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Abstract
In this study, we investigate a subspace-system identification method that estimates the modal characteristics and damping ratio 
of structures using a small number of sensor measurement responses. With this method, a Kalman state vector is first constructed 
from the input and measurement data, and then the state-space system matrix is optimized from it. For this purpose, a block Hankel 
matrix is constructed using the input data of the load applied to the structure and the measurement data of the response, and then 
the matrix is decomposed through QR factorization. Then, singular value decomposition is used to obtain the extended observ-
ability matrix and state-space system order n , and the state-space system matrix constituting the Kalman state vector is obtained 
via least-squares optimization. The natural frequency and damping ratio of the structural system are calculated from the eigenvalue 
of the obtained system matrix. To verify the effectiveness of this subspace state-space system identification method, the natural 
frequency and mode shape of a simply supported beam and cantilever beam were calculated using a limited number of measure-
ment data, and the results were compared with an exact solution to evaluate the accuracy of the estimation results of the dynamic 
characteristics. Furthermore, the modal characteristics and damping ratio of a real bridge were estimated from acceleration data. 
The stability chart calculated from the example shows that the subspace state-space system identification method discussed in this 
study can accurately identify the modal characteristics of structures using only a small number of measurement data.

Keywords  State-space system identification · Block Hankel matrix · Singular value decomposition · Modal characteristics · 
Stability chart

Introduction

System identification from the perspective of structural 
health monitoring is a computational method that uses meas-
urement data to evaluate the dynamic characteristics and 
stability of structures. The increased length and flexibility of 
bridges has led to more frequent abnormal vibrations. There-
fore, there is growing interest in evaluating the dynamic 
characteristics of structures in civil engineering. Recently, 
several studies on such system identification algorithms have 
been conducted, and one of the remarkable among them is 
a method to effectively estimate the higher mode natural 

frequency and mode shape of structures using a wireless 
measurement system [2].

Representative system identification methods using meas-
urement data include the eigensystem realization algorithm 
(ERA) and subspace system identification (SSI). ERA obtains 
a state-space matrix from a Hankel matrix constructed using 
Markov parameters and computes the modal characteristics of 
a structure through eigenvalue analysis [7]. It is suitable for 
the system identification of structures with light damping and 
is effective with multiple input and output data. This method 
was extended to ERA-observer/Kalman filter identification 
(ERA-OKID), which extracts Markov parameters using the 
Observer Kalman filter considering the uncertainty of the 
structural response, and the ERA-natural excitation technique 
(ERA-NExT), which can solve the noise problem of input sig-
nals [3, 5, 6, 10]. ERA has been widely utilized to monitor 
aerospace and civil structures when sufficient input and out-
put data are available. However, when using only the output 
response, the accuracy of system identification may be limited 
by the uncertainty in the data. Typically, to estimate the modal 
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characteristics of civil structures, it is necessary to use only out-
put data. For bridges in particular, methods that utilize ambient 
vibration data without dynamic excitation are effective because 
the dynamic excitation of higher modes is difficult and vehicles 
must be controlled to acquire data [1]. SSI is generally known 
to have high reliability for estimating the modal characteristics 
of structures using only the output response [10]. A represent-
ative SSI technique is the numerical algorithm for subspace 
state-space system identification (N4SID) [11]. This method 
continuously projects the future output of a structure onto the 
past output and obtains a state-space system matrix through the 
correlation of the QR decomposition and coefficient matrices. 
It has the advantage of not requiring neither a priori knowledge 
about the order and observability indices of the system nor an 
iterative algorithm for non-linear optimization [8]. Owing to 
its high accuracy, achieved even when using only output data, 
despite the complexity of its detailed numerical computations, 
N4SID is suitable for estimating the dynamic characteristics 
of structures. This technique has been developed over the past 
decade, mainly for evaluating the health of aircraft elements. 
Still, its system-level application to large civil structures, such 
as bridges and buildings, remains an open issue [10].

In this study, we discuss the N4SID method, which is 
suitable only when ambient vibration is required, e.g., for 
bridges, and we evaluate its applicability to civil structures. 
In particular, we evaluate the accuracy of the dynamic 
characteristics of structural elements estimated using only 
a small number of sensor responses, and we estimate the 
modal characteristics and damping ratio of a real bridge 
using acceleration response field measurements. We also 
compare the system identification accuracy according to 
the measurement response type and discuss the validity of 
the system identification results estimated using the N4SID 
method through a stability chart.

The rest of this paper is structured as follows. In Sect. 2, 
we describe the state-space modeling of vibrating structures, 
and in Sect. 3, we describe the N4SID system identification 
algorithm and application procedure. In Sect. 4, we intro-
duce a method for obtaining the modal characteristics and 
damping ratio via eigenvalue analysis of the identified sys-
tem matrix. In Sect. 5, we evaluate the accuracy of the modal 
characteristics estimated using the N4SID through numeri-
cal examples and assess the applicability of the N4SID algo-
rithm for the system identification of real bridges.

