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Abstract
Tracking the pose of a robot has been gaining importance in the field of Robotics, e.g., paving the way for robot navigation. 
In recent years, monocular visual–inertial odometry (VIO) is widely used to do the pose estimation due to its good perfor-
mance and low cost. However, VIO cannot estimate the scale or orientation accurately when robots move along straight 
lines or circular arcs on the ground. To address the problem, in this paper we take the wheel encoder into account, which 
can provide us with stable translation information as well as small accumulated errors and momentary slippage errors. By 
jointly considering the kinematic constraints and the planar moving features, an odometry algorithm tightly coupled with 
monocular camera, IMU, and wheel encoder is proposed to get robust and accurate pose sensing for mobile robots, which 
mainly contains three steps. First, we present the wheel encoder preintegration theory and noise propagation formula based 
on the kinematic mobile robot model, which is the basis of accurate estimation in backend optimization. Second, we adopt 
a robust initialization method to obtain good initial values of gyroscope bias and visual scale in reality, by making full use 
of the camera, IMU and wheel encoder measurements. Third, we bound the high computation complexity with a marginali-
zation strategy that conditionally eliminates unnecessary measurements in the sliding window. We implement a prototype 
and several extensive experiments showing that our system can achieve robust and accurate pose estimation, in terms of the 
scale, orientation and location, compared with the state-of-the-art.

Keywords  Multi-sensor fusion · Visual–inertial–wheel encoder odometry · State estimation · Localization · Robots

1  Introduction

Robot localization has been gaining importance in the 
field of Robotics, spanning from robot navigation, three-
dimensional reconstruction to simultaneous localization and 

mapping (SLAM). Visual inertial odometry (VIO) is a com-
mon way for robot localization. By fusing the measurements 
captured by camera and IMU, VIO can make the metric scale 
together with the pitch and roll angles observable, which 
(especially for the scale) underlies the tasks like SLAM and 
navigation. In addition, the VIO sensor with small size is 
easy-to-deploy on mobile robots, unmanned aerial vehicles, 
and handheld devices. In spite of these advantages, VIO 
requires generic three-dimensional motion along different 
directions, which is hard to satisfy in practice as the robot 
usually moves horizontally. Even worse, Wu et al. (2017) 
have proved that the pitch and roll angles and scale will 
be unobservable when robot moves along straight lines or 
circular arcs on the ground. This motivates us to seek for 
another vehicle to address this problem.

In this paper, we propose an accurate and robust odom-
etry by jointly using VIO and the wheel encoder (VIWO), 
and expect to obtain the benefits from both: VIO has accu-
rate relative translation and rotation information and mean-
while the wheel encoder provides absolute scale based on 
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long-time, high-frequency, and stable translation and rota-
tion information. However, fusing VIO and wheel encoder 
is not easy. First, the wheel slips sometimes, which leads 
to some measurement errors in scale. Second, the system 
requires good initial values as the input, which is vital to 
accurate localization. Third, the VIO system suffers from a 
high degree of nonlinearity itself. When the wheel encoder is 
taken into account, this degree will be higher, which makes 
the pose estimation harder and the computation overhead 
heavier.

VIWO overcomes these challenges with the following 
three steps. First, we propose a kinematic motion scheme 
that deals with the accumulated slippage errors by using a 
preintegration model and a noise propagation model. Sec-
ond, we obtain good initial values by loosely aligning IMU 
and odometer preintegration with the vision-only structure 
and simplify the pose estimation by considering the con-
straints from odometer and planar motion in the back-end 
optimization. Third, we improve a sliding window update 
strategy and reduce the computation overhead by removing 
unnecessary measurements. In summary, our contributions 
are threefold. (1) We propose an accurate and robust odom-
etry system called VIWO that combines the sensor informa-
tion of visual, IMU, and wheel encoder. (2) We address the 
key issues of slippage errors and a high degree of nonlin-
earity by jointly using a kinematic motion scheme together 
with an improved sliding window update strategy. (3) We 
implement a prototype of VIWO and several experiments 
showing that VIWO can achieve higher accuracy of pose 
estimation, compared with the baseline.

2 � Related work

In recent years, there are many excellent works on SLAM, 
including monocular visual SLAM and visual–inertial 
odometry (VIO). Although monocular visual SLAM, such 
as ORB-SLAM (Mur-Artal et al. 2015) and DSO (Engel 
et al. 2018), can generate compact and trackable map, it 
is unable to acquire accurate pitch, roll and absolute scale. 
Instead, VIO is capable of making the metric scale together 
with the pitch, roll angels observable. VIO can usually be 
divided into filtering-based method (Mourikis and Roume-
liotis 2007) and nonlinear optimization-based method (Leu-
tenegger et al. 2014; Mur-Artal and Tardós 2016; Qin et al. 
2018). As a model of the former, MSCKF (Mourikis and 
Roumeliotis 2007) is an Extended Kalman Filter (EKF)-
based method which constraints the IMU and camera pose 
at the same time, as well as the multiple camera poses that 
have the same feature observation. The latter introduces non-
linear optimization methods based on the sliding window. 
OKVIS (Leutenegger et al. 2014) applies monocular and 
stereo camera, and integrates the inertial measurements in 

advance, then achieves feature detection by using BRISK 
(Leutenegger et al. 2011) algorithm. However, OKVIS (Leu-
tenegger et al. 2014) preintegrates the inertial measurements 
repeatedly when the linearization point changes and it has 
no implementation of loop closing. ORB-VISLAM (Mur-
Artal and Tardós 2016) introduces inertial measurements 
based on ORB-SLAM (Mur-Artal et al. 2015), optimizing 
the inertial error term between two frames and achieving 
zero-drift localization in mapped areas. VINS-Mono (Qin 
et al. 2018) is another VIO framework that fulfills a low 
computation relocalization module and its improvement 
(Qin et al. 2019) can be conveniently extended with other 
sensors such as GPS.

