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Abstract
For the energy consumption problem among nodes in wireless sensor networks (WSNs), a particle swarm optimization rout-
ing (PSOR) scheme is proposed in this paper in order to extend the survival time of WSNs. In the previous work, we proposed 
the LEACH-EA protocol, which considered both residual energy and the influence factor of node distance in selecting cluster 
heads, and the optimal transmission path was found by the ant colony algorithm. However, since the training data for the 
LEACH-EA protocol was a randomly generated set of point coordinates, this might cause problems of unstable node coverage 
and unbalanced data transmission in the network. An improved particle swarm optimization algorithm (IPSO) is introduced 
to output an optimized set of coordinates while ensuring maximum network connectivity, which sets the inertia weights of the 
particles to dynamic adaptive values and uses a Monte Carlo method to determine the fitness function. The PSOR scheme and 
the LEACH-EA protocol are compared in terms of the survival period, energy consumption, node survival rate, and packet 
forwarding volume of the sensor network. The experimental results show that the PSOR scheme has significantly improved 
the survival nodes, extended the network life cycle by 30%, and increased the total number of packets by nearly 1.5 times.

Keywords  Communication network · Low-power electronics · Wireless sensor networks · Particle swarm algorithm

1  Introduction

The wireless sensor network is the product of combining 
computing, communication, and sensors as an information 
acquisition and processing technology. It plays an impor-
tant role in many aspects of daily life. Wireless sensor net-
works can be used to transmit information and have low 
device costs (Benzi et al. 2019). Considering that many peo-
ple still faced hunger globally, for ensuring food storage, 
Muthukumar (Muthukumar et al. 2018) deployed sensors in 
warehouses to monitor the environment. In industrial manu-
facturing (Vitturi et al. 2020), WSNs were used to monitor 
the entire production process. Similarly, WSNs were also 
applied in animal husbandry (Joshitha et al. 2021) to manage 
the feeding process, identify stray animals and monitor ani-
mal health. In addition, water quality sensors were deployed 
in water (Shahra et al. 2021) to monitor the location of water 

injection, contaminant concentrations and dose levels. The 
experiment showed that the health impact of water quality 
was reduced by 98.37% after the deployment of water qual-
ity sensors.

Obviously, WSNs have far-reaching importance in trans-
mitting vital information. Considering that sensors used for 
monitoring tend to have limited energy, once the energy is 
exhausted, the network may break down and the production 
schedule may be delayed. While most energy consumption 
of sensors is caused by wireless communication, therefore, 
choosing an effective routing protocol can decrease the com-
munication consumption significantly. For example, we can 
apply the WSN to the underground coal mine environment 
for the purpose of establishing a complete underground 
safety detection system. Due to the long-distance strip envi-
ronment in underground coal mines, which easily causes 
the problem of “hot zone” and uneven energy consumption 
of sensors, thus, a reasonable routing protocol should be 
designed to help reduce the overall energy consumption of 
the WSN. In recent years, many new studies have been con-
ducted to reduce the energy consumption of nodes in WSNs 
from the aspects of sensor node localization, data fusion, and 
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routing protocol, which aims at maximizing the utilization 
of WSNs.

The LEACH protocol randomly selects cluster heads and 
without considering factors such as the remaining energy of 
nodes and their locations, which leads to accelerating the 
death of some clusters. Therefore, in the previous work, we 
proposed the LEACH-EA (Wang and Guoxiang 2020) pro-
tocol to improve the performance of WSNs. Fuzzy logic 
parameters were added to optimize the threshold of cluster 
node selection, and the competitive radius of cluster sensor 
nodes was introduced to improve the quality of cluster gener-
ation. By improving the ant colony algorithm, the routing of 
the network was optimized to generate the optimal transmis-
sion path. However, the random initialization of sensor node 
deployment leads to unstable network node coverage and 
uneven data transmission load. Furthermore, in this paper, 
we focus on the deployment of sensor nodes and propose 
an improved particle swarm optimization algorithm for the 
initial location of the deployed nodes, which can be applied 
to the LEACH-EA protocol to extend the network coverage. 
Compared with the whale optimization algorithm and the 
artificial fish swarm algorithm, the particle swarm algorithm 
converges faster and it is easier to find the global optimum 
without falling into the local optimum. This is consistent 
with our deployment goal of seeking maximum network 
coverage. In addition, we adaptively adjust the values of the 
particle swarm inertia weights, which ensures the diversity 
of the population search in the initial iteration and enhances 
the subsequent local search capability.

