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Abstract
The rapid development of machine learning technology has resulted in its increasing application in diverse fields, with the 
expectation of further extension in the future. This trend is driven by the exponential growth in data generation and accu-
mulation, as well as the advancement of computing power capable of processing vast amounts of data. While experimental 
research has traditionally been recognized as a major method for investigating material performance in the construction 
field, there is a growing body of research worldwide on novel construction materials that cannot be fully analyzed using 
experimental approaches alone. This review paper aims to present case studies that employ machine learning technology to 
analyze construction materials.
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Introduction

In recent years, there has been a rapid expansion in the 
development and utilization of machine learning technol-
ogy in various fields, with its rate of application expected 
to continue to rise in the future [1–3]. This growth can be 
attributed to the substantial increase in data generation 
and accumulation, coupled with the exponential growth of 
computing power capable of processing such data [4]. The 
high demand and investment in machine learning technol-
ogy within the industrial sector has led to the development 
of algorithms with high dimensionality, which are shared 
and disseminated at a rapid pace, resulting in changes to the 
industrial ecosystem.

Within the field of construction materials, experimen-
tal research has traditionally been the principal method for 
evaluating the formulation and performance of materials [5, 
6]. This is due to the relative difficulty and inefficiency of 
theoretically analyzing the complex chemistry of most con-
struction materials, which undergo extensive hydration over 

the course of roughly twenty-eight days from initial curing, 
followed by degradation and damage [7].

However, recent research has focused on the development 
of construction materials that incorporate various materi-
als beyond traditional formulations, and the correlation of 
their different properties and reactions has demonstrated 
limitations based on experiments and existing theories [8, 
9]. Next-generation construction materials are recognized 
as key enabling technologies for achieving greener, zero-
energy, and smarter structures. In order to successfully com-
mercialize and implement these materials, reliable material 
formulation-specific interactions and practical methodolo-
gies for material performance prediction are essential, and 
therefore the demand for data-driven analysis and model 
development is expected to increase [10].

This review article presents examples of research and 
applications of machine learning technology in construction 
materials, with the aim of providing a basic understanding 
of the field. The article first introduces a case study on pre-
dicting the piezoelectric properties of cement composites 
that incorporate multi walled-carbon nanotubes (MWNTs), 
a representative nanomaterial [11]. By dispersing the appro-
priate amount of MWNTs in the cement base material, the 
electrical conductivity of the composite can be significantly 
improved, allowing it to be utilized as a piezoelectric mate-
rial [12, 13]. Various machine learning algorithms were 
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applied, and the results were compared to determine the 
most suitable solution.

The second case study is then introduced, which is cen-
tered on the prediction of compressive strength properties 
in concrete that uses crushed clay brick as coarse aggregate 
[14]. The compressive strength of concrete with crushed clay 
brick aggregate exhibits different behavior than conventional 
concrete, and a constitutive equation combining microme-
chanics and machine learning was derived to simulate it. 
Microcracking constants that simulate the nonlinear prop-
erties of the material were derived using machine learning 
techniques, and their validity was assessed by comparing 
them with experimental results.

Finally, the article presents a case study that focuses 
on predicting the compressive strength of controlled low-
strength material (CLSM), that incorporates interior stone 
sludge, which is a byproduct of the decorative building mate-
rial and comprises predominantly silica. While it has not 
been subject to any specific treatment method thus far, there 
is a growing recognition that incorporating it into construc-
tion materials could lead to a reduction in CO2 emissions by 
substituting cement and aggregate. Using machine learning 
technology, we carried out data training and analysis and 
developed a model that is capable of predicting the key fac-
tors that contribute to the compressive strength of CLSM.

Machine Learning‑Based Prediction 
of Piezoelectric Performance 
in MWCNTs‑Embedded Cement Composites

According to [15, 16], the introduction of conductive fill-
ers in cement composites results in piezoresistive behavior, 
as evidenced by changes in electrical conductivity when 
subjected to external stress or strain. Figure 1 provides an 

overview of the piezoelectric performance measurements of 
cement composites containing MWCNTs. Due to the piezo-
electric properties of these materials, various research has 
been conducted to explore their potential sensing capabili-
ties [17–19]. Although multiscale material simulation offers 
an ideal approach for describing heterogeneous material 
properties at a full-scale level, its high computational cost 
and complexity limit its practical application in industrial 
settings [20–22]. Therefore, recent studies have focused on 
data-driven analysis methods based on experimental data to 
facilitate their integration into real-world applications.