Some researches work on visual–inertial–wheel encoder 
odometry. As proven in Wu et al. (2017), VIO has unob-
servabilities when robot moves without generic 3D motion, 
such as along straight lines or circular arcs. To solve this 
problem, Wu et al. (2017) makes the scale, pitch and roll 
observable by incorporating odometer measurements and 
planar motion constraints. Li et al. (2017) presents a gyro-
aided camera-odometer online calibration and localization 
method, which is based on the stereo vision without the scale 
estimation and the initial calibration. Furthermore, Liu et al. 
(2019) considers both gyroscope and accelerometer meas-
urements in the preintegration and optimization, but fails 
to pay an attention to the significance of angular velocity 
of wheel encoder and the planar motion constraint. DRE-
SLAM (Yang et al. 2019) fuses the information of RGB-D 
camera and wheel encoder, then constructs OctoMap in both 
dynamic and static environments.

The initialization methods are widely adopted in SLAM 
and the initial values have great influences on the accuracy 
of the system. In earlier studies (Yang and Shen 2017; Shen 
et al. 2016; Martinelli 2014), the initialization methods only 
utilize relative rotation from the IMU, without consider-
ing gyroscope bias and image noises. Kaiser et al. (2017) 
introduces the gyroscope bias calibration, but requires 
double integration of IMU measurements. ORB-VISLAM 
(Mur-Artal and Tardós 2016) proposes an IMU initializa-
tion method, which is able to compute the scale, gravity 
direction, velocity, and gyroscope and accelerometer biases 
in a few seconds with high accuracy. In order to improve 
efficiency, VINS-Mono (Qin et al. 2018) loosely aligning 
IMU preintegration with the vision-only structure without 
considering accelerometer bias.

However, visual–inertial odometry suffers from the addi-
tional unobservabilities when the robot moves along straight 
lines or circular arcs, the metric scale and other values can 
not be able to be initialized accurately. We propose in this 
paper an accurate and robust odometry by jointly using VIO 
and the wheel encoder, called VIWO, expecting to obtain the 
accurate relative translation and the rotation information, as 
well as the absolute scale.
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3 � System model

3.1 � Notations

We begin with defining the notations used throughout this 
paper. �N

M
 denotes the rotation matrix from frame M to frame 

N, and �N
M

 is its quaternion form. �N
M

 denotes the translation 
vector from frame M to frame N. w is world frame. bk , ck 
and ok are IMU frame, camera frame and odometer frame 
respectively when we obtain the kth image.

Besides, the extrinsic parameters between the IMU and 
odometer are presented as �O

B
 , �O

B
 , �O

B
 and �O

B
 , which indi-

cates the rotation matrix, quaternion form, translation vec-
tor and transformation matrix from IMU frame to odom-
eter frame respectively. Similarly, the extrinsic parameters 
between the IMU and camera are presented as �C

B
 , �C

B
 , �C

B
 

and �C
B

 , which indicates the rotation matrix, quaternion 
form, translation vector and transformation matrix from 
IMU frame to camera frame respectively. The extrinsic 
parameters between the IMU and odometer are calibrated 
manually and the extrinsic parameters between the IMU and 
camera are estimated by tightly coupled nonlinear optimi-
zation in Sect. 6. In addition, (n)x is vector [n, 0, 0]T , (n)z is 
vector [0, 0, n]T , and (.̂) refers to its noisy measurement.

3.2 � System definition

The input for our system is a stream of monocular camera 
frames, IMU measurements and odometer measurements. 
The raw measurements from IMU are composed of angu-
lar velocity vector �̂t and linear accelerated velocity vector 
�̂t . The measurements from odometer are composed of 𝜔̂t 
and v̂t , which means angular velocity and linear velocity 

respectively. And monocular camera captures a series of 
grayscale images.

The output for our system is a state vector in the sliding 
window including robot poses and velocities, 3D feature 
locations, acceleration bias and gyroscope bias and extrin-
sic parameters.

The structure of the proposed VIWO system is shown in 
Fig. 1 and the details are presented in the following sections.

4 � Measurement preprocessing

This section presents preprocessing methods for monocular 
visual, IMU and odometer measurements. Monocular visual 
measurement preprocessing is responsible for extracting fea-
tures and tracking relative transformation between two con-
secutive frames. IMU and odometer measurement preproc-
essing are responsible for calculating preintegration between 
two selected keyframes. For monocular visual and IMU 
measurements, we adopt the existing methods to perform 
measurement preprocessing. For the odometer measure-
ments, we propose a novel method to perform measurement 
preprocessing, reducing the accumulated slippage errors.

