
Vol:.(1234567890)

CCF Transactions on Pervasive Computing and Interaction (2019) 1:190–203
https://doi.org/10.1007/s42486-019-00013-2

1 3

REGULAR PAPER

Exploring how software developers work with mention bot in GitHub

Zhenhui Peng1  · Xiaojuan Ma1

Received: 27 May 2019 / Accepted: 29 August 2019 / Published online: 5 September 2019
© China Computer Federation (CCF) 2019

Abstract
Recently, major software development platforms have started to provide automatic reviewer recommendation (ARR) services
for pull requests to improve collaborative coding review process. However, the user experience of ARR is under-investigated.
In this paper, we use a two-stage mixed-methods approach to study how software developers perceive and work with the
Facebook mention bot, one of the most popular ARR bots in GitHub. Specifically, in Stage I, we conduct archival analysis
on projects employing mention bot and a user survey to investigate bot performance. A year later, in Stage II, we revisit these
projects and conduct additional surveys and interviews with three user groups: project owners, contributors and reviewers.
Results show that developers appreciate mention bot saving their efforts, but are bothered by its unstable setting and unbal-
anced workload allocation. We conclude with design considerations for improving ARR services.

Keywords  Automatic reviewer recommendation services · Mixed-methods · User experience · Software development
platform

1  Introduction

More and more developers work collectively on software
development projects in online platforms such as GitHub.
When contributors of a project push their changes of the
code to the project repository, pull requests (PRs) are issued
and they must be reviewed and approved before the new
code gets merged into the codebase (Fig. 1). To maintain
the flow of project development, there is a pressing demand
for timely, qualified PR reviews (Yu et al. 2016). According
to a survey in 2014, 15% of the contributors complain that
their pull requests hardly get a prompt feedback (Gousios
et al. 2016a). It has always been a challenge assigning pull
requests to appropriate reviewers (Balachandran 2013). On
the one hand, although contributors can propose reviewers in
their PRs, many of them, especially those new to a project,
have little idea of who may be qualified and willing to review
their code (Xia et al. 2015). On the other hand, reviewers
have limited time and capacity to handle the large quantity
of PRs (Gousios et al. 2015; Pham et al. 2013). To improve
the efficiency of collaborative code review process, some

developers introduce bots that provide automatic reviewer
recommendation (ARR) service into their projects. For
instance, Balachandran (2013) implements “ReviewBot”
that shortlists potential reviewers by code change history,
and then selects the most appropriate reviewer using code
review history. Recently, major software development plat-
forms start to provide their own ARR services for users.
For example, developers in GitHub with write access to
a project’s repository can request reviews from suggested
developers based on git blame data (i.e., each line of the file
that being revised) (Github 2017b).

Existing research on ARR services mainly focus on the
performance in terms of recommendation accuracy (Jiang
et al. 2015; Yu et al. 2016; Zanjani et al. 2016; Fejzer et al.
2018). However, the user experience of and interaction
among different stakeholders involved in the process are
under-investigated (Fig. 1). In particular, little work has
looked into (1) how developers perceive and work with ARR
in practice, and (2) what are the most critical needs for dif-
ferent types of users involved in ARR services. To fill this
gap, we conduct a case study on Facebook mention bot, an
ARR bot active in GitHub from October 2015 to April 2018,
as a lens to gain insights into a better design of ARR services
in collaborative software development platforms.

In this paper, we use a two-stage mixed-methods approach
to address the two questions mentioned above. In Stage I

 *	 Zhenhui Peng
	 zpengab@connect.ust.hk

1	 Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong

http://orcid.org/0000-0002-5700-3136
http://crossmark.crossref.org/dialog/?doi=10.1007/s42486-019-00013-2&domain=pdf

191Exploring how software developers work with mention bot in GitHub﻿	

1 3

(2015.11 to 2016.06), we conduct archival analysis on 155
GitHub projects that employed Facebook mention bot at
that time. More specifically, for each project, we compare
the response rate and response time of pull requests with
and without reviewers suggested by mention bot, to assess
the effectiveness and efficiency of this ARR bot in practice.
We further analyze comments related to mention bot inside
these projects and conduct a survey with 52 mention bot
users to explore user needs. In Stage II (2016.07 to 2017.08),
we revisit these projects and analyze new user comments
emerged within the year to see if user needs identified in
Stage I are met. To gain more in-depth understanding of why
developers use/do not use mention bot and what they expect
from an ARR service, we divide the ARR users into three
groups: project owners, contributors, and reviewers. Then
we conduct an additional survey with 36 valid responses
and interview six developers in GitHub to explore the needs
of each group. Results of the two-stage investigation show
that developers appreciate mention bot saving their efforts,
but different user groups have different demands for ARR
services, i.e., simplicity and stability needed by project own-
ers, transparency needed by contributors, while selectivity
needed by reviewers. We summarize our findings into con-
siderations for future ARR services design.

2 � Background and related work

In this section, we first introduce the concepts of pull request
(PR) and review process in GitHub, then we summarize the
mechanism of some existing ARR services.

2.1 � Pull request and review process in GitHub

The pull-based development is the latest model of distrib-
uted software development (Gousios et al. 2014). To receive
external contributions, repositories are shared by fork (i.e.,
clone) and modified by PRs. Normally there are three kinds
of developers involving in the pull request process:

•	 Project owners who possess PRs in their projects.
•	 Contributors who submit PRs that need reviews.
•	 Reviewers who help to review PRs.

The pull request process is described in Fig. 1. Contribu-
tors fork a master branch and commit changes to their local
branches (Gousios et al. 2014, 2016b, 2015). To make con-
tributions to the master branch, contributors submit a set
of changes by creating a PR. The owners inspect the PR
and project owners decide whether to merge the changes or
not. During this process, the project owners, reviewers and
contributors usually need to discuss the proposed changes.
In the end, the PR is closed.

After a pull request is opened, anyone with read access
can review and comment on the changes it proposes. GitHub
allows developers to comment on the changes proposed
in pull requests, approve the changes, or request further
changes before the pull request is merged.

When PRs are submitted, they are intended to be reviewed
within a short period of time. However, in reality, owners in
popular projects receive too many PRs. They have difficul-
ties in reviewing these PRs by themselves or identifying
other appropriate reviewers for them (Balachandran 2013;
Gousios et al. 2015; Jiang et al. 2015; Thongtanunam et al.
2015; Tsay et al. 2014; Xia et al. 2015; Yu et al. 2015; Yu
et al. 2016; Zanjani et al. 2016).

