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Abstract
Flexible device is widely used in wearable device, biosensors, soft robotics, and foldable/rollable display, and still a lot of 
potential application are ahead. In this review, fabrication techniques and materials for flexible devices will be referred to. 
In the end, issues related with the commercialization of the flexible device will be discussed.
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Introduction

Flexible Device and its Prospect

Flexible devices are called electronic devices with high 
stretch ratio, which can be used in various applications. Most 
representative examples of commercial flexible devices are 
rollable-foldable displays, which were first introduced by 
SAMSUNG Display and LG Display [1, 2]. Other appli-
cations of the flexible devices are health and biomedical 
devices which can be used as wearable sensors for monitor-
ing physiological parameters like heart rate, body tempera-
ture, and blood pressure, or monitoring health metrics such 
as glucose levels, hydration, and UV exposure (BioStamp 
Research Connect, MC10) [3–6]. Other application of the 
flexible device is soft robots which can adapt to their envi-
ronment and are equipped with flexible electronic sensors 
and actuators [7–11].

Advancement and commercialization of flexible devices 
will give chances to bring new products in our life. Haptic 
[12–16] device with AR / VR display [17–19] is one of the 
possible usages of flexible device, which will be suitable 
interface for meta services [20–23]. Both exterior and inte-
rior part of the vehicle will be totally changed when flexible 

display become patchable into multi-curved surface. The 
interior cockpit of the vehicle will be changed into a full 
display panned which eliminates blind spots, as shown in 
Fig. 1.

Methods for Mass Production in Flexible Device

Most of the methods for fabricating flexible devices can 
be categorized into three: (1) Printing techniques [24–29], 
(2) Lithography and deposition methods [30–35], and (3) 
Hybrid and Roll-to-Roll process [36–43]. In the case of 
printing techniques, these methods are generally cost-effec-
tive and scalable, making them suitable for mass produc-
tion. However, compared to lithography, printing techniques 
have relatively low yield rate, lower resolution, and material 
viscosity constraints, which can limit their applicability in 
certain scenarios.

Lithography and deposition techniques offer high resolu-
tion and the ability to create precise, high-quality features, 
often essential for specialized applications. However, they 
can be time-consuming, require expensive equipment, and 
may have limitations in terms of scalability and material 
compatibility.

In the case of hybrid and roll-to-roll processes, these 
methods are designed for high-throughput, continuous 
production and allow for the integration of different types 
of materials and components. However, they may require 
complex processes, have alignment challenges, and can be 
constrained by material compatibility and resolution limits.

Detailed methods with advantages and limitations are 
listed in Table 1.  
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Material and Structure Design in Flexible Device

Numerous materials and designs have been developed for 
stretchable electronics, and their scale are varied from mm to 
nano scale. The use of composite materials such as conduc-
tive polymers integrated into elastomers can provide both 
mechanical durability and electrical conductivity [44–49]. 
In situ polymerization methods are used to blend the materi-
als at the molecular level, enhancing stretchability. Nanow-
ires, nanotubes, and nanoparticles have been embedded 
into elastomeric substrates to provide conductivity while 

maintaining stretchability [50–55]. Materials like liquid 
metal alloys are adopted in making stretchable circuits. The 
intrinsic properties of these materials allow them to maintain 
conductivity even under strain. Incorporating self-healing 
polymers as a substrate can provide long-term durability 
[56–64]. Any ruptures or cracks in the material can be auto-
matically healed, maintaining electrical conductivity, as 
shown in Table 2.

Instead of changing materials, implementing mechani-
cal designs such as origami or kirigami can help in fab-
ricating stretchable electronic devices. These designs can 
accommodate mechanical deformations while maintaining 

Fig. 1  Scheme for applications 
of flexible devices

Table 1  Manufacturing Methods used in fabricating flexible electronics

Manufacturing Method Advantages Limitations

Inkjet Printing High resolution, material versatility, low waste Slower throughput, nozzle clogging, limited to 
certain viscosities

Screen Printing Cost-effective, scalable, suitable for thicker layers Lower resolution, limited material compatibility
Gravure Printing High-throughput, suitable for roll-to-roll, cost-

effective
Lower resolution, limited to certain ink viscosities

Soft Lithography High resolution, suitable for elastomeric materials Time-consuming mold preparation, limited scal-
ability

Nanoimprint Lithography Nanoscale features, high resolution High initial setup cost, limited material compatibility
Photolithography High resolution, well-established Complex process, less suitable for flexible substrates
Chemical Vapor Deposition (CVD) High-quality thin films, uniform coverage High temperature requirements, expensive equipment
Physical Vapor Deposition (PVD) Uniform thin layers, material versatility High vacuum requirements, limited scalability
Electrochemical Deposition Cost-effective, suitable for various materials Requires electrolyte solutions, limited to conductive 

materials
Transfer Printing Allows integration of high-performance materials Complex process, alignment challenges
Laser Patterning High precision, suitable for various materials High energy consumption, potential material damage
3D Printing Design flexibility, multi-material capabilities Slower throughput, limited resolution
Roll-to-Roll Printing High-throughput, continuous production, scalable Requires flexible substrates, limited resolution
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the functionality of the device. Incorporating microfluidic 
channels filled with liquid metal into elastomeric substrates 
can offer excellent electrical conductivity while maintaining 
stretchability, as shown in Table 3 [65–74].