4.1 � Visual measurements

The preprocessing of visual measurements refers to visual 
processing front-end in VINS-Mono (Qin et  al. 2018). 
We detect the features for each image using GFTT cor-
ner detection algorithm (Jianbo and Tomasi 1994), which 
is an improved corner detection algorithm based on Har-
ris (Mikolajczyk and Schmid 2004), and adopt KLT sparse 
optical flow algorithm (Lucas and Kanade 1997) for pose 
tracking. After obtaining multiple sets of matched features, 

Fig. 1   The structure of the 
proposed VIWO system
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we also use RANSAC algorithm (Fischler and Bolles 1981) 
to adjust feature locations and eliminate outliers. Finally, we 
get relative visual rotation and translation of camera, as well 
as the detected feature locations.

4.2 � Preintegration of IMU measurements

We employ VINS-Mono algorithm (Qin et al. 2018) to cal-
culate IMU preintegration. The preintegration of translation 
�
bk+1
bk

 , velocity �bk+1
bk

 and rotation �bk+1
bk

 between two consecu-
tive frames bk and bk+1 can be presented as

where �̂t , �at  and �a are measurement, bias and Gaussian 
white noise of accelerator respectively and �̂t , �

g

t  and �g are 
corresponding terms of gyroscope.

4.3 � Preintegration of odometer measurements

The wheel slippage is one of the main reasons of measure-
ment errors in scale. To solve this problem, we propose a 
novel kinematic motion scheme to deal with the accumulated 
slippage errors by using a preintegration model and a noise 
propagation model between two keyframes. The kinematic 
motion scheme consists of three steps: constructing motion 
model, constructing preintegration model and constructing 
noise propagation model.

4.3.1 � Constructing motion model

According to the motion characteristics of the kinematic 
mobile robot, we construct the motion model. The raw linear 
velocity v̂ in the forward direction of robot and yaw angular 
velocity ŵ measured at the time t can be given:

We assume that additive Gaussian white noises exist in both 
left and right wheels, where nl ∼ N(0, �2

l
) and nr ∼ N(0, �2

r
) . 

Here, l is the distance between left and right wheel center. 
To simplify the description, we use nw =

nr−nl

l
 and nv =

nr+nl

2
 

to present rotation and translation noises in the following 
sections.

(1)

�
bk+1
bk

= ∫ ∫t∈[k,k+1]

[�
bk
bt
((�̂t − �a

t
− �a) − �bt

w
�w)]𝛿t2,

�
bk+1
bk

= ∫t∈[k,k+1]

[�
bk
bt
((�̂t − �a

t
− �a) − �bt

w
�w)]𝛿t,

�
bk+1
bk

= ∫t∈[k,k+1]

�
bk
bt
exp((�̂t − �

g

t − �g)
∧)𝛿t,

(2)
v̂t = vt +

nr + nl

2
,

ŵt = wt +
nr − nl

l
.

4.3.2 � Constructing preintegration model

Since the sampling frequency of odometer is much higher than 
camera, we integrate the odometer measurements between two 
consecutive frame bk and bk+1 , which can be given as follows:

where (.)∧ means transformation to skew symmetric matrix 
form, and exp(�∧) is exponential mapping from Lie algebra 
��(3) to Lie group ��(3) that means transformation from 
rotation vector to rotation matrix physically. Furthermore, 
we can discover that the preintegration model contains the 
Gaussian white noises at each moment between two con-
secutive frames.

4.3.3 � Constructing noise propagation model

We observe that the noises from odometer are accumulated 
and propagated with the preintegration processing. For 
decreasing the effects of accumulated odometer noises, we 
construct a noise propagation model to separate the noises 
from preintegration model.

Odometer preintegration between two consecutive frame bk 
and bk+1 contains the rotation term �bk+1

bk
 and the translation 

term �bk+1
bk

 . According to first-order approximation of Taylor 
expansion, we can split the preintegration into measurements 
and noises as follows:

and

where �t = �B
O
(v̂t)x𝛥t and �rt = �r(�

B
O
(ŵt − nw)z𝛥t) is the 

right jacobian on Lie group ��(3).

(3)
�

bk+1
bk

= ∫t∈[k,k+1]

�
bk
bt
exp[(�B

O
(ŵt − nw)z)

∧]𝛿t,

�
bk+1
bk

= ∫t∈[k,k+1]

�
bk
bt
[�B

O
(v̂t − nv)x𝛿t + �B

O
− �

bt
bt−1

�B
O
],

(4)

�
bk+1
bk

= �t∈[k,k+1]

�
bk
bt
exp[(�B

O
(ŵt − nw)z)

∧]𝛿t

= �̂
bk+1
bk �t∈[k,k+1]

exp(−�rt�
B
O
(nw)z)

∧𝛿t

≜ �̂
bk+1
bk

exp((−𝛿𝜑
ok+1
ok

)∧),

(5)

�
bk+1
bk

= �t∈[k,k+1]

�̂
bk+1
bk

exp((−𝛿𝜑
ok+1
ok

)∧)

× [�t − �B
O
(nv)x𝛿t + �B

O
− �

bt
bt−1

�B
O
]

= �̂
bk+1
bk

+ �t∈[k,k+1]

�̂
bk+1
bk

𝛿𝜑
ok+1
ok

× [�t − �B
O
(nv)x𝛿t + �B

O
− �

bt
bt−1

�B
O
]∧

≜ �̂
bk+1
bk

+ 𝛿p
ok+1
ok

,
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As a result, we can get the odometer rotation error term 
��

ok+1
ok

 and the translation error term �pok+1ok
 from Eqs. (4) 

and (5), which can be given:

Furthermore, we can get the accumulated error term in 
0 ∼ k th frame, ��ok

o0
 , �poko0 , and the accumulated error term 

in 0 ∼ (k + 1) th frame, ��ok+1
o0

 , �pok+1o0
 . And the relationship 

between them can be written as matrix form.