The main contributions of this paper are as follows:

1)	 An improved particle swarm optimization algorithm is 
used to improve the coverage and connectivity of the 
network. When the sensing radius is 6 m, the network is 
fully connected and the coverage rate is improved from 
the initial 68–93%.

2)	 We propose an improved particle swarm algorithm for 
deploying the initial positions of the network nodes. 
Adaptive inertia weights are used to enhance the global 
search capability of the particle swarm algorithm, and a 
suitable fitness function is selected to evaluate the spa-
tially optimal solution.

3)	 The experimental environment is built using Python 
and simulation experiments are conducted. The node 
optimization scheme was obtained from IPSO. The net-
work layout uses a global optimal deployment scheme 
based on the LEACH-EA protocol. The performance 
of the scheme is analyzed in terms of the network life 
cycle, node death rate, energy loss process, and packet 
forwarding volume. The experimental results show that 
the wireless sensor network survives 30% longer and the 
number of forwarded packets increases by 1.5 times.

The rest of this paper is organized as follows: Sect. 2 
describes the related work in this field, Sect. 3 introduces 
the system model, Sect. 4 explains the improvement of the 
particle swarm algorithm, Sect. 5 introduces the proposed 
scheme PSOR, Sect.  6 analyzes the simulation results, 
Sect. 7 draws the relevant conclusion and Sect. 8 analyzes 
the future development.

2 � Related work

Many types of research have been conducted to enhance the 
utilization of wireless sensor networks in order to improve 
the performance of sensor networks. The design and opti-
mization of the routing scheme have a significant impact on 
improving the performance of the WSNs. It aims at planning 
an optimal path from the source node to the sink node, along 
which packets can be transmitted accurately, efficiently and 
quickly to the sink node. Srinidhi (Srinidhi et al. 2020) 
proposed a cluster-based self-optimizing multi-objective 
routing scheme that used an optimal adaptive strategy to 
select cluster nodes. The authors of (Pingale et al. 2021) 
combined the sunflower optimization algorithm (SFO) with 
the gray wolf optimization algorithm (GWO). The optimal 
path was selected in terms of context awareness, network 
survival, residual energy, trust, and delay. To balance the 
network load, Adil (2021) introduced the DHSSRP proto-
col, which addressed the network congestion problem based 
on dynamic multi-hop. Costa Bento and Wille (2020) pre-
sented the FUNNET routing protocol by referring to the 
growth characteristics of fungi. In this WSN, the data flow 
was described based on the biological transmission mecha-
nism of the fungus, indicating the location in the network 
with the highest transmission capacity and enhanced packet 
forwarding. John and Sakthivel (2021) implemented a multi-
cast routing protocol with multiple objective factors, includ-
ing distance, delay, energy, link quality factor, and trust. To 
improve the network coverage, Qi et al. (2021) proposed two 
node deployment algorithms. One was an improved virtual 
force (VF) algorithm, and the other was a resampling par-
ticle swarm optimization algorithm (RPSO-DV) embedded 
with virtual force. The simulation results showed that the 
above algorithm could make the network reach a steady state 
quickly and achieve high coverage. With the aim of reducing 
the energy consumption of mobile nodes, Yarinezhad and 
Azizi (2021) suggested two mechanisms for managing the 
network. One was improving the geographic routing algo-
rithm and the other was proposing a tree-based structure. 
This mechanism allowed to construct the network with mini-
mal control packets and update the node deployment. The 
work of Sadrishojaei and Navimipour (2021) described a 
clustered localization prediction algorithm based on multiple 
mobile nodes. The method could predict the next location 
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of mobile nodes and reduce the distance between cluster 
head nodes and base stations. Experiments showed that the 
network energy consumption was reduced by 28.12% and 
the throughput was increased by 26.74%. With the aim of 
extending wireless sensor networks, Poluru and Lokeshku-
mar (2021) proposed an algorithm called M-PASAD. It not 
only provided more possibilities for industrial environments 
but also resisted malicious attacks from the sensor level. In 
(Kathiriya et al. 2020), nodes could automatically obtain 
energy from the environment for sustainable utilization of 
wireless sensor networks. Han (Guangjie et al. 2020) used 
multiple aggregated nodes to protect the SLP technique 
during the transmission of node data. Simultaneously, more 
non-hotspot nodes were allowed to participate, which not 
only protected the data security but also reduced the energy 
consumption of hotspot nodes. The author of (Nandan 
et al. 2021) compared the performance of the OptiGACHS 
protocol in three different cases, that was, single, multiple 
static, and multiple removable receivers. Based on the above 
deployments, the authors determined that deploying the net-
work with multiple movable receivers shortened the distance 
between receivers and nodes.