The present study assessed several machine learning 
approaches to predict the performance of cement compos-
ites incorporating heterogeneous CNTs based on input vari-
ables. To ascertain the most effective machine learning algo-
rithm, a diverse range of techniques including decision tree 
[23], support vector machine (SVM) [24], Gaussian process 
regression (GPR) [25], random forest [26], XGBoost [27], 
genetic programming toolbox for the identification of physi-
cal systems (GPTIPS) [27], and deep belief network (DBN) 
[28] were utilized and analyzed.

The linear regression model is a widely used statistical 
technique for modeling the relationship between variables 
by minimizing the mean square error (MSE) [29]. Decision 
tree, a non-parametric supervised learning method, is uti-
lized for classification and regression tasks. The model per-
forms regression and classification by partitioning the data 
into branches based on specific numeric values or condi-
tions in the data, analogous to multiple branches on a single 
stem of a tree [30]. The SVM model is a supervised learning 
approach that employs classification by example to assign 
labels to objects. The model estimates a linear function with 
a specific range of variance in the training dataset and per-
forms optimization in a way that incorporates as much data 
as possible in the specific range of variance of the estimated 

Fig. 1   Overview of piezoelectric performance measurements of MWCNTs-embedded cement composites
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function [31]. GPR is a random variable-based approach that 
can be applied to non-linear regression and classification 
problems. It has been observed to perform well on small 
datasets due to its ability to utilize Bayes’ Rule and its lack 
of functional form limitations [32].

The ensemble algorithm, which includes random forest 
and XGBoost, is a method that employs multiple algorithms 
to achieve superior learning and prediction performance 
compared to using individual learning algorithms separately 
[33]. GPTIPS utilizes selection, crossover, and substitution 
in a manner inspired by biological processes. To prevent 
convergence to an incorrect value, this method selects the 
optimal solution group by causing a mutation to occur at a 
certain probability [34]. DBN leverages a multi-layer struc-
ture to perceive the distribution of learning data and refines 
the model through artificial neural networks to develop a 
predictive model [35]. The model's performance was evalu-
ated using the root mean square error (RMSE).

In this study, experimental data were obtained from 
previous research studies [36, 37]. The mix proportions 
of the MWCNT/cement specimens used in the machine 
learning methods are provided in the references. Kim et al. 
[36] and Song and Choi [37] conducted experiments using 
MWCNT/cement specimens with varying water-to-binder 
(W/B) ratios, MWCNT content, and curing temperature 
as experimental variables, and tested their piezoresis-
tive performance. Figure 2 presents the predicted results 
for all specimens based on the various machine learning 
algorithms. In the figure, the blue dot represents the experi-
mental value, while the yellow dot indicates the predicted 
result. The X-axis of the graph denotes the applied load-
ing, while the Y-axis represents the fractional change in the 

electrical resistivities (FCR). To determine the most accurate 
machine learning method, RMSE values were computed by 
comparing results from various machine learning techniques 
with experimental results. The GPTIPS method was iden-
tified as the most accurate, followed by the GPR method. 
The GPTIPS method, which employs nonlinear regression 
models that consider both model predictive performance 
and complexity, exhibited the best performance in half of 
the cases.

A Combined Micromechanics‑Genetic 
Algorithm (GA) Model for Estimating 
Compressive Strength of Concrete

Coarse aggregate is widely distributed throughout the 
earth, and thus its supply and demand present no significant 
challenges. However, in regions where this is not the case, 
the construction of buildings and infrastructure is signifi-
cantly hindered. Obtaining coarse aggregate is particularly 
challenging in desert areas or on islands, and much cost 
is involved in transporting the aggregate to other regions. 
Consequently, there is a growing need to develop artificial 
aggregates that can serve as substitutes for natural aggre-
gates in concrete. Data-driven research based on artificial 
intelligence has been actively conducted to design new 
materials and it has the potential to enhance the accuracy of 
material property prediction [38]. However, it is also highly 
dependent on data and has the limitation of being unable to 
predict material characteristics outside the range of trained 
data [14]. To address these limitations, recent studies have 

Fig. 2   Experimental comparisons between experiments and predictions with varying machine learning techniques
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focused on improving deep neural networks and multiscale 
convergence models.

