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Abstract
The mechanical properties of unidirectional composites with different fiber arrays and volume fractions were predicted 
using machine learning. Repeating unit cell (RUC) containing randomly distributed fibers were used to represent the com-
plex microstructures of the unidirectional composites. The effective elastic constants of the RUC with periodic boundary 
conditions were evaluated using high-fidelity generalized method of cells (HFGMC) micromechanical analysis. Data sets 
relating the microstructural images of the fiber composites to their corresponding effective properties were used to train 
a convolutional neural network (CNN) model. To validate the accuracy of the trained CNN model, the properties of the 
unidirectional composites with fiber volume fractions from 15 to 70% were modeled using HFGMC, and the results were 
compared with the CNN predictions. The differences were less than 3%, indicating that the machine learning network can 
accurately characterize the elastic constants of unidirectional composites with microstructural configurations.
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Introduction

The elastic constants of unidirectional composites are essen-
tial material properties in composite laminate analysis. 
These properties can be determined either experimentally 
or numerically. With regard to experimental approaches, 
many experimental standards have been developed to apply 
loads and to properly measure the elastic constants of fiber 
composites [1]. Furthermore, with regard to numerical 
approaches, micromechanical models have been developed 
to describe the mechanical properties of fiber composites in 
terms of the ingredient properties and fiber volume fractions 
[2, 3]. The simplified micromechanical model is the rule of 
mixture [4], according to which the properties of compos-
ites are expressed in a simple formula. Subsequently, more 
generalized micromechanical models that account for the 
dimensions and shapes of fibers have been proposed [5, 6]. 
Notably, in the aforementioned models, the effects of the 
fiber arrays were not taken into account. The high-fidelity 
generalized method of cells (HFGMC) model [7, 8], which 

can calculate the effective constants of the repeating unit cell 
(RUC) modestly based on the fiber deployment, was adopted 
in this study. In the HFGMC analysis, the RUC of unidirec-
tional composites was selected and divided into many sub-
cells, each of which represents either the fiber phase or the 
matrix phase. The complex microstructures of fiber compos-
ites can be characterized by the subcells. From the HFGMC 
analysis, data sets relating the microstructure images to 
the effective constants of the fiber composites can be eas-
ily generated. In addition to the micromechanical analysis, 
with developments in artificial intelligence, the mechanical 
properties of composites can be predicted using machine 
learning [9, 10]. Rao and Liu [11] used a three-dimensional 
(3D) convolutional neural network (CNN) model (3D-CNN) 
to predict the elastic constants of particulate composites with 
random inclusions. The results indicated that a CNN model 
trained using a data set of 2000 entries generated from finite 
element analysis reproduced the effective properties of com-
posites with high accuracy. Yang et al. [12] used a 3D-CNN 
to characterize the elastic constant of composites with high-
contrast ingredient properties. The results showed that the 
effective stiffness of the composites as predicted using the 
trained CNN is highly accurate. Chen et al. [13] used finite-
volume direct averaging micromechanics [14, 15] to gener-
ate the input data sets used for training the CNN model. 
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The thermal expansion coefficients and elastic moduli of 
graphite/epoxy and glass/epoxy composites predicted using 
the trained CNN model coincided with the theoretical val-
ues obtained from finite-volume micromechanics. Ye et al. 
[16] used a deep neutral network to predict the mechani-
cal properties of composites with complex microstructures. 
The CNN model trained using the data sets generated by the 
finite element method can accurately predict the properties 
of composites with complex inclusions. Nevertheless, the 
data set generated by the finite element method is a time 
consuming task. In light of the above-described investiga-
tions, the training data sets used for machine learning have 
been typically obtained using finite element analysis but 
rarely obtained using the semi-analytical micromechanical 
model. In our study, the relationship between the micro-
structure images of fiber arrays and the mechanical proper-
ties of fiber composites were generated using the HFGMC 
model. The data sets were then used to train the CNN model. 
The mechanical properties predicted using the trained CNN 
model were compared with those obtained directly from 
HFGMC analysis.

