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Abstract
Considering the financial markets and investor’s desire to reallocate wealth among the existing holding assets, in this
study, we propose a mean-semi-entropy portfolio adjusting model, in which semi-entropy is employed to measure the
downside uncertainty of portfolio. Transaction costs that are induced in the adjusting process are taken into account in
model formulation to better trade off between risk and return.The calculation of semi-entropy is simplified by approximately
converting it into fitting functions, and numerical analyses demonstrate that a polynomial one is the best approximation
after comparing the fitting performance and complexity. To solve the model, the return of risky assets are captured by
triangular fuzzy variables. By introducing a risk-averse factor, the proposed mean-semi-entropy portfolio adjusting model
is transformed into a deterministic programming program which can be easily solved. Finally, numerical experiments with
real data are provided to illustrate the effectiveness of the proposed model and results show that the adjusted portfolio is
distributive which is required by investors in practice.

Keywords Portfolio adjusting · Fuzzy semi-entropy · Numerical analysis · Transaction costs

1 Introduction

Modern portfolio selection as one of the classical problems
in finance domain is originated from mean-variance model
proposed by Markowitz (1952), aiming to obtain an
appropriate portfolio by a reasonable trade-off between high
return and low risk. Since then, numerical studies based on
the mean-variance methodology have been conducted and
applied to the reality. In the previous models, the return
of a financial asset is characterized as a random variable
with corresponding probability distribution and there is a
default assumption that the performance of asset markets in
the future can be reflected by historical data. The mean is
employed to measure the investment return and the variance
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of the return of a portfolio is applied as a risk measure. Also,
semivariance (Markowitz 1993) and semiabsolute deviation
(Speranza 1993) was developed to measure real investment
risk in financial market.

However, if there is lack of enough data about asset
returns to estimate the necessary parameters such as the
mean and variance, these probabilistic approaches may
be invalid. Further, it is argued that portfolio selection
under financial environment often subject to vagueness
and ambiguity, and it is more reasonable to capture asset
returns with fuzzy variables. In fact, many researches
extended Markowitz’s probabilistic mean-variance model to
fuzzy environment in different ways, such as Inuiguchi and
Tanino (2000); Carlsson et al. (2002); Huang (2007, 2010);
Trybuła and Zawisza (2019); Chen et al. (2020); Mehlawat
et al. (2020), and among others. Another feasible way to
estimate asset returns is given by experts based on their
subjective evaluations. Liu and Liu (2002) proposed the
credibility theory in which credibility measure is self-dual.
and each fuzzy variable is characterized by a credibility
distribution in a similar way in probability theory. In
addition, Liu (2007) proposed the concept of uncertainty
measure and founded uncertainty theory in Liu (2010),
in which uncertain programming for solving uncertain
optimization problems involving uncertain variables was
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also introduced. Huang (2011) proposed a mean-risk
model for uncertain portfolio selection. Liu and Qin
(2012) introduced semiabsolute deviation for downside risk
measure and characterized asset returns as asymmetric and
uncertain. Li and Qin (2014) presented interval portfolio
selection models by capturing the asset returns with interval
expected returns as uncertain variables. Li et al. (2020)
proposed the calculations of the product of positive L-
R fuzzy numbers and its practical application to fuzzy
portfolio selection problems. In this paper, credibility
measures are employed to describe the fuzzy returns of risk
assets and fuzzy semi-entropy is used as a downside risk
measure of a portfolio.

Real financial markets are always changeful, which
means that the returns of risky assets may change after a
period of time and an existing holding portfolio may not be
efficient. In addition, investors may be fond of other kinds of
investment choice with varied holding capital. Considering
this volatility, investors often prefer to periodically adjust
their current portfolio during the investment horizon for
better investment gains. Common practices includes buying
or selling a risk asset, involved with transaction costs, which
was suggested as the main concern for portfolio managers
by Arnott and Wagner (1990). During the adjusting process,
the transaction cost is a V-shaped function of difference
between a adjusted portfolio and the existing portfolio,
and investor’s buying and selling operation will both
incur transaction costs. Many researchers are dedicated
to developing portfolio adjusting models for this issue
in stochastic environment and fuzzy environment. For
example, Fang et al. (2006) proposed a portfolio rebalancing
model by considering transaction costs on fuzzy decision
theory. Zhang et al. (5) employed credibility measures and
presented a portfolio adjusting optimization model. Yu and
Lee (2011) studies portfolio rebalancing problem by using
multiple criteria. Huang and Ying (2013) characterized
returns of risky assets by experts’ evaluations and proposed
risk index based models for portfolio adjusting problem.
Zhang et al. (2011) further considered portfolio adjusting
problems with added assets and transaction costs based
on credibility measures. Woodside-Oriakhi et al. (2013)
introduced mean-variance portfolio rebalancing model with
a stochastic approach and an investment horizon. Besides,
investors have other choices for portfolio adjusting in real
financial markets, such as lending or borrowing a less risky
asset at varied interest rates.

