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Abstract
Computer simulation of protein materials and their dynamic or mechanical behavior is of high significance, as proteins per-
form their functions through their structural changes in response to a force (or stimulus). The computer simulation enables 
the detailed insight into the structure and behavior of proteins at atomistic resolution, which is inaccessible with experimental 
toolkits such as single-molecule experiments. With the advancement of computing resources, the computer simulation has 
recently played a vital role as a virtual microscopy in understanding and characterizing the structure and behaviors of pro-
tein materials at atomistic resolution. For examples, computer simulations allow for gaining insight into how some protein 
domains can exhibit the remarkable mechanical properties and functions. In this article, we would like to address the cur-
rent state-of-arts of computer simulations that have been employed for studying the structure and properties (or behaviors) 
of proteins at multiple length scales ranging from single proteins to protein assemblies. Specifically, we summarize vari-
ous computational modeling techniques, ranging from atomistic models to coarse-grained models and continuum models, 
applicable for modeling protein structures at multiple length scales from single proteins to protein assemblies. This paper 
discusses how such various computational modeling/simulation techniques can be employed for studying the structure and 
properties of protein materials at multiple length scales. This paper sheds light on computer simulations, which are able to 
unveil the hidden, complex mechanisms related to the structure and properties of protein materials at multiple length scales.

Keywords Computer simulation · Protein materials · Multiple length scales · Atomistic simulation · Coarse-grained 
modeling · Protein mechanics

Introduction

It is of high importance to study the dynamic (or mechani-
cal) behavior of a single protein molecule, as a protein mol-
ecule performs its function through its structural changes 
upon a chemical stimulus (e.g. ligand binding) and/or a 
force. For example, hemoglobin transports the oxygen when 
the oxygen is bound to the hemoglobin. The ability of hemo-
globin to bind with oxygen is attributed to the existence of 
the hemoglobin’s various conformations (structures), few 
of which may correspond to the conformation of oxygen-
bound hemoglobin. In other words, a protein molecule can 
explore many conformations, some of which corresponds 

to the ligand-bound state, because the energy landscape 
of a protein is very rugged in that there are multiple local 
minima (or equilibria), and that the energy barrier between 
these minima is comparable to the amount of thermal energy 
[1–3]. This unique dynamic feature of a protein molecule 
enables it to perform its function such as ligand binding or 
unbinding. Moreover, some protein domains are able to per-
form remarkable mechanical functions and to exhibit excel-
lent mechanical properties. For instance, an immunoglobulin 
(Ig) domain in a muscle protein chain titin has a high resil-
ience against a mechanical force in such a way that hydrogen 
bonds formed between the β-strands of an Ig domain are able 
to sustain a mechanical force [4–7]. In addition, the high 
resilience of a protein domain is also attributed to its unfold-
ing behavior, that is, a force-driven unfolding behavior of a 
protein folded domain results in its energy dissipation, and 
consequently, the high mechanical resilience [8]. These two 
representative examples suggest the necessity of studying 
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the dynamic (or mechanical) behavior of proteins in order 
to gain a fundamental insight into their functions.

Protein assemblies have recently received significant 
attention due to their important role in disease pathology 
[9–12] as well as their applicability in bionanotechnology 
[13–15]. As a representative example, amyloid fibrils have 
been highlighted due to their role in the pathogenesis of 
various diseases ranging from neurodegenerative diseases 
[16, 17] to type 2 diabetes [18] and cardiovascular diseases 
[19]. The amyloid fibrils are formed through self-assembly 
process, that is, amyloidogenic proteins (e.g. denatured pro-
teins) are aggregated so as to form the fibril structure [10]. 
Once amyloid fibrils are formed by self-assembly process, 
they are quite rigid and structurally stable in a physiological 
condition, resulting in the formation of amyloid plaques. 
These fibrils have recently suggested to play a role in disease 
pathologies due to their remarkable mechanical properties. 
Specifically, the elastic modulus of amyloid fibrils is in a 
range of 1–10 GPa [20–22], which is a few orders of mag-
nitude higher than the elastic modulus of cell membrane. 
The growth of an amyloid fibril on a cell membrane results 
in the mechanical disruption of cell membrane [23] due 
to the difference between elastic moduli of amyloid fibril 
and cell membrane [24]. In addition, a spider silk crystal, 
whose molecular structure is similar to that of amyloid fibril, 
possesses anomalous mechanical properties whose elastic 
modulus is in the order of 1–10 GPa [25]. The remarkable 
properties of these protein assemblies (e.g. amyloid fibril, 
and spider silk crystal) led researchers to study the underly-
ing principles showing how the excellent mechanical proper-
ties of protein assemblies can be determined.

For last two decades, single-molecule experimental 
techniques [26] based on atomic force microscopy (AFM) 
[27–29] and/or optical tweezer [30] have played a central 
role in probing the properties and functions of protein mol-
ecules. As an example, AFM-based single-molecule pull-
ing experiments have allowed for gaining a quantitative 
insight into the response of a protein domain to a mechani-
cal force. Specifically, AFM-based pulling experiments are 
able to capture the force-driven unfolding event of a protein 
domain based on measuring the force-extension (equivalent 
to force–displacement) relationship of a protein domain 
during its unfolding process. Despite the ability of single-
molecule experimental techniques to quantitatively probe 
the properties of protein molecules, they are very restrictive 
in that they are unable to provide how the molecular struc-
ture of a protein molecule is changed (e.g. deformed) due to 
a force. In addition, these experimental techniques cannot 
unveil the underlying principles showing how the proper-
ties and behaviors of protein materials are determined. Due 
to these limitations of single-molecule experimental tech-
niques, computer simulations can play an alternative role 
in revealing the underlying mechanisms of the dynamic (or 

mechanical) behaviors and properties of protein materials 
at atomistic resolution. In particular, computer simulations 
based on atomistic models are also able to provide a quan-
titative insight into the relationship between the molecular 
structure of protein materials and their properties [31, 32]. 
Furthermore, computer simulations are capable of quantita-
tively understanding how the molecular structure of protein 
materials (e.g. protein assemblies) can be determined. The 
computer simulations can be implemented based on different 
modeling techniques at different length scales, ranging from 
atomistic model to coarse-grained model and continuum 
model. Here, we note that this paper excludes the details of a 
continuum mechanics-based simulation, which has recently 
been applied for studying the dynamics of proteins [33, 34], 
while we briefly review the continuum model that is useful 
in analyzing the result of computer simulations based on 
atomistic or coarse-grained models.

In this work, we address the current state-of-arts of com-
putational simulations of protein materials at multiple length 
scales, ranging from a protein domain to a protein assembly, 
for unveiling the hidden, complex mechanisms of how the 
remarkable properties (or functions) of protein materials are 
determined. In particular, we describe the current state-of-
arts of computational simulations at multiple length scales 
based on atomistic model, coarse-grained model, and/or 
continuum modeling, which are applicable for understand-
ing the structure–property-function relationship of protein 
materials at different length scales ranging from a single 
protein domain to protein assembly. In addition, we present 
the computer simulation-based analyses of single proteins 
such as their unfolding mechanics and/or conformational 
changes. Moreover, we introduced the computer simulation-
based characterization of the structures and properties of 
protein assemblies such as amyloid fibrils and viral capsids. 
Finally, we conclude our paper with some remarks and out-
looks for future works in computational modeling of protein 
materials.

Computational Methodologies

This Section demonstrates the fundamental principles of 
computational methodologies that have been applied for 
modeling protein materials. Here, we present the computa-
tional simulation methodologies at different length scales, 
based on atomistic model or coarse-grained model.

Atomistic Modeling/Simulation

Molecular Dynamics Simulations

The atomistic molecular dynamics (MD) simulation had 
been dated back to 1950s, when Alder and Wainwright [35] 
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first considered the atomistic modeling for studying the 
phase transition of hard-sphere gas system. From 1950s to 
1960s, the MD simulations were extensively employed for 
studying the phase transition of gas and solution. Not until 
1970s were the MD simulations employed for modeling bio-
logical molecules such as DNA, RNA, and protein. In 1977, 
Karplus and colleagues [36] had utilized the MD simulations 
for studying the conformational dynamics of bovine trypsin 
inhibitor (that is a very small protein molecule). In 1970s, 
Karplus [37], Levitt [38], and Warshel studied the dynam-
ics of biological molecules (that is related to their function) 
by using the MD simulations, which led them to become a 
pioneer in the MD simulation-based study of biological mol-
ecules and their dynamics. The pioneering works of Karplus, 
Levitt, and Warshel allowed them to win a Nobel prize in 
Chemistry 2013 [39]. Since 2000s, the MD simulations have 
been extensively used for gaining a quantitative insight into 
the structure, dynamics, properties, and functions of biologi-
cal molecules such as proteins, DNAs, and RNAs [40–43].

The fundamental principle of atomistic MD simulation is 
to numerically solve the Newton’s equation of motion for a 
molecular system composed of atoms. Specifically, the posi-
tion vector of each atom, which is a component of a molecu-
lar system, is numerically obtained as a function of time 
based on the numerical integration of the Newton’s equation 
of motion with computing forces acting on each atom. Here, 
the forces acting on each atom originate from inter-atomic 
interaction, thermal energy, and interaction between the 
molecular system and an environment (e.g. water molecules) 
surrounding the molecular system. The equation of motion 
for the molecular system is written as [44] 

where ri is the position vector of an i-th atom in a molecular 
system, mi is the mass of the i-th atom, N is the total number 
of atoms for the molecular system, V is the potential energy 
of the molecular system, and a symbol ∇i represents a spatial 
gradient with respect to position vector ri. With a given ini-
tial position vector ri(0) for the molecular system, the time-
dependent position vector ri(t) of the molecular system can 
be obtained by the numerical integration of the equation of 
motion given by Eq. (1). The details of numerical integration 
scheme are well described in ref [44]. The dynamic behavior 
of a biological molecule (e.g. protein) can be analyzed based 
on calculating the fluctuation matrix Q that consists of block 
matrices Qij defined as [45] 

where a symbol ⊗ indicates a tensor product, and an angle 
bracket represents an ensemble average. The root mean-
square fluctuation (RMSF) of an i-th atom can be measured 
as follows: 
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Here, xi, yi, and zi represent the components of a position 
vector ri(t) in the x-, y-, and z-directions, respectively. The 
RMSF of a protein is very useful in not only understand-
ing the fluctuation motion of the protein but also validat-
ing the atomistic model by fitting the RMSF obtained from 
the MD simulation to that acquired from experiments based 
on nuclear magnetic resonance or X-ray crystallography. In 
addition, the correlated motion of a protein can be quanti-
tatively described using a correlation factor (CF) defined as

It should be noted that the value of CF is in a range of − 1 
to 1. The value of CF being + 1 indicates that two atoms i 
and j move collectively (i.e. together) in the same direction, 
while the value of CF being − 1 means that these two atoms 
move in the opposite direction, and the value of CF being 
zero implies that the motion of an atom i is not correlated 
with that of other atom j.

