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Abstract
The analysis of large amplitude vibrations of cracked plates is considered in this study. The problem is addressed via a Ritz 
approach based on the first-order shear deformation theory and von Kármán’s geometric nonlinearity assumptions. The 
trial functions are built as series of regular orthogonal polynomial products supplemented with special functions able to 
represent the crack behaviour (which motivates why the method is dubbed as eXtended Ritz); boundary functions are used 
to guarantee the fulfillment of the kinematic boundary conditions along the plate edges. Convergence and accuracy are 
assessed to validate the approach and show its efficiency and potential. Original results are then presented, which illustrate 
the influence of cracks on the stiffening effect of large amplitude vibrations. These results can also serve as benchmark for 
future solutions of the problem.
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1  Introduction

Plates are frequently used in aerospace, automotive, 
naval and civil engineering structures. During their ser-
vice life, plates may sometimes experience damage in 
the form of cracks, which can reduce their stiffness and 
produce significant changes in their dynamic behaviour. 
Such occurrences have to be accounted for the effec-
tive and reliable design of plate structures in which the 
presence of cracks may result in the loss of functionality 
and/or safety. The availability of tools able to predict 
the effects of cracks on the plate dynamics may help to 
prevent undesired effect and improve structural design 
towards enhanced safety.

The dynamic characteristics of plates are primarily 
described by their natural vibration modes. Many studies 
focused on the linear vibration analysis of both isotropic 

and composite thin and thick plates, providing for a com-
prehensive knowledge of the plate dynamic behaviour and 
design guidelines [16]. However, for an accurate appraisal 
of the plate dynamics, in some applications, it is needed 
to investigate the nonlinear free vibration problem. A lit-
erature survey evidences that the investigation about the 
large amplitude vibrations of plates received considera-
ble attention and both analytical and numerical solutions 
have been proposed and used to investigate the effects of 
the involved parameters [1, 26]. Many of these solutions 
refer to Kirchhoff or classical laminate plate theory with 
nonlinear von Kármán’s strains and are suitable for thin-
plates analysis. First- and higher-order shear deformation 
theories have also been proposed especially for composite 
laminates and an outline of the relevant literature can be 
found in Refs. [18, 30].

Notwithstanding, there are few works dealing with the vibra-
tions of cracked plates. Different solutions have been proposed, 
based on integral equations [27, 28], finite elements (e.g., [2, 7, 
14]), Fourier series solutions [11], generalized differential quad-
rature finite element method [31] and Ritz method [9, 10, 12, 17, 
32]. The proposed solutions for cracked plates have been gener-
ally obtained for the linear case and, to the best of the authors 
knowledge, only the line spring model approach has been 
recently proposed for nonlinear forced vibrations of isotropic 
circular and rectangular Kirchhoff’s plates with cracks [3, 4, 13].
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In view of the above observations and literature survey, 
the large amplitude free vibrations of cracked plates are stud-
ied in the present paper. The problem solution is based on an 
eXtended Ritz approach, dubbed as X-Ritz, recently proposed 
by the authors for buckling and post-buckling of plates [19, 20], 
which is here extended to nonlinear free vibrations analysis. 
The formulation assumes first-order shear deformation theory 
and von Kármán’s nonlinear strains, and has been used to obtain 
results for large amplitude vibrations of cracked isotropic and 
laminated plates whose characteristics are discussed.

2 � Formulation

Let us consider a quadrilateral plate containing a straight 
through-the-thickness crack. The plate is referred to a 
Cartesian coordinate system Ox1x2x3 with the x1 and x2 
axes lying on the plate reference plane � and the x3 axis 
directed along the thickness h. The natural coordinate sys-
tem O�� is also introduced, which maps the square domain 
[−1, 1] × [−1, 1] onto the plate mid-plane coordinates via 
standard bilinear shape functions [21]. Eventually, for 
plates with cracks, a polar coordinates system Ork�k is 
introduced at each crack tip as shown in Fig. 1, which illus-
trates the plate geometry and reference systems.