The main contributions of this study are summarized as
follows:

(1) This study discusses a portfolio adjusting problem with
transaction costs by using uncertainty measures. Asset
returns are descried with fuzzy variables in the portfo-
lio adjusting modeling process, with the consideration

of the volatility, vagueness and complexity of financial
markets.

(2) Semi-entropy is proposed as a downside risk mea-
sure to substitute variance or semivariance in tradi-
tional studies, and the expected value is employed
for investment return measure. The concept of semi-
entropy is inspired by the good performance of using
entropy and downside risk measures (i.e., semivari-
ance, semideviation) for portfolio selection modeling.
Semi-entropy practically focuses the main part of risk
(downside) for investors when assembling a optimized
portfolio. Numerical analysis methods are employed
for the simplifying the calculation of semi-entropy by
approximately converting it into several fitting func-
tions and a polynomial one is finally selected after
comparing their fitting performance and complexity.

(3) The proposed mean-semi-entropy portfolio adjusting
model is transformed into a deterministic program-
ming problem by introducing a useful risk-averse
factor.

(4) Experiments with real data are given to illustrate the
effectiveness of the proposed model and the obtained
results show that the adjusted portfolio is distributive.

The remainder of the paper is organized as follows.
Section 2 gives the definition of semi-entropy and
some examples, and simplifies the calculation of semi-
entropy by approximately converting it into several fitting
functions using numerical analysis methods. Section 3
formulates a mean-semi-entropy portfolio adjusting model
with transaction costs taken into account, in which the
returns of risk assets are characterized as fuzzy variables.
Besides, the calculation of the semi-entropy of fuzzy
variable is simplified by approximately converting it to
a fitting polynomial function using numerical analysis
methods. Finally, in Section 4, numerical examples are
given to illustrate the effectiveness of the modeling idea.
Some concluding remarks are given in Section 5.

2 Semi-Entropy

This section introduces the definition of semi-entropy and
the calculation of semi-entropy for several different types
of fuzzy variables. The fundamental knowledge about
credibility theory can be found in the Appendix.

Definition 1 (Zhou et al. 2016) Suppose that ξ is a
continuous fuzzy variable with credibility function ν(x) =
Cr{ξ = x} and finite expected value e. Then its semi-
entropy is defined as

Sh[ξ ] =
∫ +∞

−∞
S

(
ν(x)−

)
dx, (1)
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where S(t) = −t ln t − (1 − t) ln(1 − t) and

ν(x)− =
{

ν(x), if x ≤ e

0, otherwise.
(2)

Theorem 1 (Zhou et al. 2016) Let ξ be a continuous fuzzy
variable with finite expected value e. Then for any real
numbers a ≥ 0 and b, we have

Sh[aξ + b] = aSh[ξ ]. (3)

Example 1 Let ξ = (a, b) be an equipossible fuzzy variable
with credibility function ν(x) = 0.5 for all x ∈ [a, b] and
expected value e = (a + b)/2. Then it has been proved that
the semi-entropy is ((b − a) ln 2)/2.

Example 2 Let ξ = (a, b, c) be a triangular fuzzy variable
with credibility function

ν(x) =
⎧⎨
⎩

(x − a)/2(b − a), if a ≤ x < b

(x − c)/2(b − c), if b < x ≤ c

0, otherwise

and its expected value e = (a + 2b + c)/4. Denote ρ =
(2b + c − 3a)/8(b − a) and τ = (3c − 2b − a)/8(c − b).
Then its semi-entropy is

Sh[ξ ]=
⎧⎨
⎩

(b−a)ρ−(b−a)
[
ρ2 ln ρ−(1 − ρ)2 ln(1−ρ)

]
, if e≤b

b−a
2 + (c−b)

[
τ 2 ln τ −(1−τ)2 ln(1−τ)

]
, if e>b.

(4)

Especially, if ξ is a symmetric triangular fuzzy variable with
b − a = c − b, then its semi-entropy is Sh[ξ ] = (b − a)/2.

Considering that the computational complexity when
using semi-entropy in (4) as a downside uncertainty
measure in practical optimization problems (i.e., portfolio
adjusting problem), we approximate it with fitting functions
using the numerical analysis methods.