According to forward propagation of covariance, the error 

term 
[
��

oj
oi

�p
oj
oi

]
 satisfies Gaussian distribution N(�6×1,�

��
��
) . 

Therefore, the covariance matrix can be written as:

5 � Robust initialization

Robust initialization plays a significant role in the pro-
cessing of nonlinear optimization, which requires well-
performed initial guess at the beginning. However, lim-
ited to the visual and IMU information, the initialization 
in VINS-Mono (Qin et al. 2018) suffers from poor scale 
and orientation results when moving along straight lines 
or circular arcs on the ground. Therefore, we propose a 
new method that takes the odometer preintegration into 
consideration, providing excellent initial values. We first 
adopt the sliding window vision-only SfM strategy to 
achieve the feature observations and relative rotations 
among different frames. Then, we take advantage of the 
IMU, the odometer preintegration and the rotation results 
to provide well-performed initial values including veloc-
ity, gyroscope bias, scale, gravity vector, robot poses and 
feature locations.

(6)

𝛿𝜑
ok+1
ok

= ∫t∈[k,k+1]

exp(−�rt�
B
O
(nw)z)

∧𝛿t,

𝛿p
ok+1
ok

= ∫t∈[k,k+1]

�̂
bk+1
bk

𝛿𝜑
ok+1
ok

× [�t − �B
O
(nv)x𝛿t + �B

O
− �

bt
bt−1

�B
O
]∧.

(7)

�
𝛿𝜑

ok+1
o0

𝛿p
ok+1
o0

�
=

�
�̂

bk
bk+1

�3×3

�̂
bk
b0
(�k − �B

O
(
nr+nl

2
)x𝛥t + �B

O
− �

bk+1
bk

�B
O
)∧ �3×3

��
𝛿𝜑

ok
o0

𝛿p
ok
o0

�

+

⎡⎢⎢⎣

�rk�
B
O
𝛥t

l
−

�rk�
B
O
𝛥t

l
�

bk−1
b0

�B
O
𝛥t

2

�
bk−1
b0

�B
O
𝛥t

2

⎤⎥⎥⎦

�
(�r)3×1
(�l)3×1

�

≜ �

�
𝛿𝜑

ok
o0

𝛿p
ok
o0

�
+
�
� �

� �(�r)3×1
(�l)3×1

�
.

(8)�
��+�
��

= ����
��
�� + ����

�� + ����
��.

5.1 � Sliding window vision‑only SfM

First, we calculate the relative rotation and translation of 
frames using SfM algorithm (Wu 2013). Specifically, the five-
point algorithm (Nister 2004) devotes to the essential matrix 
calculation, and the perspective-n-point (PnP) method (Lepetit 
et al. 2009) devotes to the poses of all frames estimation. If 
there are stable feature tracking and sufficient parallax com-
pared with other frames in the sliding window, we can obtain 
the feature observations by minimizing the reprojection errors 
using the global bundle adjustment (Triggs et al. 2000).

5.2 � Gyroscope bias calibration

Upon obtaining the monocular camera rotation �ck+1ck
 between 

the kth and (k + 1) th frames in the sliding window, gyroscope 
bias can be calculated as:

where �bk
bk+1

≈ �̂
bk
bk+1

⊗

[
1

1

2
�
q

bg
𝛿�g

]
 . Similarly, the odometer 

rotation �ok+1ok
 can also be used to calculate the gyroscope 

bias:

The gyroscope bias from Eqs. (9) and (10) are marked as 
bg1 and bg2 respectively. Then the final result is 1

2
(bg1 + bg2) . 

Finally, we do repropagation of all IMU preintegrations 
under the new bg.

5.3 � Velocity and metric scale initialization

The scale is an important feature in initialization procedure, so 
we optimize the metric scale, the velocity and gravity simul-
taneously. Firstly, the state vector to be estimated is 
XI = [�b

0
, �b

2
,… , �b

n
, s] , where �b

k
 is the linear velocity in IMU 

frame while taking the kth image and s is the metric scale. 
Here, we assume that the direction and magnitude of gravity 
are known, �c0 = [0, g, 0]T , as the robot moves on the planar 
ground. So, we can get �̂bk

bk+1
 and �bk

bk+1
 between two consecutive 

frames as:

(9)min
𝛿bg

�
k∈F

‖�B
C
⊗ �

ck+1
ck

⊗ �C
B
⊗ �

bk
bk+1

‖2,

(10)min
𝛿bg

�
k∈F

‖�B
O
⊗ �

ok+1
ok

⊗ �O
B
⊗ �

bk
bk+1

‖2.