The present formulation is developed considering the 
first-order shear deformation theory and von Kármán’s 
nonlinear strains, whose fundamentals can be found in Refs 
[21, 24]. Assuming that the strain–displacement relation-
ships, the plate constitutive relationships and the kinematical 
boundary conditions are fulfilled, the governing equations 
for the plate vibrations are obtained by the stationarity of the 
following functional

where

(i)	 u = { u1 u2 u3 }
T and � = { �1 �2 }

T are the midplane 
displacement vector and the section rotation vectors, 
depending on the x1 and x2 coordinates only;

(1)
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(ii)	 � , � and � are the plate generalized strain vectors, 
namely the in-plane strain vector, the curvature vec-
tor and the out-of-plane shear strain vector � , which 
depend on u and � via the strain–displacement relation-
ships [21];

(iii)	 A , B , D and G are the extensional, bending–extension 
coupling, bending and shear stiffness matrices, respec-
tively [24];

(iv)	 J0 , J1 , J2 are the mass moments of inertia matrices, 
whose expressions are given in Appendix A;

(v)	 � is the vibrational natural frequency.

The problem solution is, therefore, given in terms of gen-
eralized displacements u and � that make the functional � 
stationary.

The solution of the nonlinear vibration problem of cracked 
plates is obtained by a Ritz approach, called X-Ritz, that 
approximates the generalized displacements via suitable 
defined enriched trial functions able to describe the crack open-
ing and the crack tip fields[19, 20]. In the case of an embedded 
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approximated as
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where ℒj(�) is the j-th order Legendre polynomial of the 
coordinate � and the C�

⟨k⟩
mn

 are the unknown coefficients. The 
functions f� (�, �) and g� (�, �) are used to guarantee the ful-
fillment of the kinematical boundary conditions and read as

where ci equals unity if � is constrained along the edge 
implicitly described by the corresponding power base, 
whereas it equals zero in case of unknown � . The geo-
metrical quantities involved in Eq. (2) are defined in Fig. 1. 
Details on the characteristics of the enriched trial functions 
defined in Eq. (2) can be found in Refs. [10, 19, 20]. Here, 
only some remarks are given:

	 (i)	 The first series in Eq. (2) considers regular functions 
able to describe the global plate behaviour disregard-
ing crack opening and crack tip singularities;

	 (ii)	 The other four series enrich the above-mentioned reg-
ular functions and are able to describe the crack open-
ing and singular fields at the crack tips. Their terms 
guarantee continuity along the segments �1 = 0◦ and 
�2 = 0◦ and the correct singular behavior at both 
crack tips. The starting index m� of these series 
governs the asymptotic behavior at the crack tips. 
It is chosen assuming that the strain energy density 
asymptotically behaves as r−1 when r → 0 . This is 
consistent with the available theoretical findings for 
small displacements in Kirchoff and Mindlin plates 
and large displacements in Kirchhoff plates [22, 33, 
34]. In the case of small displacements linear analy-
sis, this means setting m� = 1 for all of the displace-
ment components, namely � ∈ {u1, u2, u3, �1, �2} . 
On the other hand, for von Kármán’s strains, one has 
to set mu3

= 2 for the approximation of the transverse 
displacement and m� = 1 for � ∈ {u1, u2, �1, �2} . 
It is worth noting that the enrichment functions are 

(3)f� (�, �) =(1 + �)c1 (1 − �)c2 (1 + �)c3 (1 − �)c4

(4)g� (�, �) =(1 − �2)(1 − �2),

forced to zero on the plate edges via the boundary 
function g� (�, �) to localize their effect in the crack 
zone.

	 (iii)	 The tr ial function in Eq. (2) can obvi-
ously be used for uncracked plates by setting 

N
⟨1⟩
�

= N
⟨2⟩
�

= N
⟨3⟩
�

= N
⟨4⟩
�

= 0.

By substituting the strain–displacement relationships and 
in turn the generalized displacements approximations into 
Eq. (1), the discretized form of the functional � is obtained. 
Applying the standard calculus of variations, the stationarity 
condition of the discretized functional � provides the plate 
governing equations as [19, 20]

where X is the vector collecting the Ritz coefficients of the 
generalized displacements approximations (see Appendix 
A). The expression of the stiffness matrices K and KNL can 
be found in Refs. [19, 20], whereas the derivation of the 
mass matrix M is presented in Appendix A. Eq. (5) identi-
fies a nonlinear eigenvalue problem, whose solution can be 
achieved iteratively for a fixed amplitude of the eigenvectors.