Define F(x) = x2 ln x − (1 − x)2 ln(1 − x), 0 ≤
x ≤ 1. The problem is to find a suitable fitting function to
approximately substitute F(x). There are several different
fitting functions provided by numerical analysis, including
Fourier function, Sine function and Polynomial function.
The performance of the fitting function is evaluated by some
measure indicators, such as sum of squares error (SSE)
and R2. SSE and R2 describe how well the fitting function
matches the given data set. SSE measures the total deviation
of the response values from the fit ŷi to the response values
yi , and is employed to reflect the influence of random factors
and show the difference between the given data set and the
fitted function. The following equation describes the SSE

SSE =
n∑

i=1

ωi(yi − ŷi )
2

where ωi is the weight for data samples, R2 is a quantitative
representation of the fitting level with a value closer to 1
indicating a better fit, which is described by

R2 =
∑n

i=1 ωi

[
(yi − −

y)2 − (yi − ŷi )
2
]

∑n
i=1 ωi(yi − −

y)2

where
−
yi is the mean value of ŷi . When the data samples

exactly fit on the fitted curve, SSE equals 0 and R2 equals 1,
and when some of the data samples are outside of the fitted
curve, SSE is greater than 0 and R2 is less than 1.

Additionally, it is usually assumed that the response
errors follow a normal distribution, and that extreme values
are rare. Still, extreme values called outliers do occur.
Outliers have a large influence on the fit because squaring
the residuals magnifies the effects of these extreme data
points. To minimize the influence of outliers, we fit the
polynomial using the method of robust least absolute
residuals (RLAR), which finds a curve that minimizes the
absolute difference of the residuals, rather than the squared

Table 1 Evaluations on the fitting functions of F(x)

Function SSE R2 RLAR

Fourier (1) 6.438e−3 0.9919 No

Fourier (2) 9.689e−3 0.9988 No

Fourier (3) 1.274e−5 1.0000 No

Sine (1) 3.948e−4 0.9995 No

Sine (2) 3.948e−4 0.9995 No

Sine (3) 7.213e−5 0.9999 No

Polynomial (1) 4.756e−4 0.9994 No

Polynomial (2) 2.866e−5 1.0000 Yes

Polynomial (3) 4.808e−4 0.9995 Yes

Polynomial (4) 1.273e−5 1.0000 No

Note:

Fourier (1): 1.906e−2 cos(5.778x)+7.387e−2 sin(5.778x)+2.19e−19

Fourier (2): 6.908e−3 cos(6.106x) + 7.768e−2 sin(6.106x) +

1.699e−3 cos(12.212x) + 9.479e−3 ∗ sin(12.212x) + 5.831e−18

Fourier (3): −3.072e5 cos(5.805e−2x) + 8.463e6 sin(5.805e−2x)+
4.174e5 cos(1.161e−1x) − 6.758e6 sin(1.161e−1x)+
−1.512e5 cos(0.1742x) − 1.512e5 sin(0.1742x) + 4.098e4

Sine (1): 7.629e−2 sin(5.778x + 2.526e−1)

Sine (2): 0.2479 sin(7.554x − 0.6358) + 0.1814 sin(8.282x + 2.142)

Sine (3): 8.492e−2 sin(6.664x − 1.908e−1)+
5.403e−2 sin(12.51x + 2.871e−2) + 3.724e−2 sin(13.52x + 2.663)

Polynomial (1): 1.559x3 − 2.338x2 + 0.7687x + 5.335e−3

Polynomial (2): 1.518x3 − 2.278x2 + 0.7431x + 8.059e−3

Polynomial (3): 6.681e−15x4 + 1.559x3 − 2.338x2 + 0.7687x +
5.335e−3

Polynomial (4): 1.113x5 − 2.783x4 + 4.03x3 − 3.262x2 + 0.8996x +
1.092e−3
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differences by the traditional least Square (LS). Therefore,
extreme values have a lesser influence on the fit.

We randomly segment interval [0, 1] into 251 parts, and
use the curve fitting tool of MatlabR2013a to obtain the
approximate functions of F(x). Fitting functions of F(x),
including three different fitting types (Fourier, Sine and
Polynomial), are then obtained (see Table 1), from which
we have three well-performed candidates (with SSE ≤
1.000e−3, R2 ≈ 1) marked in bold font. Since we aims to
using the semi-entropy for modeling the portfolio adjusting
problem, the construction and calculation of the model
should be as simple as possible. Selecting fitting functions
of Fourier or Sum of Sine forms as the approximation
function of F(x) may cause new complexity for further
model optimization, thus it is more reasonable and practical
to select polynomial 1.518x3 − 2.278x2 + 0.7431x +
8.059e−3 with acceptable fitting performance (see Fitted
Polynomial (1) in Fig. 1).