2.2 � Automatic reviewer recommendation for pull
requests

To reduce project owners’ efforts, some researchers have pro-
posed automatic reviewer recommendation (ARR) services
(Balachandran 2013; Jiang et al. 2015; Thongtanunam et al.
2015; Xia et al. 2015; Yu et al. 2016; Zanjani et al. 2016).
As the key of any review is context and change understand-
ing (Bacchelli and Bird 2013), these ARR services intend to
bring in reviewers who are qualified for the PRs and willing
to help. They normally use historical information of code
change and review in order to identify appropriate reviewers

Fig. 1   GitHub branch-based
workflow (GitHub 2013)

192	 Z. Peng, X. Ma

1 3

(Balachandran 2013; Jiang et al. 2015; Thongtanunam et al.
2015; Xia et al. 2015; Yu et al. 2016; Zanjani et al. 2016). The
“ReviewBot” proposed by Balachandran shortlists potential
reviewers by blame information, and then selects the most
appropriate reviewer who has modified the related code sec-
tions most (Balachandran 2013). Thongtanunam et al. (2015)
proposed “RevFinder ” which recommends reviewers not
only based on code review history but also the similarity of
file paths. Then, “Tie” was proposed to enhance “RevFinder”
by using different similarity measures for file paths and tex-
tual information in pull requests (Xia et al. 2015). Jiang et al.
(2015) developed “CoreDevRec” to train a prediction model
using a support vector machine. This model uses three fea-
tures, which are file path, social interaction between reviewers
and contributors, and activeness of reviewers. Profiles of the
developers are also used for reviewer recommendations. For
example, Rahman et al. (2016) proposed to use the experience
of a developer in certain specialized technologies associated
with a PR in addition to the cross-project experience to deter-
mine the expertise as a potential code reviewer. The experi-
ment on their dataset show that this technique can achieve over
85% recommendation accuracy. Fejzer et al. (2018) employed
a similarity function between programmers’ profiles and
change proposals to be reviewed to give recommendations,
and they obtained improved results in terms of classification
metrics and performance. A review of different PR reviewer
recommendation techniques can be found in Badampudi et al.
(2019).

While the above ARR services are outside tools of the soft-
ware development platforms, GitHub has provided their own
ARR services. The “CODEOWNERS file” (Github 2017a) is
used to define individuals or teams that are responsible for the
code in a repository. These developers will be automatically
requested for review if someone modifies the code they own.
The “suggested reviewer” feature (Github 2017b) can auto-
matically suggest reviewers based on git blame data. Every
time a PR is submitted, the organization members, repository
owners and collaborators can see the suggested reviewers in
the right sidebar of the PR and they can decide whether to
request reviews from these reviewers or not.

However, little work addresses how software developers
perceive and work with these ARR services in practice.
Many factors could affect the efficiency of these services,
as suggested by works that explore user experience of

recommendation services in the domains of music, digi-
tal cameras (Chen et al. 2013; Ferwerda et al. 2015; Lee
et al. 2015; Sinha and Swearingen 2002; Stolze and Nart
2004). For example, Sinha and Swearingen (2002) studied
the role of transparency in music recommender systems.
Stolze and Nart (2004) found that compared with the fea-
ture-oriented recommendation, needs-oriented recommen-
dation for digital cameras was more helpful. Chen et al.
(2013) studied how personality influences users’ need for
recommendation diversity. Ferwerda et al. (2015) tested
that the user personality affected their ways of choosing
music. However, the methods to study the user experience
in above scenarios only referred to only one specific aspect
or no more than two user groups. It is still a challenge
to study user experience in the domain of ARR service
for online software development platforms, which might
involve three kinds of user groups (project owner, con-
tributor and reviewer) in.

2.3 � Facebook mention bot

Facebook mention bot can recommend any developers to
be reviewers using two heuristics: (1) If a line was deleted
or modified, the person that last touched that line is likely
to care about this pull request. (2) If a person last touched
many lines in the file where the change was made, he may
want to be notified (Facebook 2015).

Since its launch in October 2015, mention bot had
served for 205 GitHub projects and handled 12,060 pull
requests up to June 2016. owners of GitHub projects can
deploy the mention bot using a webhook service (Web-
hooks 2017) without any extra setting. Once the mention
bot is employed in a project, a recommendation com-
ment is added to the newly made pull requests as shown
in Fig. 2. By default, mention bot will straightly mention
its recommended reviewers after the PR is created, but
project owners can manually personalize the bot by adding
a “.mention-bot” file to the base directory of the reposi-
tory (Facebook 2015). For instance, they can configure
some recommendation and notification rules such as the
maximum number of candidates for recommendations,
the message from mention bot and the blacklist for some
reviewers.

Fig. 2   An example of the men-
tion bot comments (Facebook
2015)

193Exploring how software developers work with mention bot in GitHub﻿	

1 3

3 � Research method overview

In this section, we first introduce the facebook men-
tion bot, and then present our two-stage mixed-methods
approach.

3.1 � Facebook mention bot

In this work, we use mention bot developed by facebook as
a lens to look into how developers work with it in practice
and what are the critical needs for different stakeholders.
Facebook mention bot can recommend any developers to
be reviewers using two heuristics: (1) if a line was deleted
or modified, the person that last touched that line is likely
to care about this pull request. (2) If a person last touched
many lines in the file where the change was made, he may
want to be notified (Facebook 2015).

Since its launch in October 2015, mention-bot had served
for 205 GitHub projects and handled 12,060 pull requests
up to June 2016. owners of GitHub projects can deploy the
mention-bot using a webhook service (Webhooks 2017)
without any extra setting. Once the mention-bot is employed
in a project, a recommendation comment is added to the
newly made pull requests as shown in Fig. 2. By default,
mention-bot will straightly mention its recommended
reviewers after the PR is created, but project owners can
manually personalize the bot by adding a “.mention-bot”
file to the base directory of the repository (Facebook 2015).
For instance, they can configure some recommendation and
notification rules such as the maximum number of candi-
dates for recommendations, the message from mention bot
and the blacklist for some reviewers.

3.2 � Two‑stage mixed‑methods approach

To better explore how software developers perceive and
work with Facebook mention-bot overtime, we carry out
our research with archival data, survey and interview in two
stages. In the first stage, we analyze 205 projects that employ
mention bot, investigate 53 issue comments about mention-
bot, and conduct a survey with 52 mention-bot users. In this
stage, we focus on mention bot’s performance in practice
during a certain period (from November 2015 to June 2016).
By analyzing the pull requests in these projects, we measure

the response rate and the response time of the recommended
reviewers. We use the issue comments to investigate user
needs for mention-bot, while the survey is used to learn how
users perceive its usefulness. We conclude with three poten-
tial features to improve mention bot and address user needs
at the end of Stage I. In the second stage, we revisit these
projects and analyze another 90 related comments emerged
within this year to see if user needs identified in Stage I are
met. Furthermore, to gain more in-depth understanding of
why people use/do not use mention bot and what they expect
from an ARR service, we conduct a survey and acquire 34
valid responses from three user groups, i.e., project owners,
contributors and reviewers, and then interview six develop-
ers. Then we explore factors critical to the user experience
of ARR services for each user group. Noticed that above
research methods might conflict with or support each other,
we then integrate our results of two stages to discuss how to
provide better user experience in automatic reviewer recom-
mendation services.