(11)�̂
bk
bk+1

=

⎡⎢⎢⎢⎣

�̂
bk
bk+1

− �B
C
+ �̂

bk
bk+1

�B
C
−

1

2
�

bk
b0
�B

C
�c0𝛥t2

k

�̂
bk
bk+1

− �
bk
b0
�B

C
�c0𝛥tk

�
bk
b0
�B

O
�̂
ok
ok+1

+ (�B
O
− �B

C
) − �̂

bk
bk+1

(�B
O
− �B

C
)

⎤⎥⎥⎥⎦
,
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where �bk
b0

 is the preintegration term from the 0th to kth 
image in IMU frame, and �̄ck

ck+1
 , �̄ckck+1 are visual rotation and 

translation after SfM algorithm.
According to the constraint that the translation from cam-

era, IMU and odometer under the bk frame should be the 
same, we can obtain the following least square equation:

which can use SVD (Golub and Reinsch 1970) to get vec-
tor XI . If the metric scale in the vector XI is positive, the 
velocities in the sliding window and metric scale are ini-
tialized successfully. Furthermore, the gravity refinement is 
implemented to correct the direction and magnitude again 
by the method in VINS-Mono (Qin et al. 2018). Finally, all 
the variables are transformed into the world frame, and the 
robot poses and feature locations are in the absolute scale.

6 � Tightly coupled nonlinear optimization

This section tightly couples all known measurements and 
state vectors to be estimated in the sliding window based on 
bundle adjustment (Triggs et al. 2000), which is presented in 
the factor map form. We also consider the constraints from 
odometer and planar motion to simplify the pose estimation.

The full state vector to be estimated in the back-end opti-
mization sliding window is defined as:

where n is the number of keyframes, and m is the number of 
features in the sliding window. �k means the IMU state when 
the system get the kth keyframe, which contains position �w

bk
 , 

velocity �w
bk

 , orientation �w
bk

 , accelerometer bias �a and gyro-
scope bias �g . �l is the inverse distance of the lth feature 
from its first observation. �B

C
 and �B

C
 are extrinsic parameters 

to be estimated.

6.1 � Bundle adjustment

The state estimation problem refers to estimate the inner 
state from the noisy data. We obtain the visual, IMU and 
odometer measurements from Sect. 4, and the estimated 
state vector shown in Eq.  (14). However, the state vec-
tor calculated only by preprocessing and initialization is 

(12)�
bk
bk+1

XI =

⎡
⎢⎢⎢⎣

−�3×3𝛥tk �3×3 �
bk
b0
�B

C
�̄
ck
ck+1

−�3×3 �B
C
�̄

ck
ck+1

�C
B

0

�3×3 �3×3 �
bk
b0
�B

C
�̄
ck
ck+1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

�b
k

�b
k+1

s

⎤⎥⎥⎦
,

(13)min
XI

�
k∈F

‖�̂bk
bk+1

−�
bk
bk+1

XI‖2,

(14)
X = [�0, �1,… �n, �0, �1,… �m, �

B
C
, �B

C
],

�k = [�w
bk
, �w

bk
, �w

bk
, �a, �g], k ∈ [0, n],

not optimal, which still exists the accumulative errors. To 
address this problem, we optimize the robot poses and other 
variables mentioned in the state vector by adopting bundle 
adjustment, which is a tightly coupled nonlinear optimiza-
tion approach.

Furthermore, in order to implement online optimization, 
we use a sliding window to save a certain amount of states 
as input for bundle adjustment model. With the participation 
of new preprocessed measurements, the states are constantly 
updated according to the marginalization strategy.

In visual–inertial–wheel encoder state estimation system, 
the bundle adjustment is achieved by minimizing the sum of 
prior and the Mahalanobis norm of all measurement residu-
als, which can be given as follows:

where (�p −�pX) is the prior information after marginaliza-
tion, F  means all the frames in the sliding window, 
�B(�̂

bk
bk+1

,X) is the IMU measurement residual, �O(�̂
ok
ok+1

,X) is 
the odometer measurement residual, L and Fl means all the 
features and the frames when the feature l appears, �C(�̂cj,l,X) 
is the visual measurement residual, � is the Huber cost func-
tion (Huber 1964), �pl is the planar constraint residual, and ∑bk

bk+1
 , 
∑ok

ok+1
 and 

∑
cj,l

 , 
∑

pl are the covariances corresponding 
to the residuals.

6.2 � Measurement residuals

In the sliding window, we have the state vector composed of 
rotation �w

bk
 , translation �w

bk
 and velocity �w

bk
 in each frame. 

At the same time, we have rotation and translation measure-
ments of each sensor, �̂okok+1 , �̂

ok
ok+1

 , �̂bk
bk+1

 , �̂bk
bk+1

 , �̂ckck+1 , �̂
ck
ck+1

 . In 
this way, there are residuals between the state vectors and 
the measurements, which can be used to eliminate the accu-
mulative errors caused by measurement preprocessing.