For a quantitatively analysis of the mechanical response 
of a protein to a force (as can be obtained from single-mole-
cule pulling experiment), the potential field should be modi-
fied by including the strain energy stored in a force probe 
that is used to pull the protein.

where K is the stiffness of a force probe, Rij is a distance 
between two atoms, one of which is fixed and the other is 
pulled by a force probe, v is a pulling rate, and t is the time. 
The equation of motion for a protein that is pulled by a force 
probe is given by

The numerical simulation of solving the Newton’s equa-
tion of motion given by Eq. (6) for studying the mechani-
cal response of a protein is referred to as steered molecular 
dynamics (SMD) simulations [46]. The SMD simulations 
enables the acquisition of the force–displacement relation-
ship of a biomolecule (e.g. DNA, RNA, and proteins), and 
consequently, the extraction of the mechanical properties of 
a biomolecule.

Normal Mode Analysis

Over the last two decades, normal mode analysis (NMA) 
has played a pivotal role in understanding the dynamic 
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behavior of a protein structure [47], as the NMA coupled 
with statistical mechanics theory has allowed for calcu-
lating the fluctuation matrix of the protein structure as 
long as its stiffness matrix is evaluated. For an insight 
into a relationship between the fluctuation behavior of a 
protein and its stiffness, we consider a simple molecular 
system composed of two identical atoms (i.e. diatomic 
molecule). The potential field of a diatomic molecule is 
approximated as harmonic potential given by V = (γ/2)u2, 
where γ is a force constant, and u is a distance between 
two atoms. The kinetic energy of the diatomic molecule is 
given as L = (m/2)v2, where m is the atomic mass, and v is 
the velocity defined as v = du/dt. The statistical mechanics 
theory provides a probability distribution, p(u, v), to find 
a specific position and velocity (u, v) on the phase space 
given as

where kB and T are the Boltzmann’s constant and absolute 
temperature, respectively, H is the Hamiltonian of the dia-
tomic molecule, and Z is the partition function defined as

The ensemble averages of the distance and the mean-
square distance are obtained as follows:

The statistical mechanics theory given by Eq. (9.b) sug-
gests that the fluctuation behavior of a molecular system 
is dependent on its stiffness in such a way that the mean-
square fluctuation of the system is inversely proportional 
to its stiffness.

Now, we consider a molecular system that is composed 
of N atoms. For the dynamic motion of a protein near its 
equilibrium state, its potential field can be approximated to 
a quasi-harmonic potential such as [48–50] 

where K is the stiffness matrix of a molecular system, r 
is the atomic coordinates of the system, and a super-
script T indicates a transpose of a vector. With a spectral 
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decomposition of the stiffness matrix K such as K = PTΛP, 
where Λ is a diagonal matrix consisting of eigenvalues λj for 
the stiffness matrix and P is the modal matrix, the potential 
energy can be rewritten as

Here, y is a transformed coordinate defined as y = Pr. 
It should be noted that summation in Eq. (11) excludes six 
zero normal modes (i.e. rigid body modes). The statistical 
mechanics theory provides a probability function p(y) to find 
a specific state y given by

From a probability function p(y) given by Eq. (12), the 
ensemble averages of quantities, yi and yi·yj, can be found 
as follows.

where δij is a Kronecker delta defined as δij = 1 if i = j, 
otherwise δij = 0. Here, we note that the repeated index in 
Eq. (13.b) does not imply the Einstein summation rule. With 
using a transformation r = PTy, the fluctuation matrix Q of a 
molecular system can be written as

where Pj is the j-th column vector of a modal matrix P, that 
is, Pj is the j-th normal mode of the system.

Coarse‑Grained Modeling

Principle of Coarse‑Graining

For more than three decades, coarse-grained (CG) modeling 
techniques have been established and widely utilized for 
understanding the dynamic behavior of a large protein struc-
tures [51–53]. Though a full atomistic MD simulations have 
recently allowed for gaining insight into the dynamics of a 
small protein (consisting of less than few hundreds of resi-
dues) at millisecond time scales [54, 55], the full atomistic 
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MD simulations are still computationally restrictive in char-
acterizing the dynamic behavior of a large protein structures 
at long timescale [56]. In order to overcome the computa-
tional limitation of atomistic MD simulations, CG modeling 
approaches have been widely developed in such a way that 
a group of atoms, which move collectively, are replaced by 
a single bead (particle), and that the motion of such beads 
(that represent the groups of atoms) is numerically predicted 
based on Newtonian equation of motion while the interaction 
potential energies between beads have to be properly defined.

The process to construct a CG model from atomistic 
model is as follows: As briefly demonstrated above, a group 
of atoms are replaced with a single bead as long as such 
atoms undergo a similar (or mostly collective) motion. Spe-
cifically, a group of atoms are selected based on a criterion 
given by Eq. (15)

where Ω represents the set of atoms that are grouped, and τ 
is a short simulation time scale (e.g. ~ 1 ns). Here, all-atom 
MD simulation is used with a short timescale (e.g. ~ 1 ns) 
in order to measure a criterion given by Eq. (15). Once the 
group of atoms are replaced with a single bead, its position 
vector can be obtained from a following equation.

Here, subscript j indicates the j-th group of atoms, ml and 
rl are the molecular weight and position vector of the l-th 
atom, respectively, and nj is the number of atoms in the j-th 
group. It should be noted that the position vector of a bead 
(representing a group of atoms) is equivalent to the center 
of mass for the atoms that are grouped. Once the groups of 
atoms are replaced with CG beads, the effective potential 
field that can be prescribed to CG beads has to be defined. 
The effective potential field can be written as

where kD, kΩ, and kΦ are the force constants for strain ener-
gies corresponding to the stretching of a pseudo-covalent 
bond, bending of a pseudo-bond angle, and twisting of a 
pseudo-dihedral angle, respectively, N is the total number of 
CG beads, Dj is the distance of a pseudo-covalent bond such 
as Dj = |Dj| = |Rj+1 − Rj|, Ωj is a pseudo-bond angle defined 
as cosΩj = Dj·Dj+1/DjDj+1, Φj is a pseudo-dihedral angle 
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given as cosΦj = (Dj × Dj+1)·Dj+2/|(Dj × Dj+1)·Dj+2|, Qj is an 
effective charge acting on a j-th CG bead, Xjk is a distance 
between two CG beads j and k such as Xjk = |Rj − Rk|, E0 is 
the energy scale of van der Waal’s interaction between CG 
beads, and Υ is a length scale for van der Waal’s interac-
tion. The major procedure of CG modeling is to determine 
the parameters of effective potential field given by Eq. (17). 
The effective potential field can be validated by comparing 
the results of CG model-based simulations with those of 
atomistic MD simulations.

Once CG model is constructed as described above, the 
dynamics of a CG model can be analyzed based on either 
NMA or MD-like simulation. In particular, the NMA can be 
applied to the CG model while the stiffness matrix of CG 
model is estimated based on the position vector of CG beads. 
Here, the stiffness matrix of CG model (K) is composed of 
(off-diagonal) block matrices Kij given by

Here, gradient ∇i is defined with respect to the coordi-
nates of CG beads, such as ∇i = ∂/∂Ri. As a consequence, 
once the eigen-values and their corresponding normal modes 
are computed, the statistical mechanics theory given by 
Eq. (14) enables the quantitation of the fluctuation matrix 
Q for the CG model.

On the other hand, with empirical potential field pre-
scribed to the CG model given as Eq. (17), the Newtonian 
equation of motion for the CG model can be described as 
follows.

Here, Mi is the effective molecular weight of the i-th 
CG bead. The time-dependent trajectories of CG beads are 
obtained by numerically integrating the Newtonian equation 
of motion given by Eq. (19). This method is referred to as 
coarse-grained MD (CG-MD) simulations.

Go‑Like Model

In late 1970s, Go and coworkers [57–59] had developed a 
CG model in such a way that the alpha carbons of a protein 
structure are selected to represent the CG beads of the CG 
model, while the other atoms are neglected. The empirical 
potential field prescribed to CG beads is defined as follows.
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where N is the total number of CG beads, dij is the distance 
between two CG beads i and j, k1 and k2 are force constants 
for harmonic and quartic potential, respectively, for cova-
lent bond, e0 and σ are the energy parameter and length 
scale, respectively, for non-bonded interaction, superscript 
0 indicates the equilibrium state, and δi,j is a Kronecker delta 
defined as δi,j = 1 if i = j; otherwise, δi,j = 0.

For recent decades, Go-like model has been extensively 
employed for studying the mechanical response of a protein 
molecule due to a force. For simulating the force-driven 
structural change of a protein molecule, the Langevin equa-
tion of motion was considered as follows [60].

Here, mi and ri are the mass and position vector of an i-
th CG bead, respectively, η is a friction coefficient, fi(t) is a 
Gaussian random force acting on the i-th CG bead, and U(r) 
is an effective potential field defined as U = V + VL with V 
and VL being the potential field of the CG protein structure 
given by Eq. (20) and a potential field for a force probe, 
respectively. It should be noted that fi(t) satisfies the fluctua-
tion–dissipation theorem such as < fi(t)·fi(τ) > = 2ηkBTδ(t − τ
), where kB and T are the Boltzmann’s constant and absolute 
temperature, respectively, an angle bracket < > indicates an 
ensemble average (equivalent to the time average for the 
sufficient long-time simulation for an ergodic system), and 
δ(t) is the Dirac delta function. In addition, we note that 
the potential field of a force probe is typically assumed to a 
harmonic potential given as VL = (K/2)(d1,N − vt)2, where v 
is a pulling speed with which a protein is extended, and K 
is the stiffness of a force probe. By numerically solving the 
Langevin equation given by Eq. (21), one is able to obtain 
the dynamic trajectory of a coarse-grained protein struc-
ture in response to a force-driven extension with a given 
pulling speed, which results in gaining the force-extension 
(i.e. force–displacement) curve for a protein structure, and 
consequently, its physical properties (e.g. elastic modulus).

Elastic Network Model

Though the Go-like model [57–59] is able to depict the 
dynamic and mechanical response of a protein structure, it is 
still computationally limited for studying the dynamic behav-
ior of a large protein complex (or assembly), whose size is 
much larger than that of a single protein. In order to reduce 
a computational cost for simulating the dynamic behavior of 
large protein complex, Tirion [61] introduced an elastic net-
work model (ENM), which assumes a harmonic potential for 
neighboring alpha carbon atoms. Bahar and colleagues [62] 
developed a Gaussian network model (GNM), in which a pro-
tein structure is described as a network of Gaussian chains 
that are widely used in rubber elasticity. Despite the inability 
of GNM to dictate the directionality of normal modes, GNM 

(21)mi�
2
t
�i = −∇iU(�) − ��t�i + �i(t).

was extensively utilized for studying the fluctuation dynamics 
and its correlated functions of large protein complexes. Atilgan 
et al. [63] introduced an anisotropic network model (ANM) 
which is able to depict the anisotropic fluctuation behavior of 
a protein structure. Here, we note that ANM is conceptually 
identical to ENM. The normal modes of ENM was found to 
be useful in predicting the conformational changes of a large 
protein complex due to a stimulus (such as ligand-binding).