Different from some traditional node sleep scheduling 
mechanisms, Dowlatshahi et al. (2021) divided the sensor 
nodes in the entire network region into k distinct subsets. 
Each subset could individually cover the entire network 
region. Experiments indicated that the algorithm was supe-
rior to other heuristic algorithms in terms of running time. 
A two-hop IoT communication network was presented in 
(Phan et al. 2021), where each node utilized a separate trans-
mission buffer to store data. With a Voronoi structure for 
multi-hop communication, data could be transmitted to the 
gateway either directly or indirectly. For node-mobile net-
works, Jain (Jain et al. 2021) presented a delay-aware green 
routing protocol based on virtual infrastructure. That would 
be, multiple rings were employed in the network, and when a 
node moved, only the nodes belonging to that ring needed to 
be updated. EBBT (Wang et al. 2021) analyzed the influence 
of the number and length of each branch on the lifecycle of 

the network during the formation of tree-like multi-branch 
paths. The experimental results indicated that the algorithm 
not only provided a long life cycle and diverse transmission 
paths but also had good confidentiality. The work of Suta-
gundar and Basaprabu (2020) proposed a multi-agent-based 
acoustic sensor node deployment (MASD) to deploy acous-
tic nodes at ideal locations for enhanced coverage and seam-
less connectivity. In the initialization phase, information and 
expected common reference points were collected by the 
AUV, followed by the calculation of path overhead by the 
base station to determine the location of new nodes, and the 
final node deployment was completed by the AUV. SCSAP 
(Almasri et al. 2022) determined the optimal number of 
nodes with the goal of maximizing network coverage and 
initialized the network in this way. The random node detec-
tion model proposed by Cho and Lee (2021) could quickly 
adapt to changes in node locations and build new network 
topologies. Compared with the LEACH algorithm, this algo-
rithm improved the energy consumption and throughput of 
the surviving nodes. The related improvements are given 
in Table 1.

3 � System model

3.1 � Basic assumption

In the initialization phase, we adopt an improved particle 
swarm algorithm to deploy the nodes and ensure maximum 
network coverage. To verify the effectiveness of this deploy-
ment, we assume that the subsequent node locations are con-
stant and the data transmission is conflict-free. Wireless sen-
sor nodes are usually battery-powered and cannot participate 
in data transmission once their batteries are depleted. There-
fore, after each round of data transmission, the aggregation 
node needs to calculate the energy consumption of each 
node and define whether the energy of the node is exhausted, 
which is related to the next round of data transmission. The 

Table 1   Summary of related improvements

Directions Characteristic Effects

Low-energy consumption Focus on node energy consumption to prolong sensor 
network lifetime by improving routing protocol

Make some improvements on the selection of cluster head 
nodes, the partition of whole network and self-energy 
acquisition of sensor nodes

Safety and privacy Pay more attention to the data protection and against 
malicious interference

Resist external attacks and internal malicious node inter-
ference

Flexibility The overall layout of the network needn’t to change with 
partly differences, which means more expandable

The nodes can adjust its position adaptively with the 
change of external environment

Location Node location Locate the dead node and measure the distance between 
each node
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following are some assumptions (Gao et al. 2019) used to 
simplify the experimental network.

1)	 After the deployment of nodes, the locations of all nodes 
no longer change.

2)	 All nodes have the same initial energy, and when the 
energy is exhausted, the node is considered dead, other-
wise, the node survives.

3)	 The communication radius of each node is the same. 
When it is within the communication range of node i, 
the data transmission is non-conflict.

4)	 The calculation of the remaining energy of the node is 
implemented by the aggregation node and is completed 
after the data transmission.

3.2 � Network node deployment

The nodes are initialized according to the deterministic 
deployment (Jiang et al. 2018) method. In this model, if 
a point (or event) P belongs to the network is within the 
sensing range R of sensor node S, then P is assumed to be 
covered by S. The sensing region of S is defined as a circular 
region with S as a center and radius as the sensing range R. 
The covering function f (S, P) is shown in Eq. (1):

where d (S, P) is the distance between node S and target 
point P. When the distance is less than R, P is considered to 
be covered by sensor S.