Let ξ = (a, b, c) be a triangular fuzzy variable with finite
expected value e. Denote M(x) = 1.518x3 − 2.278x2 +
0.7431x + 8.059e−3. Then the semi-entropy of a triangular
fuzzy variable ξ = (a, b, c) with finite expected value e can
be written as

Sh[ξ ] =

⎧⎪⎨
⎪⎩

(b − a)ρ − (b − a)M(ρ), if e ≤ b

b − a

2
+ (c − b)M(τ), if e > b.

(5)

where ρ = (2b + c − 3a)/8(b − a) and τ = (3c − 2b −
a)/8(c − b).

3Mean-semi-entropy portfolio adjusting
with transaction costs

In this section, we consider the problem of finding the
optimal portfolio when adjusting the existing portfolio in
the presence of transaction costs, and propose a mean-semi-
entropy portfolio adjusting model. Suppose that the investor
starts with an existing portfolio x̂ = (̂x1, x̂2, · · · , x̂n),
where x̂i is the current holding of risk asset i, n is the
existing number of risk assets owned before. Due to changes
of financial markets and capital, the investor decides to
adjust his/her portfolio by rebalancing the return and risk.
In order to describe conveniently, we use the following
notions:

ξi : future return of ith risky asset as a fuzzy variable,
i = 1, · · · , n

x̂i : holding proportion of asset i before adjusting
xi : holding proportion of asset i after adjusting
x+
i : buying proportion of asset i

x−
i : selling proportion of asset i

pi : price of asset i

ϒ̂ : total number of holding shares before adjusting, a
positive integer
ϒ : desired total number of holding shares after adjusting,
which is an positive integer given by the investor
di : unit transaction cost for buying risky asset i

si : unit transaction cost for selling risky asset i

μ̂: the minimum expected investment return.

Fig. 1 Fitting performance of
Fourier (1), Sine (1), Polynomial
(1) and Polynomial (2)
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Obviously, both x+
i and x−

i are non-negative, and di, si >

0 for i = 1, 2, · · · , n. After adjusting, the holding
proportion xi should satisfy the equation xi = x̂i +x+

i −x−
i

with x+
i , x−

i ≥ 0, i = 1, 2, · · · , n. For avoiding remarkable
fluctuation of portfolio after adjusting, we set bounds on
the assets proportion. Let li and μi be the lower and upper
bounds of proportion on the ith risky asset after adjusting.
Then the constraint can be expressed as li ≤ xi ≤ μi ,
i = 1, 2, · · · , n.

During the adjusting period, for saving cost, the investor
should balance between buying an asset and selling it.
Thus, the constraint x+

i x−
i = 0 for i = 1, 2, · · · , n

should hold. Without loss of generality, we assume that
di, si > 0 for i = 1, 2, · · · , n. The adjusting cost associated
with asset i consists of two parts: buying cost dix

+
i and

selling cost six
−
i . Then the total transaction cost incurred by

adjusting the existing portfolio is
∑n

i=1(dix
+
i +six

−
i ). After

rebalancing and paying the transaction costs, the net return
of the portfolio x = (x1, x2, · · · , xn) is

Rp =
n∑

i=1

ξixi −
n∑

i=1

(dix
+
i + six

−
i ).

For convenient description in the following paper, we
denote f (x, ξ) = ∑n

i=1 ξixi . Under the Markowitz’s mean-
risk principle that the best portfolio can be selected by
maximizing the investor’s return at a given expected level
or minimizing the risk level with acceptable investment
return. In this paper, we employ the expected value of Rp

to quantify the investment return and the semi-entropy of
Rp to measure the risk. By Theorems 1 and 2, the expected
value and semi-entropy of Rp are

E[Rp] = E

[
f (x, ξ) −

n∑
i=1

(dix
+
i + six

−
i )

]

= E[f (x, ξ)] −
n∑

i=1

(dix
+
i + six

−
i )

and

Sh[Rp]=Sh

[
f (x, ξ)−

n∑
i=1

(dix
+
i + six

−
i )

]
=Sh[f (x, ξ)],

respectively.
It has been recognized that the future returns and risks of

risky assets are difficult to predict accurately. Traditionally,
in many early studies, the estimation of the possibility
distributions of return rates on risky assets may be easier
than the probability distributions. But considering the
vagueness and ambiguity in the investment environment and
that the investors? subjective opinions are very important in
making portfolio decision, it is better to handle the returns
and risks of assets using fuzzy approaches. Discussing
the portfolio adjusting problem under the assumption that

the returns of the assets are fuzzy variables is useful and
meaningful. In this paper, we assume that the returns
of assets are triangular fuzzy variables in the following
discussion.