The representative volume element (RVE) of concrete 
was constructed using an isotropic cement matrix (phase 
0), uniformly and randomly dispersed aggregates (phases 
1 and 2), and a microcrack (phase 3). The aggregates were 
assigned different phases (1 and 2) to represent normal and 
crushed clay brick aggregates, respectively, based on the mix 
proportion [39]. Furthermore, microcracks were assumed 
to exist within the concrete initially and were assumed to 
increase gradually due to external loading, resulting in a 
reduction in the mechanical characteristics of the specimen 
[40]. Figure 3 provides a schematic representation of the 
initial state and the equivalent damaged state of concrete 
containing normal and crushed clay brick aggregates.

Concrete generally contains voids ranging from 0.5 to 
5%, and the number of voids increases as external stress is 
applied. External stress induces stress concentration around 
the interfaces between cement and aggregate/void, which 
leads to material failure. In this study, microcracks were 
assumed to represent these material properties. Furthermore, 
the proposed constitutive equation was derived by assum-
ing that these microcracks gradually increase as external 
stress is applied [41]. The proposed micromechanical model 

is based on the ensemble volume-averaged approach, and 
the local solution of the inclusion interaction problem was 
not considered theoretically. The non-interacting approxima-
tion has the advantage of mathematical simplicity. However, 
the proposed approach may be limited when the inclusion 
content increases.

To improve the accuracy of predictions, it is necessary 
to consider the nonlinear damage of materials. However, 
quantitatively determining the exact nucleation point and 
progressive pattern of certain types of nonlinear damage, 
such as microcracks, is nearly impossible [42]. Therefore, 
damage parameters are typically set as model constants 
and fitted to experimental outcomes. However, manually 
determining numerous model constants that satisfy various 
experimental results can be very difficult and time-consum-
ing [43, 44]. To address this issue, we employed a machine 
learning technique, namely a GA, to estimate the optimal 
model constant values of the present micromechanics-based 
constitutive equation.

The constitutive equation with the optimal microcrack 
model constant was then implemented into the finite ele-
ment (FE) code ABAQUS using a user subroutine technique 
(UMAT) [45, 46]. An FE model was constructed to simulate 
the experimental outcome, as shown in Fig. 3. A cylindrical 

Fig. 3   Schematic illustration of proposed model for predicting engineering properties of concrete specimen
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FE model, identical in size to the specimen utilized in the 
experiment, was located between the upper load cell and the 
lower jig. The jig model was fixed in all directions, and the 
load cell model was set as a rigid body, designed to move 
from top to bottom [47].

The predicted elastic modulus values of concrete with 
respect to the aggregate replacement rate and the w/c ratio 
were compared with the experimental results obtained in 
the present study, using the same material and microcrack 
parameters as before to verify the theoretical effectiveness 
of the model (Table 1). The predicted values were found 
to be in good agreement with the experimental results in 
most cases. The tendency of the elastic modulus in the 
experiment varied depending on numerous mechanisms; 
however, in the theoretical analysis, the elastic modulus 
was predicted to decrease constantly as the crushed clay 
brick substitution rates and w/c ratios were increased.

Herein, we chose to utilize the GA in conjunction with 
the micromechanics model due to GA's robustness against 
local optima, ability to explore large and complex search 
spaces, and capacity to introduce diversity in the solution 
space through mutation and crossover operations. These 
attributes make it particularly effective when dealing with 
the complex variability of the compressive strength of con-
crete materials. However, other machine learning methods 
might offer different advantages, and a comparative analysis 
of these could be a fruitful direction for future research.

GA‑Based Predictions of Mechanical 
Characteristics of CLSM Specimens 
Containing Interior Stone Sludge

The production of interior stone results in waste contain-
ing moisture, quartz, and polymers from grinding and 
cutting processes, but an efficient recycling method is not 
available. Figure 4 presents an overview of the interior 
stone production process. Initially, the quartz powder is 
selected based on size and color and placed in a mold. A 
polymer film comprising unsaturated polyester resin and 
styrene monomer is then applied to the top of the sample. 
Appropriate temperature and pressure are subsequently 
applied during the manufacturing process, and the final 
product is completed through cutting and grinding.

CLSM is a cementitious backfill material with self-
compacting properties that is highly flowable, but it does 
not require high engineering properties [48]. Therefore, 
in this study, the application of sludge was considered to 
fabricate the specimens. Figure 5a shows the approximate 
material composition of the sludge-embedded CLSM 
specimens. Cement, fly ash, standard sand, and lumpy 
sludge were manually crushed and dry-beamed for 30 s. 
Water was then added to the mixture until it was suffi-
ciently mixed. The mixed sludge mixture was placed in a 
50 × 50x50 mm3 mold, sealed with plastic wrap to prevent 
evaporation of moisture, and cured for 24 h at a tempera-
ture of 18–25 ℃ before demolding and re-wrapping [49, 
50]. The specimens were cured at the same location and 
temperature.