3.3 � The energy model

The energy consumption model used in the experiments 
is the multipath fading energy consumption model under 
different channel modes (Wang and Guoxiang 2020; Yildiz 
et al. 2018). The energy consumption loss of data transmis-
sion is simulated as follows:

where Et denotes the energy consumed in single data 
transmission. k means the packet size, and d represents 
the distance of data transmission. εfs and εmp represent the 
energy loss of the power amplifier for the data transmission 
at different distances, respectively, and d0 is the distance 
threshold associated with εfs and εmp.

(1)f(S,P) =

{
1 d(S,P) ≤ R

0 otherwise
,

(2)Esend =

⎧⎪⎨⎪⎩

Etk + 𝜀fskd
2, d < d0

Etk + 𝜀mpkd
2, d ≥ d0

d0 =
�

𝜀fs

𝜀mp

,

(3)Erece = Er ⋅ k ⋅ cc ⋅ �.

The energy consumed by the node in receiving data is 
shown in Eq. (3). Er is the energy consumption required to 
receive data. cc means the data fusion rate and ω means the 
number of packets received at that point in time.

4 � Improved particle swarm algorithm

4.1 � Particle swarm algorithm

The particle swarm algorithm (Guan et al. 2018) establishes 
the corresponding particle model by simulating the foraging 
process of birds. Each particle searches for the best posi-
tion in the space independently by the fitness function, and 
the position of the particle corresponding to the maximum 
value of the fitness is noted as the current optimal solution. 
In the process of each round of cluster iteration, the indi-
vidual optimal solutions of all particles are recorded and 
denoted as the global optimal solutions. By comparing their 
own optimal solutions with the global optimal solution, the 
particles share their searched optimal solutions and adjust 
the speed and direction of motion until all particles can no 
longer update their motion trajectories, then the final global 
optimal solution is obtained, which is the optimal position 
we are searching for. Particle swarm optimization algorithms 
are widely applied in wireless sensor networks, Gao (Gao 
et al. 2019) combined ant colony optimization and parti-
cle swarm optimization for planning the movement path of 
mobile agents, and PSO was also applied in selecting cluster 
heads (Kiran et al. 2021).

Suppose there are 100 nodes in a region of 100 m × 
100 m. Assume that the particle has no mass and only has 
two properties: velocity V and position X. The calculation 
formula of velocity V is shown in Eq. (4):

The calculation formula of position X is shown in Eq. (5):

Among them, ω is the inertia weight factor. C1 represents 
the individual learning degree of the particle to the previ-
ous optimal location, also known as the “cognitive factor”, 
indicating the cognition of the particle. C2 represents the 
learning degree of the particle to the optimal solution of 
the previous population, also known as the “social factor”, 
which represents the cognition of the whole particle swarm. 
γ and η are the random numbers evenly distributed within 
[0,1], and r is the velocity constraint factor, which is usu-
ally 1.

(4)Vk+1
i

= �Vk
i
+ C1�

(
Pk
best

− Xk
i

)
+ C2�

(
Gk

best
− Xk

i

)
.

(5)Xk+1
i

= Xk
i
+ rVk+1

i
,
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4.2 � Inertial weight

The inertia weight (Bansal 2019) indicates the retention 
degree of particles to the speed generated by the last motion. 
To ensure the quality of the solution set, the inertia weight 
parameters are set as a dynamic adaptive value so that the 
inertia weights of the particles can be adjusted dynamically. 
Simultaneously, the velocity of the particle can be changed 
for each iteration. During the initial iteration, increasing 
the inertia weight can keep the particle at a higher velocity, 
increase the diversity of the search, and expand the search 
range of the particle. As a result, the global search capa-
bility is enhanced. During the subsequent iterations, the 
inertia weight gradually decreases and the particle moves 
at a slower speed and searches in the local space compre-
hensively. The following are the improved adaptive inertia 
weight parameters.

where tmax is the number of iterations of the algorithm, 
and t is the current number of iterations. ω means the initial 
inertia weight. fi represents the fitness of the ith particle in 
the current iteration process, and favg represents the average 
fitness of the particle swarm in the current iteration process. 
fmax and fmin are the maximum and the minimum individual 
fitness of the current iterative particle, respectively.

4.3 � Fitness

In the IPSO algorithm, the fitness function is used to evalu-
ate possible solutions, and the value of fitness reflects the 
accuracy of the evaluation results. A larger particle fitness 
value indicates that the closer the particle is to the ideal 
optimal solution. Different problems correspond to different 
fitness functions, which directly affect the performance of 
the algorithm and the quality of the solution space.