Each sensor has the residual term of its own, which is 
associated with the variables to be estimated and the meas-
urements obtained in the preprocessing model. The visual 
and IMU residuals are the same as VINS-Mono (Qin et al. 
2018), and we analyze the odometer residuals and planar 
residuals in detail. According to the constraints, we can con-
struct the factor map as Fig. 2. We can find that the visual 
factor constraints multiple robot poses, feature locations, 
velocity, IMU bias and extrinsic parameters between IMU 
and camera. The IMU factor constraints two consecutive 

(15)

min
X

�
‖�p −�pX‖2 +

�
k∈F

‖�B(�̂bkbk+1 ,X)‖2∑bk
bk+1

+
�
k∈F

‖�O(�̂okok+1 ,X)‖2∑ok
ok+1

+
�
l∈L

�
j∈Fl

𝜌(‖�C(�̂cj,l,X)‖2∑cj ,l

) +
�
k∈F

‖�pl‖2∑
pl

�
,
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robot poses, velocity and IMU bias. The odometer factor 
also constraints two consecutive robot poses. The planar fac-
tor constraints its own pose individually.

6.2.1 � Visual residuals

For each detected feature in the sliding window, we calculate 
the reprojection errors by projecting the feature pixel coor-
dinates to a unit sphere. First, we can find the first frame i 
and other frames in which the lth feature appears. Then we 
reproject the lth feature pixel coordinates of both the first 
frame i and the frame j onto the unit sphere of frame j to 
calculate the residual term of the lth feature in the frame j.

where [x̂cj , ŷcj , ẑcj ]
T is the reprojection result of the lth feature 

from the frame j, [xcj , ycj , zcj , 1]
T is the reprojection result of 

the lth feature from the frame i correspondingly. �−1
c

 means 
that project pixel coordinates into unit sphere using intrinsic 
parameters, �l is the inverse depth and 1

�l
 is the real depth of 

the lth feature, which helps transform the three-dimensional 
coordinates into the real world. In order to simplify the com-
putation, we also use transformation matrix � to present the 
rotation and translation, and use (.)H to expand three-dimen-
sional coordinates to homogeneous coordinates 
formulation.

(16)�C(�̂cj,l,X) =

⎡⎢⎢⎢⎣

x̂cj − xcj
ŷcj − ycj
ẑcj − zcj

⎤⎥⎥⎥⎦
,

(17)

⎡⎢⎢⎢⎣

x̂cj
ŷcj
ẑcj

⎤⎥⎥⎥⎦
=

1

𝜆l
𝜋−1
c

�
û
cj

l

v̂
cj

l

�
,

⎡
⎢⎢⎢⎢⎣

xcj
ycj
zcj
1

⎤
⎥⎥⎥⎥⎦

= �C
B
�
bj
w�

w
bi
�B
C

�
1

𝜆l
𝜋−1
c

�
û
ci
l

v̂
ci
l

��

H

,

6.2.2 � IMU residuals

The residual of IMU measurements in the sliding window 
can be defined as:

where ��bk
bk+1

 , ��bk
bk+1

 , ��bk
bk+1

 are the translation, velocity and 
rotation error term between measurement and state vector in 
the two consecutive frames bk and bk+1 . The accelerometer 
and gyroscope bias in the adjacent two frames should be the 
same. log(.)∨ is the logarithmic mapping from Lie group 
��(3) to Lie algebra ��(3) , which means the transformation 
from the rotation matrix to the rotation vector.

6.2.3 � Odometer residuals

The residual of odometer is associated with the preintegra-
tion after preprocessing and the rotation and translation term 
in the state vector.

(18)

�B(�̂
bk
bk+1

,X) =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝛿�
bk
bk+1

𝛿�
bk
bk+1

𝛿�
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bk+1

𝛿�a
𝛿�g

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

�
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w (�

w
bk+1

−�w
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+

1

2
�w𝛥t2

k
− �w
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𝛥tk) − �̂
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bk+1

�
bk
w (�

w
bk+1

+ �w𝛥tk − �w
bk
) − �̂

bk
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log(�
bk
w �

w
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�̂
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)∨

�abk+1 − �abk
�gbk+1 − �gbk

⎤⎥⎥⎥⎥⎥⎥⎦

,

(19)

�O(�̂
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,X) =

[
𝛿�
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𝛿�
ok
ok+1

]

=

[
�
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w (�

w
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−�w
bk
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O
+ �
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w �

w
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�B
O
− �̂
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log(�O
B
�

bk
w �

w
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�B
O
�̂
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)∨

]
,

Fig. 2   The factor map that 
describes the optimization. 
The circles represent states to 
be estimated, and the squares 
represent the constrained edges 
derived by measurements. Each 
square constraints any number 
of states
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where �̂okok+1 and �̂ok+1
ok

 are the translation and rotation term of 
the odometer preintegration between two adjacent frames bk 
and bk+1 in the sliding window.

6.2.4 � Planar residuals

As the robot is moving on a planar ground, there is almost no 
pitch and roll angle. The translation on the vertical dimen-
sion is almost zero. Therefore, the planar residuals can be 
presented as:

where br means choosing a frame in the sliding window ran-
domly, (.)roll and (.)pitch means transforming rotation matrix 
into Euler angles firstly, then only select the roll or pitch 
angle respectively, and (.)z means only choosing translation 
in vertical direction.

