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Abstract

Flexible device is widely used in wearable device, biosensors, soft robotics, and foldable/rollable display, and still a lot of
potential application are ahead. In this review, fabrication techniques and materials for flexible devices will be referred to.
In the end, issues related with the commercialization of the flexible device will be discussed.
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Introduction
Flexible Device and its Prospect

Flexible devices are called electronic devices with high
stretch ratio, which can be used in various applications. Most
representative examples of commercial flexible devices are
rollable-foldable displays, which were first introduced by
SAMSUNG Display and LG Display [1, 2]. Other appli-
cations of the flexible devices are health and biomedical
devices which can be used as wearable sensors for monitor-
ing physiological parameters like heart rate, body tempera-
ture, and blood pressure, or monitoring health metrics such
as glucose levels, hydration, and UV exposure (BioStamp
Research Connect, MC10) [3—-6]. Other application of the
flexible device is soft robots which can adapt to their envi-
ronment and are equipped with flexible electronic sensors
and actuators [7-11].

Advancement and commercialization of flexible devices
will give chances to bring new products in our life. Haptic
[12-16] device with AR / VR display [17-19] is one of the
possible usages of flexible device, which will be suitable
interface for meta services [20-23]. Both exterior and inte-
rior part of the vehicle will be totally changed when flexible
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display become patchable into multi-curved surface. The
interior cockpit of the vehicle will be changed into a full
display panned which eliminates blind spots, as shown in
Fig. 1.

Methods for Mass Production in Flexible Device

Most of the methods for fabricating flexible devices can
be categorized into three: (1) Printing techniques [24-29],
(2) Lithography and deposition methods [30-35], and (3)
Hybrid and Roll-to-Roll process [36—43]. In the case of
printing techniques, these methods are generally cost-effec-
tive and scalable, making them suitable for mass produc-
tion. However, compared to lithography, printing techniques
have relatively low yield rate, lower resolution, and material
viscosity constraints, which can limit their applicability in
certain scenarios.

Lithography and deposition techniques offer high resolu-
tion and the ability to create precise, high-quality features,
often essential for specialized applications. However, they
can be time-consuming, require expensive equipment, and
may have limitations in terms of scalability and material
compatibility.

In the case of hybrid and roll-to-roll processes, these
methods are designed for high-throughput, continuous
production and allow for the integration of different types
of materials and components. However, they may require
complex processes, have alignment challenges, and can be
constrained by material compatibility and resolution limits.

Detailed methods with advantages and limitations are
listed in Table 1.
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Fig. 1 Scheme for applications
of flexible devices

Table 1 Manufacturing Methods used in fabricating flexible electronics

Flexible Electronics

Flexible Display

Manufacturing Method Advantages

Limitations

Inkjet Printing

Screen Printing

Gravure Printing
Soft Lithography

Nanoimprint Lithography
Photolithography

Chemical Vapor Deposition (CVD)
Physical Vapor Deposition (PVD)
Electrochemical Deposition

Transfer Printing
Laser Patterning

3D Printing
Roll-to-Roll Printing

High resolution, material versatility, low waste

Cost-effective, scalable, suitable for thicker layers

High-throughput, suitable for roll-to-roll, cost-
effective

High resolution, suitable for elastomeric materials

Nanoscale features, high resolution

High resolution, well-established
High-quality thin films, uniform coverage
Uniform thin layers, material versatility
Cost-effective, suitable for various materials

Allows integration of high-performance materials
High precision, suitable for various materials
Design flexibility, multi-material capabilities

High-throughput, continuous production, scalable

Slower throughput, nozzle clogging, limited to
certain viscosities

Lower resolution, limited material compatibility

Lower resolution, limited to certain ink viscosities

Time-consuming mold preparation, limited scal-
ability

High initial setup cost, limited material compatibility

Complex process, less suitable for flexible substrates

High temperature requirements, expensive equipment

High vacuum requirements, limited scalability

Requires electrolyte solutions, limited to conductive
materials

Complex process, alignment challenges
High energy consumption, potential material damage
Slower throughput, limited resolution

Requires flexible substrates, limited resolution

Material and Structure Design in Flexible Device

Numerous materials and designs have been developed for
stretchable electronics, and their scale are varied from mm to
nano scale. The use of composite materials such as conduc-
tive polymers integrated into elastomers can provide both
mechanical durability and electrical conductivity [44—49].
In situ polymerization methods are used to blend the materi-
als at the molecular level, enhancing stretchability. Nanow-
ires, nanotubes, and nanoparticles have been embedded
into elastomeric substrates to provide conductivity while

maintaining stretchability [50-55]. Materials like liquid
metal alloys are adopted in making stretchable circuits. The
intrinsic properties of these materials allow them to maintain
conductivity even under strain. Incorporating self-healing
polymers as a substrate can provide long-term durability
[56-64]. Any ruptures or cracks in the material can be auto-
matically healed, maintaining electrical conductivity, as
shown in Table 2.