4 � Stage I

4.1 � Research setting

4.1.1 � Data collection

In Stage I, we track the public activities of Facebook men-
tion bot up to June 2016 and identify 205 projects in GitHub
that employ this bot. We use GitHub API (GitHub 2016)
to gather their properties, pull requests and issues. Among
these projects, we exclude the projects that have less than
four reviewer candidates (i.e., the total number of contribu-
tors in the project), since the mention bot normally recom-
mends up to three candidates. We further exclude the pro-
jects that have not received any external contribution (i.e.,
pull requests made by external contributors). According
to the literature, a reviewer identification task can be chal-
lenged with external contributions (Gousios et al. 2015; Tsay
et al. 2014; Yu et al. 2015). Finally, we use 155 projects for
our investigation.

We exclude the following pull requests: (1) pull requests
made by project owners and merged into a master branch
without any review. (2) Pull requests made by other bots.
(3) Pull requests not closed. In total, we identify 64,937 pull

Table 1   Properties of projects
used in our archival analysis

194	 Z. Peng, X. Ma

1 3

requests from the 155 projects. Among them, the mention
bot is called in 9413 pull requests while not being used in
the rest.

Table 1 represents the properties of the 155 projects in
our dataset up to June 30th, 2016. Their average develop-
ment period is about 28 months (SD = 21.38). The latest
revisions of the projects have approximately 58K lines of
source code on average excluding whitespace and comments
(SD = 124.71K). The average numbers of commits and pull
requests in total are around 2863 (SD = 7953.35) and 413
(SD = 1250.60) respectively for each project.

We extract 258 issue comments that contain the keyword,
“mention bot” in the original 205 projects. To avoid bias,
we exclude 15 issue comments from the two projects that
develop and test the mention bot. Through manual inspec-
tion, we finally identify 53 issue comments that express
the likeability of the mention bot (Table 2). There are 25
positive comments, 20 negative comments and eight neutral
comments that give suggestions.

4.1.2 � Survey

In Stage I, we identify 2467 developers in GitHub who make
or review the pull requests that call Facebook mention bot.
Among them, 1445 developers post their email addresses on
GitHub profiles or personal web pages. We advertise for our
survey to these developers by emails. To get more responses,
we also invite them to distribute the survey to their commu-
nities. In total, we receive 52 responses.

Our survey consists of five questions about the perceived
usefulness and likeability of Facebook mention bot. The first
question asks if mention bot recommendations are appropri-
ate. We use a 5-point Likert scale to measure the appropri-
ateness of the mention bot recommendations. In the next
question, we measure the perceived reduction in response
time and efforts after deploying the mention bot. We provide
four statements regarding this aspect and ask the respond-
ents about their level of agreement using a 5-point Likert
scale. The first two statements represent whether participants
receive responses faster or provide a faster response when
the mention bot is involved. The other two statements are to
examine whether the participants can save the efforts spent
on identifying proper reviewers or exploring pull requests
using the mention bot. The rest three questions ask about the

likeability of the mention bot. Specifically, we use a 5-point
Likert scale to measure how much the participants like the
mention bot. Then, we offer the four options that correspond
to the “Reviewer recommendation”, “Automatic notifica-
tion”, “Enable/disable notification for certain PRs/people”
and “Message customization” features of the mention bot.
We ask the participants to select one or multiple favorite
features if they respond positively to the previous question.
Finally, a yes–no question asks if they would continue using
the mention bot.

4.1.3 � Performance evaluation methods

To understand what kind of benefits a reviewer recommen-
dation service can provide, we first technically measure
mention bot’s performance by response rate and response
time of recommended reviewers in practice.

In our work, we measure response rate rather than top-k
accuracy as in other works (Balachandran 2013; Jiang et al.
2015; Thongtanunam et al. 2015; Xia et al. 2015) because
contributors concern about whether there is any response
from recommended reviewers. If the ARR service can cor-
rectly recommend a reviewer who is interested in working
on the PR even he or she might not work it out, it still does
a good job. Response rate (Eq. 1) represents the percentage
of pull requests whose actual reviewers are correctly rec-
ommended by Facebook mention bot. It is similar to top-k
accuracy, but we count it as a hit if any of the recommended
developers is observed in a review process.

The calculation of response rate for each project is straight-
forward. For each pull request (PR) that mention bot com-
ments on, we count it as a successful response if at least one
of the recommended reviewers show up in this PR review
process.

Response time (Eq. 2) can reflect whether mention bot
can reduce time in involving reviewers in pull requests. It
refers to the time difference between submitting a PR and the
first response made by any developer other than the submit-
ter (Yu et al. 2015; Yu et al. 2016).

To measure the response time of recommended reviewers,
for each project, we divide the pull requests into the two
groups by whether the mention bot is called, and compare
the average response time between the two groups. In detail,
we put the pull requests that call the mention bot into the
PRBot group and the rest of them into the PRNon−bot group.
After excluding the responses made by bots, we calculate
the average of the response time in each group. To precisely
calculate the average, we exclude the outliers using the

(1)Response rate =

∑
r∈R Hit(r, Response)

�R�
× 100%.

(2)Response time = TFirstResponse − TSubmitPR

Table 2   The number of issues
comments that show the
positive, negative and neural
evaluations of the mention bot

Likability No. of
issue com-
ments

Positive 25
Negative 20
Neural 8

195Exploring how software developers work with mention bot in GitHub﻿	

1 3

interquartile range (IQR) in Box-and-Whisker plots (Hoa-
glin et al. 1986).

4.2 � Findings

4.2.1 � Performance of mention bot

Overall the average of the response rate in the 155 projects
is about 75.37% (SD = 26.92%). For the response time, we
found that the it is reduced in 75 out of the 155 projects
(about 48.4%) when deploying the mention bot. However,
the response time rather increase in the rest of the projects.

We further analyze the change in the response time using
Mann–Whitney–Wilcoxon test. Table 3 shows the compari-
son between the response time in the PRBot and PRNon−bot
groups. When the mention bot is deployed, the response time
in the 25 projects is significantly reduced while the response
time in the 6 projects is significantly increased. In the rest of
the projects, there is no significant time difference between
the two groups. We then randomly sample pull requests that
do not employ the mention bot from the six projects whose
response time significantly increased ( PRNon−bot < PRBot ).
The average response time is about 1.7 h (SD = 5.14).
However, in the 25 projects with a significant decrease in
response time ( PRNon−bo > PRBot ), the average response time
is around 9.45 h (SD = 74.01). This result implies that men-
tion bot is more likely to reduce the response time in less
active projects.

In our survey, we evaluate developers’ perceived useful-
ness and likeability of mention bot. Figure 3a shows the

survey results of the first question that asks the appropriate-
ness of Facebook mention bot recommendations. About 75%
of the participants express positive responses with strongly
agree or agree. In the second question, the first two state-
ments ask whether the participants could save time when
using the mention bot. As shown in Fig. 3b, c, 50–52% of
the participants strongly agree or agree with the statements
while 36.5–38.5% of the participants neither agree nor disa-
gree with them. The rest 11.5% of the participants strongly
disagree or disagree with the time benefit from the mention
bot.

The last two statements in the second question ask if the
participants could reduce efforts with the mention bot. Over-
all, compared to the responses for the time reduction, there
are more positive and negative responses but less neutral
responses. As described in Fig. 3d, e, 46.2–71.1% of the par-
ticipants give us positive responses (strongly agree or agree)
while 13.5–28.8% of them reply with the neutral (neither
agree nor disagree). 15.4–25% of the participants show the
negative responses (strongly disagree or disagree).