Adopting the Monte Carlo (Ghahfarokhi et al. 2020) 
method to determine the fitness function of the IPSO, the 
initial data for training are the coordinates of the points gen-
erated randomly in the region. Suppose that the sensor nodes 
set is S = {s1, s2, s3…sn}, the area of the region is discretized 
into m × n pixels and noted as the set G = {g1, g2… gmxn}. If 
the distance between a pixel and a node is less than the com-
munication radius of the node, we consider that the pixel is 

(6)P1 =

⎧⎪⎨⎪⎩

𝜔 +
fi−favg

fmax−fmin
f > favg

𝜔 −
favg−fi

fmax−fmin
f ≤ favg

,

(7)P2 =
t

tmax
,

(8)ω = e−p2 + P1,

covered by the node. The joint probability that the pixel can 
be perceived by the network node is as follows:

Then the coverage formula of set S to the network region 
is shown as follows:

The numerator represents the covered range, that is, the 
sum of the coverage of each pixel like {g1, g2 … gmxn}, and 
the denominator is the whole network area, namely m×n 
pixels. Using its value as the fitness function of the improved 
particle swarm algorithm can measure the effectiveness of 
the current network deployment scheme. The scheme flow 
of improved particle swarm optimization mainly includes:

Step 1: Initialize the particle swarm: set the number of 
particles and determine the initial position X and velocity V 
of the particles according to Eqs. (4) to (5).

Step 2: Calculate the optimal individual fitness and the 
optimal population fitness of the current particle population 
according to Eq. (10).

Step 3: Record the fitness values obtained by each particle 
in each iteration of the particle swarm, compare the histori-
cal record of particle individual and update the historical 
individual optimal solution of the current particle gBest.

Step 4: Compare the current historical individual opti-
mal solutions for all particles and update the global optimal 
solution.

Step 5: Calculate the velocity V and position X in the 
next movement of the current particle, and judge whether 
the data is out of bounds. If the boundary is crossed, set the 
result to a critical point, and record the velocity and position 
information of the particle after the movement.

Step 6: Determine whether the scheme iteration is com-
pleted or not, then stop the iteration and return to the global 
optimal particle coordinate, otherwise, repeat Step 2 to Step 
6.

5 � Our proposed PSOR scheme

The PSOR proposed in this paper optimizes the random 
deployment of nodes in the LEACH-EA protocol and 
uses the IPSO algorithm to initialize the node locations. 
Under the premise of ensuring network connectivity, the 
network coverage is improved as well as the node distribu-
tion. This facilitates the load balancing of subsequent data 
transmission.

(9)P(S,G) = 1 −
∏
g∈G

(1 − f (S, g)).

(10)fitness(S) =

∑
g∈G P(S, g)

m × n
.
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5.1 � LEACH‑EA protocol

In the clustering phase, incorrect selection of cluster head 
nodes is one of the drawbacks of LEACH protocol, thus, the 
incorporated fuzzy logic parameters were added in LEACH-
EA protocol to optimize the cluster head selection thresh-
old T(n). That was, the current energy and distance from 
the cluster head to the base station were considered. The 
improved thresholds were calculated as Eq. (11):

where Ecurrent was the residual energy of the current node, 
E0 represented the initial energy of the current node, and α 
and β were the distance impact factor and energy impact 
factor, respectively. Under the improved threshold filtering, 
the residual energy value of the selected cluster head node 
was balanced, and the distance from the cluster head node 
to the base station decreased.

Referring to the node competition radius model proposed 
by Shidi (Shidi et al. 2018), the competition radius of nodes 
was improved as shown in Eq. (12):

(11)T(n) =
p

1 − p
(
r ⋅ mod

(
1

p

))
(
� + �

(
Ecurrent

E0

))
,

The ε and c were constants between 0 and 1, and their 
relationship satisfied the following conditions. To avoid 
the overhead of data transmission caused by the joining of 
nodes, the scope of filtrating the member of the cluster head 
node was reduced.

In the case of data transmission with LEACH protocol, 
the cluster heads fuse the data from member nodes and send 
it to the sink node through a single-hop transmission. To 
avoid long-distance data transmission from edge nodes, 
LEACH-EA divided the entire network area into three con-
centric circles, group1, group2 and group3, and different 
groups corresponding to different routing policies. The radii 
were R/3, 2R/3, R, respectively, where R was the diagonal 
half value of the entire network. What’s more, we applied 

(12)

Rc

[
Si
]
=

(
1 −

[(
� + c

E0 − Ecurrent

E0

)(
dmax − d

(
Si,Sink

)
dmax − dmin

)])
.