Barrier for Commercialization of Flexible Devices.

Even if some stretchable electronics has been successively 
commercialized, still there are issues which hinders the 
advance of stretchable electronics. One of the main obstacles 
in the design and mass production of flexible electronics is 
getting vast volumes of material characteristics and device 
performance to be consistent and homogeneous. Also, man-
ufacturing processes must be scalable in order to be able to 
adjust and optimize the efficiency of mass production. Bal-
ancing material costs with performance poses challenges in 
sourcing reliable and cost-effective materials in large quanti-
ties [79, 80]. The cost for stretchable conductive material is 
high due to the nano-materials such as Ag nanowire, CNT, 
Au nanoparticle, and the stacking of the device in unit area 
are limited due to the structure of the device itself [75–78]. 
The complex fabrication methods often require specialized 
equipment and controlled environments, adding to the cost.

Using mechanical patterns such as origami or kirigami in 
flexible electronics has its drawbacks. Firstly, complex fold-
ing patterns could eventually increase the concentration of 
mechanical stress, which could compromise the structural 
integrity of the device [85, 86]. Secondly, the intricacy of these 

designs could make mass production less efficient because 
they call for precise folding and assembly, which could be dif-
ficult to accomplish on a large scale [87, 88]. Furthermore, fre-
quent folding and unfolding could cause wear and tear, which 
would reduce its long-term dependability. Achieving a balance 
between robustness and intricate designs that can be produced 
in large quantities is crucial in these kinds of applications [89]. 
Repeated stretching and relaxation cycles can lead to material 
fatigue, causing cracks or delamination in conductive pathways 
or substrates [79–86]. Uneven distribution of mechanical strain 
can lead to "hot spots" where failure is more likely to occur.

Poor adhesion between different material layers can 
result in delamination or peeling, especially under mechani-
cal stress. Such mechanical degradation eventually causes 
conductivity degradation, and Joule heating problem of the 
device [87–93]. Several strategies can be used to improve 
Adhesion between distinct material layers in stretchable 
electronics and lower the possibility of delamination or 
peeling under mechanical stress [105–107]. Material sur-
faces can be altered by surface treatments like chemical or 
plasma treatments to enhance bonding [108]. Adhesion can 
be improved by using interfacial materials that are compat-
ible or adhesion-promoting intermediary layers [109, 110]. 
Other successful tactics include designing flexible substrates 
with intrinsic adhesion-promoting qualities and optimiz-
ing material selection. Furthermore, investigating cutting-
edge adhesive technologies—like bio-inspired adhesives 

Table 2  Summary of materials used in fabricating flexible electronics.

Material type Description Advantages Disadvantages

Composite materials; Conductive 
polymers

Conducting Polymer-Based Bio-
composites, [65]

Lightweight, flexible, and cost-
effective.

Limited thermal stability, and gas 
permeability.

Nano material embedded System Metallic nano-particles and nano-
wires are used in stretchable 
circuits.

Provide conductivity while main-
taining stretchability

Difficult to control its alignment 
and purity.

Liquid metal Freeze casting of Liquid metal, 
[66]

Maintain conductivity even under 
strain.

Oxidation, biocompatibility.

Self-healing polymers as a sub-
strate

Self-healing of a cut on an 
AGNWs, [67]

Long-term durability. Material complexity, healing 
limitations, and processing

Table 3  Structure design used in the design of flexible electronics

Structure design Description Advantages Disadvantages

Flat or Straight structure screen printed 
straight-configura-
tion a strain sensor, 
[78]

Provide both mechanical durability and electrical conductivity Limited functionality
Lack in rubustness

Origami or kirigami screen printed Wavy-
like configuration 
for a strain sensor, 
[78]

Provide conductivity and stretchability. Enables complex 
three-dimensional shapes

Design complexity
High manufacturing technique
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or functionalized polymers—can strengthen the interlayer 
bonding in flexible electronic devices [111–114].

Conclusion

Stretchable electronics has been developed for more than a 
decade and commercialized products are now at hand. How-
ever, their cost for production is high, and development of 
reliable, high resolution, and energy effective devices are 
still becoming issues for advance of the flexible devices.

Future research in the manufacturing of flexible elec-
tronics should primarily concentrate on the development 
of novel materials that are more flexible, robust, and func-
tional; self-healing technologies, biocompatible materials, 
and effective energy harvesting are important areas to be 
maximized. It will be of great importance to also address the 
issues of scalability and cost-effectiveness in future research 
works. Mass manufacturing of flexible electronics also need 
to give ethical standards, environmental sustainability, and 
human welfare top priority. 
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