As described above, the key concept of ENM modeling is to 
construct a harmonic potential field prescribed to alpha carbon 
atoms such as [61–65] 

where γ is a force constant, Rc is a cut-off distance (usually 
given by Rc = 7–10 Å), and H(x) is a Heaviside unit step 
function defined as H(x) = 1 if x > 0; otherwise, H(x) = 0.

In case of GNM, the Kirchhoff matrix of a protein structure 
is given by [62] 

Here, ui is the fluctuation of the i-th alpha carbon atom 
(i.e. CG bead) defined as ui = |ri – ri

0| with ri being the posi-
tion vector of the i-th alpha carbon atom. Consequently, as 
described earlier, the fluctuation matrix of a protein structure 
can be obtained as follows.

where λk is the k-th eigen-value of the Kirchhoff matrix, 
and �k

i
 is the i-th component of the k-th normal mode of 

the Kirchhoff matrix. With obtaining the fluctuation matrix 
from GNM, one is able to easily evaluate the RMSF and CF 
with using Eqs. (3) and (4), which are useful in describing 
the fluctuation motion and correlated motion of a protein 
structure.

On the other hand, ANM (or ENM) assumes the anisotropic 
fluctuation behavior of a protein structure, while GNM pre-
sumes the isotropic fluctuation of the protein structure. The 
harmonic potential given by Eq. (22) can be rewritten as [63] 

where ui is the fluctuation vector of the i-th alpha carbon 
atom defined as �i = �i − �0

i
 with ri and superscript 0 being 

the position vector of the i-th alpha carbon atom and equi-
librium state, respectively, and Kij is the off-diagonal (3 × 3) 
stiffness matrix given by
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Here, dij is a distance vector (between two alpha car-
bon atoms i and j) defined as dij = ri − rj, and a symbol ⊗ 
indicates a tensor product. Once the off-diagonal stiffness 
matrices are estimated, it is straightforward to obtain the 
(3 N × 3 N) stiffness matrix K for the protein structure. As 
mentioned earlier, the fluctuation matrix of a protein struc-
ture can be acquired as follows.

where r is the position vector of all alpha carbon atoms, 
defined as r = [r1, …, rN], ξk is the k-th eigen-value of the stiff-
ness matrix K, and vk is the k-th normal mode of the stiffness 
matrix K. Here, it should be noted that in Eq. (27), six zero 
modes corresponding to the rigid body motion of a protein 
structure are excluded for computing the fluctuation matrix Q.

Continuum Model

Though computer simulations based on atomistic and/or CG 
models are able to provide the fundamental insight into the 
dynamic and mechanical behavior of protein structures at 
molecular level, a continuum model is useful in analyzing the 
results of atomistic MD simulations of a large protein structure 
(e.g. protein fibril). For example, while the mechanical response 
of a protein fibril can be obtained from all-atom MD simula-
tions or CG-MD simulations, its mechanical properties such as 
elastic modulus and fracture stress can be extracted from a con-
tinuum model such as Euler–Bernoulli beam model. This Sec-
tion briefly reviews the continuum models that can be employed 
for characterizing the mechanical properties of protein structures 
ranging from a single protein to protein assembly.

Polymer Chain Statistics

Polymer chain model has been useful in characterizing the 
properties of one-dimensional biological structure such as 
fiber-like structure [66]. Specifically, polymer chain model 
allows one to measure the thermal fluctuation behavior of a 
biological structure resulting in the evaluation of the persistent 
length of the biological structure. Here, the persistent length 
is defined as lp = D/kBT, where D is the bending rigidity of the 
biological structure. Among polymer chain models, wormlike 
chain (WLC) model has been successfully able to capture the 
fluctuation behavior of a various biological molecules such as 
DNA and protein fibril. Statistical mechanics theory based on 
WLC model provides the mean-squared value of end-to-end 
distance (R) in the form of [67] 
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where l is the contour length of a biological structure. There 
are two ways to measure the persistent length of a biological 
molecule—the first approach is to place a biological molecule 
on the surface, and then its end-to-end distance is measured as 
a function of the contour length by atomic force microscopy 
(AFM) imaging [68]. The alternative approach is to fix the 
one end of a biological molecule, while its other end is labeled 
with a fluorescence dye, and then the fluctuation behavior of 
the free end of the biological molecule is estimated [69].

For last two decades, single-molecule force spectroscopy 
based on AFM or optical tweezer has played a vital role in 
characterizing the mechanical response and properties of 
protein materials. For example, the mechanical behavior of a 
muscle protein titin, which is responsible for the elasticity of 
a muscle fiber, has been analyzed based on a single-molecule 
force spectroscopy experiment [4, 70–73]. In addition, the 
mechanical response of a DNA molecule, which is associ-
ated with gene transcriptions, has been characterized by a 
single-molecule force experiment [30, 74–76]. It is shown 
that when a protein is extended (with a small amount of 
displacement before the folded domain of a protein is dena-
tured), the mechanical response of the protein is well dic-
tated by WLC model, which provides a relation between the 
force and displacement such as [77] 

where F is the force acting on the molecule, and u is the dis-
placement (i.e. end-to-end extension) of the molecule. WLC 
model is very useful in extracting the mechanical property 
(i.e. persistent length) of a biological molecule when it is 
stretched by a single-molecule force spectroscopy.

Elastic Beam Model

Though the computer simulations based on atomistic or 
CG models are able to depict the mechanical response of 
a protein, a continuum elasticity theory is necessary in 
characterizing the mechanical properties of the protein. 
For example, the mechanical property of a one-dimen-
sional structure such as protein fibril [78] (or nanoscale 
system [79]) can be measured by considering an elastic 
beam model such as Euler–Bernoulli beam model. In par-
ticular, the elastic beam model allows for evaluating the 
mechanical property (e.g. elastic modulus) of a protein 
fibril based on its vibrational characteristics (e.g. natural 
frequencies) or its mechanical deformation behavior (i.e. 
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force–displacement relation), which can be obtained from 
computer simulations based on atomistic or CG models.

The vibrational behavior of a protein fibril can be 
described by the equation of motion for Euler–Bernoulli 
beam model such as [80] 

where ρ, A, E and I represent the density, cross-sectional 
area, elastic modulus, and cross-sectional moment of iner-
tia for a protein fibril, respectively, w(x, t) is the transverse 
deflection of the fibril, x is a coordinate defined along the 
longitudinal direction of the fibril, and t is the time. The 
frequency of the fibril is written in the form of

Here, L is the length of the fibril, and λ is an eigenvalue 
that depends on the boundary condition. From Eq. (31), one 
is able to estimate the (bending) elastic modulus of a protein 
fibril as long as the frequency of the fibril is measured from 
computer simulations based on atomistic or CG models.
The Euler–Bernoulli beam theory provides the relationship 
between the force and displacement for the fibril such as [81] 

where x0 is the location at which a force F is applied, and α(x0) 
is a constant that is a function of x0 and a boundary condition. 
If the force–displacement relation of a protein fibril is measured 
based on the bending deformation of the fibril with using com-
puter simulations based on atomistic models, it is straightfor-
ward to evaluate the bending elastic modulus of the fibril based 
on Eq. (32). In addition, for a recent decade, Timoshenko beam 
model has been highlighted in order to understand the role of 
the length of a protein fibril in its bending elastic property [69]. 
Timoshenko beam model provides the persistent length (lp) of 
a protein fibril in the form of [69, 82] 

l∞
p

 is the persistent length for a very long fibril, GS is the 
shear modulus of the fibril, and parameters a and b are the 
constants that depend on the boundary condition, and a 
parameter c is a constant that is dependent on the cross-
sectional shape of the fibril. Here, we note that the bending 
rigidity of a protein fibril is given by EI = lpkBT.

Mechanical Characterization of a Single 
Protein

For last two decades, there are a lot of efforts that have been 
made to characterize the mechanical response of a biologi-
cal molecule such as DNA and/or protein, as its mechanical 
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response has been associated with its biological functions. 
For instance, during the gene transcriptions, the unwinding 
of double-stranded DNA molecule is necessary. The under-
lying mechanisms of DNA unwinding have been revealed 
by a single-molecule force spectroscopy experiment [26, 30, 
83] and/or computer simulations [84] based on atomistic 
or coarse-grained models. In addition, some proteins have 
recently been found to bear a mechanical loading, which 
endows such proteins to perform a mechanical function. 
As an example, protein domains found in a muscle protein 
titin, which is responsible for the passive elasticity of a mus-
cle, have been found to resist a mechanical force even in 
the order of 100 pN, which is much larger than a thermal 
fluctuation force typically in the order of 1 pN (see Fig. 1) 
[4, 70–72, 85]. This implies that for gaining a fundamental 
insight into the design principles of mechanically strong 
proteins, the mechanical response of such proteins has to 
be characterized. Here, we review the mechanical response 
of a protein, particularly the mechanical unfolding of a pro-
tein domain and the conformational change of a protein, 
with using computer simulations based on atomistic or CG 
models.

Mechanical Unfolding of Proteins

The study on the mechanical unfolding of proteins based on 
all-atom MD simulations or CG-MD simulations has been 
of high importance, as this study allows for not only fun-
damental insights into the mechanical stability, unfolding, 
and folding of protein molecules, but also validation of the 
physical theory such as reaction-rate theory.

The single-molecule force spectroscopy has allowed for 
characterizing the mechanical unfolding behavior of pro-
teins such as immunoglobulin (Ig)-like domains [4, 70–72, 
85] and fibronectin3 (fn3) domains [6, 86, 87] found in a 
muscle protein titin. It is shown that the force–displacement 
curve of Ig-like domains resembles the sawtooth-like curve 
such that force peaks in the sawtooth-like force curve corre-
spond to the unfolding forces, at which each Ig-like domain 
unfolds (Fig. 1). Before a protein domain is unfolded by a 
force, the force–displacement of the domain is well depicted 
by WLC model, i.e. Equation (29). For more than two dec-
ades, steered molecular dynamics (SMD) simulation [46] 
has allowed for unveiling the underlying mechanisms of 
protein unfolding process. In particular, though a single-
molecule force spectroscopy experiment is able to actually 
measure the mechanical response of a protein (e.g. Ig-like 
domain), such an experiment does not provide any detailed 
insight into how some proteins exhibit remarkable mechani-
cal properties. The underlying mechanisms of how a protein 
domain is able to resist a force can be unveiled by SMD 
simulations. Specifically, SMD simulations are able to show 
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the unfolding pathway of a protein, that is, the time evo-
lution of the protein structure due to a force (Fig. 2) [7, 
88–90].