Suppose that ξi = (ai, bi, ci) (i = 1, 2, · · · , n) are
all triangular fuzzy variables with finite expected values
ei = (ai + 2bi + ci)/4. According to the fuzzy arithmetic
operations, f (x, ξ) = ∑n

i=1 ξixi is also a triangular fuzzy
number, denoted as

f (x, ξ) =
(

n∑
i=1

aixi,

n∑
i=1

bixi,

n∑
i=1

cixi

)
.

According to Example 2 and Eq. 5, we have

E[f (x, ξ)] = 1

4

n∑
i=1

(ai + 2bi + ci)xi (6)

and Sh[f (x, ξ)] =
⎧⎨
⎩

[ρ̇ − M(ρ̇)]
∑n

i=1(bi − ai)xi , if E[f (x, ξ)] ≤ ∑n
i=1 bixi

∑n
i=1

[
bi−ai

2 + M(τ̇)(ci − bi)
]
xi, if E[f (x, ξ)] >

∑n
i=1 bixi .

(7)

where

ρ̇ =
∑n

i=1(2bi + ci − 3ai)

8
∑n

i=1(bi − ai)
, τ̇ =

∑n
i=1(3ci − 2bi − ai)

8
∑n

i=1(ci − bi)
.

For portfolio selection problems, the wealth flow balance
during adjustment must be satisfied (Takano and Gotoh
2014). When we assume that the whole investment process
is self-financing, that is, we neither add new fund nor
take invested fund out of the existing portfolio. Before
adjusting, the investor has wealth ϒ̂

∑n
i=1 pix̂i . Therefore,

the self-finance condition can be expressed as

ϒ̂

n∑
i=1

(dipix
+
i + sipix

−
i ) + ϒ

n∑
i=1

pixi = ϒ̂

n∑
i=1

pix̂i . (8)

Denote ε = ϒ/ϒ̂ . Since pi > 0 for i = 1, 2, · · · , n, then
we have the following self-finance constraint
n∑

i=1

(dix
+
i + six

−
i ) + ε

n∑
i=1

xi =
n∑

i=1

x̂i . (9)

Therefore, the mean-semi-entropy portfolio adjusting model
is formulated as

(P1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E[f (x, ξ)] −
n∑

i=1

(dix
+
i + six

−
i )

min Sh[f (x, ξ)]
s.t .

∑n
i=1(dix

+
i + six

−
i ) + ε

∑n
i=1 xi = ∑n

i=1 x̂i

xi = x̂i + x+
i − x−

i , i = 1, 2, · · · , n

x+
i x−

i = 0, i = 1, 2, · · · , n

xi, x
+
i , x−

i ≥ 0, i = 1, 2, · · · , n

li ≤ xi ≤ μi, i = 1, 2, · · · , n.
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Model (P1) aims to finding the optimal solution
(ẋ+

1 , · · · , ẋ+
n , ẋ−

1 , · · · , ẋ−
n , ẋ1, ẋ2, · · · , ẋn), which gives a

large value for E[Rp] and a small value for Sh[Rp]. Dif-
ferent investors have different levels of risk-aversion, and
the higher the risk-aversion level is, the more conserva-
tive is the investor. We introduce a scalar parameter λ(λ ≥
0) as a risk-averse factor to balance the quantity placed
on the maximization of E[Rp] and the minimization of

Sh[Rp] (equivalently, the maximization of −E[Rp]). The
greater the factor λ, the more conservative is the investor.
Similar program transformation approach by introducing
a risk-averse factor was used in the literatures such as
Zhang et al. (2012) and Zhou et al. (2016, 2017). Thus,
if E[f (x, ξ)] ≤ ∑n

i=1 bixi , model (P1) can be con-
verted into a single-objective deterministic programming
as

(P2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

[[
ai+2bi+ci

4 − λ(bi − ai) [ρ̇ − M(ρ̇)]
]
xi − dix

+
i − six

−
i

]

s.t .
∑n

i=1(dix
+
i + six

−
i + εxi) = ∑n

i=1 x̂i

xi = x̂i + x+
i − x−

i , i = 1, 2, · · · , n

x+
i x−

i = 0, i = 1, 2, · · · , n

xi, x
+
i , x−

i ≥ 0, i = 1, 2, · · · , n

li ≤ xi ≤ μi, i = 1, 2, · · · , n.

where ρ̇ = ∑n
i=1(2bi + ci − 3ai)/8

∑n
i=1(bi − ai) and

M(ρ̇) = 1.518ρ̇3 − 2.278ρ̇2 + 0.7431ρ̇ + 8.059e−3.
Otherwise, if E[f (x, ξ)] >

∑n
i=1 bixi , model (P1) can be

transformed into

(P3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

[[
ai+2bi+ci

4 − λ
2 [(bi −ai) + 2M(τ̇)(ci −bi)]

]
xi−

dix
+
i − six

−
i

]
s.t .