State‑Space Modeling of Vibrating 
Structures

The equation of motion governing the dynamic behavior of 
a discrete structural system with nd degrees of freedom is 
expressed as follows:

where � , �0 , and � ∈ ℝ
nd×nd are the mass matrix, damping 

matrix, and stiffness matrix of the structural system, respec-
tively, and �(t) ∈ ℝ

nd×1 and �(t) ∈ ℝ
nd×1 are the load vector 

and displacement vector at time t  , respectively. The load 
vector �(t) is expressed as the product of vector �(t) ∈ ℝ

m×1 
and matrix �0 ∈ ℝ

nd×m . The vector �(t) consists of m loads, 
which are a continuous function of time. The matrix �0 
determines the position at which the load is input. Equa-
tion (1) can be transformed into the following state-space 
equation with n(= 2nd) variables:

In Eq.  (2), vector �(t) and matrices �c and �c are as 
follows:

where �c ∈ ℝ
n×n is the state matrix of the system, �c ∈ ℝ

n×m 
is the input matrix, and �(t) ∈ ℝ

n×1 is the state-space vec-
tor. From acceleration, velocity, and displacement measure-
ments, the output vector of the system �(t) ∈ ℝ

l×1 can be 
expressed as follows:

where �d , �v , and �a ∈ ℝ
l×nd are the output matrices for dis-

placement, velocity, and acceleration, respectively. By cal-
culating the acceleration �̈(t) and velocity �̇(t) from Eq. (2) 
and substituting them in Eq. (6), the output response vector 
of the sensor can be expressed as follows:

In Eq. (7), � ∈ ℝ
l×n is the output matrix multiplied by 

the state-space vector, and � ∈ ℝ
l×m is a direct transmis-

sion matrix:

Equations (2) and (7) are deterministic state-space equa-
tions that are continuous over time. When using acceleration 
data for system identification, �a ≠ 0 ; therefore, the direct 

(1)��̈(t) + �0�̇(t) +��(t) = �(t) = �0�(t)

(2)�̇(t) = �c�(t) + �c�(t).

(3)�(t) =

[
�(t)

�̇(t)

]

(4)�c =

[
0 �

−�−1� −�−1�0

]

(5)�c =

[
0

�−1�0

]

(6)�(t) = �a�̈(t) + �v�̇(t) + �d�(t)

(7)�(t) = ��(t) + ��(t)

(8)� =
[
�d − �a�

−1� �v − �a�
−1�0

]

(9)� = �a�
−1�0
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transmission matrix � is included as part of the state-space 
model. However, when using the displacement or velocity 
response, �a = 0 ; therefore, in Eq. (7), D = 0.

The actual response is measured at a discontinuous time 
( t = kΔt, k ∈ ℕ ) with a certain time interval ( Δt ); in this 
case, the state-space model is expressed as follows:

where �k = �(kΔt) is the state vector at time t(= kΔt) , 
� = exp(�cΔt) is the discrete state matr ix, and 
� = [� − �]�−1

c
�c is the discrete input matrix [4]. Because 

real measurement signals always contain noise, a combined 
state-space model was constructed by adding an error term 
due to noise to the state-space model of discontinuous time:

where �k ∈ ℝ
n×1 is noise due to inaccurate modeling, and 

�k ∈ ℝ
l×1 is the measurement error caused by the inaccuracy 

of the sensors. The two terms cannot be measured and are 
assumed to be white noise with an average of zero. Then, the 
following covariance matrix can be constructed:

where E is the expected value operator, and �pq is the Kro-
necker delta. When performing system identification using 
the ambient vibration data of the structure, the input load 
value �k is not measured; hence, the �k term does not exist 
in Eqs. (12) and (13).

System Identification Using N4SID

N4SID uses the input load data �k and measurement data 
�k of the structure to construct the Kalman state vector, and 
derives the state-space system matrix using the least-squares 
method. Here, the Kalman state vector is obtained using 
the block Hankel matrix constructed using the input and 
measurement data.

Construction of a Block Hankel Matrix

Figure 1 shows the space–time structure of the response data 
measured in the discrete-time domain. The block Hankel 
matrix � ∈ ℝ

2(m+l)i×j can be constructed with the submatri-
ces of input data �k and response data �k measured at the k 
th time as shown in (15a):

(10)�k+1 = ��k + ��k,

(11)�k = ��k + ��k

(12)�k+1 = ��k + ��k + �k

(13)�k = ��k + ��k + �k

(14)E

[(
�p

�p

)(
�T

q
�T
q

)]
=

[
� �

�T �

]
�pq

where the subscripts of � and � indicate the subscripts of the 
first and last element vectors in the first column. When the 
block Hankel matrix is divided as above, �0|i−1 and �i|2i−1 
are the past input and future input, respectively, and �0|i−1 
and �i|2i−1 are the past output and future output, respectively.