Interestingly, about 20% of the participants respond that
the mention bot is useful to save the efforts for identifying
proper reviewers but not helpful to reduce the time spent in
this process. These results may imply that the effort reduc-
tion in identifying reviewers is perceived as the key benefit
that mention bot provides for developers.

In the survey, we ask the participants whether they like
mention bot and whether they would continue using it. The
results show that 73% of the participants strongly like or
like the service and 84.6% of the participants would con-
tinue using it, which suggests that users are positive about
mention bot.

4.2.2 � User needs for mention bot

In our survey, we ask the participants to indicate their level
of agreements with mention bot’s features: “Reviewer rec-
ommendation”, “Automatic notification”, “Enable/dis-
able notification for certain PRs/people” and “Message

Table 3   We compared the response time in the PR
Bot

 and PR
Non−bot

groups using Mann–Whitney–Wilcoxon test

Response time difference No. of projects

PR
Non-bot

> PR
Bot

 ( p < 0.05) 25
PR

Non-bot
< PR

Bot
 ( p < 0.05) 6

No significant difference 124

Fig. 3   Participants indicate
their level of agreement with
following statements: a I think
the recommendations made by
the mention bot are appropriate.
b I receive faster responses from
reviewers using mention bot. c I
respond faster to review request
sent through the mention bot.
d Using the mention bot saves
my efforts to identify proper
reviewers. e Using the mention
bot saves my efforts to explore
PRs

196	 Z. Peng, X. Ma

1 3

customization”. Figure 4 shows the result from the survey.
The most favorite feature is the “Reviewer recommenda-
tion” with the support from about 81.3% of the partici-
pants. The second most favorite feature is the “Automatic
notification” which receives votes from approximately
60.4% of the respondents. The other two features, “Enable/
disable notification for PRs/people” and “Message cus-
tomization”, are the favorites for around 37.5% and 16.7%
of the participants, respectively.

The 53 issue comments also show users’ preference
about these features. As showed in Table 2, 25 issue com-
ments contain positive feedbacks on the mention bot. The
developers seem to like its core features, including the
“Reviewer recommendation” and “Automatic notification”.
Especially, when the mention bot is shut down (erlend sh
2016), we observe developers feel inconvenient and manu-
ally send notifications to the potential reviewers:

@YYY could you take a look at this and #2645 if
you have time [...] Not sure what happened to our
friend the mentionbot. facebook/mention-bot#134.

However, in the 20 comments of negative feedbacks on
the mention bot, developers dislike the mention bot’s
insensitivity to context and unbalanced workload alloca-
tion. Some of them do not want to get further notifications
because they no longer work on the projects:

Can someone please correct the blacklist for @men-
tion-bot? I don’t want to receive any notifications
for this repository as I’m not a collaborator here.
PS: Just complaining because this is the 4th email I
receive thanks to the bot.

While the context insensitivity problem bothers the devel-
opers who no longer work on the projects, the unbalanced
workload allocation problem increases some reviewers’
workloads and discourage others:

If a person is being recommended a lot, nominate a
reviewer who wouldn’t have a super hard time.

It’s almost always recommending the same person in
our project which is not really that helpful.

The main cause of these problems lies on its manual set-
ting. In the current environment, project owners have to
manually identify developers who do not want to be noti-
fied and then add them to the blacklist. The “Enable/disable
notification for certain PRs/people” feature of mention bot
is designed to minimize the above incorrect recommenda-
tion and unbalanced workload allocation problems, but its
unfriendly designation discourages the users (only 37.5% of
the participants like it).

The results from the survey and comment analysis imply
that “Reviewer recommendation” and “Automatic notifica-
tion” are the key features of mention bot (favorite by 83.1%
and 60.4%, respectively). When these two features are bro-
ken, users will feel inconvenient. But if mention bot keeps
notifying a specific reviewer, it will increase the workload
of the reviewer. And users need a higher context sensitiv-
ity which can avoid notification to inactive developers in
the projects. Given with these results, we find the possibil-
ity that the user needs may come from three user groups.
For example, the project owners and contributors need the
“Reviewer recommendation” and “Automatic notification”
features, while the reviewers need a more balanced workload
allocation and a higher context sensitivity.

4.3 � Discussion

To address above user needs, we propose three potential fea-
tures to improve mention bot:

•	 A delay for 1–3 days before activate mention bot.
	  User comments suggest that the immediate activa-

tion of mention bot may cause redundant notifications to
developers. We explore the distribution of the response
time in the archival data. We find that about 80.34% and
89.52% of the pull requests are responded within 24 and
72 h respectively. Given this, we propose that a delay for
1–3 days before activate mention bot would help to avoid
the majority of redundant notification.

•	 Automatically disable notification for inactive developers
	  We find that the notification feature may bother devel-

opers who no longer work on the projects. Mention bot

Fig. 4   The favorite features of
the mention bot. The partici-
pants can choose one or multi-
ple features

197Exploring how software developers work with mention bot in GitHub﻿	

1 3

does have a blacklist to not notify certain developers, but
project owners need to manually identify these develop-
ers and add them to the blacklist. We propose a feature
that automatically turns off notifications if reviewer can-
didates are inactive. We suggest measuring the activeness
of developers by checking their last contribution to the
project and how much times they fail to respond to the
recommendations before. For example, if a reviewer can-
didate made the last contribution on a project six months
ago and fails to respond to the notifications three times, it
would be better to turn off the notification to this devel-
oper.

•	 Limit the maximum number of review requests to one
developer.

	  Workload balancing among recommended reviewers
can be critical. As the participants say, it is not realistic
to ask one developer to review many pull requests at a
time while others have nothing to work with. We pro-
pose that we can limit the maximum number of review
requests to one developer. For example, if one developer
receives more than five review requests within a week,
it is reasonable to lower the priority of this developer in
recommendations.

Overall, up to June 2016, Facebook mention bot performs
quite well as a reviewer recommendation service. Its rec-
ommended reviewers respond actively to the PRs (75.37%)
and it is useful to reduce the response time in less active
projects. Our user study supports that mention bot recom-
mends appropriate reviewers for the PRs (75%) and develop-
ers perceive that the effort reduction in identifying reviewers
is the key benefit provided by mention bot. And we find the
possibility that the user needs identified may come from
different user groups, which motivates us to investigate fac-
tors critical to their experience of ARR services separately
in the later stage.

5 � Stage II

Over the year, Facebook mention bot has added more con-
figuration options to benefit different users.

For example, the “delayed” feature that we proposed in
Stage I is added with default “false” setting and a “dela-
yUntil 3 days” configuration. In addition, to avoid redundant
notifications to the reviewers and provide a better recom-
mendation result for the contributors, project owners can
now filter developers and files via settings such as “require-
dOrgs”, “skipAlreadyMentionedPR”, “fileBlacklist” and
“skipTitle”. With so many attractive features added in, it is
interesting to know whether mention bot has attracted more
projects, whether developers are satisfied with the improve-
ment, and whether each of the three user groups have unmet

needs and expectations for ARR service. To answer these
questions, we conduct the second stage of our research,
starting with re-analyzing the adoption of mention bot and
investigating factors critical to the three user groups of ARR
services, i.e., project owners, contributors and reviewers,
respectively.