Instead of changing materials, implementing mechani-
cal designs such as origami or kirigami can help in fab-
ricating stretchable electronic devices. These designs can
accommodate mechanical deformations while maintaining
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Table 2 Summary of materials used in fabricating flexible electronics.

Material type

Description

Advantages

Disadvantages

Composite materials; Conductive
polymers

Nano material embedded System
Liquid metal

Self-healing polymers as a sub-
strate

Conducting Polymer-Based Bio-
composites, [65]
Metallic nano-particles and nano-

wires are used in stretchable
circuits.

Freeze casting of Liquid metal,
[66]

Self-healing of a cut on an
AGNWs, [67]

Lightweight, flexible, and cost-
effective.

Provide conductivity while main-
taining stretchability

Maintain conductivity even under
strain.

Long-term durability.

Limited thermal stability, and gas
permeability.

Difficult to control its alignment
and purity.

Oxidation, biocompatibility.

Material complexity, healing
limitations, and processing

Table 3 Structure design used in the design of flexible electronics

Structure design Description Advantages

Disadvantages

Flat or Straight structure screen printed
straight-configura-
tion a strain sensor,

(78]
Origami or kirigami
like configuration

for a strain sensor,
[78]

Provide both mechanical durability and electrical conductivity

screen printed Wavy- Provide conductivity and stretchability. Enables complex
three-dimensional shapes

Limited functionality
Lack in rubustness

Design complexity
High manufacturing technique

the functionality of the device. Incorporating microfluidic
channels filled with liquid metal into elastomeric substrates
can offer excellent electrical conductivity while maintaining
stretchability, as shown in Table 3 [65-74].

Barrier for Commercialization of Flexible Devices.

Even if some stretchable electronics has been successively
commercialized, still there are issues which hinders the
advance of stretchable electronics. One of the main obstacles
in the design and mass production of flexible electronics is
getting vast volumes of material characteristics and device
performance to be consistent and homogeneous. Also, man-
ufacturing processes must be scalable in order to be able to
adjust and optimize the efficiency of mass production. Bal-
ancing material costs with performance poses challenges in
sourcing reliable and cost-effective materials in large quanti-
ties [79, 80]. The cost for stretchable conductive material is
high due to the nano-materials such as Ag nanowire, CNT,
Au nanoparticle, and the stacking of the device in unit area
are limited due to the structure of the device itself [75-78].
The complex fabrication methods often require specialized
equipment and controlled environments, adding to the cost.

Using mechanical patterns such as origami or kirigami in
flexible electronics has its drawbacks. Firstly, complex fold-
ing patterns could eventually increase the concentration of
mechanical stress, which could compromise the structural
integrity of the device [85, 86]. Secondly, the intricacy of these
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designs could make mass production less efficient because
they call for precise folding and assembly, which could be dif-
ficult to accomplish on a large scale [87, 88]. Furthermore, fre-
quent folding and unfolding could cause wear and tear, which
would reduce its long-term dependability. Achieving a balance
between robustness and intricate designs that can be produced
in large quantities is crucial in these kinds of applications [89].
Repeated stretching and relaxation cycles can lead to material
fatigue, causing cracks or delamination in conductive pathways
or substrates [79-86]. Uneven distribution of mechanical strain
can lead to "hot spots" where failure is more likely to occur.
Poor adhesion between different material layers can
result in delamination or peeling, especially under mechani-
cal stress. Such mechanical degradation eventually causes
conductivity degradation, and Joule heating problem of the
device [87-93]. Several strategies can be used to improve
Adhesion between distinct material layers in stretchable
electronics and lower the possibility of delamination or
peeling under mechanical stress [105-107]. Material sur-
faces can be altered by surface treatments like chemical or
plasma treatments to enhance bonding [108]. Adhesion can
be improved by using interfacial materials that are compat-
ible or adhesion-promoting intermediary layers [109, 110].
Other successful tactics include designing flexible substrates
with intrinsic adhesion-promoting qualities and optimiz-
ing material selection. Furthermore, investigating cutting-
edge adhesive technologies—Ilike bio-inspired adhesives
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or functionalized polymers—can strengthen the interlayer
bonding in flexible electronic devices [111-114].

Conclusion

Stretchable electronics has been developed for more than a
decade and commercialized products are now at hand. How-
ever, their cost for production is high, and development of
reliable, high resolution, and energy effective devices are
still becoming issues for advance of the flexible devices.

Future research in the manufacturing of flexible elec-
tronics should primarily concentrate on the development
of novel materials that are more flexible, robust, and func-
tional; self-healing technologies, biocompatible materials,
and effective energy harvesting are important areas to be
maximized. It will be of great importance to also address the
issues of scalability and cost-effectiveness in future research
works. Mass manufacturing of flexible electronics also need
to give ethical standards, environmental sustainability, and
human welfare top priority.
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