∑n
i=1(dix

+
i + six

−
i + εxi) = ∑n

i=1 x̂i

xi = x̂i + x+
i − x−

i , i = 1, 2, · · · , n

x+
i x−

i = 0, i = 1, 2, · · · , n

xi , x
+
i , x−

i ≥ 0, i = 1, 2, · · · , n

li ≤ xi ≤ μi, i = 1, 2, · · · , n.

where τ̇ = ∑n
i=1(3ci − 2bi − ai)/8

∑n
i=1(ci − bi) and

M(τ̇ ) = 1.518τ̇ 3 − 2.278τ̇ 2 + 0.7431τ̇ + 8.059e−3.

4 Numerical examples

In this section, we illustrate our proposed portfolio adjusting
model by presenting the following example. Suppose there

are ten risky assets with triangular fuzzy returns shown in
Table 2, which come from the study (Qin et al. 2014).

Assume that the unit buying cost di = 0.01, selling
cost si = 0.02 for i = 1, 2, · · · , 10 and ε =
ϒ/ϒ̂ = 0.95 We assume that the holding proportion after
adjusting is no more than 0.3 and short selling is not
allowed, which means li = 0 and μi = 0.3 for i =
1, 2, · · · , 10. Assume that the investor’s current existing
portfolio before adjusting is x̂ = (0.10, 0.10, 0.10, 0.10,

0.10, 0.10, 0.10, 0.10, 0.10, 0.10). Therefore, with Eq. 6,
the expected value of f (x, ξ) is E[f (x, ξ)] = 0.075x1 −
0.25x2 − 0.1x3 + 0.025x4 +0.225x5 − 0.05x6 + 0.075x7 +
0.2x8 + 0.075x9 + 0.05x10. Moreover, if E[f (x, ξ)] ≤∑n

i=1 bixi = 0.1x1−0.2x2−0.1x3+0.1x4+0.3x5−0.1x6+
0.1x7 + 0.3x8 + 0.2x9 + 0.0x10, according to Eq. 7, we have
ρ̇ = ∑n

i=1(2bi + ci − 3ai)/8
∑n

i=1(bi − ai) = 0.4720,
M(ρ̇) = 0.2789 and then ρ̇ − M(ρ̇) = 0.1931. The semi-
entropy of f (x, ξ) is Sh[f (x, ξ)] = 0.097x1 + 0.116x2 +
0.077x3+0.154x4+0.174x5+0.058x6+0.174x7+0.154x8+
0.174x9 + 0.116x10.

Then, model (P2) can be rewritten as follows

(P4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
(0.075 − 0.097λ)x1 − (0.25 + 0.116λ)x2 − (0.1 + 0.077λ)x3+
(0.025 − 0.154λ)x4 + (0.225 − 0.174λ)x5 − (0.05 + 0.058λ)x6+
(0.075 − 0.174λ)x7 + (0.2 − 0.154λ)x8 + (0.075 − 0.174λ)x9+
(0.05 − 0.116λ)x10 − 0.1

∑10
i=1 x+

i − 0.2
∑10

i=1 x−
i

s.t . 0.1
∑10

i=1 x+
i + 0.2

∑10
i=1 x−

i + 0.95
∑10

i=1 xi = 1
xi = x̂i + x+

i − x−
i , i = 1, 2, · · · , 10

x+
i x−

i = 0, i = 1, 2, · · · , 10
xi, x

+
i , x−

i ≥ 0, i = 1, 2, · · · , 10
0 ≤ xi ≤ 0.3, i = 1, 2, · · · , 10.
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Table 2 Triangular fuzzy returns of ten assets

Asset i Fuzzy Return Asset i Fuzzy Return

1 (−0.4, 0.1, 0.5) 6 (−0.4, −0.1, 0.4)

2 (−0.8, −0.2, 0.2) 7 (−0.8, 0.1, 0.9)

3 (−0.5, −0.1, 0.3) 8 (−0.5, 0.3, 0.7)