5.1 � Methods

5.1.1 � Archival data collection

In Stage II, we find that the official account of “mention-bot”
has been removed from GitHub so that we can not track
the mention bot’s activities in the PRs like we do in Stage I
anymore. But mention bot is still active. On the one hand,
reviewers are still notified by mention bot. On the other
hand, some developers configure mention bot by adding a
“.mention-bot” file to the base directory of the repository but
naming it in different ways, such as “jimmibot” and “salt-
jenkins” (rather than “mention-bot”). Therefore, we revisit
the 205 projects to check whether they still use mention bot
using following criteria: (1) removed: some issues explicitly
claim that the project removes mention bot. (2) Still use: the
“.mention-bot” configuration file still exists in the project
or there are issues that imply the existence of mention bot.
(3) Disappeared: the project no longer exists in GitHub. (4)
Unclear: there is no “.mention-bot” configuration file inside
the project and we cannot find any issues claiming that the
mention bot is still use or has been removed. To understand
reasons for the usage and removal of these project, we fur-
ther collect users comments about mention bot by searching
related issues in GitHub using the keyword “mention bot”.

5.1.2 � Survey and interview

To further investigate developers’ perceived usefulness of
mention bot and explore factors critical to ARR user expe-
riences and adoption, we conduct a survey with three user
groups: project owners, contributors and reviewers (see
Research Method Overview Section). We design five dif-
ferent questionnaires in our survey: (1) Project owner using
mention bot; (2) Project owner not using mention bot; (3)
Contributor using mention bot; (4) Reviewer using men-
tion bot; (5) Contributor or reviewer not using mention bot.
We design only one questionnaire for the contributor not
using mention bot and the reviewer not using mention bot
because we ask almost the same questions to investigate
their needs and expectation for ARR services. Across all
user groups, we ask respondents to rate the perceived use-
fulness and annoyance of the service as well as the efficacy
of each features of mention bot on a 5-point Likert scale (1
being the least of each measure). There are also customized
questions for each user group. For example, we ask project

198	 Z. Peng, X. Ma

1 3

owners about the reason why they (do not) deploy mention
bot; we ask contributors what they would do before issuing a
pull request and when a mention bot comments on their pull
requests; and we ask reviewers how they get pull requests to
review and what they would do if notified by mention bot.

By searching the contributors of the projects that use
mention bot now or used it before, we sent emails to over
700 potential users for invitation to survey and interview.
Noticed that software developers might act as project own-
ers, contributors or reviewers under different circumstances,
we ask the participants to fill out the surveys as much as they
could if they match the criteria and invite them to join our
interview. In total, we get 34 effective survey responses and
interview six developers through email and Google hangout.

5.2 � Findings

5.2.1 � Change on the adoption of mention bot

Through our manual check, we find that 22 projects have
removed mention bot, 30 projects still use it, 11 projects
disappear and the rest 142 projects are unclear (Table 4).
Among these 142 projects, 72 of them have no issues about
mention bot, which is unusual if mention bot serves well
in these projects. In addition, we try to identify mention-
bot-related activities in other GitHub projects between
July 2016 and August 2017 by searching “create mention
bot” and “remove mention bot” in project “Commits” log
in GitHub. Filtering out the irrelevant results, we identify
that 22 projects claim that they employ mention bot and 19
projects claim that they remove it during this period. We
can see that mention bot is not increasingly used in GitHub
during this year.

As for the searched comments, we finally identify 90
effective comments emerged within the year (from July 2016
to August 2017) that express user attitude towards mention

bot. Among these comments, 33 of them show positive
attitude toward mention bot, 26 of them are negative, and
the rest 31 are neural. We further classify these comments
based on their contents (Table 5), and identify five com-
ments specifying benefits of mention bot, nine complain
about the unbalanced workload allocation, 12 comments
reporting bugs, nine suggesting room for improvement,
and eight proposing an alternative service. We suspect that
the adoption of mention bot is greatly impaired by its bugs,
unbalanced workload allocation problem and the existence
of alternatives.

5.2.2 � Perception towards mention bot

We receive a total 34 valid responses from our survey. The
responses come from 7 project owners using mention bot,
10 project owners not using mention bot, 11 contributors
or reviewers not using mention bot, five contributors and
one reviewer using mention bot. Overall, mention bot users
“find it useful” (mean = 4.08, SD = 0.64). The project
owners employ mention bot in their projects mostly for its
“efficiency” (mean = 4.29, SD = 0.95) or “convenience”
(mean = 3.71, SD = 0.95), but not for “fun” (mean = 2.29,
SD = 1.11). With mention bot, project owners spend less
effort in “managing the pull request process” (mean = 3.71,
SD = 0.76) and can “engage developers more in the pro-
jects” (mean = 3.86, SD = 0.69). However, employing men-
tion bot does not necessarily “boost the activeness of the
projects” (mean = 3.00, SD = 1.00). After briefly explaining
the concept of mention bot to the contributors and reviewers
who have never heard of the service, 70% of them hope that
the projects they participate in would employ it. Contributors
who use mention bot do not think that they can always “get
faster response from its recommended reviewers than from
others” (mean = 3.00, SD = 0.71), or that “the suggested
reviewers certainly provide better feedback” (mean = 3.20,
SD = 1.10), or that “it improves their interaction with other
developers” (mean = 3.2, SD = 1.10). However, they do
agree that it saves their efforts in looking proper reviewers
(mean = 4, SD = 1.22), which is consistent with our find-
ings in Stage I.

Among the respondents, six software developers (I1, 2,
3, 4, 5, 6) express further interest and join our semi-struc-
tural online interview. I1 is a project owner as well as a

Table 4   Mention bot’s status in the projects in Stage II

Status Removed Still use Disap-
peared

Unclear Newly add

No. of
projects

22 30 11 142 22

Table 5   Contents showed in
some comments

Contents No. Details

Benefits 5 Automatic notification; reviewer recommendation; involve more reviews in
Workload allocation 9 The same people; aggressive notification; want to be added in blacklist
Bug 12 Configuration problem; ignore the config. file; not active
Suggestions 9 Turn it into plug-in; recommend experts; whitelist; provide some links
Alternative 8 GitHub “suggested reviewers”; CODEOWNERS; dwylbot

199Exploring how software developers work with mention bot in GitHub﻿	

1 3

current user of mention bot and I2 is a reviewer as well as
a contributor who did not hear about mention bot before
and the rest four (I3, 4, 5, 6) are project owners who used
it before but removed it later. We mainly ask them to share
their user experience with or without mention bot during
the interviews.

