered voids lead to higher stress concentration, and 
consequently plastic effects, compared to randomly dis-
tributed voids.

4.3 � Influence of the Void Fraction

The final numerical assessment is the investigation of the 
influence of the void fraction on the overall macroscopic 
stress–strain response. Various RVEs are developed with 
void fractions ranging from 1 to 4%, and both random and 
clustered void distributions are considered. A strain of mag-
nitude 0.02 is applied in the 22-direction. Homogenization 
is performed to determine the macroscale stress–strain 
response. The normalized macro-stress as a function of void 
fraction, and the macroscopic stress–strain response for a 
void fraction of 4% are plotted in Fig. 11. The following 
comments are made:

Fig. 3   Schematic diagram of the RVE with randomly distributed fib-
ers (left), and the L9 cross-sectional discretization (right)

Table 1   Properties of the constituent materials, the units of the elastic 
moduli are GPa

Material E
11

E
22

= E
33

G
12

= G
13

 
= G

23

�
12

 = �
13

�
23

Fiber 276 16 5 0.28 0.31
Matrix 3.5 3.5 1.3 0.35 0.35

Fig. 4   Stress–plastic strain curve of the elastoplastic matrix
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Fig. 5   Macroscopic stress–
strain response for the pristine 
RVE, for strains applied in 
the 22-direction (left) and the 
23-direction (right), stress 
reported in MPa

Fig. 6   von Mises stress (MPa, 
left) and eq. plastic strain (right) 
for the pristine RVE loaded in 
the 22-direction

Fig. 7   von Mises stress (MPa, 
left) and eq. plastic strain (right) 
for the pristine RVE loaded in 
the 23-direction

Fig. 8   Schematic representation 
of the RVE with 2% voids in the 
matrix. Randomly distributed 
voids (left), and clustered voids 
(right)
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–	 The computed macro-stress reduces as the void fraction 
is increased.

–	 The presence of voids leads to a reduction in the macro-
scale material stiffness, which can significantly influence 
global mechanical behavior.

–	 In all the cases, clustered voids lead to a greater reduc-
tion in stresses compared to randomly distributed voids, 
owing to increased localization of plasticity.

5 � Conclusions

The present work investigated the effect of microstructural 
matrix voids on the macroscale mechanical behavior of 
unidirectional fiber-reinforced composites. The analysis 
was performed via a micromechanics framework based on 
refined beam theories, obtained using the Carrera Unified 

Formulation. Periodic boundary conditions were used to 
maintain consistency with the repeating nature of the RVE. 
Homogenization was performed to obtain the macroscopic 
response, while dehomogenization provided the local 
stress and strain fields. The influence of voids on the global 
mechanical behavior was studied, both in terms of the void 
volume fraction, as well as void distribution through the 
RVE. It was shown that the increase of voids leads to sig-
nificant reductions in the macroscale stiffness of the com-
posite. It was also observed that clustered voids are more 
critical than randomly distributed voids, since a clustered 
configuration develops higher stress concentration, leading 
to more localized plasticity, eventually resulting in signifi-
cant reduction of the structural mechanical performance. 
Future works include micromechanical progressive damage 
analysis, considering voids, as well as structural analysis 
based on multiscale approaches.

Fig. 9   von Mises stress (MPa, 
left) and eq. plastic strain (right) 
for the RVE with randomly 
distributed voids

Fig. 10   von Mises stress (MPa, 
left) and eq. plastic strain (right) 
for the RVE with clustered 
voids

Fig. 11   Influence of void 
fraction on macroscopic stress 
response (left), and macroscopic 
stress–strain response for a void 
fraction of 4% (right); stress in 
MPa
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