Methodology

HFGMC Micromechanical Model

Unidirectional composites are heterogeneous materials 
consisting of a fiber and a matrix, the morphology and 
properties of which are distinct. Through the microme-
chanical analysis, the effective material properties of the 
unidirectional composites can be evaluated in considera-
tion of the ingredient properties, fiber volume fractions, 
and microstructural pattern. The microstructural image of 

the fiber composites was characterized using the RUC with 
a periodic boundary condition. In this study, the HFGMC 
micromechanical model proposed by Paley and Aboudi [8] 
was used to model the behaviors of unidirectional com-
posites. In the HFGMC analysis, the RUC of fiber com-
posites was divided into N� × N� × N� subcells, as shown 
in Fig. 1(a). The dimension of each subcell denoted by 
( �, �, � ) was defined as d� × h� × l� , and the local coordi-
nate ( y(�)
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 ) was set at the center of the subcell, as 

shown in Fig. 1(b). Based on the displacement continuity 
and averaged stress continuity at the interface of adjacent 
subcells in conjunction with the periodicity condition of 
the RUC, the relation between the overall strain of the 
RUC and the subcell strain is expressed as [17]
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of RUC, and [A∗](���) is the strain concentration tensor 
[18]. In addition, the effective stress of the RUC was 
derived by averaging the stress components within the 
RUC as
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Fig. 1   a Repeating unit 
cell (RUC) divided into 
N� × N� × N� subcells. b 
Dimensions and local coordi-
nates of the subcell
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where 
{
�
}
 is the effective stress of the RUC and {�}(���) , the 

stress state in subcell (�, �,�) . Furthermore, d, h, and l are 
the dimensions of the RUC. For each subcell, the constitu-
tive relation is expressed as

where [C](���) is the stiffness matrix for the subcell ( �, �, � ). 
Substituting Eqs. (1) and (2) into Eq. (3) gives the effective 
stress and effective strain relation of the RUC as

and the stiffness of matrix 
[
C
]
 of the RUC as

As a result, with Eq.  (5), the effective constants of 
the RUC can be evaluated from the ingredient properties 
[C](���) and microstructural configurations d� , h� , l�.
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In the HFGMC micromechanical analysis, Young’s 
modulus and Poisson’s ratio of the fiber were assumed 
to be 240 GPa and 0.3, respectively. By contrast, for the 
matrix material, Young’s modulus and Poisson’s ratio were 
4 GPa and 0.3, respectively. To generate a data set that is 
sufficiently large for training and validation, we performed 
1000 micromechanical analyses of the fiber composites 
with fiber volume fractions of 10%–75%. In this analysis, 
the fibers were assumed to deploy randomly within the 
matrix, and the morphology of the microstructures for the 
fiber composites was generated using MATLAB commer-
cial code with a random number. In the HFGMC method, 
the displacement field in each subcell was expressed by 
Legendre polynomial. The displacement in each subcell 
must satisfy displacement continuity and averaged stress 
continuity at the interface of adjacent subcells as well as 
periodic boundary condition. The properties of the ingre-
dients, the array of the fiber and microstructural configu-
rations were the input in the analysis. We developed our 
MATLAB code to solve the groups of systems of equa-
tions to obtain the displacement field in each subcell and 
calculated the relation between the overall strain of the 
RUC and the subcell strain. The effective properties of the 
composites were then evaluated from Eq. (5). Figure 2(a) 
shows the cross section of the fiber composites created 
with a fiber volume of 10%, where black and white regions 

Fig. 2   a Illustration of a 
microstructural image of fiber 
composites. b CNN process
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respectively indicate the fiber and the matrix. The fiber is 
aligned in the x3 direction, and x1 and x2 denote the lateral 
directions of the fiber composite. For each microstructural 
image of the cross section, the effective material constants 
of the fiber composites were calculated using HFGMC. In 
other words, 1000 micromechanical images were gener-
ated, and each one correlated to a set of effective material 
constants. Notably, in the machine learning process, 90% 
of the data set was used for model training and the remain-
ing 10% was used for model validation.