QR Factorization

Using QR factorization, the Hankel matrix � in 
Eqs. (15a–15c) can be expressed as follows:

(15a)� =
1√
j

�
�0�2i−1
�0�2i−1

�

(15b)�0�2i−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�0 �1 ⋯ �j−1
�1 �2 ⋯ �j
⋮ ⋮ ⋱ ⋮

�i−1 �i ⋯ �i+j−2
__________________________

�i �i+1 ⋯ �i+j−1
�i+1 �i+2 ⋯ �i+j
⋮ ⋮ ⋱ ⋮

�2i−1 �2i ⋯ �2i+j−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15c)�0�2i−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�0 �1 ⋯ �j−1
�1 �2 ⋯ �j
⋮ ⋮ ⋱ ⋮

�i−1 �i ⋯ �i+j−2
__________________________

�i �i+1 ⋯ �i+j−1
�i+1 �i+2 ⋯ �i+j
⋮ ⋮ ⋱ ⋮

�2i−1 �2i ⋯ �2i+j−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)� = � ×�T

Fig. 1   Space–time structure of output vectors used for block Hankel 
matrix
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where � ∈ ℝ
2(m+l)i×2(m+l)i is the lower triangular matrix, and 

�T ∈ ℝ
2(m+l)i×j has an orthogonality of ��T = � . By divid-

ing � and �T into submatrices, Eq. (16) can be expressed 
as follows:

Projections

Projection refers to expression of the future output using the 
past and future input and past output. The projection of the 
future output can be defined as follows:

where �i and �i+1 are the projection matrices of the 
future output based on the i th time and i + 1 th time, 
respectively, and the projection operator is defined as 
�∕� = ��T

(
��T

)−1
� . This future output projection is the 

optimal predicted value of the future output �i|2i−1 given the 
past and future input �0|2i−1 and past output �0|i−1.

With N4SID, the system matrix is estimated using the 
projection matrices, �i and �i+1 , of the future output. This 
projection matrix of the future output can be constructed 
through the linear combination of the sub-block matrices of 
the block Hankel matrix comprising the input and measure-
ment data as follows [9, 11]:

where �i and �d
i
 are the observability matrix and lower block 

triangular Toeplitz matrix, respectively, and consist of the 
system matrices � , � , � , and � of the state-space equation. 
�i and �d

i
 are expressed as follows:

(17)

mi

m

m(i − 1)

li

l

l(i − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�
0�i−1
�

i�i
�

i+1�2i−1
�

0�i−1
�

i�i
�

i+1�2i−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

mi m m(i − 1) li l l(i − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�
11

0 0 0 0 0

�
21

�
22

0 0 0 0

�
31

�
32

�
33

0 0 0

�
41

�
42

�
43

�
44

0 0

�
51

�
52

�
53

�
54

�
55

0

�
61

�
62

�
63

�
64

�
65

�
66

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�T

1

�T

2

�T

3

�T

4

�T

5

�T

6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)�i = �i|2i−1∕
[
�0|2i−1
�0|i−1

]

(19)�i+1 = �i+1|2i−1∕
[
�0|2i−1
�0|i

]

(20)�i = �i�̂i +�d
i
�i|2i−1

(21)�i+1 = �i−1�̂i+1 +�d
i−1

�i+1|2i−1

�̂i and �̂i+1 are matrices representing a set of non-steady 
state Kalman filters. They are matrices with the estimated 
values of the state-space response considering the error at 
each time. These can be expressed using the system matrix 
and submatrix of the block Hankel matrix as follows [11]:

where � and � are matrices expressed by the past and future 
input and state-space response, respectively, and �i is a 
matrix expressed by these matrices and the system matrix 
[11]. The term Δd

i
 represents an extended controllability 

matrix, and is expressed as follows:

Using Eqs.  (20)–(21) and (24)–(25), the projection 
matrices �i and �i+1 of the future output can be expressed 
as follows:

In Eqs. (27) and (28), �1
i
 , �2

i
 , and �3

i
 are expressed as 

follows:

(22)�i =

⎡
⎢⎢⎢⎢⎢⎣

�

��

��2

⋮

��i−1

⎤
⎥⎥⎥⎥⎥⎦

,

(23)�d
i
=

⎡
⎢⎢⎢⎢⎢⎣

� 0 0 ⋯ 0

�� � 0 ⋯ 0

��� �� � ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

��i−2� ��i−3� ��i−4� ⋯ �

⎤
⎥⎥⎥⎥⎥⎦

(24)�̂
i
=
�
�i −�

i
�
i
Δd

i
−�

i
�d

i
�

i

� ⎡⎢⎢⎣

��−1�
0�2i−1

�
0�i−1

�
0�i−1

⎤⎥⎥⎦

(25)

�̂
i+1 =

�
�i+1 −�

i+1�i+1 Δd

i+1
−�

i+1�
d

i+1
�

i+1

� ⎡⎢⎢⎢⎣

��−1�
0�2i−1

�
0�i

�
0�i

⎤
⎥⎥⎥⎦

(26)Δd
i
=
[
�i−1� �i−2� ⋯ �� �

]

(27)�i =
�
�1
i
�2
i
�3
i

�⎡⎢⎢⎣

�0�i−1
�i�2i−1
�0�i−1

⎤⎥⎥⎦

(28)�i+1 =
�
�1
i+1

�2
i+1

�3
i+1

�⎡⎢⎢⎣

�0�i
�i+1�2i−1
�0�i

⎤⎥⎥⎦
.