4 (−0.7, 0.1, 0.6) 9 (−0.7, 0.2, 0.6)

5 (−0.6, 0.3, 0.9) 10 (−0.6, 0.0, 0.8)

Otherwise, according to Eq. 7, if E[f (x, ξ)] >∑n
i=1 bixi = 0.1x1 − 0.2x2 − 0.1x3 + 0.1x4 + 0.3x5 −

0.1x6 + 0.1x7 + 0.3x8 + 0.2x9 and τ̇ = ∑n
i=1(3ci − 2bi −

ai)/8
∑n

i=1(ci − bi) = 0.5361. Then we have M(τ̇) =
−0.0144 and the semi-entropy of f (x, ξ) can be repre-
sented by Sh[f (x, ξ)] = 0.244x1 + 0.294x2 + 0.194x3 +
0.393x4+0.441x5+0.143x6+0.438x7+0.394x8+0.444x9+
0.288x10.

Then, model (P3) can be rewritten as

(P5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

(0.075 − 0.244λ)x1 − (0.25 + 0.294λ)x2 − (0.1 + 0.194λ)x3+
(0.025 − 0.393λ)x4 + (0.225 − 0.441λ)x5 − (0.05 + 0.143λ)x6+
(0.075 − 0.438λ)x7 + (0.2 − 0.394λ)x8 + (0.075 − 0.444λ)x9+
(0.05 − 0.288λ)x10 − 0.1

∑10
i=1 x+

i − 0.2
∑10

i=1 x−
i

s.t . 0.1
∑10

i=1 x+
i + 0.2

∑10
i=1 x−

i + 0.95
∑10

i=1 xi = 1
xi = x̂i + x+

i − x−
i , i = 1, 2, · · · , 10

x+
i x−

i = 0, i = 1, 2, · · · , 10
xi, x

+
i , x−

i ≥ 0, i = 1, 2, · · · , 10
0 ≤ xi ≤ 0.3, i = 1, 2, · · · , 10.

We solve the above-given models (P4) and (P5) by
programming in MatlabR2013a, under the running environ-
ment: a Windows 7 platform of personal computer with pro-
cessor speed 2.4 GHz and memory size 4 GB. The compu-
tational results of model (P4) and model (P5) with different
risk-averse factors λ are shown in Tables 3 and 4, respec-
tively, in which the last two rows show the expected return
values (denoted by E) and corresponding semi-entropy
(denoted by SemiH ) of the optimal portfolio adjusting
strategies. In order to illustrate the effectiveness of using
fuzzy semi-entropy as a downside risk measure for the port-
folio adjusting problem, we also compare the return fron-

Table 3 Optimal adjusting
solutions to model (P4) with
different risk-averse factors λ

Asset λ = 0.1 λ = 0.3

i x+
i x−

i xi x+
i x−

i xi

1 0.0252 0.0000 0.1252 0.0000 0.0161 0.0839

2 0.0107 0.0000 0.1107 0.0000 0.0011 0.0989

3 0.0000 0.0373 0.0627 0.0000 0.0038 0.0962

4 0.0217 0.0000 0.1217 0.0000 0.0145 0.0855

5 0.0002 0.0000 0.1002 0.0000 0.0011 0.0989

6 0.0000 0.0049 0.0951 0.0075 0.0000 0.1075

7 0.0000 0.0229 0.0771 0.0000 0.0174 0.0826

8 0.0159 0.0000 0.1159 0.0188 0.0000 0.1188

9 0.0322 0.0000 0.1322 0.0364 0.0000 0.1364

10 0.0226 0.0000 0.1226 0.0000 0.0353 0.0647

E 0.4156 0.3763

SemiH 1.3759 1.2595

tiers of entropy and variance as risk measures (see Fig. 2),
which describes positive relevance between semi-entropy,
entropy and variance and illustrates that semi-entropy can
be substitutively used to measure the risk of portfolio.

Additionally, we can see from it that the semi-
entropy will decrease while the expected return will
increase with the growing risk-averse factor λ, that is,
the investor becomes more conservative. Further, we
can see that the obtained portfolio after adjustment is
neither nonconcentrative nor uniformly distributive, which
is concordant with Markowitz’s principle of portfolio
selection and preferred by the investors.
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Table 4 Optimal adjusting
solutions to model (P5) with
different risk-averse factors λ