When we ask I3, 4, 5, 6 why they removed mention bot,
surprisingly, their answers are quite similar:

We’re not using mention bot any longer because
GitHub added the “suggested reviewers” feature which
is enough for our needs, but we found mention bot very
useful otherwise. (I3)

Compared with mention bot, the “suggested reviewers” fea-
ture in GitHub is less aggressive because it does not auto-
matically notify the reviewers but only suggests potential
reviewers to project owners who have the write access to
the PRs. It is plugged into the GitHub platform so that users
do not need to configure it by themselves and worry about
its instability. However, interviewees also commented that
“suggested reviewers” is not flexible enough , as developers
who only have read access to the PRs cannot send a request
to the suggested reviewers on their own if the project owners
are too busy to notify them. Our interviewee I1, the owner
of a big project (with 1870 contributors, 84,888 commits
and 26,576 closed PRs up to August 25, 2017), explains
why he continues to use mention bot rather than “suggested
reviewers”:

Our project is too big. The feature needs permission,
the suggested reviewers should be the member of our
project. But we have nearly 2000 contributors. We
want them all in our project, and mention bot suits
our need. (I1)

He stresses how mention bot contributes to his project:

Mention bot does improve the quality of software,
because more people review the pull request before
they are merged. A big improvement of the number of
reviews that we get.

Overall, we find that mention bot’s performance does not
meet some developers’ expectation possibly because of
its unstable settings, unbalanced workload allocation and
the existence of other ARR services, especially the better
integrated “suggested reviewers” feature of GitHub. Still,
many users value mention bot’s benefits in terms of extend-
ing reviewer pool and reducing effort in managing PRs. In
the next subsection, we present the factors essential to the
unique experience of each ARR user group.

5.2.3 � Factors critical to ARR user experiences

In our survey, we ask participants to indicate their perceived
usefulness of a list of potential features of a PR reviewer
recommendation service identified in Stage I: “Message
customization”, “Explanation of the result”, “List of rec-
ommended reviewers”, “Delayed time” and “Blacklist”. As
shown in Fig. 5, most respondents find “Explanation of the
result” and “List of recommendation reviewers” (extremely)
useful features to have (78.6% and 71.5%, respectively). In
comparison, respondents’ perception of the other three fea-
tures which already exist in mention bot is rather neutral
(50.0% for “Message customization” and 50.0% for “Delayed
time”, and 27.3% for “Blacklist”). In fact, some comments
from social media are negative about these features:

“how do I get myself blacklisted from this XXX men-
tion bot thing?”

“If the delay feature is enabled, mention bot no longer
works”

We further summarize features that matter most to project
owners, contributors and reviewers.

•	 Project owners.

1.	 Simplicity Although Facebook mention bot claims
that it can be set up easily, it has 22 configuration
options now. We find that most of the projects we
visit just keep the default setting, which disables

Fig. 5   The potential features of a reviewer recommendation service. Participants are asked to evaluate their usefulness

200	 Z. Peng, X. Ma

1 3

features that might be helpful for contributors and
reviewers such as fileBlacklist, SkipTitle and require-
dOrgs. In fact, some project owners removed men-
tion bot because of they could not configure it right:

	� The configuration added is not working, so
I just removed it since the benefit would be
minor anyways (and might annoy some peo-
ple?) Very funny. I was deleting the mention
bot webhook and accidentally found out why
it was not working. I forgot to check the events
to be sent on ‘Labeling’. Oh well.

2.	 Stability Mention bot itself is a project under con-
stant development, and thus may not function nor-
mally from time to time, which really affect the
experience if it is under heavy usage. One of our
interviewee (I4) removed it because “It stopped
working a while ago so I’ve disabled it.”. Besides,
as showed in Table 5, the bugs of mention bot
reported by 12 out of the 90 comments we collected
also discourage its usage, e.g., “Seems the complete
.mention-bot file is currently ignored”.

•	 Contributors.

3.	 Transparency According to our survey, it is not a
common practice for contributors to identify review-
ers by their own, such as “manually search and add
reviewers” (mean = 2.57, SD = 1.16) or “mention
reviewers they know” (mean = 3.00, SD = 1.03).
When mention bot comments on their PRs, although
they are inclined to “trust its recommendation”
(mean = 3.8, SD = 0.84), many contributors will
still “check its recommendation” (mean = 4.6,
SD = 0.55). But mention bot and GitHub “suggested
reviewer” feature are not transparent enough as their
results are only several user names of the review-
ers. Some contributors may want to know who is in
charge of the part that they make PR to: “Normally
I want my direct supervisor rather than those who
had modified related files to review my PRs” (I2).
The fact that “Explanation of the result” and “List
of recommended reviewers” are the most preferred
features according to our survey also suggests that
contributors want decisions made by ARR services
to be more transparent.

•	 Reviewers.

4.	 Selectivity Our respondents are somewhat con-
servative about taking on PR reviews, such as “look
for pull requests interesting to me on my own”
(mean = 3.33, SD = 1.12), “mentioned by contrib-
utors” (mean = 3.00, SD = 1.12) or “want to be

recommended by a bot” (mean = 3.33, SD = 1.00).
This may be because they are already rather occu-
pied: “I am too busy to look every email from
GitHub because it sends all information about the
update of pull requests, but actually I do not need
to review all those pull requests” (I2). I2 said that
he would like the bot to only notify him with the
PRs that really need him. These results imply that
the reviewers would not actively take on ordinary
PR reviews but want to have selectivity to only be
notified by certain kinds of PRs.

Overall, in Stage I we find that users need a better reviewer
recommendation with automatic notification as well as a
more balanced workload allocation and a higher context sen-
sitivity, while in Stage II we further explore that the simplic-
ity, stability, transparency and selectivity are critical to the
ARR experiences of different user groups. Taking all these
user needs and factors into account, we propose our design
considerations of ARR services in next section.

6 � Discussion

In this section, we present design considerations for improv-
ing ARR services, other insights and limitations of this
work.

6.1 � Design considerations for improving ARR
services

Based on findings from both stages, we propose three design
considerations that would possibly improve user experience
of ARR services.

6.1.1 � Easier configuration of ARR service for project owners

Users cannot customize the “suggested reviewers” feature
provided by GitHub, and thus it cannot adequately meet
different types of user needs. Mention bot does have many
options to deal with different situations, but its unfriendly
manual configuration process intimidates many project own-
ers who are responsible for handling the service. Since the
project owners tend to “only care about the PRs and want
the bot easily tells how its capacities are” (I1), we propose
that a better ARR service should have an easier configura-
tion process. For example, the service can have shortcuts to
easily change modes to satisfy different needs. If the pro-
ject needs more external contributions, the owner can use a
shortcut to adjust some options to invite external reviewers
to review the PRs. Besides, the service can have a log so
that project owners can easily reset it to the suitable and
stable state.

201Exploring how software developers work with mention bot in GitHub﻿	

1 3

6.1.2 � Better transparency of recommendation
for contributors

According to our survey in Stage II, contributors tend to
check on mention bot’s recommendation when it comments
on their PRs, and they call for information that can improve
their understanding of why a particular recommendation
is made. Therefore, we propose that a better ARR service
should keep their recommendation transparent to contribu-
tors, especially regarding the qualification and availability of
the suggested reviewers. For each PR, in addition to directly
naming the top few appropriate reviewers, ARR service can
provide a ranked list of all the potential reviewers for this
PR, each with a brief profile summarizing their role in the
project, specialty, recent activeness, current workload, etc.
In case contributors would like to manually select reviewers,
this list would be a good place to start.