(13)

{
c

𝜀
<

Rcmax

dmax−2Rcmax
;

0 ≤ 𝜀 + c ≤ 1.
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the ant colony algorithm to optimize the transmission path 
of each node, which was modified by adding fuzzy logic 
parameters to the roulette. By varying the influencing factors 
according to the type of the nodes, the node in line with the 
outstanding energy balance strategy was more likely to be a 
branch of the optimal path. Ants moved by calculating the 
transfer probability of the neighbor nodes. The probability 
function Pij(t) is shown in Eq. (14):

where τij was the pheromone concentration value from 
node i to node j within time t. ηij was the heuristic factor. a 

(14)Pij(t) =

⎧
⎪⎨⎪⎩

�a
ij
�b
ij∑

k∈Ui
�a
ik
�b
ik

�ij =
Ej_current

dij

,

and b represented the pheromone concentration value and 
the influence coefficient of the heuristic factor, respectively. 
Ej_current was the residual energy value of the unavailable 
node, and dij was the distance value of [i, j] in the column.

Update the pheromone concentration on the path after 
each movement, and the final communication path with the 
highest pheromone concentration.

5.2 � Particle swarm optimization routing scheme

As the LEACH-EA protocol deployed the initial network 
nodes randomly, the randomness of node distribution led 
to instability of network node coverage and imbalance of 
node data transmission load. Therefore, we propose the 
particle swarm optimization routing scheme (PSOR). The 
IPSO algorithm is used to optimize the coordinates, set the 
inertia weights of the particles to dynamic adaptive values, 
and determine the fitness function of the algorithm with the 
Monte Carlo method. The training data are the points gener-
ated randomly in the region.

UAPSO algorithm (Vinitha et al. 2020) discussed the 
settings of adaptive control parameters in particle swarm 
optimization. It has been proven to be effective in improving 
convergence, consistency, and execution rate. Therefore, the 
parameters such as C1 and C2 involved in the PSOR scheme 
in this paper refer to the UAPSO algorithm. The specific 
parameter values are shown in Table 2.

Table 2   Parameter setting table

Parameters Value

Node perceived radius R 4 m/5 m/6 m/7 m
Cognitive factor C1 1.46
Social factor C2 0.68
Velocity constant factor r 1
ωmax, ωmin 1.0
Vmax, Vmin 0.5, 0.1

Fig. 1   Comparison of cover-
age optimization of difference 
perceived radius
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To design an ideal deployment scheme, the optimal sens-
ing radius is set based on ensuring network connectivity. 
The sensing radius of nodes is set to 4 m, 5 m, 6 m, and 7 m 

to test the PSOR scheme. Standardization of data between 
0–1 for presentation. The coverage optimization process is 
shown in Fig. 1.

Fig. 2   Initialize the network 
layout

Fig. 3   IPSO optimizes network 
layout
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When the sensing radius is 4 m, the initial coverage of 
the network is only about 40% and the network connectivity 
is limited. On deploying the nodes with the IPSO, the net-
work coverage reaches 73%. However, the sensing radius is 
too small to form an effective network connection and ideal 
coverage. Experimental results show that network connec-
tivity is not satisfied even when the sensing radius is 5 m. 
When the sensing radius is 6 m, the network nodes can form 
a fully connected state, and the coverage rate increases from 
the initial 68–93%. This expands the monitoring area of the 
network significantly, reduces the overlap between nodes, 
and avoids ineffective data monitoring and forwarding.

Figures 2 and 3 show the initial network layout when the 
sensing radius of network nodes is equal to 6 m and the opti-
mized network layout after the PSOR scheme, respectively. 
It can be noted that the network coverage rate is increased 
significantly.

6 � Performance analysis

6.1 � Experiments

In this work, the experimental environment is built using 
Python to perform simulation experiments. First, using IPSO 
to obtain the node-optimal deployment scheme. Then, apply-
ing the node-optimal deployment scheme to the LEACH-
EA protocol. The performance of the scheme is analyzed in 
terms of network life cycle, node death rate, energy loss pro-
cess and packet forwarding volume. Assuming 100 network 
nodes are located randomly in a bounding area of 100 m × 
100 m. The initial energy of nodes is 5000 J, the sensing 
radius is 6 m, and the energy loss of each packet forward-
ing is 1 J. Parameters such as transmission amplification of 
sensors and received power are referred to the LEACH-EA 
(Wang and Guoxiang 2020) experiment, which simulates 
3000 rounds of data transmission. The experimental param-
eters are shown in Table 3.