Machine Learning Approach

Based on the data sets generated from the HFGMC, the CNN 
model was trained [19, 20]. The distributions of the fibers and 
the matrix was represented by a 65 × 65 matrix in which the 
special positions of the fibers and matrix were marked spe-
cifically, as shown in Fig. 2a. It is noted that the microstruc-
tural images of the fiber were assumed to be invariant along 
the fiber direction, and thus, the 2D image was employed to 
represent the microstructures of the long fiber composites. 

Fig. 3   Validation and prediction 
error of the CNN model: a E11, 
b E22, c E33, d G13, e G23, and 
f G12
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The 65 × 65 matrix served as an input for the convolutional 
layer and was then convolved by 64 filters. The size of the 
filter is 3 × 3, and the stride is equal to 1. Subsequently, the 
output feature map resulting from the convolutional layer was 
passed through a 2 × 2 MaxPooling filter with a stride of 2 
to reduce the size of the feature map. The same process was 
repeated two times, after which one convolutional layer with 
64 filters was applied. The feature map output from the third 
convolutional layer became a one-dimensional feature vector. 
This feature vector was then input to the fully connected layer. 
The fully connected layer contained two layers, one with 50 

neurons and the other with 6 neurons. The dropout rate was 
set to 0% in both layers. The six neurons in the second fully 
connected layer correspond to the six mechanical properties 
of the unidirectional composites. In addition, a ReLU function 
was used as the activation function in both the convolutional 
layer and the fully connected layer [21]. The CNN model 
was trained with 60 repeated epochs first, and the predic-
tions based on the trained CNN model were then validated. 
The prediction error E between the predicted values from the 
trained CNN and the values directly calculated from HFGMC 
(10% data) was calculated as [22]

Fig. 3   (continued)
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where n is the total number of samples; yi, the value of the ith 
sample obtained using HFGMC; and ŷi , the corresponding 

(6)E =
100%

n

n∑
i=1

||yi − ŷi
||

yi

ith value predicted using the CNN. Figure 2b shows the 
complete CNN process.

Fig. 4   Microstructural image of 
fiber composites with different 
fiber volume fractions a 15% b 
30% c 55% d 65% e 70%
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Results and Discussion

Figure 3 shows the validation of the trained CNN model. 
The orthotropic material constants for the unidirectional 

composites—E11, E22, E33, G13, G23, and G12—were con-
sidered in the analysis. The frequency distribution associ-
ated with the prediction error shown in Fig. 3 indicates 
the percentage of occurrence of that error in our analysis. 
The results indicate that the material constants obtained 
using the trained CNN model are quite close to those cal-
culated directly using HFGMC. In addition, although the 
maximum prediction error was 6%, most CNN model pre-
dictions were within 2%. Subsequently, we predicted the 
elastic constants of the fiber composites with the randomly 
generated microstructure. The fiber volume fractions are 
15%, 30%, 55%, 65% and 70%, respectively, and the cor-
responding microstructural images are shown in Fig. 4. 
The material constants of the unidirectional composites 
derived using the trained CNN model and the HFGMC 
model are listed respectively from Tables 1, 2, 3, 4, and 5. 
Young’s moduli and shear moduli obtained from the two 
models were very similar, with a maximum error of 3%. 
Thus, the trained CNN model could be used to predict 
the elastic constants of the fiber composites with differ-
ent volume fractions. In addition, three microstructural 
images with different fiber distributions as shown in Fig. 5 
were taken into account. The fiber volume fractions for 
the microstructure are all 15%. It is noted that the fiber 
distributions were generated randomly in corresponding to 
the engineering implication of the fiber composites. The 
model predictions as listed in Tables 6, 7, and 8 are also 
close to the results obtained from HFGMC micromechani-
cal analysis. It can be seen that when the fibers are distrib-
uted randomly, the elastic constants of the fiber composites 
are not dramatically affected by the fiber distribution. Fur-
thermore, the computing time to solve each microstruc-
tural image using HFGMC model is 30 min with Intel(R) 
Core(TM) i7-6700 CPU @ 3.40 GHz. With the same hard-
ware resources, it takes 3 s to solve the same problem 
using CNN model. If many microstructural images need 
to be solved, CNN model would be more efficient than the 
HFGMC model.