6.1.3 � More flexible notification preference setting
for reviewers

Reviewers are bothered the most by ignorant PR review
notifications. For example, when reviewers are already
overloaded with work on the project or in real life, they do
not want to receive more review requests. Mention bot does
have some mechanisms to filter reviewers in the candidate
pool, but only project owners have the access to set the rules.
Reviewers have to contact the mangers to adjust the pool if
they would like to disengage from/reengage in the review
activities. While the automatically filtering out inactive
reviewers feature that we propose in Stage I is a potential
way to avoid unnecessary notification, and it may not be
able to respond instantly to urgent changes in availability.
Hence, we propose that a better ARR service should allow
reviewers to specify personal notification preference on their
side. Reviewers can change their status to “Do not disturb”
when occupied, declare types of PRs uninterested to them,
and set a maximum quota of PRs. Further more, for review-
ers (e.g., I2) who would love to help but are not sure of their
qualification and/or availability, ARR services may instead
recommend PRs to them according to their interests.

6.2 � Additional insights into bot usage in GitHub

Our interviewees share their positive attitude toward general
bots usage in GitHub in the interviews.

Really necessary, because there are many repeated
work to do otherwise.” (I1) “I feel most of the bots
can solve actual problems. I am positive toward these
bots and hope more and more useful bots come up. (I2)

Almost every big project that we visit for this research
involves some bot(s) in its development, such as

“facebook-github-bot” in Facebook organization, “Microsoft
Pull Request Bot” in Microsoft society and “greenkeeper
bot”. Their functions are very specific, helping with small
chores like adding labels to PRs or sending customized mes-
sages. Our interviewees hope to see a bot that can provide
all these functions in the future.

6.3 � Limitation and future work

Our work has some limitations. Some of our findings might
be unique to GitHub and we did not compare Facebook men-
tion bot with other ARR services. Our survey results come
from a small sample of developers due to the low response
rate. Therefore, our results may not represent the opinions of
the entire user group (e.g., contributors with different levels
of experiences) about reviewer recommendation services. In
the future, we plan to improve the coverage and generality
of our research, develop a user-friendly ARR service based
on the findings, and test its usefulness, usability, and user
experience in the wild. In addition, the emergence of com-
petitors of mention bot, such as GitHub “suggested review-
ers” features, indicate that a simple direct-manipulation fea-
ture rather than a chatbot could be enough. We will further
explore this point in the future.

7 � Conclusion

In this paper, we used Facebook mention bot, an automatic
reviewer recommendation (ARR) bot in GitHub, as a lens to
explore how developers work with ARR services. We used
a two-stage mixed-methods approach to investigate practi-
cal usefulness of mention bot and critical needs for differ-
ent types of users. Our Stage I investigation (June 2016)
shows that mention bot performed quite well as it can save
contributors’ effort in identifying proper reviewers, and can
achieve a 75.57% response rate among suggested reviewers
who expressed the need for a better workload allocation.
A year later in Stage II (August 2017), we do not see an
obvious increase in mention bot’s adoption, perhaps due to
its inherent problems and the existence of other ARR alter-
natives. Our survey and interview with three user groups
(project owners, contributors and reviewers) suggest that
simplicity, stability, transparency and selectivity are critical
to the user experiences of ARR services. According to these
findings, we propose a set of considerations for designing
more user-friendly ARR services.

References

Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of
modern code review. In: Proceedings of the 2013 International

202	 Z. Peng, X. Ma

1 3

Conference on Software Engineering, ICSE ’13, pp. 712–721.
IEEE Press, Piscataway (2013). http://dl.acm.org/citat​ion.
cfm?id=24867​88.24868​82

Badampudi, D., Britto, R., Unterkalmsteiner, M.: Modern code
reviews—preliminary results of a systematic mapping study. In:
Proceedings of the Evaluation and Assessment on Software Engi-
neering, EASE ’19, pp. 340–345. ACM, New York (2019). https​
://doi.org/10.1145/33190​08.33193​54

Balachandran, V.: Reducing human effort and improving quality in
peer code reviews using automatic static analysis and reviewer
recommendation. In: Proceedings of ICSE, pp. 931–940. IEEE
Press (2013)

Chen, L., Wu, W., He, L.: How personality influences users’ needs for
recommendation diversity? In: CHI ’13 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’13, pp. 829–834.
ACM, New York (2013). https​://doi.org/10.1145/24683​56.24685​
05

erlend sh: Only activate mention bot on prs without comments (2016).
https​://githu​b.com/faceb​ook/menti​on-bot/issue​s/119. Accessed
16 Sept 2016

Facebook: mention-bot (2015). https​://githu​b.com/faceb​ookar​chive​/
menti​on-bot. Accessed 23 May 2019

Fejzer, M., Przymus, P., Stencel, K.: Profile based recommendation of
code reviewers. J. Intell. Inf. Syst. 50(3), 597–619 (2018). https​
://doi.org/10.1007/s1084​4-017-0484-1

Ferwerda, B., Yang, E., Schedl, M., Tkalcic, M.: Personality traits
predict music taxonomy preferences. In: Proceedings of the 33rd
Annual ACM Conference Extended Abstracts on Human Factors
in Computing Systems, CHI EA ’15, pp. 2241–2246. ACM, New
York (2015). https​://doi.org/10.1145/27026​13.27327​54

GitHub: Understanding the github flow (2013). https​://guide​s.githu​
b.com/intro​ducti​on/flow/. Accessed 23 May 2019

GitHub: Github api v3 (2016). https​://devel​oper.githu​b.com/v3/.
Accessed 23 May 2019

GitHub: About code owners (2017a). https​://help.githu​b.com/artic​les/
about​-codeo​wners​/. Accessed 23 May 2019

Github: request review in github (2017b). https​://help.githu​b.com/artic​
les/reque​sting​-a-pull-reque​st-revie​w/. Accessed 23 May 2019

Gousios, G., Pinzger, M., Deursen, A.V.: An exploratory study of the
pull-based software development model. In: Proceedings of ICSE,
pp. 345–355. ACM, New York (2014)

Gousios, G., Zaidman, A., Storey, M.A., Van Deursen, A.: Work prac-
tices and challenges in pull-based development: the integrator’s
perspective. In: Proceedings of ICSE, pp. 358–368. IEEE Press
(2015)

Gousios, G., Storey, M.A., Bacchelli, A.: Work practices and challenges
in pull-based development: the contributor’s perspective. In: 2016
IEEE/ACM 38th International Conference on Software Engineer-
ing (ICSE), pp. 285–296 (2016a). https​://doi.org/10.1145/28847​
81.28848​26

Gousios, G., Storey, M.A., Bacchelli, A.: Work practices and chal-
lenges in pull-based development: the contributor’s perspective.
In: Proceedings of ICSE, pp. 285–296. ACM, New York (2016b)