(29)�1
i
= �i

([
�i −�i�i

]
�
(
�−1

)
1|mi + Δd

i
−�i�

d
i

)



261Multiscale Science and Engineering (2020) 2:257–275	

1 3

 where 
(
�−1

)
1|mi is the submatrix from column 1 to column 

mi . To express the projection matrix of the future output, 
�1
i
,�2

i
 , and �3

i
 can be theoretically expressed using the sys-

tem matrix as above. However, when using measurement 
data, Eqs.  (17)–(19) are used for approximation as 
follows [11]:

Singular Value Decomposition

According to Eqs. (29) and (31), the column space of �1
i
 

and �3
i
 is the same as the column space of �i . The column 

space of a matrix is a subspace that can consist of linearly 
independent column vectors of that matrix. This means 
that the observability matrix �i and system order n can be 
determined from the column space of these matrices. In 
this study, they are determined according to the following 
procedure [11]:

•	 Equations (20) and (21), which are the projection matri-
ces of the future output, are reconstructed as follows:

where �†

i
 is the Moore–Penrose pseudo-inverse matrix 

of �i . �i�̂i is the result of subtracting �d
i
�i|2i−1 from the 

projection response matrix �i and can be approximated 
using Eqs. (27) and (30) as follows:

•	 From Eq. (17), by performing singular value decomposi-
tion, Eq. (36) is expressed as follows:

(30)�2
i
= �d

i
+ �i

[
�i −�i�i

]
�
(
�−1

)
mi+1|2mi

(31)�3
i
= �i�i

(32)�i = �i�2i−1 ∕
�
�0�2i−1
�0�i−1

�
=
�
�1
i
�2
i
�3
i

�⎡⎢⎢⎣

�0�i−1
�i�2i−1
�0�i−1

⎤
⎥⎥⎦
= �5∶6,1∶4�

−1
1∶4,1∶4

�
�0�2i−1
�0�i−1

�

(33)�i+1 = �i+1�2i−1 ∕
�
�0�2i−1
�0�i

�
=
�
�1
i+1

�2
i+1

�3
i+1

�⎡⎢⎢⎣

�0�i
�i+1�2i−1
�0�i

⎤⎥⎥⎦
= �6∶6,1∶5�

−1
1∶5,1∶5

�
�0�2i−1
�0�i

�

(34)�̂i = �
†

i

[
�i −�d

i
�i|2i−1

]

(35)�̂i+1 = �
†

i−1

[
�i+1 −�d

i−1
�i+1|2i−1

]

(36)�i�̂i ≈ �i − �2
i
�i�2i−1 =

�
�1
i
0 �3

i

�⎡⎢⎢⎣

�0�i−1
�i�2i−1
�0�i−1

⎤⎥⎥⎦

	   When �i�̂i is rank-deficient, the singular value matrix 
is divided into a non-zero part and a zero part. In the 
above equation, �1 is a singular value matrix with a non-

zero diagonal component, and �2 is a singular value 
matrix with a diagonal component of zero. Because n is 
the rank of �i�̂i (the number of rows of the Kalman filter 
�̂i is equal to the state-space system order n ), the size of 
�1 is equal to the system order n.

•	 Because the column spaces of �i and �1�
1∕2

1
 are identi-

cal, �i can be obtained as follows:

 where �i−1 is

 l is the number of measurements, and �i
_

 is the matrix 

excluding the last l rows in �i.

Calculation of System Matrices

The non-steady state Kalman filter matrices �̂i are �̂i+1 , 
constructed at time ti and ti+1 , satisfy the following equa-
tion [11]:

Equations  (34) and (35) can be substituted into the 
Kalman filter equation above to obtain the following 
equation:

(37)

�
i
�̂

i
≈
�
�1

i
0 �3

i

�⎡⎢⎢⎣

�
0�i−1

�
i�2i−1

�
0�i−1

⎤⎥⎥⎦
=
�
�1

i
0 �3

i

�
�

1∶4,1∶4�
T

1∶4

=
�
�

1
�

2

�� �
1

0

0 �
2

�
�T�T

1∶4

(38)�i = �1�
1∕2

1

(39)�i−1 = �i
_

(40)
�
�̂i+1

�i�i

�
=

�
�

�

�
�̂i +

�
�

�

�
�i�i +

⎡⎢⎢⎣

�0�2i−1
�i

�̂i

⎤
⎥⎥⎦

⟂
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This can then be further transformed as follows:

where [⋅]⟂ is a matrix with the same row space as [⋅] , and the 
last term in Eqs. (41) and (42) is the residual term. Using the 
residual term, Eq. (42) can be expressed as follows:

To minimize the residual of the above equation, the sys-
tem matrices � and � can be obtained using the least squares 
method as follows [11]:

Equation (47) is the estimated covariance matrix of the 
stochastic system. By linearly optimizing Eq. (43) using the 
least squares method, the variable matrices on the left and 
right sides can be expressed using Eq. (32) and the singular 
value decomposition result as follows:

Equations (48) and (49) are substituted into Eq. (44) to 
obtain the following equation:

(41)

�
�
†

i−1
�i+1

�i�i

�
=

�
�

�

�
�
†

i
�i +

�
�12

�22

�
�i�2i−1 +

⎡⎢⎢⎣

�0�2i−1
�i

�̂i

⎤
⎥⎥⎦

⟂

(42)
�
�
†

i−1
�i+1

�i�i

�
=

�
� �12

� �22

��
�
†

i
�i

�i�2i−1

�
+

⎡⎢⎢⎣

�0�2i−1
�i

�̂i

⎤
⎥⎥⎦

⟂

(43)
[
�
†

i−1
�i+1

�i|i

]
=

[
�11 �12

�21 �22

][
�
†

i
�i

�i|2i−1
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where � is a block matrix consisting of �ij(i = 1,2, j = 1,2) , 
and system matrices � and � can be calculated using 
Eqs. (45) and (46). These system matrices can be used to 
obtain the mode shape, natural frequency, and damping ratio 
for each mode.

Estimation of Modal Properties Using 
the Identified System Matrices

The system matrices � , � , and � obtained using N4SID can 
be used to calculate the structure’s mode shape, natural fre-
quency, and mode damping ratio. If the identification matrix 
of the system matrix � is �̂ , then an eigenvalue problem of 
�̂ can be formulated as follows:

The above eigenvalue problem can be solved to obtain the 
following eigenvalue and eigenvector:

Using these eigenvalue and eigenvector, the natural fre-
quency and mode damping ratio of the target structure can 
be calculated as follows:

where �c(i) is calculated using the eigenvalue of Eq. (52) as 
follows:

Finally, using the identification matrix �̂ of the output 
matrix � , the mode shape of the structure is obtained as 
follows:

where � is the eigenvector in Eq. (53).

(51)�̂� = ��

(52)� =

⎡⎢⎢⎢⎣

�1
�2
⋮

�n

⎤⎥⎥⎥⎦

(53)� =
[
�1 �2 ⋯ �n

]

(54)�i =
|||�c(i)

|||,

(55)�i =
Re(�c(i))

|||�c(i)
|||

,

(56)�c(i) =
ln(�i)

dt
.

(57)� = �̂�
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Numerical examples

In this section, we explain the calculation of the modal char-
acteristics of a simply supported beam and cantilever beam 
using the presented N4SID algorithm; then, we evaluate the 
accuracy of the results via comparison with exact solutions. 
The applicability of the N4SID algorithm for the system 
identification of real bridges is also assessed in this section 
using acceleration field measurements.

Simply‑Supported Beam

The simply supported beam considered in this study is a 
steel beam with a length of 12m and cross-sectional area 
of 100mm × 100mm . As shown in Fig. 2, five sensors are 
arranged at intervals of 2m . The elastic modulus E, den-
sity � , and Poisson’s ratio � of the beam were 200GPa , 
7850kg∕m3 , and 0.3 , respectively. The vertical displacement, 

Fig. 2   Schematic of the simply-
supported beam considered in 
this study for system identifica-
tion

Fig. 3   Two cases of the impact load applied to the simply-supported beam

Fig. 4   Time history of the impact load

Fig. 5   Vertical displacements 
measured by the five sensors 
on the simply-supported beam 
in case 1
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velocity, and acceleration response from sensors 1 to 5 were 
measured and input to the N4SID algorithm to calculate the 
natural frequency, mode damping ratio, and mode shape.

Loads were applied at two positions on the beam, as 
shown in Fig. 3, and the structural response was measured 
by all sensors for each case. The load was applied at the 
position of sensor 1 in the first case (case 1) and simultane-
ously at the positions of sensors 1 and 2 in the second case 
(case 2). Figure 4 shows the time history of this impact load. 
A load of 0.1 kN was applied for 0.05 s, and the response of 
the beam over time until T = 10s was measured at intervals 
of Δt = 0.01s . Figures 5 and 6 show the time history of the 
vertical displacement measured by the five sensors for each 

Case. This measurement response was synthesized through 
the dynamic analysis of the simply supported beam modeled 
with three-dimensional beam elements using the finite ele-
ment analysis program ABAQUS.