Table 1   Comparison of experimental and predicted results for elastic 
modulus

Specimen Elastic modulus (GPa) Difference (%)

Experiment Prediction

B0-W0.45 25.09 23.03 8.95
B0-W0.50 24.60 21.87 12.46
B0-W0.55 18.22 20.76 12.23
B0-W0.60 23.65 19.69 20.12
B0-W0.65 15.53 18.66 16.77
B0-W0.70 17.65 17.67 0.09
B50-W0.45 20.76 16.91 22.75
B50-W0.50 12.75 15.75 19.07
B50-W0.55 21.58 14.64 47.34
B50-W0.60 16.99 13.57 25.17
B50-W0.65 15.98 12.54 27.40
B50-W0.70 9.79 11.55 15.22
B100-W0.45 9.94 12.98 23.38
B100-W0.50 7.45 11.82 36.96
B100-W0.55 12.27 10.72 14.47
B100-W0.60 6.78 9.65 29.72
B100-W0.65 10.28 8.62 19.34
B100-W0.70 12.50 7.63 63.89

Fig. 4   An approximate scheme of the production process of interior stone sludge
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Figure 5b presents an overview of the GPTIPS mod-
eling used to simulate the performance of CLSM speci-
mens. The experimental results from the experiments 
were used to develop a model equation for CLSM com-
pressive strength with sludge incorporation using a 
machine learning-based GA [51, 52]. In the resulting 
equation, the output represents the compressive strength 
of CLSM at 28 days, while d denotes the curing period 
(unit: day), f refers to the amount of fly ash (unit: g), s 
indicates the amount of sludge (unit: g), w represents the 
amount of water (unit: g), and a represents the amount of 
aggregate (unit: g) [53]. The accuracy of the model was 
compared with the actual experimental results, and an R2 
value of 0.802 indicated relatively high accuracy within 
the limited experimental conditions (Fig. 6).

Fig. 5   Schematic illustrations of a CLSM specimens containing interior stone sludge and b the concept of GA-based GPTIPS modeling

Fig. 6   Comparison of experimental and predicted results for com-
pressive strength of CLSM specimens
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Conclusions

This review article aims to provide a comprehensive 
understanding of the application of machine learning in 
construction materials by presenting various research 
examples. Conventional analysis may not be able to accu-
rately predict the performance of cementitious composites, 
and data-driven modeling through machine learning can 
be used to overcome this challenge. Machine learning can 
enable accurate regional analyses at the nanoscale level 
and predict material/structural behaviors on the macro-
scale level. The review covers the following main points:

•	 The piezoelectric performance of specimens was ana-
lyzed, and GPR and GPTIPS were found to have better 
accuracy. As the cement matrix undergoes a hydration 
reaction over a long period of time, considering the 
effect of time is considered appropriate.

•	 In the second case, a theoretical approach that com-
bines experiments, micromechanics, machine learning, 
and finite element techniques was used to predict the 
mechanical behaviors of concrete mixed with different 
types of aggregates. The prediction results were gener-
ally consistent, except when aggregates or W/C ratios 
were extremely high.

•	 The third case study focused on the performance pre-
diction of CLSM with interior stone sludge replaced by 
aggregate. A machine learning-based GA was used to 
derive a model expression for predicting the compres-
sive strength of CLSM specimens, and the accuracy 
was found to be relatively high.

•	 GA and GPR, notable machine learning algorithms, 
handle aberrations effectively. GA introduces unpre-
dictability via mutations, while GPR makes proba-
bilistic predictions. These traits allow them to reflect 
variability and error in cement-based materials perfor-
mance, leading to a more accurate prediction model.

The machine learning-based analyses presented in 
the review are based on limited experimental results and 
require ongoing validation and verification. Predicting the 
properties of cement-based materials can be challenging 
due to changes in material composition from hydration, 
and various efforts have been made to simulate their prop-
erties. Theoretical research has made significant progress 
in predicting the performance of construction materials, 
but limitations of each technique are being exposed. Com-
bining machine learning technology, which has been rap-
idly advancing in recent years, with existing techniques 
may help overcome some of these limitations.
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