6.3 � Marginalization

For the sake of meeting limited computational resources and 
the real-time requirement, the frames in the sliding window 
need to be updated continuously. Firstly, we always keep the 
latest frame in the sliding window, whether it is a keyframe 
or not. Keyframe selection depends on the algorithm men-
tioned in VINS-Mono (Qin et al. 2018). Then we update 
other frames information by determining if the second latest 
frame is a keyframe. If it is, we keep this frame in the slid-
ing window, and remove the oldest keyframe, including the 
visual, IMU and odometer measurements, as well as planar 
constraints. Otherwise, we remove the visual measurements 
and planar constraints of the second latest frame, and keep 

(20)�pl =

⎡
⎢⎢⎢⎣

(�
br
w�

w
bk
)roll

(�
br
w�

w
bk
)pitch

(−�
br
w�

w
bk
�
bk
w + �

br
w )z

⎤
⎥⎥⎥⎦
,

the IMU and odometer measurements. The process is shown 
in Fig. 3. Our marginalization strategy keeps the IMU and 
odometer measurements in the sliding window to provide 
consecutive motion information. This module is realized by 
Schur complement (Sibley et al. 2010). Firstly, the prior is 
constructed based on the marginalized measurements, and 
then we combine the prior and new measurement informa-
tion to construct a new information matrix.

7 � Experiments

In this section, we evaluate our system VIWO from two 
aspects, the trajectory accuracy and the initialization 
robustness. Our experiments are based on the mobile robot 
platform TurtleBot2 as shown in Fig. 4. The Turtlebot2 is 
equipped with a 2D scanning LiDAR (SICK LMS100), 
wheel encoder and a forward-looking global shutter camera 
integrated with an IMU (MYNTEYE D1000-IR-120/Color). 
The onboard computation resource is provided by an Intel 
i5-7300H CPU with 2.40 GHz. The specific camera provides 

Fig. 3   The Marginalization 
strategy. The sliding window is 
composed of several old key-
frames and latest two frames. 
The different scheme is adopted 
based on whether the second 
latest frame is a keyframe or 
not. The gray region is the 
measurements to be removed. 
If the oldest frame is removed, 
the corresponding measure-
ments should be marginalized. 
Otherwise, if the second latest 
frame is removed, we will keep 
the IMU and odometer meas-
urements and marginalize other 
information

Fig. 4   The mobile robot platform
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not only 640 × 480 resolution gray images at 10 Hz, but also 
the IMU measurements at 200 Hz, with wheel encoder pro-
viding the odometer measurements at 20 Hz.

We conduct experiments under several indoor low-tex-
ture scenes such as corridor and lobby. And we collect the 
data of six sequences: sequence01 to sequence04 that the 
robot moves along straight lines and pure rotation most of 
the time, sequence05 that the robot moves along circular 
arcs and sequence06 that the robot moves freely. The linear 
velocity is 0.15 m/s in all sequences and the yaw angular 
velocity is 0.15 rad/s in sequence01 to sequence05. Besides, 
the trajectory ground truth is obtained by GMapping algo-
rithm (Grisetti et al. 2005, 2007) based on the 2D scanning 
LiDAR and wheel encoder measurements, and the result 
grid map is shown in Fig. 5.

We design two groups of experiments to evaluate the 
trajectory accuracy and the effect of the initialization per-
formance respectively. The first experiment focuses on 
the trajectory accuracy. We compare our system with the 

state-of-the-art algorithm and odometer-only measurements. 
The second experiment focuses on the effect of initialization 
method. We perform our initialization method in multiple 
time periods and calculate the average time and average tra-
jectory accuracy of our method and VINS-Mono (Qin et al. 
2018).

7.1 � Evaluation of trajectory accuracy

We compare our system with the open source method VINS-
Mono (Qin et al. 2018) and Wheel Encoder (odometer-only 
measurements), and calculate their trajectory accuracy. 
Table 1 shows the root mean square error (RMSE) of ATE 
(Sturm et al. 2012) from sequence01 to sequence06. In addi-
tion, we compare the trajectory accuracy in the x–y, z and 
x–y–z directions. We find that the x–y plane trajectory accu-
racy from our approach is improved dramatically than VIO 
and odometer-only method. Furthermore, the result shows 

Fig. 5   The grid map from 
GMapping algorithm

Table 1   RMSE (in meters) for 
trajectory accuracy of sequences

Bold values in each line indicate the minimum RMSE in x–y, z, x–y–z respectively

VINS-Mono Wheel encoder Our system

x–y z x–y–z x–y z x–y–z x–y z x–y–z

seq01 (37.22 m) 0.70 0.08 0.71 0.30 0.04 0.33 0.29 0.04 0.30
seq02 (55.85 m) 6.13 0.04 6.13 2.10 0.04 2.14 1.10 0.03 1.10
seq03 (16.62 m) 0.74 0.05 0.74 0.30 0.16 0.34 0.15 0.14 0.20
seq04 (28.21 m) 0.78 0.35 0.78 0.89 0.26 0.93 0.27 0.21 0.27
seq05 (31.64 m) 1.71 0.03 1.71 0.37 0.02 0.38 0.03 0.01 0.03
seq06 (19.48 m) 0.43 0.05 0.44 0.27 0.04 0.27 0.10 0.03 0.10
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that planar motion constraints also reduce the errors in the 
z direction.