Although all-atom SMD simulations are useful in under-
standing the unfolding mechanisms of a protein, they are 
computationally restrictive in analyzing the unfolding 

Fig. 1  Atomic force microscopy (AFM)-based single-molecule force 
spectroscopy experiments of a protein chain made of a few immu-
noglobulin (Ig) domains. a Experimental results of force-extension 
curves for a protein chain composed of 8 Ig domains. b Six inde-
pendent single-molecule force spectroscopy experimental results are 
superimposed. c Force-extension curves for a protein chain consist-
ing of 4 Ig domains. d Six independent experimental results of force-
extension curves are superimposed. e Force-extension curves for 

a protein chain made of 4 Ig domains (top) or 8 Ig domains (mid-
dle), and native titin (bottom). The distance between two neighboring 
force peaks is measured as ~ 25 nm, which indicates that each force 
peak corresponds to the force, at which a single Ig domain is fully 
unfolded. f Schematic illustration showing the mechanical response 
of a protein chain made of Ig domains. Figure is adopted with per-
mission from Ref. [4]. Copyright (1997) The American Association 
for the Advancement of Science

Fig. 2  Steered molecular dynamics (SMD) simulation on the 
mechanical unfolding of immunoglobulin-1 (I1) domain. a Force-
extension curve for I1 domain that is extended with a pulling rate of 
0.001 nm/s. (b) The molecular structures of I1 domain at initial state 

(i), first force peak (ii), and other force peaks (iii) and (iv). When 
I1 domain is stretched, hydrogen bonds (indicated by red-dashed 
lines) between β strands are ruptured so that I1 domain begins to be 
unfolded
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process of a large protein complex. In order to overcome this 
computational restriction, CG-MD simulations have been 
extensively employed, for more than a decade, for gaining 
insight into the unfolding mechanisms of a protein. Cieplak 
and coworkers [60, 91] have utilized the Go-like model for 
simulating the unfolding process of a protein molecule. They 
showed that the force–displacement response of a protein 
domain obtained from CG-MD simulations based on Go-like 
model is comparable to that acquired from a single-molecule 
force spectroscopy, and that Go-like model is able to pro-
vide the unfolding pathway of a protein domain (Fig. 3a). 
Due to the computational efficiency of Go-like model, it 
has been widely considered for studying how the thermal 
or mechanical stability of a protein domain is determined. 
It is shown that, from the results of Go-like model, the ther-
mal or mechanical unfolding pathway of a protein domain is 
governed by its native topology [91]. Cieplak and colleagues 
[92] studied the mechanical unfolding responses of ~ 17,000 
protein domains using CG-MD simulations based on Go-like 
model in order to gain a fundamental insight into the role of 
the topology of protein domains in their mechanical unfold-
ing responses. Based on the simulations based on Go-like 
model with considering ~ 17,000 protein domains, Cieplak 
et al. [92] suggested the optimal topology of a protein struc-
tural motif, which maximizes the unfolding force of protein 
domain (Fig. 3b). In addition, they have also investigated the 
mechanical stability of a protein knot, which occupies < 1% 
of whole protein structures, using CG-MD simulations based 
on Go-like model [93]. They found that the presence of knot 
improves the stability of a protein domain in such a way that 

the knot increases the life time of intermediate unfolding 
states during the unfolding process of protein domain. A 
previous study by Sulkowska et al. [94] reported that, by 
using Go-like model, the higher force applied to a knot-
ted protein domain, the longer intermediate and metastable 
state, which is attributed to the high force-driven jamming 
of the knot resulting in the longer lifetime of intermediate 
unfolding states.

In recent years, Thirumalai and colleagues [95–97] devel-
oped a CG model, that is, self-organized polymer (SOP) 
model, whose potential field is conceptually similar to that of 
Go-like model. Specifically, SOP model considers the poten-
tial field that consists of the energies associated with covalent 
bonds and native contacts, whereas the mathematical form 
of the potential field of SOP is quite different from that of 
Go-like model. Thirumalai and coworkers [95] have shown 
that, by using CG-MD simulations based on SOP model, 
there are possible multiple unfolding pathways for a protein 
domain such that the alternative unfolding pathway of green 
fluorescence protein (GFP), which is inaccessible with con-
ventional all-atom MD simulations, can be observed by SOP 
model. This is attributed to the fact that a pulling rate used in 
all-atom MD simulations is a few orders of magnitude larger 
than that employed in CG-MD simulations based on SOP 
model and/or single-molecule force spectroscopy experi-
ments. The higher pulling rate used in all-atom MD simula-
tions leads to the deterministic rupture of non-covalent bonds 
such as hydrogen bonds in a protein domain, while the lower 
pulling rate results in the stochastic rupture event of hydrogen 
bonds in the protein domain. In addition, a recent study by 

Fig. 3  a Coarse-grained molecular dynamics (CG-MD) simula-
tions based on Go-like potential model for mechanical unfolding of 
titin immunoglobulin (Ig) domain. The snapshot of titin Ig domain 
that is extended with 5 nm (top) or 15 nm (bottom) was shown from 
the results of CG-MD simulations based on Go-like model. Fig-
ures are adopted with permission from Ref. [60]. Copyright (2002) 

John Wiley and Sons. b Optimal structural motifs that are found in 
mechanically strong proteins are obtained from CG-MD unfolding 
simulations of > 17,000 protein structures. Top five structural motifs 
that are responsible for high mechanical strength. Figures are adopted 
from Ref. [92] under Creative Commons Attribution License
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Thirumalai et al. [98] has interestingly shown the ability of 
SOP model-based simulations to unveil the refolding mecha-
nisms of a protein domain under the quench of a mechanical 
force. Specifically, the refolding dynamics of force-driven 
unfolded protein under the significant decrease of a force 
applied to the protein from stretching force (with amount of 
~ 100 pN) to quenched force (around 10 pN) was studied with 
using CG-MD simulations based on SOP model. It is shown 
that refolding time for a unfolded protein is dependent on the 
amount of quenched force in such a way that the quench force 
allows the unfolded protein to explore the intermediate, meta-
stable unfolded states during the refolding of the unfolded 
protein [98]. In addition, SOP model-based CG-MD simula-
tions enabled Thirumalai and coworkers [96] to study the 
force-driven hopping of RNA hairpin between two intermedi-
ate states. The SOP model-based simulation results provide 
the force-dependent time evolution of end-to-end distance 
for RNA hairpin, which is comparable to that obtained from 
single-molecule force spectroscopy experiments. This SOP 
model-based simulations allowed for accurate description of 
the folding kinetics of RNA hairpin with dependence on its 
amino acid sequence.

Moreover, computer simulations such as all-atom MD 
simulations and CG-MD simulations based on Go-like 
model (or SOP model) are very useful in validating a 
physical theory, which has played an important role in 
interpreting the results of single-molecule force spectros-
copy experiments. For instance, the kinetics of dissocia-
tion of protein complex such as antigen–antibody complex 
was experimentally observed by a single-molecule force 
spectroscopy [99], and this kinetics was successfully ana-
lyzed by a reaction-rate theory (ranging from Arrhenius 
law to Kramers’ theory). In particular, Bell [100] revisited 

the Arrhenius law [2] in order to theoretically obtain the 
relationship between the kinetic rate of molecular disso-
ciation (i.e. bond rupture) and a force applied to induce 
the molecular dissociation event. The theory developed by 
Bell for molecular dissociation was verified by not only a 
single-molecule force spectroscopy but also all-atom MD 
simulation. In addition, the reaction rate theory of protein 
unfolding has recently been developed by considering the 
effect of force probe [101]. Previous study by Freund [101] 
and Arya et al. [102] revisited the Kramers’ theory [103] 
with including the strain energy of a force probe (which 
is used to stretch a protein molecule) in the total potential 
energy for a force-driven protein unfolding, and reported 
that the stiffness of a force probe affects the kinetic rate 
of protein unfolding, and consequently, the force required 
to unfold the protein. This theoretical prediction was vali-
dated by CG-MD simulations based on Go-like model. 
Specifically, our previous study [104] employed CG-MD 
simulations based on Go-like model in order to verify 
the robustness of the theory developed by Freund [101] 
and Arya et al. [102], and found that the dependence of 
unfolding force on the stiffness of a force probe acquired 
from CG-MD simulations based on Go-like model is com-
parable to that predicted by the theory. In addition, our 
CG-MD simulations show the effect of the stiffness of a 
force probe in the unfolding pathway of a protein (Fig. 4).

Conformational Change of Proteins

Proteins perform their biological functions through their 
conformational changes driven by a ligand (or inhibitor). 
For instance, the conformational change of protein kinases 
is responsible for their biological function such as signaling 

Fig. 4  Mechanical unfolding pathway for ubiquitin using a a soft 
force probe or b a stiff force probe. When a ubiquitin is extended by a 
soft loading device, the hydrogen bonds between β1 and β5 begin to 
be ruptured at an extension of 20.5 nm. However, for the stretching of 

ubiquitin using a stiff loading device, the hydrogen bonds between β1 
and β5 are fractured at an extension of 6.6 nm. Figures are adopted 
with permission from Ref. [104]. Copyright (2012) AIP Publishing
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pathway (that is relevant for cellular function or dysfunction 
resulting in disease pathologies such as cancer) [105]. This 
highlights the importance of predicting (or analyzing) the 
conformational change of proteins (due to ligand-binding) 
for not only further understanding of their biological func-
tions but also the effective design of novel drug molecules 
(that are able to regulate the conformational change of pro-
teins) [106].

Though all-atom MD simulations have recently been 
extensively employed for simulating the long time-scale 
dynamic behavior of small proteins [54, 107], they are still 
unable to simulate the conformational change of proteins, 
as the time-scale relevant to the conformational change of 
proteins is still larger than that accessible with currently 
available all-atom MD simulations. For a recent decade, 
ENM has been widely utilized for computationally efficient 
analysis of the conformational transitions of proteins. One 
may ask why ENM is able to predict the conformational 
change of proteins despite the simplicity of ENM modeling. 
This is attributed to the important role of the native topol-
ogy of proteins in their dynamics [108]. A previous study 
by Teeter et al. [48] reports that the conformational dynam-
ics of proteins is very insensitive to the details of potential 
fields, which implies that the conformational dynamics of 
proteins is not affected by the details of inter-atomic interac-
tions. In a similar spirit, Lu and Ma [109] showed that the 
conformational fluctuation behavior of protein is unaffected 
by perturbation of Hessian (stiffness) matrix as long as the 
native contacts of a protein are maintained. In addition, it 
has been reported that the thermal fluctuation of an unbound 
protein structure can render it to explore the conformation 
of a ligand-bound protein structure because of the feature 

of free energy landscape for the protein structure in such a 
way that the free energy landscape has multiple metastable, 
intermediate conformations, some of which may correspond 
to the conformation of ligand-bound state [1]. These previ-
ous studies [1, 48, 109] validates the robustness of ENM 
modeling in analyzing the conformational dynamics of pro-
teins such as their fluctuation and/or their conformational 
changes.