Figures 4 and 5 show the current number of surviving 
nodes in the network in the LEACH (Yildiz et al. 2018; 

Table 3   Experimental Parameter setting

Parameters Value(unit)

E0 0.1 (J)
� , β 0.1, 0.9
Rc 0.2 m
� , c 0.1, 0.6
a, b 1,5
� 0.1
Δ� ij(t) 1
� fs 10 pJ · bit · m2

� mp 0.0013 pJ · bit · m4

k 4000 bit
cc 6

Fig. 4   Network nodes survival 
process. [LEACH-EA (Wang 
and Guoxiang 2020) and 
LEACH (Yildiz et al. 2018)]
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Wang and Guoxiang 2020), LEACH-EA (Wang and Guox-
iang 2020), and PSOR scheme as well as the number of 
dead nodes. As is shown in Fig. 4, the curves of LEACH 

and LEACH-EA coincide. In Fig. 5, the first death node 
of LEACH appears in 79 rounds, the first death node of 
PSOR appears in the 1704 rounds, and the first death node of 

Fig. 5   Network nodes dead pro-
cess. [LEACH-EA (Wang and 
Guoxiang 2020) and LEACH 
(Yildiz et al. 2018)]

Fig. 6   Comparison of network 
energy losses. [LEACH-EA 
(Wang and Guoxiang 2020) and 
LEACH (Yildiz et al. 2018)]
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LEACH-EA appears in 1420 rounds. The results suggest that 
the optimized node deployment enables the entire network to 
transmit data more effectively, avoiding the invalidity caused 
by node overlap, delaying the node death, and improving the 
network utilization.

Figure 6 shows the energy consumption process of the 
three protocols throughout the network life cycle. LEACH 
(Yildiz et al. 2018) protocol reaches the state of network 
paralysis in round 441, LEACH-EA (Wang and Guoxi-
ang 2020) protocol exhausts in round 2107, and the PSOR 
scheme collapses in round 2729. Compared with LEACH-
EA, the PSOR scheme prolongs the network life cycle by 
about 30%. It can be seen that in the middle stage of the net-
work, the energy consumption of the network after deploy-
ment optimization is more gentle. Because some of the dead 
nodes appear in the middle stage, causing the remaining 
nodes in the network to undertake more data transmission 
tasks. The random deployment of nodes may cause a trans-
mission blind area. Under this circumstance, the LEACH-
EA protocol increased the number of relay nodes to ensure 
that data can be successfully transmitted to the base station. 
As a result, these relay nodes cause additional energy losses. 
While the PSOR scheme optimizes the node deployment, 
which reduces the appearance of the data transmission blind 
spots. By balancing the network load, the network energy 
loss rate can be slowed.

The total number of packets generated by the three pro-
tocols during the 3000 rounds of data transmission is shown 
in Fig. 7. The total number of packets for LEACH (Yildiz 

et al. 2018), LEACH-EA (Wang and Guoxiang 2020), and 
PSOR are 4269, 175,376, and 425,834, respectively. The 
calculation of the total packet includes the broadcast sig-
nal packets generated by the cluster and data transmission 
packets. The PSOR scheme reduces the death rate of nodes 
and makes more nodes survive longer. Compared with the 
LEACH-EA protocol, the total packet number is increased 
by nearly 1.5 times, enhancing the work efficiency of net-
work nodes greatly.

Table  4 is the performance comparison of LEACH, 
LEACH-EA, SCSAP and PSOR. It can be seen that the 
PSOR scheme which is based on optimized node deploy-
ment improves the node survival rate, network life cycle, 
and packet forwarding volume greatly.

Fig. 7   Comparison of network 
packet forwarding volume. 
[LEACH-EA (Wang and Guoxi-
ang 2020) and LEACH (Yildiz 
et al. 2018)]

Table 4   Performance comparison of different protocols

Parameter LEACH LEACH-EA SCSAP PSOR

Node number 100 100 100 100
Initial energy 14.4633 14.4633 14.4633 14.4633
First dead node 79 1420 1630 1704
Life cycle 441 2107 2655 2729
Average clusters 5 10 15 10
Data transmission 4269 175,376 – 425,834
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7 � Conclusion