(5)
[
K + KNL(X) − �2

M
]
X = 0,

Fig. 1   Plate geometry and refer-
ence systems

Fig. 2   Geometrical scheme of cracked rectangular plates



78	 I. Benedetti et al.

1 3

3 � Results

Numerical results are presented for rectangular plates, which 
are widely investigated in the literature and are of general 
practical interest. The employed geometrical data refer to the 
scheme shown in Fig. 2.

3.1 � Uncracked plates

To verify the proposed approach and assess its accuracy, the 
formulation was tested comparing the present free vibrations 
results for uncracked plates with the solution cases available 
in the literature. First, a square isotropic plate with edge 
length � and thickness h, simply supported on all the edges, 
was analyzed assuming the Poisson’s coefficient � = 0.3 . 
Convergence characteristics of the method are studied for the 
linear free vibration problem by varying the number of trial 
functions used in the generalized displacement approxima-
tions. More in detail, the same approximation scheme is used 
for all of the generalized displacements using the same num-
ber of orthogonal polynomials for the two plate reference 
directions, i.e., M� = N� . The results of the convergence 
analyses for the thin plate having h∕� = 0.001 are listed in 
Table 1; percentage errors have been calculated with respect 
to the frequencies obtained by the Kirchoff’s theory [16].

Convergence analyses have been performed also for 
different plate thickness and for nonlinear vibrations pro-
viding the same considerations and guidelines as the 
results of Table 1; they are not reported here for the sake 

of conciseness. The results show that an approximation 
with M� = N� = 8 can be considered accurate and thus the 
following results for nonlinear vibrations refer to such an 
approximation scheme.

Table 2 lists the nonlinear–linear frequency ratio �NL∕�L 
for the first vibrational mode of isotropic, simply supported, 
square plates with two different thickness ratio h∕� = 0.001 
and h∕� = 0.1 . Results are reported, as usual, for different 
vibration amplitudes defined in terms of the ratio wmax∕h 
between the plate maximum deflection and thickness. The 
comparison with analytical [5] and finite elements [6, 23] 
solutions shows a good accuracy of the proposed method 
whose results agree with those obtained using different 
approaches.

As validation case for laminated plates, a fully clamped 
rectangular plate with edges length ratio a∕b = 1.5 and thick-
ness ratio a∕h = 480 has been investigated considering the 

Table 1   Convergence of the 
linear natural frequencies 
𝜔̄
L
= 𝜔

L
�2

√
𝜌

Eh2
 for an 

isotropic, square, simply–
supported plate with 
h∕� = 0.001

M × N

4 × 4 6 × 6 8 × 8 10 × 10 12 × 12

Mode 1 𝜔̄
L

5.974 5.973 5.973 5.973 5.973
% error 0.016% −0.001% −0.001% −0.001% −0.001%

Mode 2 𝜔̄
L

17.765 14.976 14.933 14.933 14.933
% error 18.963% 0.288% −0.0001% −0.001% −0.001%

Mode 3 𝜔̄
L

17.765 14.976 14.933 14.933 14.933
% error 18.963% 0.288% −0.001% −0.001% −0.001%

Mode 4 𝜔̄
L

28.010 23.957 23.893 23.893 23.893
% error 17.230% 0.264% −0.002% −0.002% −0.002%

Table 2   First mode nonlinear–
linear frequency ratio �

NL
∕�

L
 

of isotropic, simply supported, 
square plates with different 
thickness ratio

w
max

∕h h∕� = 0.001 h∕� = 0.1

Present Ref. [5] Ref. [6] Ref. [23] Present Ref. [6] Ref. [23]

0.2 1.026 1.026 1.025 1.019 1.027 1.026 1.019
0.4 1.101 1.100 1.100 1.072 1.103 1.100 1.075
0.6 1.217 1.214 1.208 1.153 1.220 1.215 1.160
0.8 1.363 1.357 1.351 1.256 1.379 1.363 1.267
1 1.532 1.522 1.513 1.375 1.540 1.535 1.388