For a recent decade, the low-frequency normal modes 
of a protein predicted from ENM have been accepted to 
predict the conformational change of a protein. For exam-
ple, Bahar and coworkers [110–112] have analyzed the 
conformational change of a protein based on the low-fre-
quency normal modes obtained from ENM. In particular, 
they showed that the conformational change of a protein 
can be predicted based on low-frequency normal modes, 
with which the protein structure is perturbed (Fig. 5). As 
described in Ref. [110], the displacement of a protein cor-
responding to its conformational change is represented in 
the form of �i =

∑n

k=1
�k�

k
i
 , where ui is the displacement of 

the i-th residue of the protein, �k
i
 is the k-th low-frequency 

normal mode vector for the i-th residue, αk is a fitting 
parameter, and n is the number of low-frequency normal 
modes that are utilized to describe the conformational 
change. They have also shown that the conformational 
change of protein kinases upon inhibitor binding can be 
also predicted using the low-frequency normal mode-
based perturbation of the protein structure [111]. These 
previous studies by Bahar and coworkers [110, 111] have 
supported the hypothesis of population shift model, which 
suggests that the conformation of ligand-bound state can 
be accessible based on the conformation of an unbound 

Fig. 5  a The structure of leukocyte Ig-like receptor (LIR) in unbound 
state (red) or ligand-bound state (blue). The bound state is referred 
to as the complex formed with HLA-A2 (black). b The difference in 
the alpha carbon atoms of LIR between unbound and bound states 
(black). This difference can be inferred from the structural perturba-
tion of LIR in unbound state along the 3rd lowest-frequency normal 

modes obtained from ENM. This indicates that the low-frequency 
normal modes of a protein in its unbound state allows it to explore 
its ligand-bound structure. Figures are adopted with permission from 
Ref. [110]. Copyright (2005) National Academy of Sciences, U.S.A 
(color figure online)
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protein due to the ruggedness of the free energy landscape 
of the unbound protein [1]. In a similar spirit, Karplus and 
colleagues [113] have predicted the conformational change 
of myosin V based on a projection of displacement vector 
corresponding to the conformation change into the normal 
mode space. They have provided that the conformational 
change of myosin V can be predicted with using few low-
frequency normal modes. Furthermore, Wolynes and cow-
orkers [114] had developed a theoretical model to predict 
the conformational change of proteins in such a way that 
the low-frequency normal modes of ENM were employed 
to generate the intermediate conformations of the protein 
during its conformational transition.

Moreover, Maragakis and Karplus [115] developed a 
plastic network model (PNM) in order to predict the confor-
mational transition pathway of proteins. Specifically, PNM 
was developed in such a way that the harmonic potential 
field of intermediate state is obtained by mixing the har-
monic potential fields (i.e. the potential fields of ENMs) cor-
responding to two end states, that are, unbound and ligand-
bound states. The harmonic potential field of intermediate 
state is assumed to be in the form of E = (1/2)[E1 + E2 − 
((E1 − E2)2 + 4ε2)1/2], where E1 and E2 represent harmonic 
potential fields (i.e. the potentials of ENM) corresponding to 
two end states, and ε is a parameter related to the degree of 
mixing two harmonic potential fields. The concept of PNM 
by mixing two potential fields was inspired by a quantum 
mechanical coupling of two potential energy surfaces. In a 
similar manner, Takagi et al. [116] suggested a dual Go-like 
model (DGM) by mixing two potential fields corresponding 
to two end conformations, while the potential field of a pro-
tein structure is assumed to be in the form of Go-like model, 
i.e. Equation (20), rather than the ENM-like harmonic poten-
tial. Furthermore, Hummer and colleagues [117] had devel-
oped a mixed elastic network model (MENM) to predict the 
conformational transition pathway of proteins by mixing two 
ENM harmonic potentials at two end states. The harmonic 
potential field of intermediate state is presumed to be written 
as E = –kBTln[exp((E1 + ε1)/kBT) + exp((E2 + ε2)/kBT)], where 
ε1 and ε2 are parameters that are related to the degree of mix-
ing two potential energies.

In addition, Jernigan and coworkers [118] introduced an 
elastic network interpolation (ENI) to acquire the conforma-
tional transition pathways of proteins. In their ENI scheme, a 
displacement vector �k

i
 corresponding to a conformational tran-

sition at the k-th intermediate state is obtained by minimizing 
a cost function (i.e. strain energy for conformational transition) 
defined as Ek = (1∕2)
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where �k
i
 is the position vector of i-th residue at k-th intermedi-

ate state. Here, dk
ij
 is an interpolated inter-residue distance given 

by dk
ij
= �kd

0
ij
+
(
1 − �k

)
dF
ij
 , where dij is a distance between two 

residues i and j, superscripts 0 and F indicate initial (unbound) 

state and final (ligand-bound) state, respectively, and αk is a 
parameter to indicate the k-th intermediate state obtained by 
linear interpolation between two states. Moreover, they have 
extended ENI coupled to a rigid cluster model [119], in which 
the rigid domains of a protein are modeled as a rigid body, 
while the interaction between the rigid domains is described by 
elastic springs. A recent study by Kim et al. [120] has suggested 
a normal mode-guided elastic network interpolation (NGENI) 
in such a way that low-frequency normal modes are used in the 
linear interpolation for obtaining an intermediate conformation. 
In their work, it is shown that NGENI is more computationally 
efficient when compared with ENI for predicting the conforma-
tional transition pathways of large protein complexes. Kidera 
and colleagues [121] developed a theoretical model to under-
stand the conformational change of protein structures based on 
a linear response theory with ENM modeling. In their work 
[121], a displacement vector ui for the conformational change 
is written as �i =

�
kBT

�−1 ∑
k �

k
i
�k

∑
j

�k
j
⋅ �j , where �k

i
 is a k-th 

normal mode vector for i-th residue, λk is the k-th eigenvalue of 
a covariance (compliance) matrix, which is a pseudo-inverse of 
the stiffness (Hessian) matrix of ENM, and fj is a force vector 
acting on j-th residue due to ligand-binding. In a similar spirit, 
Demirel and Lesk [122] employed ENM for evaluating a force 
associated with ligand-receptor binding. Specifically, a force 
related to ligand-receptor binding is obtained based on a linear 
response theory in such a way that the force fi is given by 
�i = kBT

∑
l �

l
i
�−1
l

∑
j

�l
j
⋅ �j , where uj is the displacement vector 

of j-th residue (for a receptor) corresponding to the conforma-
tional change from unbound state to ligand-bound state.

In recent years, there are a few efforts that have been 
made to couple ENM-based structural perturbation scheme 
and all-atom molecular simulations for quantitatively under-
standing the conformational change of proteins. It should 
be noted that intermediate conformations predicted by the 
low-frequency normal modes of ENM may be sometimes 
physically unacceptable, because of the simplicity of ENM, 
which does not have any information for residue-specific 
interactions, side chain-dependent interactions, and so on. 
Bahar and coworkers [123] had coupled the ENM modeling 
and all-atom MD simulations for predicting the conforma-
tional transition of proteins. Specifically, the all-atom MD 
simulation was used to obtain an equilibrium structure for 
a protein, while ENM modeling was employed to introduce 
a structural perturbation of the protein. The iterative com-
putations based on ENM normal mode-based perturbation 
followed by all-atom MD simulations are able to provide an 
insight into the conformational transition of proteins. In a 
similar spirit, Doruker et al. [124] had combined ENM nor-
mal mode-based structural perturbation scheme and all-atom 
Monte-Carlo (MC) simulations for studying the conforma-
tional transition of proteins. In their work, the structural 
perturbation of a protein based on normal modes of ENM 
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followed by all-atom MC simulation was iteratively imple-
mented. These studies [123, 124] show the possibility of 
coupling two different scale modeling techniques for study-
ing the conformational (structural) changes of proteins in 
such a way that a CG model (e.g. ENM) was used to induce 
the structural perturbation of proteins while all-atom MD 
simulation was considered to gain their equilibrium struc-
tures. In other words, two different scale modeling tech-
niques can be coupled so as to develop a novel multi-scale 
simulation techniques, which can provide an insight into 
protein dynamics typically inaccessible with only all-atom 
MD simulations.

Characterization of Protein Assemblies

Understanding the formation and properties of protein 
assemblies is of high importance for gaining fundamental 
insight into the biological function of these assembles such 
as disease pathologies (or etiologies). For example, amyloid 
materials are formed by self-assembly process of protein 
aggregation resulting in the different structural forms of 
amyloids ranging from nanometer to micrometer (or even 
larger) scales [10, 20]. These amyloid materials have been 
known to play a crucial role in the pathogenesis of vari-
ous diseases from neurodegenerative diseases [17] to type 
2 diabetes [18] and cardiovascular diseases [19]. This sug-
gests the necessity of unveiling how the amyloid materi-
als are formed as an assembled structure driven by protein 

aggregation. That is, it is very essential to characterize the 
structural feature and formation of amyloid materials for 
understanding the underlying mechanisms of disease pathol-
ogies driven by protein assembly. In addition, it has recently 
been suggested that the mechanical properties of protein 
assemblies are responsible for their biological functions. 
For instance, the formation of mechanically stiff amyloid 
fibrils on a mechanically soft cell membrane results in the 
mechanical disruption of the cell membrane [24]. This Sec-
tion presents the structural, mechanical, and dynamic char-
acterization of protein assemblies such as amyloid materials 
and viral capsids based on computer simulation techniques 
at different scales ranging from all-atom MD simulations to 
CG-MD simulations.