System identification by N4SID was performed using the 
displacement responses at 0.1–9.78 s shown in Figs. 5 and 6. 
Tables 1 and 2 summarize the modal frequency estimation 
results obtain with the N4SID as well as the ERA results 
and exact solutions for comparison. In case 1, in which one 
impact load was used, identification was achieved up to the 
fourth mode, while in case 2, in which two impact loads 
were used, identification was possible up to the third mode. 
The exact solution of the modal frequency �ex

n
 and mode 

Fig. 6   Vertical displacements 
measured by the five sensors 
on the simply-supported beam 
in case 2

Table 1   Estimated modal properties of the simply-supported beam in case 1

Mode no Exact solution 
�ex

n

(rad/s)

N4SID ERA

Modal frequency
�
n
 (rad/s)

Frequency error
��

n

(%)
�
MAC

(%) Modal frequency
�
n
 (rad/s)

Frequency error
��

n

(%)
�
MAC

(%)

1 9.9868 10.0031 0.1634 2.99 × 10
−11 10.0031 0.1634 4.44 × 10

−13

2 39.9472 39.7567 0.4770 3.28 × 10
−10 39.7567 0.4770 6.55 × 10

−13

3 89.8813 85.4992 4.8754 1.48 × 10
−6 85.4992 4.8754 3.42 × 10

−10

4 159.7890 135.5680 15.1581 1.22 × 10
0 135.5654 15.1597 1.56 × 10

−7

Table 2   Estimated modal properties of the simply-supported beam in case 2

Mode No Exact solution 
�ex

n

(rad/s)

N4SID ERA

Modal frequency
�
n
 (rad/s)

Frequency error
��

n

(%)
�
MAC

(%) Modal frequency
�
n
 (rad/s)

Frequency error
��

n

(%)
�
MAC

(%)

1 9.9868 10.0031 0.1634 1.33 × 10
−13 10.0031 0.1634 2.22 × 10

−12

2 39.9472 39.7567 0.4770 1.92 × 10
−11 39.7566 0.4770 6.86 × 10

−12

3 89.8813 85.4992 4.8754 2.60 × 10
−7 85.4992 4.8754 5.02 × 10

−9

4 159.7890 138.6878 13.2057 8.35 × 10
−1 137.3263 14.0577 6.30 × 10

0
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shape �ex
n

 for the simply supported beam can be calculated 
as follows:

where n is the mode order, L is the beam length, I is the 
second cross-sectional moment of inertia, and A is the cross-
sectional area. The error of the mode shape and natural fre-
quency can be calculated using the exact solution as follows:

(58)�ex
n
=

(n�)2

L2

√
EI

�A
,

(59)�ex
n
= sin

(
n�

L
x
)
,

where �ex
n

 is the discrete n th mode vector, and �MAC is the 
modal assurance criterion (MAC).

From Tables 1 and 2, it can be seen that the natural fre-
quency and mode shape calculated using N4SID were close 
to the exact solution. The N4SID results were nearly identi-
cal to those obtained using ERA. There is a very small dif-
ference in the identification value of the modal frequency in 

(60)��n
=
|||||
1 −

�n

�ex
n

|||||
,

(61)�MAC = 1 −

|||�
T
n
�ex
n

|||√(
�T
n
�n

)((
�ex
n

)T
�ex
n

) ,

Fig. 7   Mode shapes of the simply-supported beam identified in case 1
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case 1 and case 2, and the value of �MAC , which indicates 
the error of the modal shape, is also very small in the lower 
mode. The error of the modal frequency and mode shape is 
known to increase as the mode order increases. In case 1, the 
first and second modes showed high accuracy with a natu-
ral frequency error of less than 1%, while the error of the 
fourth mode was approximately 15%. The error results for 
each mode were similar in case 2. Figure 7 shows the mode 
shapes identified using N4SID and ERA in case 1, and Fig. 8 
shows the mode shapes in case 2. In case 1, the fourth mode 
shape reconstructed using ERA is closer to the exact solution 
than the mode shape reconstructed using N4SID. However, 
in case 2, the N4SID result is closer to the exact solution 
than ERA, as shown in Table 2 and Fig. 8d. Note that only 
six sensors have been used in this example. If more data 

points were used, the system identification methods could 
identify higher modes, and the identified natural frequencies 
and mode shapes would be more accurate.

Figure 9 shows a stability chart describing the identifica-
tion results of the modal frequency of the simply supported 
beam. The natural frequencies identified with the highest 
frequency indicate the first to fourth modes; the fifth mode 
was not identified in this example, in which only five sensors 
were used. N4SID clearly identified the first to fourth modes, 
whereas the identification of the fourth mode by the ERA is 
relatively unclear.

To compare the accuracy of the modal identification 
results according to the type of measurement data, we con-
ducted system identification using a 1–2 s interval of dis-
placement, velocity, and acceleration response at each sensor 

Fig. 8   Mode shapes of the simply-supported beam identified in case 2
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position of the simply supported beam. Figure 10 shows 
the error in the modal frequency and mode shape accord-
ing to the type of measurement data. Although the types 
of measurement data differed, the identification results of 
the natural frequency and mode shape were nearly identi-
cal when there was no noise. The error in the mode shape 
of the first and second mode was the smallest when using 
displacement data, but the error in the higher modes was the 

smallest when using acceleration data. The result indicates 
that using acceleration data is more suitable for identify-
ing higher modes than displacement data. Nevertheless, the 
error when using displacement or velocity was sufficiently 
small for all four modes.