Table 3   First mode nonlinear–linear frequency ratio �
NL
∕�

L
 of 

uncracked 
[
90∕ − 45∕45∕0

]
S
 laminated fully clamped rectangular 

plate

w
max

∕h Present Ref. [8] Ref. [25] Ref. [15]

0.2 1.0064 1.0058 1.0055 1.0036
0.4 1.0293 1.0232 – –
0.6 1.0652 1.0516 1.0494 1.0470
0.8 1.1141 1.0903 – –
1 1.1222 1.1382 1.1343 1.1292
1.2 1.1806 1.1941 1.1947 1.1829



79X‑Ritz Solution for Nonlinear Free Vibrations of Plates with Embedded Cracks﻿	

1 3

[
90∕ − 45∕45∕0

]
S
 layup made of plies with E11 = 120.5GPa , 

E22 = 9.63GPa , G12 = G13 = G23 = 3.58GPa , �12 = 0.32 
and � = 1540 kg∕m3 .  The approximation scheme 
M� = N� = 8 has been used in the analyses. Table 3 lists the 
plate nonlinear–linear frequency ratio �NL∕�L for the first 
vibrational mode and its comparison with literature results. 
It is observed that the present results are in good agree-
ment with those obtained by finite elements [8, 25] and the 
element-free kp-Ritz formulation [15].

The comparison of the present results with other solutions 
validates the present approach for uncracked plates nonlinear 
vibration analysis and on this basis, the method is applied to 
cracked plates in the next section.

3.2 � Cracked plates

To ascertain the convergence behavior of the proposed 
approach for the cracked plate case, analyses were carried 
out for an isotropic, simply supported square plate contain-
ing a center horizontal crack of length a. Convergence has 
been investigated considering the value of the first five 
mode nondimensional frequencies in the linear case with 
respect to the number of regular and enrichment approxi-
mation functions. More in detail, the same approximation 
scheme is used for all of the generalized displacements; 
it uses the same number of orthogonal polynomials for 
the two plate reference directions, i.e., M� = N� , and the 
same number of terms to describe the crack behaviour, 
i.e N

⟨1⟩
�

= N
⟨2⟩
�

= N
⟨3⟩
�

= N
⟨4⟩
�

= Nc. Tables 4 and 5 list the 
results of the described convergence analysis along with 

Table 4   Convergence of the 
linear natural frequencies 
�
L
�2

√
�

Eh2
 of the isotropic, 

simply supported, square plate 
with a central horizontal crack 
( � = 0◦ ) having length 
a∕� = 0.2

( ) from Ref. [28], [ ] from Ref. [17], { } from Ref. [29], ⟨ ⟩ from Ref. [9]

Mode N
c

M × N Refs

4 × 4 6 × 6 8 × 8 10 × 10 12 × 12

1 0 5.97 5.97 5.97 5.97 5.97 (5.84)
1 5.97 5.97 5.97 5.97 5.97 [5.86]
2 5.97 5.97 5.97 5.97 5.97 {5.84}
3 5.97 5.97 5.97 5.97 5.97 ⟨5.84⟩
4 5.97 5.97 5.97 5.97 5.97
5 5.97 5.96 5.96 5.96 5.96

2 0 17.77 14.98 14.93 14.93 14.93 (14.87)
1 17.76 14.98 14.93 14.93 14.93 [14.88]
2 17.72 14.98 14.93 14.93 14.93 {14.88}
3 16.92 14.97 14.92 14.91 14.90 ⟨14.89⟩
4 15.12 14.93 14.90 14.89 14.88
5 15.04 14.90 14.89 14.88 14.88

3 0 17.77 14.98 14.93 14.93 14.93 (14.93)
1 17.77 14.98 14.93 14.93 14.93 [14.92]
2 17.73 14.98 14.93 14.93 14.93 {14.91}
3 17.65 14.97 14.93 14.93 14.93 ⟨14.92⟩
4 15.90 14.96 14.93 14.93 14.93
5 15.08 14.94 14.93 14.93 14.93

4 0 28.01 23.96 23.89 23.89 23.89 (23.89)
1 28.01 23.96 23.89 23.89 23.89 [23.85]
2 28.01 23.96 23.89 23.89 23.89 {23.81}
3 27.94 23.95 23.89 23.89 23.89 ⟨23.89⟩
4 25.52 23.93 23.89 23.89 23.89
5 24.15 23.91 23.89 23.89 23.89

5 0 42.24 30.30 29.87 29.87 29.87 (28.43)
1 42.24 30.30 29.87 29.87 29.87 [28.65]
2 42.23 30.29 29.87 29.86 29.86 {28.52}
3 41.52 30.22 29.87 29.86 29.86 ⟨28.47⟩
4 35.31 30.10 29.85 29.84 29.84
5 30.49 29.81 29.73 29.71 29.69
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results from the literature for two different crack length, 
namely a∕� = 0.2 and a∕� = 0.5.