Structural Characteristics of Amyloid Materials

For a recent decade, there are efforts that have been made to 
understand the formation and structures of amyloid mate-
rials based on computer simulations. A previous study by 
Karplus and coworkers [125] reported MD simulations of 
dimerization for understanding the underlying mechanisms 
of the formation of amyloid dimers, which were formed by 
self-assembled aggregation of two monomers (Fig. 6a). They 
showed the ability of all-atom MD simulations to probe 
the structural properties of amyloid dimer isoforms, while 
their work [125] is still computationally restricted in gain-
ing insight into the kinetics of protein aggregation result-
ing in the formation of amyloid fibrils. A pioneering work 

Fig. 6  a Equilibrium molecular dynamics (MD) simulations for the 
formation of amyloid dimers. Top panel shows the snapshots of two 
monomers at time t = 0 and a dimer formed by aggregation of two 
monomers at time t = 1 ns. Figures are adopted with permission from 
Ref. [125]. Copyright (2004) National Academy of Sciences, U.S.A. 
b Replica exchange MD (REMD) simulation results show the domi-

nant structures of islet amyloid polypeptide (IAPP) monomers found 
in rat (top panel) or human (bottom panel). It is interestingly shown 
that rat IAPP is most likely to exist in the form of alpha helix, while 
human IAPP is more likely to exist in the form of β-hairpin, which is 
responsible for aggregation of IAPP monomers. Figures are adopted 
from Ref. [132] under Creative Commons Attribution License
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by DeMarco and Daggett [126] reported that all-atom MD 
simulations may allow for predicting the structural conver-
sion of cellular prion protein  (PrPC) into the scrapie iso-
form of prion protein  (PrPSC), which is responsible for the 
formation of prion fibrils involving in various transmissible 
spongiform encephalopathies. This pioneering work [126] 
is still limited in quantitative understanding of the kinetics 
of structural conversion into dimerization (and subsequently, 
fibrillization). In recent years, with the advancement of com-
putational resources, the all-atom MD simulations have been 
able to probe the more detailed information of the formation 
of amyloid materials. For example, Chong and Ham [127] 
have studied the dimerization of Alzheimer-β (Aβ) mono-
mers using all-atom MD simulations. In their work [127], 
they are able to unveil the underlying mechanisms of the 
dimerization process such that a water-mediated hydration 
force plays a crucial role in the formation of Aβ dimer. In 
addition, all-atom MD simulations with enhanced sampling 
methods such as replica exchange [128] or metadynamics 
[129, 130] have allowed for characterizing not only the for-
mation of amyloid dimers but also the inherent structural 
feature of amyloid monomer, which may be correlated with 
self-assembly process of protein aggregation. For instance, 
a bias-exchanged metadynamics simulations have provided 
the pathway of the dimerization of islet amyloid polypeptide 
(IAPP) and the intermediate structural forms of IAPP dimers 
[131]. A recent study by Shea and coworkers [132] have 
shown the ability of replica exchange MD (REMD) simu-
lations to probe the inherent structural properties of IAPP 
monomers with the effect of sequence mutations. In their 
work [132], it is found that human IAPP (hIAPP) mono-
mer is able to exhibit more contents of β-sheets, which are 
responsible for protein aggregation, than rat IAPP (Fig. 6b). 
Their finding [132] is consistent with clinical observation 
[18] that though IAPP proteins are found in both human and 
rat, human suffers from type 2 diabetes due to aggregation 
of IAPP proteins, whereas the type 2 diabetes is not found 
in a case of rat. In addition, Chakraborty and Das [133] have 
recently employed REMD to probe the inherent structural 
properties of Aβ monomer and the effect of inhibitors in 
the structural properties of Aβ monomers. They found that 
an inhibitor, which is a six-residue Aβ fragment (referred 
to as Aβ hexapeptide), makes a critical impact on the sec-
ondary structural propensity of Aβ monomers. In particu-
lar, Aβ hexapeptide reduces the contents of β-sheets in an 
Aβ monomer, which implies that Aβ hexapeptide inhibits 
the aggregation of Aβ monomers. A recent study by Shea 
and colleagues [134] have also considered REMD simu-
lations for gaining insight into the role of osmolytes (e.g. 
urea or trimethylamine N-oxide, abbreviated as TMAO) in 
the structural propensity of tau fragment peptide. In their 
REMD simulations [134], the osmolytes induces the shift 
of the populations of secondary structures for tau fragment 

peptide, which is consistent with experimental observation 
that the osmolytes inhibits the formation of amyloid fibrils 
but promotes the formation of helical amyloid oligomers. 
The previous studies reviewed here suggest the increasing 
role of all-atom MD simulations in revealing hidden, com-
plex mechanisms that determine the structure and formation 
of amyloid materials at different length scales ranging from 
oligomeric structures to fibril structures.

Mechanical Properties of Amyloid Materials

Mechanical characterization of amyloid materials is a priori 
requisite for gaining insight into the molecular mechanism of 
disease pathologies, which is attributed to the fact that once 
amyloid fibrils are formed by self-assembly process (i.e. 
protein aggregation), these fibrils are quite stable and are 
unlikely to be denatured (or ruptured) in physiological con-
ditions so as to deposit onto an organ (e.g. brain, pancreas, 
etc.) resulting in the disease pathologies. In addition, the 
mechanical properties of amyloid fibrils are directly linked 
to the amyloid-driven pathologies. For example, a recent 
study by Zewail and coworkers [24] suggest that the forma-
tion of mechanically stiff amyloid fibrils (or protofibrils) on 
a mechanically soft cell membrane results in the disruption 
of the membrane. In addition, the fracture property (i.e. divi-
sion rate) of prion fibrils are found to be correlated with 
prion infectivity, that is, cell-to-cell prion propagation [135].

For a recent decade, there are a lot of attempts to measure 
the mechanical stability and properties of amyloid fibrils. 
For instance, we studied the dependence of mechanical sta-
bility and properties of hIAPP amyloid fibrils on their struc-
tural feature, that is, the pattern of cross-β structures made 
based on stacking of peptides, by using all-atom MD simula-
tions [136]. We have shown that the amyloid fibrils formed 
based on antiparallel stacking of hIAPP peptides are quite 
stable when compared with the fibrils constructed based on 
other stacking patterns (e.g. parallel stacking of peptides), 
which highlights the importance of the molecular structure 
(i.e. cross-β structure) of amyloid fibrils in their stability. In 
recent years, we have employed all-atom MD simulations in 
order to study how metal ions, which are found in patients 
suffering from neurodegenerative diseases, affect the forma-
tion and stability of Aβ structures at different length scales, 
such as amyloid oligomers and fibrils [137]. We found that 
 Zn2+ ions improve the stability of Aβ oligomers while these 
ions reduce the stability of Aβ fibrils, which is consistent 
with clinical observation that high concentration of  Zn2+ 
ions promotes the formation of Aβ oligomers that are known 
as toxic agent to functional cells (Fig. 7). In addition, a 
recent study by MacPhee et al. [138] reports the effect of 
protonation state in the stability of transthyretin (TTR) amy-
loid oligomers based on all-atom MD simulations. In their 
work [138], it is shown that the protonation state affects the 
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stability of amyloid oligomers so as to result in the different 
form (e.g. decamer, hexamer, etc.) of amyloid oligomers. It 
is found that the decamer is stable regardless of the proto-
nation state of TTR, whereas the protonation results in the 
stable formation of the hexamer, and de-protonation favors 
the formation of higher order oligomers. These previous 
studies [136–138] show the ability of all-atom MD simula-
tions to characterize the mechanical stability and formation 
of amyloid structures at different length scales ranging from 
oligomers to protofibrils. It should be noted that, however, 
the all-atom MD simulations are still computationally pro-
hibited for simulating the stability of a very long amyloid 
fibril whose length scale is larger than 100 nm. Until now, 
the all-atom MD simulations is computationally able to char-
acterize the amyloid protofibrils whose length scale is in the 
order of 10 nm.

Recently, there are many recent works for studying 
the mechanical properties of amyloid fibrils. A pioneer-
ing work by Knowles et al. [139] reports the mechanical 
properties of amyloid fibrils based on AFM experiments 
and ENM-based CG simulations. It is shown that the elas-
tic modulus of amyloid fibrils is estimated in the order of 
1 to 10 GPa, which is comparable to that of a mechani-
cally strong protein material such as spider silk (Fig. 8). 
In their work [139], it should be noted that the persistent 
length of amyloid fibrils (equivalent to their bending rigid-
ity) is computed based on AFM images of the fibrils cou-
pled with polymer chain statistics, i.e. Equation (28). The 
remarkable elastic modulus of amyloid fibrils is attributed 
to interactions between neighboring β-sheets in the cross-β 
structure of amyloid fibrils. This hypothesis was verified in 
a recent study by Buehler and coworkers [25], who showed 

Fig. 7  Effect of metal ions on the mechanical stability of amyloid 
aggregates at different length scales such as oligomer and fibril based 
on all-atom molecular dynamics (MD) simulations. It is shown that 
metal ions make an amyloid oligomer be an ordered structure, while 

they distorts the structure of amyloid fibril resulting in the decrease of 
its structural stability. Figures are adopted with permission from Ref. 
[137]. Copyright (2018) Royal Society of Chemistry
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that the geometric confinement of hydrogen bonds between 
β-sheets gives rise to the remarkable elastic properties of 
β-sheet-rich protein materials such as amyloid materials 
and spider silk crystals. As the all-atom MD simulations 
are computationally limited for simulating large protein 
structures such as amyloid fibrils with their length of > 10 
to > 100 nm, CG model-based simulations have been taken 
into account for characterizing the mechanical properties 
of long amyloid fibrils. For example, Buehler and cowork-
ers [140] have employed ENM-based NMA simulations 
for measuring the elastic properties of Aβ fibrils. They 
have shown that the low-frequency vibration modes of Aβ 
fibrils correspond to the bending, twisting, and stretch-
ing deformation modes, and that the elastic moduli of 
Aβ fibrils (with the twofold or threefold symmetries) are 
measured in a range of ~ 20 to ~ 30 GPa. Here, we note 
that the extraction of mechanical properties (e.g. elastic 
moduli) for amyloid fibrils is based on the Euler–Bernoulli 
beam theory, i.e. Equation (31), which relates the elas-
tic moduli of the fibrils to their natural frequencies that 
were computed from ENM-based NMA simulations. It is 
found that the bending rigidity of Aβ fibrils (equivalent 
to their persistent length) is dependent on their length 
scales, which is ascribed to the length-dependent shear 