The PSOR scheme proposed in this paper has improved the 
network deployment in LEACH-EA. The problems of unsta-
ble network coverage and unbalanced data transmission load 
of nodes due to the randomness of node distribution have 
been solved. The adaptive inertia weight has been set and 
the fitness function has been constructed by the Monte Carlo 
method in IPSO. The influence of different sensing radii on 
the coverage rate has been analyzed through experiments and 
the optimal sensing radius has been selected to generate the 
deployment scheme. It can be seen that the PSOR scheme 
has improved the node survival rate, network lifetime, and 
packet forwarding volume significantly. In the scheme of this 
paper, the transmission power of sensor nodes to send data 
is a fixed parameter value, and the initial fixed transmission 
power may no longer be applicable to all surviving nodes 
as the number of surviving nodes and the location matrix of 
working nodes in the network keep changing and the topol-
ogy may change. Too much transmission power may lead to 
additional energy consumption, while insufficient transmis-
sion power may increase the packet loss rate. Therefore, in 
future research, we will focus on addressing the above issues 
and propose improvements in the next section.

8 � Future work

Considering that the topological structure of the network 
may also change with the continuous change of the number 
of surviving nodes and the location of working nodes, the 
chaotic immune evolutionary algorithm (CIEA) will be con-
sidered to solve the above problems.

8.1 � Chaotic immune evolutionary algorithm

The CIEA will be applied to optimize the transmission 
power of network nodes. Construct the affinity function 
from three aspects: the optimal number of cluster heads, the 
average bit error rate, and the data transmission energy con-
sumption per round. What’s more, the Pareto solution will 
be generated iteratively by the algorithm to ensure that the 
above three aspects are optimal under the premise of setting 
the parameter value.

The CIEA will combine the immune algorithm (Liu et al. 
2020) and chaos algorithm. We intend to use the chaotic 
search mechanism to improve the local search capability of 
the immune algorithm and optimize the transmission power 
of the network nodes. The flow of the CIEA scheme is as 
follows:

Step 1: Initialize antibody population N (i), size n.

Step 2: The affinity value of each antibody Ni will be 
calculated according to the affinity function in the antibody 
population, and the antibody Ni with the highest affinity 
will be selected.

Step 3: Clone the selected antibody Ni. The copy number 
is proportional to its affinity, with a greater number of clones 
indicating a greater affinity.

Step 4: The new antibody after mutation cloning will be 
denoted as N2

i, and the mutation probability is inversely pro-
portional to the affinity, that is, the higher the affinity is, the 
smaller the mutation rate is.

Step 5: The antibodies with the highest affinity among the 
mutated antibodies will be selected, and some low-affinity 
antibodies in N (i) will be replaced by these antibodies to 
form a new population in N (j).

Step 6: Repeat Step 2 to Step 5 until meeting the termina-
tion conditions.

8.2 � The application of CIEA in PSOR

The affinity function will involve three aspects, namely, the 
optimal number of cluster heads, the energy consumption 
of each round of data transmission, and the average bit error 
rate.

For sensor networks, the optimal number of cluster heads 
will be determined by a combination of the number of sen-
sor nodes, the data transmission radius, and the distance 
between cluster heads and base station. The model for cal-
culating the optimal number of cluster heads is as follows:

where M is the total area of the network area. N is the 
number of nodes. d means the transmission radius of the 
nodes. dtoBS represents the distance between the cluster head 
node and the base station node. εfs and εmp are the energy 
loss of the power amplifier for data transmission in different 
channel modes.

For each round of data transmission, the total energy 
generated by forwarding data in the network is shown in 
Eq. (16):

where Esend is the energy loss model in Eq. (2), M means 
a member node-set, and C denotes a cluster head node-set.

The average bit error rate (Tandon et al. 2021) will quote 
the following formula:

(15)K = M ×

√
N × εfs

�
×

√
1

Eelec+�mp
×
(
d4 + d4

toBS

) ,

(16)Etrans =
∑
i∈M

Esend +
∑
j∈C

Esend,
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among them, Γ() is a complementary incomplete gamma 
function. b means a detection type, and the range is (1/2,1), 
representing uncorrelated and correlated types, respectively. 
G is the Mayer G function, and L denotes the number of sub-
carriers per node. m is the channel attenuation coefficient, 
and a is the current average transmission power.

Normalize the three optimization objective functions, as 
shown in Eq. (18):

where Cnum is the number of cluster heads in the current 
round, and this function ai to evaluate the performance of 
the proposed solution.

The purpose of this section is to allow nodes to adaptively 
adjust the transmission power of PSOR by applying CIEA 
and to reduce the network energy consumption by setting 
a reasonable transmission power. Due to time constraints, 
these experiments need to be completed in future studies.
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