As shown in Fig. 6, the whole trajectory results from dif-
ferent approaches are displayed intuitively. We can discover 
that although the odometer-only method has accumulated 
errors, absolute metric scale still achieved. The reason is 
that VINS-Mono (Qin et al. 2018) suffers from scale inac-
curacy seriously, but has well-performed trajectory shape in 
general. The results demonstrate that our system has higher 
trajectory accuracy as a result of combining the advantages 
of the existing approaches.

7.2 � Initialization

In order to illustrate the experiment results of initialization, 
we propose two criteria: time required to complete the ini-
tialization and the trajectory accuracy during a period of 
time after initialization. Besides, the back-end optimization 
and marginalization are kept consistent by tightly coupling 
the visual, IMU and odometer measurements in this paper. 
For each sequence, we set the beginning time as multiples 
of 30 s, and count the time required to finish the initializa-
tion. After the initialization, we record the trajectory data 
in the next 30 s.

We compare the initialization approach proposed in this 
paper with the method in VINS-Mono (Qin et al. 2018). 
The average results for each sequence are shown in Fig. 7. 
We observe that not only the average time required for 
initialization, but also the trajectory accuracy in the 30 s 
after initialization is improved.

For each sequence, as shown in Table 2, the average 
initialization time for our method is less than VINS-Mono 
(Qin et al. 2018). And at some moment, such as 60 and 
120 s for sequence05, the initialization time required in 
Qin et al. (2018) is longer than 10 s, but all the time dura-
tions of our method are less than 10 s, which means that 
our method is more stable and faster.

Table 3 demonstrates the trajectory accuracy from the 
x–y–z direction during the 30 s after initialization. There 
are three empty results because their trajectories fail to 
converge, because the initialization method in VINS-Mono 
(Qin et al. 2018) requires generic 3D motion. On the con-
trary, the trajectories after the initialization method in this 
paper all succeed to converge and has lower errors, which 
means more robustness.

Fig. 6   The trajectory of the proposed method, odometer-only measurements, VINS-Mono and ground truth from GMapping algorithm
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Fig. 7   The average time (s) 
required for initialization and 
the average RMSE (m) in 
x–y–z direction in the 30 s after 
initialization

Table 2   Time (in seconds) 
required to finish initialization

Bold values indicate the average time required to finish initialization

Start time (s) 30 60 90 120 150 180 210 Average

seq01 VINS-Mono 3.84 2.45 3.16 4.33 2.43 3.31 2.52 3.14
Our system 3.81 2.44 2.69 4.33 2.39 3.28 2.49 3.06

seq02 VINS-Mono 3.82 1.88 5.87 2.43 3.24 2.55 4.76 3.51
Our system 3.86 2.21 4.69 2.32 3.27 2.56 4.53 3.35

seq03 VINS-Mono 4.67 9.30 4.04 7.77 6.07 6.37
Our system 4.38 9.05 4.03 7.72 3.82 5.80

seq04 VINS-Mono 3.68 3.39 3.65 5.36 8.62 9.13 5.64
Our system 3.34 3.54 3.67 5.89 8.39 6.55 5.23

seq05 VINS-Mono 7.21 12.79 6.55 12.15 1.68 2.10 7.08
Our system 4.74 3.32 2.78 6.18 1.48 2.00 3.42

seq06 VINS-Mono 2.16 5.46 4.93 4.75 5.36 4.53
Our system 2.17 5.48 4.86 4.28 5.18 4.39

Table 3   RMSE (in meters) for 
trajectory accuracy in the 30 s 
after initialization

Bold values indicate the average time required to finish initialization

Start time (s) 30 60 90 120 150 180 210 Average

seq01 VINS-Mono 0.23 0.60 0.76 0.36 – 0.39 0.31 0.44
Our system 0.18 0.16 0.19 0.30 0.15 0.29 0.28 0.22

seq02 VINS-Mono 0.39 2.09 1.60 0.54 – 2.95 2.32 1.65
Our system 0.36 2.09 1.07 0.48 0.21 3.58 1.52 1.33

seq03 VINS-Mono 0.23 – 0.17 0.37 0.30 0.27
Our system 0.21 0.17 0.04 0.38 0.28 0.21

seq04 VINS-Mono 0.51 0.89 1.27 0.67 0.16 0.30 0.63
Our system 0.12 0.88 0.83 0.08 0.20 0.13 0.39

seq05 VINS-Mono 0.24 0.33 0.72 0.56 0.25 0.33 0.41
Our system 0.12 0.11 0.32 0.16 0.10 0.07 0.15

seq06 VINS-Mono 0.43 0.18 0.13 0.27 0.39 0.28
Our system 0.03 0.04 0.03 0.10 0.35 0.11



286	 Y. Niu et al.

1 3

8 � Conclusion

In this paper, we propose a VIWO system that tightly cou-
ples the measurements of camera, IMU and wheel encoder 
to provide robust and accurate robot poses. We first deal with 
the accumulated slippage errors using the kinematic motion 
scheme with the preintegration model and noise propagation 
model. Then, we propose a robust and the novel initializa-
tion method, improve the sliding window update strategy 
and reduce the computational overhead. We implement a 
prototype and several experiments demonstrating that our 
system can achieve robust and accurate pose estimation, in 
terms of the scale, orientation and location, compared with 
the state-of-the-art.
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