Hoaglin, D.C., Iglewicz, B., Tukey, J.W.: Performance of some resist-
ant rules for outlier labeling. J. Am. Stat. Assoc. 81(396), 991–999
(1986)

Jiang, J., He, J.H., Chen, X.Y.: Coredevrec: automatic core member
recommendation for contribution evaluation. J. Comput. Sci.
Technol. 30(5), 998–1016 (2015)

Lee, M.K., Kusbit, D., Metsky, E., Dabbish, L.: Working with
machines: the impact of algorithmic and data-driven manage-
ment on human workers. In: Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems,
CHI ’15, pp. 1603–1612. ACM, New York (2015). https​://doi.
org/10.1145/27021​23.27025​48

Pham, R., Singer, L., Liskin, O., Filho, F.F., Schneider, K.: Creat-
ing a shared understanding of testing culture on a social coding
site. In: 2013 35th International Conference on Software Engi-
neering (ICSE), pp. 112–121 (2013). https​://doi.org/10.1109/
ICSE.2013.66065​57

Rahman, M.M., Roy, C.K., Collins, J.A.: Correct: Code reviewer rec-
ommendation in github based on cross-project and technology
experience. In: 2016 IEEE/ACM 38th International Conference on
Software Engineering Companion (ICSE-C), pp. 222–231 (2016)

Sinha, R., Swearingen, K.: The role of transparency in recommender
systems. In: CHI ’02 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’02, pp. 830–831. ACM, New York
(2002). https​://doi.org/10.1145/50644​3.50661​9

Stolze, M., Nart, F.: Well-integrated needs-oriented recommender com-
ponents regarded as helpful. In: CHI ’04 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’04, pp. 1571–
1571. ACM, New York (2004). https​://doi.org/10.1145/98592​
1.98614​7

Thongtanunam, P., Tantithamthavorn, C., Kula, R.G., Yoshida, N., Iida,
H., Matsumoto, K.i.: Who should review my code? a file location-
based code-reviewer recommendation approach for modern code
review. In: Proceedings of SANER, pp. 141–150. IEEE (2015)

Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical
factors for evaluating contribution in github. In: Proceedings of
ICSE, pp. 356–366. ACM, New York (2014)

Webhooks: webhooks (2017). https​://devel​oper.githu​b.com/webho​oks/.
Accessed 01 Sept 2017

Xia, X., Lo, D., Wang, X., Yang, X.: Who should review this change?:
putting text and file location analyses together for more accurate
recommendations. In: Proceedings of ICSME, pp. 261–270. IEEE
(2015)

Yu, Y., Wang, H., Filkov, V., Devanbu, P., Vasilescu, B.: Wait for it:
determinants of pull request evaluation latency on github. In: Pro-
ceedings of MSR, pp. 367–371. IEEE (2015)

Yu, Y., Wang, H., Yin, G., Wang, T.: Reviewer recommendation for
pull-requests in github: what can we learn from code review and
bug assignment? Inf. Softw. Technol. 74, 204–218 (2016)

Zanjani, M., Kagdi, H., Bird, C.: Automatically recommending peer
reviewers in modern code review. Trans. Softw. Eng. 42, 530–542
(2016)

http://dl.acm.org/citation.cfm?id=2486788.2486882
http://dl.acm.org/citation.cfm?id=2486788.2486882
https://doi.org/10.1145/3319008.3319354
https://doi.org/10.1145/3319008.3319354
https://doi.org/10.1145/2468356.2468505
https://doi.org/10.1145/2468356.2468505
https://github.com/facebook/mention-bot/issues/119
https://github.com/facebookarchive/mention-bot
https://github.com/facebookarchive/mention-bot
https://doi.org/10.1007/s10844-017-0484-1
https://doi.org/10.1007/s10844-017-0484-1
https://doi.org/10.1145/2702613.2732754
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://developer.github.com/v3/
https://help.github.com/articles/about-codeowners/
https://help.github.com/articles/about-codeowners/
https://help.github.com/articles/requesting-a-pull-request-review/
https://help.github.com/articles/requesting-a-pull-request-review/
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1145/2702123.2702548
https://doi.org/10.1145/2702123.2702548
https://doi.org/10.1109/ICSE.2013.6606557
https://doi.org/10.1109/ICSE.2013.6606557
https://doi.org/10.1145/506443.506619
https://doi.org/10.1145/985921.986147
https://doi.org/10.1145/985921.986147
https://developer.github.com/webhooks/

203Exploring how software developers work with mention bot in GitHub﻿	

1 3

Zhenhui Peng  is a PhD student
(Since Fall 2017) in the Depart-
ment of Computer Science and
Engineering (CSE) in Hong
Kong Univeristy of Science and
Technology (HKUST). He
majors in Human-Computer
Interaction (HCI) and is super-
vised by Dr. Xiaojuan Ma. He
got my Bachelor degree in ESE
from Nanjing University in
2017. His current research inter-
ests are in Human-Robot Interac-
tion, chatbot design and Rein-
forcement Learning.

Prof. Xiaojuan Ma  Xiaojuan Ma
is an assistant professor of
Human-Computer Interaction
(HCI) at the Department of
Computer Science and Engineer-
ing (CSE), Hong Kong Univer-
sity of Science and Technology
(HKUST). She received the
Ph.D. degree in Computer Sci-
ence at Princeton University. She
was a post-doctoral researcher at
the Human-Computer Interac-
tion Institute (HCII) of Carnegie
Mellon University (CMU), and
before that a research fellow in

the National University of Singapore (NUS) in the Information Systems
department. Before joining HKUST, she was a researcher of Human-
Computer Interaction at Noah’s Ark Lab, Huawei Tech. Investment Co.,
Ltd. in Hong Kong. Her background is in Human-Computer Interac-
tion. She is particularly interested in data-driven human-engaged AI
and Human-Robot Interaction in the domain of education, health, and
design.

	Exploring how software developers work with mention bot in GitHub
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Pull request and review process in GitHub
	2.2 Automatic reviewer recommendation for pull requests
	2.3 Facebook mention bot

	3 Research method overview
	3.1 Facebook mention bot
	3.2 Two-stage mixed-methods approach

	4 Stage I
	4.1 Research setting
	4.1.1 Data collection
	4.1.2 Survey
	4.1.3 Performance evaluation methods

	4.2 Findings
	4.2.1 Performance of mention bot
	4.2.2 User needs for mention bot

	4.3 Discussion

	5 Stage II
	5.1 Methods
	5.1.1 Archival data collection
	5.1.2 Survey and interview

	5.2 Findings
	5.2.1 Change on the adoption of mention bot
	5.2.2 Perception towards mention bot
	5.2.3 Factors critical to ARR user experiences

	6 Discussion
	6.1 Design considerations for improving ARR services
	6.1.1 Easier configuration of ARR service for project owners
	6.1.2 Better transparency of recommendation for contributors
	6.1.3 More flexible notification preference setting for reviewers

	6.2 Additional insights into bot usage in GitHub
	6.3 Limitation and future work

	7 Conclusion
	References