Fig. 9   Stability chart in the modal identification of the simply-supported beam (case 1)

Fig. 10   Error in natural frequency and mode shape according to the type of measurement data in case 1

Fig. 11   Schematic of the canti-
lever beam used in this study for 
system identification
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Cantilever Beam

To verify the effectiveness of N4SID, we conducted another 
experiment with a steel cantilever beam with a length of 
12 m and a cross-sectional area of 100mm × 100mm , as 
shown in Fig. 11. The elastic modulus, density, and Pois-
son’s ratio of this beam were the same as those of the simply 
supported beam described in Sect. 5.1. A total of six sensors 
were arranged at 2 m intervals, and the vertical displacement 
caused by a given load was measured by each sensor.

Two cases were considered for the input load to induce 
vibration in the beam, as shown in Fig. 12. The load was 
applied at the position of sensor 6 in the first case (case 1) 
and simultaneously at the positions of sensors 3 and 6 in the 
second case (case 2). The same load shown in Fig. 4 was 
applied here. Figures 13 and 14 show the time history of 
the vertical displacement measured by the six sensors for 
each case.

System identification by N4SID was performed with the 
displacement responses of Figs. 13 and 14 between 0.1 and 
8.78 s. Tables 3 and 4 summarize the modal frequency esti-
mated by N4SID as well as ERA and the exact solutions for 
comparison. The exact solution of the modal frequency �ex

n
 

and mode shape �ex
n

 for the cantilever beam can be calculated 
as follows:

(62)�ex
n
=
(
anL

)2√ EI

�AL4
,

Fig. 12   Two impact load cases applied to the cantilever beam

Fig. 13   Vertical displacements measured at six sensor locations of 
the cantilever beam in case 1

Fig. 14   Vertical displacements measured at six sensor locations of 
the cantilever beam in case 2

Table 3   Estimated modal properties of the cantilever beam in case 1

Mode No Exact solution 
�ex

n

(rad/s)

N4SID ERA

Modal frequency
�
n
 (rad/s)

Frequency error
��

n

(%)
�
MAC

(%) Modal frequency
�
n
 (rad/s)

Frequency error
��

n

(%)
�
MAC

(%)

1 3.5578 3.5576 3.17 × 10
−3

2.65 × 10
−8 3.5574 8.64 × 10

−3
1.10 × 10

−8

2 22.2962 22.2849 5.07 × 10
−2

6.40 × 10
−6 22.2846 5.17 × 10

−2
1.81 × 10

−6

3 62.4299 62.3412 1.42 × 10
−1

6.16 × 10
−6 62.3428 1.39 × 10

−1
1.33 × 10

−5

4 121.5163 122.2316 5.89 × 10
−1

1.96 × 10
−1 121.9942 3.93 × 10

−1
1.06 × 10

−1

5 202.2334 200.9477 6.36 × 10
−1

4.56 × 10
0 200.8662 6.76 × 10

−1
4.43 × 10

0



269Multiscale Science and Engineering (2020) 2:257–275	

1 3

where an can be calculated by satisfying Eq. (64), which 
indicates the boundary condition of the cantilever beam.

As before, the error of the identified natural frequency 
and mode shape is calculated using Eqs. (60) and (61).

From Tables 3 and 4, it can be seen that the natural fre-
quency and mode shape calculated using N4SID were close 
to the exact solution. The N4SID results were nearly identi-
cal to those obtained using ERA. For the cantilever beam, 
the identification value of the modal frequency obtained 
using a single load was more accurate than that obtained 
using two loads. In case 1, both N4SID and ERA showed 
a natural frequency error of less than 1% in the first to fifth 
modes, with the ERA and N4SID showing more accuracy in 
the fourth and fifth modes, respectively. In case 2, the natural 
frequency error of the first and second modes was smaller 
than 1%, while the error of the fourth and fifth modes was 
greater than 10% and 30%, respectively. This demonstrates 
that it is more advantageous to use a single load rather than 
multiple loads when performing system identification using 
an input load. The value of �MAC , which represents the error 
of the mode shape, barely differed between the two cases. 
Figures 15 and 16 show the mode shape of the cantilever 
beam identified using N4SID and ERA in case 1 and case 
2, respectively.

Figure 17 shows a stability chart describing the identifica-
tion results of the modal frequency of the cantilever beam. 
The natural frequencies identified with the highest frequency 
indicate the first to fifth modes; in this example, in which 

(63)

�ex

n
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(
a
n
x

)
− cos

(
a
n
x

)

−
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L
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a
n
L

)
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(
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L

)
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a
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(
a
n
x

)
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(
a
n
x
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,

(64)cosh
(
anL

)
− cos

(
anL

)
+ 1 = 0

only six sensors were used, modes above the fifth were not 
identified. While both N4SID and ERA identify five modal 
frequencies well, N4SID identifies natural frequencies in 
higher modes more consistently than ERA.