effect on the bending deformation of the fibrils. Moreo-
ver, we studied the mechanical properties of hIAPP fibrils 
as a function of their structural features, i.e. stacking 
pattern of β-sheets, by using ENM-based simulations 
[141]. We found that the antiparallel stacking of β-sheets 
renders the hIAPP fibril to exhibit the higher bending 
rigidity, which highlights the role of β-sheet stacking 
patterns in not only the mechanical stability of amyloid 
fibrils [136] but also their mechanical properties [141]. 
We have also shown that the dependence of the bending 
rigidity of hIAPP fibrils on their length is well fitted to 
the Timoshenko beam theory, i.e. Equation (33), which 
sheds light on the shear effect in the bending properties 
of amyloid fibrils. In addition, we have investigated the 
mechanical properties of prion fibrils using ENM-based 
NMA simulations [142]. It is interestingly found that the 
length-dependent mechanical (or vibrational) properties 
of prion fibrils provide an insight into the critical size of 
prion fibrils, at which their infectivity is maximized, and 
that the helical structure of prion fibrils determines their 
elastic properties. Furthermore, we measured the vibra-
tional and elastic properties of hIAPP fibrils (with their 
length of ~ 10 nm) using all-atom MD simulations coupled 
with Euler–Bernoulli beam theory [136]. In particular, the 
natural frequencies of hIAPP fibrils for their vibrational 
modes are obtained based on all-atom MD simulations, 
while the elastic moduli of the fibrils are extracted based 
on Euler–Bernoulli beam theory that relates the natural 
frequencies to the elastic moduli of the fibrils. The natural 
frequencies of hIAPP fibrils with their length of ~ 10 nm 
are critically dependent on their structural characteristics 
such as the stacking pattern (Fig. 9). We have shown that 
the antiparallel stacking of β-sheets results in the higher 
elastic moduli of hIAPP fibrils [136], which is consistent 
with our previous finding [141] based on ENM simula-
tions. It is also found that low-frequency vibrational modes 
(corresponding to bending, torsional, and stretching defor-
mation modes) mostly contribute to the thermal fluctua-
tion of amyloid fibrils. Furthermore, a recent study by Na 
and colleagues [143] has reported that, using ENM-based 
NMA simulations, the low-frequency vibrational modes 
of triplet prion fibril are able to depict its conformational 
changes due to pH. This suggests that the low-frequency 
vibrational modes of amyloid fibrils play an important 
role in not only extracting their mechanical properties but 
also gaining insight into their conformational changes due 
to a chemical stimulus such as pH change. Recently, we 
have studied the mechanical properties of multi-stranded 
amyloid fibrils based on ENM-based simulations coupled 
with all-atom MD simulations [144]. In our recent study 
[144], all-atom MD simulations were employed to obtain 
the equilibrium structure of multi-stranded amyloid fibrils, 
while ENM-based simulations were used to extract the 

Fig. 8  Mechanical properties of amyloid materials in compari-
son with those of other materials. Blue region shows the mechani-
cal properties of amyloid fibrils, while green region indicates the 
mechanical properties of other protein materials. It is shown that 
the mechanical property (e.g. elastic modulus) of amyloid fibrils 
exceeds that of other protein materials. The mechanical properties of 
amyloid fibrils were measured by atomic force microscopy (AFM) 
imaging experiments coupled with polymer chain statistics. Figures 
are adopted with permission from Ref. [139]. Copyright (2007) The 
American Association for the Advancement of Science
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mechanical properties of the fibrils. We have shown that 
the dependence of persistent length (equivalent to bend-
ing rigidity) for multi-stranded amyloid fibrils is fitted 
to a scaling law of lp ∝ [(nq)2 − sin2(nq)]1/2 [68], which 
was obtained from a helical model. It is also shown that a 
H31Y point mutation, where histidine residue locating in 
31st residue from the N-terminus is changed into tyrosine 
residue, results in a change in not only the structure of 
multi-stranded amyloid fibrils but also their elastic moduli. 

In recent years, all-atom SMD simulations have been 
extensively employed for studying not only the mechanical 
properties of amyloid fibrils but also their fracture mech-
anisms. Buehler and coworkers [25] have interestingly 
reported that the fracture mechanism of β-sheet crystals is 

governed by their length scale in such a way that shear defor-
mation dominates the force-driven fracture of short β-sheet 
crystals with their length of < 3 nm, while the fracture of 
β-sheet crystals with their length of > 3 nm is governed by 
bending deformation (Fig. 10). A recent study by Grater and 
coworkers [145] have studied the mechanical deformation 
mechanisms and properties of β-sheet crystals, which are 
found in amyloid fibrils and/or spider silk, using all-atom 
SMD simulations. They have found that the direction of a 
force applied to the β-sheet crystals significantly affects not 
only their deformation (and fracture) mechanisms but also 
their elastic moduli. In particular, β-sheet crystal are able to 
effective resist a force applied to the perpendicular direction 
of the β-strand, whereas it becomes mechanically weak when 

Fig. 9  a Equilibrium molecular dynamics (MD) simulations of 
human islet amyloid polypeptide (hIAPP) protofibrils constructed 
based on eight different stacking patterns. MD simulations sug-
gest that hIAPP protofibrils are mechanically stable as long as they 
are made based on antiparallel stacking of peptide chains. b Mode 
index for the bending, stretching, and torsional deformation modes 
of hIAPP protofibrils constructed based on 8 different structural 

classes. c Natural frequencies corresponding to bending, torsional, 
and stretching deformation modes for hIAPP protofibrils are meas-
ured from MD simulations. d Contribution of bending, torsional, or 
stretching deformation modes to the thermal fluctuation motion of 
hIAPP protofibrils made based on 8 different structural classes. Fig-
ures are adopted from Ref. [136] under Creative Commons Attribu-
tion License
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a force is applied to the parallel direction of the β-strand. 
Recently, we have studied the mechanical deformation 
mechanisms and properties of hIAPP fibrils as a function 
of their length scales by using all-atom SMD simulations 
[146]. It is shown that the dependence of bending elastic 
property and fracture mechanism for amyloid fibrils on their 
length scales is attributed to the length-dependent competi-
tion between shear and bending deformation modes, and that 
the length-dependent elastic property of the fibrils obtained 
from all-atom SMD simulation is well fitted to Timoshenko 
beam theory. We found that this length-dependent frac-
ture mechanism for the fibrils is attributed to the length-
dependent rupture mechanisms of hydrogen bonds formed 
between β-sheets (in the cross-β structure of the fibril). In 
particular, for a short fibril, several hydrogen bonds formed 
between β-sheets are able to cooperatively resist a force 
so that at a critical value of a force, these hydrogen bonds 
are simultaneously ruptured. On the other hand, for a long 
fibril, the hydrogen bonds between β-sheets are fractured 
one-by-one, which results in the mechanical fragility of the 
long fibril. In recent years, we have investigated the fracture 
mechanisms of a helical prion fibril using all-atom SMD 
simulations [147]. The elastic moduli of an infectious prion 
fibril formed based on a left-handed β-helix and a non-prion 
fibril constructed based on a right-handed β-helical structure 
are measured as ~ 18 GPa and ~ 13 GPa, respectively. How-
ever, it is interestingly found that the fracture toughness of 
an infectious prion fibril is smaller than that of non-prion 
fibril [147], which is consistent a recent finding [135] that 
infectious prion fibril is more fragile. A previous study by 

Buehler and colleagues [148] has interestingly investigated 
the relationship between the molecular structure of amyloid 
fibrils and their mechanical (e.g. elastic) properties. It should 
be noted that amyloid fibrils can be formed based on a few 
types of structural models such as stacked β-sheets, β-helix, 
and stacked β-helices. They found that amyloid fibrils 
formed based on stacked β-helices exhibit the high fracture 
strength, while the fibrils constructed based on β-helix pos-
sess the high elastic moduli. The mechanical properties of 
amyloid fibrils are highly correlated with their molecular 
structure (i.e. structure type), which determines the rupture 
mechanisms of hydrogen bonds within the fibril.

Mechanical and Dynamic Properties of Viral Capsids

Viruses are nano-sized particles that are formed by self-
assembly process. For a recent decade, there are efforts that 
have been conducted for characterizing the mechanical and 
dynamic properties of viral capsids [149], as these properties 
are closely related to the biological function of viruses such 
as gene packaging. Viral capsids are mechanically strong 
so as to resist disassembly, so that they are able to contain 
a gene information (i.e. DNA or RNA molecules inside the 
virus). Here, we review computational efforts that have 
been made, for a recent decade, to characterize the dynamic 
and mechanical properties of viral capsids using CG and/or 
atomistic simulations.

Tama and Brooks [150] had utilized ENM-based NMA 
simulations for characterizing the dynamic behavior of 

Fig. 10  Mechanical deformation mechanisms of β-sheet crystals 
with their length of a L = 2.83 nm or b L = 6.56 nm based on all-atom 
steered molecular dynamics (SMD) simulations. When a β-strand in 
the β-sheet crystal with its length of L = 2.83  nm is pulled out, the 
fracture of the crystal is dominated by shear deformation-driven 
fracture. On the other hand, for a β-sheet crystal with its length of 

L = 6.56 nm, the pulling of a β-strand in the crystal leads to the bend-
ing deformation-driven fracture of the β-sheet crystal. These SMD 
simulations suggest the role of the length scale of β-sheet crystals in 
their fracture mechanisms based on a competition between shear and 
bending deformations. Figures are adopted with permission from Ref. 
[25]. Copyright (2010) Springer Nature
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icosahedral viral capsids. They found that few low-fre-
quency vibrational modes obtained from ENM are able to 
sufficiently depict the conformational changes of icosahedral 
viral capsids such as their shape change from spherical to 
faceted polyhedral. Their study [150] suggests that icosahe-
dral viral capsids are able to adapt their shapes due to their 
flexibility (Fig. 11). A previous study by van Vlijmen and 
Karplus [151] reported the vibrational characteristics of ico-
sahedral viruses based on all-atom NMA. In particular, the 
stiffness of viruses is computed based on the second deriva-
tive of the potential energy prescribed to the virus structure 
with respect to its atomic coordinates, and then this stiff-
ness is used for NMA to find the natural frequencies of the 
virus and their corresponding vibrational modes. The low-
frequency vibrational modes of polivirus capsid are shown 
to be correlated with its shape adaptation. Rader et al. [152] 
studied the maturation dynamics of bacteriophage HK97 
capsid using ENM-based NMA simulations. The authors 
found that the collective low-frequency vibrational motions 
of procapsid are highly correlated with its conformational 
change related to its maturation. This also confirms the role 
of flexibility for viral capsid in its shape adaptation. Kim 

et al. [119] studied the maturation dynamics of HK97 virus 
capsid using rigid cluster ENI simulations. They showed the 
conformational transition pathways of HK97 virus capsid. 
These previous studies [119, 150–152] are still restricted for 
understanding the dynamic process of maturation (and its 
related to conformational change) for viral capsids, because 
the NMA-based studies do not consider the time-evolution 
dynamics of viral capsids but takes into account only their 
vibrational modes at equilibrium state. Arkhipov et al. [153] 
had developed a CG model that is applicable for studying 
the time-evolution dynamics of viral capsids. Their CG-MD 
simulations show that some viral capsids such as an empty 
satellite plant virus (SMTV) collapse rapidly within 500 ns, 
while other capsids such as brome mosaic virus (BMV) are 
highly flexible but very stable for a long time of > 1 μs. It 
is found that interlocking between the subunits of viral cap-
sid plays a crucial role in its structural stability. Recently, 
Perilla and Schulten [154] have reported the mechanical and 
dynamic behavior of viral capsid (i.e. HIV-1 capsid) using 
all-atom MD simulations based on high-performance paral-
lel supercomputing. In particular, the dynamic trajectories 
of 64 million atom-sized HIV-1 capsid for the timescale of 

Fig. 11  Maturation dynam-
ics of rice yellow mottle virus 
(RYMV) and southern bean 
mosaic virus (SMBV) was 
analyzed by elastic network 
model (ENM)-based normal 
mode analysis (NMA) simula-
tions. The initial structures of 
a RYMV and b SBMV are 
shown. The structures of c 
RYMV and d SBMV in swollen 
state are obtained from ENM-
based NMA simulations. Fig-
ures are adopted with permis-
sion from Ref. [150]. Copyright 
(2005) Elsevier
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1 μs were obtained from all-atom MD simulations. Based 
on this long-time all-atom MD simulations, the stability of 
HIV-1 capsid was studied by measuring the size of HIV-1 
capsid as a function of time, and the low-frequency vibra-
tional motions of HIV-1 capsid were also investigated.