Table 1   Comparison of CNN model and HFGMC for composites 
with a fiber volume fraction of 15%

HFGMC CNN Error(%)

E11 5.5 5.41 1.7
E22 5.49 5.46 0.5
E33 39.41 39.89 1.2
G23 2.03 2.03 0.3
G13 2.06 2.02 1.7
G12 1.87 1.86 0.7

Table 2   Comparison of CNN model and HFGMC for composites 
with a fiber volume fraction of 30%

HFGMC CNN Error(%)

E11 7.58 7.53 0.77
E22 7.49 7.45 0.51
E33 74.83 74.55 0.37
G23 3.02 2.99 0.77
G13 3.08 3.05 1.17
G12 2.37 2.34 0.88

Table 3   Comparison of CNN model and HFGMC for composites 
with a fiber volume fraction of 55%

HFGMC CNN Error(%)

E11 17.23 17.07 0.98
E22 17.27 17.27 0.02
E33 133.81 134.07 0.19
G23 4.78 4.47 0.03
G13 10.57 10.5 0.7
G12 10.31 10.33 0.16

Table 4   Comparison of CNN model and HFGMC for composites 
with a fiber volume fraction of 65%

HFGMC CNN Error(%)

E11 30.53 29.96 1.8
E22 29.25 28.9 1.1
E33 157.39 157.12 0.16
G23 20.67 20.06 2.9
G13 20.96 20.57 1.8
G12 7.28 7.22 0.89

Table 5   Comparison of CNN model and HFGMC for composites 
with a fiber volume fraction of 70%

HFGMC CNN Error(%)

E11 41.31 40.57 1.3
E22 40.85 40.95 0.2
E33 169.2 168.5 0.4
G23 27.61 27.67 0.2
G13 27.52 28.14 2.2
G12 10.38 10.28 0.9
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Conclusion

The elastic constants of unidirectional composites with 
different fiber volume fractions were predicted using the 
trained CNN model. For model training and validation, 

1000 data sets generated using HFGMC micromechani-
cal analysis were used. The validation revealed that most 
differences between the CNN prediction and the HFGMC 
results were less than 2%. Furthermore, we randomly gen-
erated the microstructures of unidirectional composites 
with fiber volume fractions from 15 to 70%, and compared 
the results predicted using the trained CNN model and the 
HFGMC micromechanical analysis. The maximum errors 

Fig. 5   Microstructural image 
of fiber composites with three 
different fiber distributions a 
Model 1 b Model 2 c Model 3

Table 6   Comparison of CNN model and HFGMC for composites 
with a fiber volume fraction of 15% (Model 1)

HFGMC CNN Error(%)

E11 5.51 5.47 0.64
E22 5.5 5.53 0.56
E33 39.41 39.39 0.05
G23 1.86 1.86 0.06
G13 2.03 2.04 0.79
G12 2.03 2.04 0.41

Table 7   Comparison of CNN model and HFGMC for composites 
with a fiber volume fraction of 15% (Model 2)

HFGMC CNN Error(%)

E11 5.5 5.47 0.52
E22 5.5 5.48 0.28
E33 39.41 39.75 0.86
G23 1.87 1.85 1.07
G13 2.04 1.99 2.57
G12 2.04 2.05 0.33
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were within 3%, indicating that the machine learning 
approach could accurately characterize the elastic proper-
ties of the unidirectional composites with both accuracy 
and efficiency.
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