Good convergence characteristics are observed for the 
linear case; analyses of nonlinear vibrations for fixed ampli-
tude show similar trends. It is observed that the convergence 
of the first mode, which is a primary concern in nonlinear 
vibration analysis, is achieved with a relatively low number 
of crack functions showing the computational efficiency of 
the approach. In the subsequent analyses, a discretization 
scheme with M� = N� = 8 and Nc = 5 has been used.

Figs. 3 and 4 illustrate some original results for large 
amplitude vibrations of cracked isotropic square plates. 
For the plate first vibration mode, they show the backbone 
curves linking the nonlinear–linear frequency ratio to the 
vibration amplitude. Fig. 3 reports the results for an hori-
zontal ( � = 0◦ ) crack with different lengths ( a∕� = 0.2 and 
a∕� = 0.5 ) considering two different plate thickness values 
( h∕� = 0.001 and h∕� = 0.1 ). The stiffening effect of large 
amplitude on free vibrations is clearly observed; this effect 
reduces with the crack length and increases with thickness; 

Table 5   Convergence of the 
linear natural frequencies 
�
L
�2

√
�

Eh2
 of the isotropic, 

simply-supported, square plate 
with a central horizontal crack 
( � = 0◦ ) having length 
a∕� = 0.5

( ) from Ref. [28], [ ] from Ref. [17], { } from Ref. [29], ⟨ ⟩ from Ref. [9]

Mode N
c

M × N Refs

4 × 4 6 × 6 8 × 8 10 × 10 12 × 12

1 0 5.97 5.97 5.97 5.97 5.97 (5.36)
1 5.97 5.97 5.97 5.97 5.97 [5.40]
2 5.97 5.97 5.97 5.97 5.97 {5.36}
3 5.97 5.96 5.96 5.96 5.95 ⟨5.36⟩
4 5.81 5.74 5.69 5.67 5.66
5 5.55 5.43 5.40 5.40 5.39
6 5.50 5.41 5.39 5.39 5.39

2 0 17.77 14.98 14.93 14.93 14.93 (13.02)
1 17.76 14.98 14.93 14.93 14.93 [12.96]
2 17.68 14.90 14.75 14.66 14.59 {13.09}
3 16.65 13.68 13.27 13.16 13.12 ⟨13.03⟩
4 13.93 13.25 13.14 13.10 13.09
5 13.40 13.03 13.02 13.02 13.02
6 13.28 13.03 13.02 13.02 13.02

3 0 17.77 14.98 14.93 14.93 14.93 (14.74)
1 17.77 14.98 14.93 14.93 14.93 [14.74]
2 17.72 14.98 14.93 14.93 14.93 {14.74}
3 17.41 14.97 14.93 14.93 14.93 ⟨14.73⟩
4 16.42 14.91 14.89 14.88 14.87
5 15.59 14.75 14.74 14.74 14.74
6 15.48 14.74 14.73 14.73 14.73

4 0 28.01 23.96 23.89 23.89 23.89 (23.52)
1 28.01 23.96 23.89 23.89 23.89 [23.43]
2 28.00 23.96 23.89 23.89 23.89 {23.46}
3 27.87 23.88 23.78 23.77 23.76 ⟨23.52⟩
4 25.19 23.66 23.54 23.53 23.53
5 23.88 23.55 23.53 23.52 23.52
6 23.85 23.52 23.52 23.52 23.52

5 0 42.24 30.30 29.87 29.87 29.87 (24.86)
1 42.24 30.29 29.87 29.86 29.86 [25.12]
2 42.08 30.29 29.87 29.86 29.86 {24.93}
3 40.65 30.14 29.72 29.36 29.18 ⟨24.87⟩
4 31.35 27.64 27.21 27.03 26.92
5 26.57 25.34 25.15 25.13 25.12
6 26.09 25.18 25.07 25.03 25.02
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the influence of thickness on the stiffening effect reduces 
with increasing crack length.