The mechanical properties of viral capsids have recently 
been probed by AFM indentation experiments [149]. The 
elastic moduli of viral capsids were found to be 0.1 to 1.8 
GPa with dependence on the Föppl-von Kármán (FvK) num-
ber, γ, which is defined as γ = ER2/D, where E, R, and D are 
the Young’s modulus, radius, and bending rigidity of the 
viral capsid. This FvK number, which quantifies the com-
petition between bending energy and tension energy during 
the deformation of the viral capsid, determines the shape 
of the capsid, i.e. whether it exhibits spherical or icosahe-
dral facetted shapes. In recent years, Widom and coworkers 
[155] have considered ENM-based NMA simulations cou-
pled with continuum elasticity theory, i.e. Lamé equation 
(for sphere). It is shown that the low-frequency vibration 
modes of viral capsid, obtained from ENM-based NMA 
simulations, were comparable to those predicted by Lamé 
equation, which suggests the robustness of a continuum 
elastic model in characterizing the mechanical properties 
of viral capsids. The Young’s modulus (E) and Poisson’s 
ratio (ν) of viral capsids were measured as ν = 0.2 ~ 0.3 and 
E/γ = 6.5 ~ 36.2 nm−1, where γ is a force constant used in 
ENM (here, γ = ~ 0.5 N/m), i.e. E = 3.2 ~ 18.1 GPa. A previ-
ous study by Roos et al. [156] employed a continuum elastic 
model-based finite element simulations for characterizing 
the squeezing (i.e. indentation) mechanics of viral capsids. 
Specifically, the authors considered the finite deformation 
continuum hyperelasticity (with a neo-Hookean constitutive 
law) in finite element simulations to probe the indentation 
mechanism of viral capsids (Fig. 12). It is shown that the 
mechanical indentation behavior of viral capsids is critically 

dependent on their shape that can be described by FvK num-
ber. For the capsids with their shape of FvK < 150, their 
indentation response is well dictated by a linear relation 
between indentation displacement and force. However, for 
the capsids with 150 < FvK < 800, the indentation response 
becomes nonlinear, whereas the indentation behavior of cap-
sids with Fv > 800 is well depicted by a linear response as 
long as the indentation displacement becomes 40% of the 
radius of the capsid.

Conclusion

In this paper, we introduce recent efforts that have been 
made, for a last decade, to characterize protein materials at 
multiple length scales ranging from single proteins to pro-
tein assemblies, based on various simulation techniques (at 
different length scales) from atomistic MD simulations to 
CG simulations.

First, we have shown that CG-MD simulations (using Go-
like or SOP potential) have been extensively employed to 
understand the mechanical unfolding or refolding dynam-
ics of a single protein molecule due to a force. Here, we 
note that though all-atom SMD simulations are able to pro-
vide a useful insight into protein unfolding (or refolding) 
mechanisms of a single protein, they are still computation-
ally prohibited for directly interpreting the results of single-
molecule force spectroscopy experiments. Specifically, the 
timescale accessible with all-atom SMD simulations is quite 
different from that used in a single-molecule force spectros-
copy experiment such that a pulling rate used in SMD simu-
lations is larger by six orders of magnitude than that con-
sidered in a single-molecule force spectroscopy experiment. 
This discrepancy between these timescales results in the 
extensive usage of CG-MD simulations for understanding 

Fig. 12  Indentation mechanics of Hepatitis B virus (HBV) capsid, 
whose icosahedral geometry is given as T = 4 with two- of three-fold 
symmetry axes. a Finite element simulation shows the mechanical 
deformation mechanisms of HBV capsids with their two- or three-
fold symmetry axes during the indentation. b Coarse-grained molecu-

lar dynamics (CG-MD) simulation results for the indentation mecha-
nisms of HBV capsids with their different symmetries (left), and the 
force–displacement curve of indented HBV capsids with two-, three-, 
or five-fold symmetry axes (right). Figures are adopted with permis-
sion from Ref. [156]. Copyright (2010) Elsevier
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the unfolding (or refolding) mechanisms of single proteins. 
However, it should be noted that although CG-MD simula-
tions are able to provide the unfolding dynamics of a single 
protein with a timescale comparable to that used in experi-
ment, these simulations have to be cautiously used for inter-
preting the unfolding (or refolding) mechanisms of a single 
protein, because the CG models may not carry the all atom-
istic information of the protein. For example, a single point 
mutation (i.e. single amino acid substitution) may affect the 
structure, dynamic (e.g. unfolding and/or refolding), and 
properties of a single protein, which typically cannot be 
captured by CG models. Recently, with the improvement of 
computing resources as well as the development of enhanced 
sampling methods, all-atom MD (or SMD) simulations may 
be more extensively utilized for interpreting the results of 
a real single-molecule force spectroscopy experiment. For 
instance, metadynamics scheme has recently been developed 
and widely utilized to probe the dynamics of a protein with 
a timescale relevant to the experiment. Here, the principle 
of metadynamics is to apply a Gaussian penalty function 
to the potential field of a protein in order to speed up the 
reaction rate of a protein related to its structural (conforma-
tional) changes due to a force or other stimulus (e.g. ligand-
binding) [129, 130]. Our recent studies report the unfolding 
mechanisms of ubiquitin [157] and/or prion protein [158] 
based on all-atom metadynamics simulations. In our recent 
studies [157, 158], it is shown that all-atom model-based 
metadynamics simulations allow for unveiling the unfold-
ing mechanics of a protein with a timescale relevant to a 
single-molecule force spectroscopy experiment. Despite few 
studies [157, 158] of protein unfolding based on an enhanced 
sampling-based all-atom simulations (e.g. all-atom metady-
namics), we believe that recent development of enhanced 
sampling techniques may enable all-atom MD simulations to 
be practically considered for interpreting the results of a sin-
gle-molecule force spectroscopy experiment in near future.

For studying the conformational changes of a single 
protein molecule, we have discussed the extensive usage 
of CG models such as ENM. All-atom MD simulations 
have not been still applicable for revealing the underlying 
mechanisms of the conformational changes, as their avail-
able timescale is much shorter than that relevant to the con-
formational changes. This has led to the development and 
usage of CG models such as ENM for studying the con-
formational changes. The robustness of ENM in predicting 
the conformational changes is attributed to the fact that the 
conformational changes of a protein are correlated with 
its low-frequency vibrational modes. Nevertheless, ENM-
based NMA simulations are unable to provide insight into 
the time-evolution dynamics of conformational changes 
for a protein. One possibility to overcome this restriction 
is the development of computational techniques based on 
coupling between CG model (i.e. ENM) and all-atom MD 

simulations. As discussed in a paper by Bahar and coworkers 
[123], the low-frequency vibrational modes obtained from 
ENM were used to explore conformational spaces relevant 
to the conformational changes, while all-atom MD simula-
tions were utilized to obtain the equilibrium dynamics of a 
protein during its conformational transitions. We anticipate 
that the sampling based on the normal modes (obtained from 
CG models) may be coupled to all-atom MD simulations 
for gaining a profitable knowledge on the conformational 
transitions of a protein.

For simulating large protein assemblies such as amy-
loid materials and viral capsids, we have shown that CG or 
continuum model-based simulations are able to provide the 
fruitful insight into the structure, dynamics, and properties 
of these assemblies. Despite a recent study by Perilla and 
Schulten [154] reporting the dynamics of viral capsids based 
on all-atom MD simulations, these atomistic simulations are 
still computationally unfavorable for predicting and charac-
terizing the structure, dynamics, and properties of protein 
assemblies. We have presented many recent works on CG 
model (e.g. ENM) and/or continuum model-based simula-
tions for characterizing the mechanical properties of pro-
tein assemblies such as amyloid materials and viral capsids, 
whose size is typically > 100 nm. However, these simula-
tions based on CG models (e.g. ENM) are unable to provide 
the time-evolution dynamics of mechanical behavior (e.g. 
fracture) for protein assemblies such as amyloid materials. 
Though continuum model-based finite element simulations 
may provide the time-evolution of mechanical deformation 
for protein assemblies, they require a priori knowledge on a 
constitutive law (e.g. parameters related to material proper-
ties) for protein assemblies. One of routes to improve the 
simulation techniques for characterizing the protein assem-
blies is to combine all-atom MD simulations and CG model-
based simulations (or continuum model-based simulations 
such as finite element simulation). Specifically, as described 
in our recent work [144], all-atom MD simulations are con-
sidered to obtain the equilibrium structure of structural seg-
ment for protein materials (e.g. amyloid materials), while 
simulations based on CG model (e.g. ENM) are applied to 
a whole protein assembly, which was constructed based on 
the equilibrium structure of structural segment, in order to 
characterize the properties of this assembly. Another avenue 
to improve the simulation techniques is that all-atom MD 
simulations are taken into account to compute parameters 
(e.g. parameters for a constitutive law) that are required for 
a finite element simulation of protein assembly, while finite 
element simulations are performed to depict the time-evolu-
tion of mechanical deformation for protein assembly [159].

In conclusion, computer simulations based on various 
models at multiple length scales, ranging from atomistic 
model to CG and continuum models, have recently played 
invaluable role in predicting, characterizing, and revealing 



23Multiscale Science and Engineering (2019) 1:1–25 

1 3

the hidden, complex, underlying mechanisms of proteins’ 
dynamics and mechanics, which govern their biological 
functions. These simulations may help to not only interpret 
the experimental results (e.g. results obtained from single-
molecule experiments) but also provide new insights into 
proteins’ dynamics and mechanics, which are still difficult 
to be observed in experiments due to their limited spatial 
and temporal resolutions. In addition, these computer simu-
lations may also allow for providing an important design 
principles for developing a novel materials such as new-
class protein materials [160–162] and nano-bio composite 
material [163–165] (i.e. material formed by coupling protein 
material and nanomaterial).
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