Full‑Scale Bridge with Field Measurement Data

Finally, vibration data were used to estimate the modal 
characteristics and damping ratio of the Geumdang Bridge, 
which is located in Yeoju-si, Gyeonggi-do, Korea. It is a 
prestressed concrete I-girder bridge with a total length of 
270 m and width of 12.1 m. It has a total of nine spans, and 
the length of one span is 30 m. The vibrations were meas-
ured with accelerometers arranged at 5 m intervals in the 
30 m segment between the abutment and the first pier. The 
data measurement time was 125 min, and the time step was 
0.01 s. The measurement data were limited to the range of 
2–30 Hz using a band-pass filter, and system identification 
was performed using these data. Figure 18 shows a photo-
graph of the Geumdang Bridge investigated in this study and 
the 15 accelerometers installed in one segment. Figure 19 
shows the time history and frequency spectrum of the data 
measured by accelerometers 6 and 8.

Using the proposed method, the natural frequency, mode 
shape, and modal damping ratio of the Geumdang Bridge 
could be identified up to the third mode. Figures 20 and 21 
show the mode shape of the Geumdang Bridge obtained 
using N4SID and ERA, respectively. It can be seen that 
mode 1 is similar to a half-sinusoidal symmetric mode, and 
mode 3 is similar to a sinusoidal antisymmetric mode. Mode 
2 was evaluated as a mode with torsional behavior.

Table 5 shows the identification results of the modal fre-
quency and modal damping ratio of the Geumdang Bridge 
up to the third mode. From the table, it can be seen that 
the modal frequencies identified by N4SID and ERA were 
similar, but the modal damping ratio identified by N4SID 

Table 4   Estimated modal properties of the cantilever beam in case 2

Mode No Exact solution 
�ex

n

(rad/s)

N4SID ERA

Modal frequency
�
n
 (rad/s)

Frequency error
��

n

(%)
�
MAC

(%) Modal frequency
�
n
 (rad/s)

Frequency error
��

n

(%)
�
MAC

(%)

1 3.5578 3.5570 1.98 × 10
−2

1.14 × 10
−8 3.5570 1.98 × 10

−2
1.11 × 10

−8

2 22.2962 22.1817 5.14 × 10
−1

1.14 × 10
−6 22.1817 5.14 × 10

−1
1.60 × 10

−6

3 62.4299 60.2217 3.54 × 10
0

9.10 × 10
−6 60.2217 3.54 × 10

0
6.01 × 10

−6

4 121.5163 108.5096 1.07 × 10
1

3.99 × 10
−2 108.5076 1.07 × 10

1
3.98 × 10

−2

5 202.2334 135.7914 3.29 × 10
1

6.27 × 10
0 155.4823 2.31 × 10

1
4.58 × 10

0
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Fig. 15   Mode shapes of the cantilever beam identified in case 1
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Fig. 16   Mode shapes of the cantilever beam identified in case 2
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was greater than that estimated by ERA. Given that the 
Geumdang Bridge segment investigated in this study is con-
nected to the abutment, the modal damping ratio identified 
by N4SID is likely to be more practical than that identified 
by ERA. Figure 22 is a stability chart showing the identi-
fication results of the modal frequency of the Geumdang 
Bridge obtained using N4SID. The identification results of 
the modal frequency are unclear compared to those of the 
cantilever beam and simply supported beam using synthetic 
data. Nevertheless, they indicate that system identification 
can be performed using only ambient vibration data without 
input loads and that this system identification technique has 
potential application to the structural health monitoring of 
various infrastructures.

Conclusions

This study evaluated the applicability of N4SID in the iden-
tification of the dynamic characteristics of bridge structures 
at the element and system levels. The N4SID method con-
structs a Hankel matrix from the input and measurement 
data, applies QR factorization and singular value decompo-
sition to construct a Kalman state vector, and then optimizes 
the state-space system matrix. The dynamic characteristics 
of a simply supported beam and cantilever beam were esti-
mated using a small number of measurement data. The natu-
ral frequencies and mode shapes were accurately identified 
up to the fourth and fifth modes. While system identification 

Fig. 17   Stability chart in the modal identification of the cantilever beam (case 1)

Fig. 18   Geumdang Bridge at Yeoju, Gyeonggi-do, Korea
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Fig. 19   Acceleration data of the 
Geumdang Bridge measured by 
sensors 6 and 8

Fig. 20   Mode shapes of the Geumdang Bridge estimated by N4SID
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was possible using multiple input loads, the accuracy of sys-
tem identification was higher when only one input load was 
used. The error in the mode shape was smaller when using 
acceleration data than when using displacement or velocity 
data. However, even though the types of measurement data 
differed, the difference in the identified natural frequencies 
and mode shapes was not large when there was no noise. 
Furthermore, using the acceleration data measured from a 
real bridge, the modal characteristics and damping ratio of 
the bridge were estimated accurately. The stability chart of 
N4SID shows that the system identification of bridge struc-
tures is possible using only a limited number of ambient 
vibration data without an input load.
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