Fig. 4 reports the results for plates with two different 
thickness values ( h∕� = 0.001 and h∕� = 0.1 ) containing 
a crack of length a∕� = 0.5 and different inclination angles 
� . The results show that the stiffening effect of the large 
amplitude is slightly influenced by the crack orientation and 
that it reduces with increasing �.

Representative results are also presented for com-
posite laminate plates considering the 

[
90∕ − 45∕45∕0

]
S
 

laminated clamped rectangular plate previously ana-
lysed in the uncracked case. Figs. 5 and 6 illustrate the 
effect of the crack parameters on the large amplitude free 
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Fig. 3   Backbone curves for the first mode of the isotropic, simply 
supported, square plates having different thickness h∕� and a central 
horizontal crack ( � = 0◦ ) with different lengths a∕�
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[
90∕ − 45∕45∕0

]
S
 

laminated, clamped, rectangular plate ( �∕b = 1.5 ) with a central 
crack having length a∕� = 0.5 and different inclinations �
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vibrations. They show the results corresponding to the 
first vibration mode and similar trends were observed also 
for the higher modes, not reported here for the sake of 
brevity. It is observed that the stiffening effect of large 
amplitude reduces with the crack length; on the other 
hand, for fixed crack length, it increases with the crack 
inclination angle.

Eventually, Fig. 7 shows the nonlinear first mode shape 
with amplitude wmax∕h = 1.0 for the considered laminated 
plate with a central crack having length a∕� = 0.5 and 
different inclination angles �.

4 � Conclusions

A single-domain extended Ritz approach has been used to 
analyze the large amplitude vibrations of cracked plates. It 
implements the first-order shear deformation theory cou-
pled with the von Kármán’s assumptions for geometrical 
nonlinearity. Regular polynomial functions supplemented 
with special functions able to describe the discontinuity 
across the crack and the singularity at the crack tips are 
used as trial functions; the kinematical boundary condi-
tions are fulfilled by suitable boundary functions. Conver-
gence and accuracy investigations have been carried out 
comparing the present results with those available in the 

literature, which are limited to uncracked plates. Origi-
nal results are proposed and discussed for large amplitude 
vibrations of cracked plates. The presented results may 
provide a benchmark for future solutions.

A Plate inertia properties and mass matrix

The inertia matrices are defined as

where denoted by � the material density, J0 , J1 and J2 are the 
plate mass moments of inertia given by

The mass matrix is deduced applying the variational cal-
culus to the second integral of the functional � after its 
discretization via Eqs. (2) To this aim, the plate generalized 
displacements approximation is formally rearranged in com-
pact matricial form as 

(A1)

J0 =

⎡
⎢⎢⎣

J0 0 0

0 J0 0

0 0 J0

⎤
⎥⎥⎦
, J1 =

⎡
⎢⎢⎣

J1 0

0 J1
0 0

⎤
⎥⎥⎦
, J2 =

⎡
⎢⎢⎣

J2 0 0

0 J2 0

0 0 J2

⎤
⎥⎥⎦
,

(A2)Jk = ∫h

� xk
3
dx3

Fig. 7   Illustration of the 
nonlinear first mode shape with 
amplitude w

max
∕h = 1.0 for the [

90∕ − 45∕45∕0
]
S
 laminated 

clamped rectangular plate 
( �∕b = 1.5 ) with central crack 
having length a∕� = 0.5 and 
different inclination �

(a) β = 0◦ (b) β = 30◦ (c) β = 45◦

(d) β = 60◦ (e) β = 90◦
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where the Ritz coefficients C�
⟨k⟩
mn

 ( � ∈ {u1, u2, u3, �1, �2} and 
k = 0, 1, 2, 3, 4 ) are arranged in the column vectors X� with a 
corresponding arrangement of the approximation functions 
in the row vectors �� . Substituting this expression in the 
second integral of � , one obtains

which define the mass matrix as
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