Asset λ = 0.5 λ = 0.7

i x+
i x−

i xi x+
i x−

i xi

1 0.0030 0.0000 0.1030 0.0000 0.0313 0.0687

2 0.0000 0.0282 0.0718 0.0083 0.0000 0.1083

3 0.0000 0.0348 0.0652 0.0000 0.0157 0.0843

4 0.0011 0.0000 0.1011 0.0000 0.0191 0.0809

5 0.0000 0.0515 0.0485 0.0000 0.0390 0.0610

6 0.0019 0.0000 0.1019 0.0046 0.0000 0.1046

7 0.0171 0.0000 0.1171 0.0977 0.0000 0.1977

8 0.0000 0.0147 0.0853 0.0000 0.0276 0.0724

9 0.0000 0.0126 0.0874 0.0000 0.0451 0.0549

10 0.0063 0.0000 0.1063 0.0000 0.0992 0.0008

E 0.2985 0.2710

SemiH 1.1485 1.0788

5 Conclusions

In this paper, we consider a portfolio adjusting problem
in the complicated financial markets where randomness
and fuzziness coexist. Asset returns are descried with
fuzzy variables in the portfolio adjusting modelling process,
with the consideration of the fact that financial market is
full of volatility, vagueness and complexity. Semi-entropy
was proposed in the latest literature as a downside risk
measure to substitute variance or semivariance in traditional
studies. This study employees fuzzy semi-entropy to
efficiently capture the main part of risk (downside)
for investors when assembling a optimized portfolio. In
order to simplify the calculation of fuzzy semi-entropy,
we provide numerical analysis methods to approximately

Risk aversion level (�)

V
al

ue

Fig. 2 Relationship between the expected return, semi-entropy and
risk-averse factor λ

convert fuzzy semi-entropy into several fitting functions,
and a polynomial fitting function is selected for the
best calculation approximation after comparing the fitting
performance and complexity of different fitting functions.
Fuzzy expected value and the polynomial approximation
of fuzzy semi-entropy are employed to measure the return
and risk of the assets, respectively. We present the mean-
semi-entropy model for portfolio adjusting with transaction
costs. By introducing a risk-aversion factor to balance
between the total return and risk, the proposed model is
immediately converted into a deterministic programming
problem, which can be easily solved by Matlab. Finally,
several examples with real data are provided to demonstrate
the effectiveness of the portfolio adjusting model, and
the obtained computational results show that the optimal
portfolio adjusting strategy is distributive that is preferred
by investors in practice. Our analyses also reveal that
investors’ buying and selling behaviours when adjusting a
portfolio are mainly determined by their risk-aversion.

Future studies may be conducted by taking other
realistic factors into portfolio adjusting process, such as
lending, borrowing and adding more risky assets. Normal
distribution for fuzzy returns given by expert’s estimation
may also be studied due to the importance of subjective
experience by experts in the changeful financial markets.
Multi-period portfolio adjusting problem may be another
research focus because of its practical requirement for
investment.
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Appendix: Preliminaries

Let ξ be a fuzzy variable with membership function μ.
For any x ln �, μ(x) which is also called the possibility
distribution, represents the possibility that ξ takes values x.
For any set B, the possibility measure of ξ ln B was defined
by Zadeh (1978) as

Pos{ξ ∈ B} = sup
x ln B

μ(x).

As the dual part of possibility measure, necessity
measure was defined by Zadeh and Hayes et al (1979) as
follows

Pec{ξ ∈ B} = 1 − sup
x ln Bc

μ(x).

Both of possibility measure and necessity measure
have been proved to satisfy the properties of normality,
nonnegativity and monotonicity, however, neither of them
are self-dual. Since the duality is intuitive and important
in both theory and practice, Liu and Liu (2002) defined
credibility measure as the average value of possibility
measure and necessity measure, which was redefined by
Li and Liu (2006) as set function satisfying the normality,
monotonicity, duality, and partial maximality axioms

Cr{ξ ∈ B} = 1

2

(
sup
x∈B

μ(x) + 1 − sup
x∈Bc

μ(x)

)
.

Since Cr{ξ ∈ B} + Cr{ξ ∈ Bc} = 1 for any set B, it is easy
to prove that credibility measure is self-dual. The formula is
also called the credibility inversion theorem. Its membership
function of fuzzy variable ξ is derived from the credibility
measure by

μ(x) = (2Cr{ξ = x}) ∧ 1, x ∈ R.

The expected value of ξ was defined by Liu and Liu (2002)
as

E[ξ ] =
∫ +∞

0
Cr{ξ ≥ x}dx −

∫ 0

−∞
Cr{ξ ≤ x}dx (10)

provided that at least one of the two integrals is finite.

Theorem 2 (Liu 2010) Let ξ and η be two fuzzy variables,
and a and b two real numbers. Then we have E[aξ + b] =
aE[ξ ] + b.
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