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Abstract
Chlamydospore though considered as a unique and rare morphological form of Candida albicans, regulation and significance 
of chlamydosporulation is not very clear. SWATH-MS analysis of chlamydosporulation specific proteins revealed that 319 
(137-Up regulated and 182-Down regulated) proteins expressed differentially. Functional annotation showed significant 
modulations in proteins involved in cellular architecture (30), carbohydrate (29), amino acid (17), fatty acid (3), Nucleic acid 
(14), vitamins (1) metabolism as well as signaling (6), stress response (26), transport (cytoplasmic-21, mitochondrial-6 and 
nuclear-1), gene expression (transcription-12, RNA processing-6, translation-53, PTM-18), proteolysis (15) etc. Enhanced 
mannan, β1, 3-glucan and chitin contribute in thickening of cell wall while Hyr1 (218-fold) and Als3 (38.16-fold) dominates 
the cell surface chemistry of chlamydospores. In addition to ergosterol, enhanced sphingolipids, phospholipids and fatty 
acids make chlamydospore membrane more sturdy and rigid. Up-regulation of maltase (64-fold) followed by enhanced 
glycolysis and tricarboxylic acid cycle under nutrient-limiting condition is indicative of chlamydosporulation. Glyoxylate 
and fermentative pathway reported to facilitate survival of C. albicans under glucose limiting and microaerophilic condition 
was up-regulated. Enhanced biosynthesis of glutathione, trehalose homeostasis, and inhibition of NAD+ generation ,etc., 
potentiate oxidative, osmotic and nitrosative stress tolerance. Up regulation of Rsr1 (8.83-fold) and down regulation of Bcy1 
(4.20-fold), Tfs1 (negative regulator of RAS) indicates cAMP-PKA pathway activates chlamydosporulation through Efg1 
(a morphogenic regulator) in our study. In general, morpho-physiological modulations in C. albicans is a result of different 
sets of transcriptional programs that facilitate survival under nutrient and oxygen limiting condition.
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Introduction

Candida albicans, a polymorphic opportunistic pathogen 
associated with superficial to life-threatening systemic infec-
tions among immunocompromised individuals is included 
in the list of organisms with potential antibiotic resistance 
threat, recently (CDC report 2013; Kullberg and Arendrup 
2015). Morphogenic plasticity is considered as a survival 
strategy that enables C. albicans to colonize and invade host 

tissues by evading host defense mechanisms under a wide 
range of extreme micro-environments (Brown et al. 2014; 
Cutler 1991; Ernst 2000; Lim et al. 2012; Ruhnke 2006). 
Different morphological forms viz. yeast, hyphae, pseudo-
hyphe, chlamydospore, opaque cells and biofilms exhibit dif-
ferential responses towards host defense mechanisms as well 
as antifungal agents (Cutler 1991; Lim et al. 2012; Ruhnke 
2006; Tyc et al. 2014). Among these, the hyphal form is 
a prerequisite for tissue invasion and invasive candidiasis 
and biofilms on indwelling medical devices are considered 
as difficult-to-treat infections with very high mortality (Mc 
Manus and Coleman 2014; Mun et al. 2016; Neville et al. 
2015; Williams 2011). Considering the significance in viru-
lence, these morphological and growth forms were studied 
exhaustively in recent years while chlamydospore, consid-
ered as a non-virulent form is neglected by scientific com-
munity (Bottcher et al. 2016; Citiulo et al. 2009).
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Chlamydospores are thick-walled spherical cells 
(6–10 µm) considered as dormant form induced under unfa-
vorable environmental conditions like oxygen limitation 
and embedded growth in matrix (Giosa et al. 2017; Nobile 
et al. 2003; Sonneborn et al.1999). The presence of chla-
mydospores in clinical specimens is reported but it may 
be unlikely to play any role in pathogenesis (Citiulo et al. 
2009). Chlamydospores are more specialized and relatively 
rare morphological states formed to survive under harsh 
conditions (Nobile et al. 2003; Sosinska 2012). It could be 
an adaptive response towards exposure to reactive oxygen 
species of host cells or towards co-existing microorganisms 
(Berman and Sudbery 2002; Douglas et al. 2005). Chla-
mydospores are metabolically active, can germinate under 
favorable condition and produce daughter chlamydospores, 
blastospores, pseudohyphae and true hyphae (Citiulo et al. 
2009; Staib and Morschhäuser 2007). Chlamydospores thick 
wall is providing protection against the adverse micro-envi-
ronments. However, not much study is available on structure 
and composition of chlamydospore cell wall (Jansons and 
Nickerson 1970).

Though various environmental, nutritional and genetic 
factors are implicated, regulation and significance of chla-
mydospore formation are not very clear (Bottcher et al. 
2016). In present study, we have made an attempt to identify 
chlamydospore specific proteins using LC–MS/MS analy-
sis. This is the first attempt at identifying chlamydospore 
specific proteins. Proteomic analysis revealed morphophysi-
ological modulations responsible for altering cellular archi-
tecture that enables C. albicans to survive under extreme 
micro-environments.

Material and methodology

Candida albicans strain and growth condition

Candida albicans ATCC 10231 a quality control strain 
was procured from Institute of Microbial Technology 
(IMTECH), Chandigarh, India and maintained on yeast 
extract peptone dextrose (YPD) agar at 4 °C. Rice extract 
agar with 1% Tween 80 was used for chlamydospore induc-
tion. Yeast Extract Peptone Dextrose (YEPD) broth and Rice 
extract agar were purchased from Hi-media Laboratories, 
Pvt. Ltd. Mumbai (India). All the chemicals used in this 
study were purchased from Sigma-Aldrich Pvt. Ltd., Ban-
galore (India) and solvents from Qualigens and SD Fine 
Chemicals Ltd, Mumbai (India).

Induction of chlamydospores

Inoculums were prepared using C. albicans cells grown 
for 48 h at 30 °C in YEPD broth. Cells were harvested by 

centrifugation at 448 g for 2 min, washed thrice with sterile 
distilled water and re-suspended in 1 ml of sterile distilled 
water (Holmes and Shepherd 1987; Odds 1988).

Chlamydosporulation was induced using rice extract agar 
(Rice extract 1.3 g, Tween 1%, pH 7.1). In brief, sterile rice 
extract with low melting agar plates were inoculated with 
1 × 103 cells per plate (Kelly and Funigiello 1959). Plates 
were overlaid with sterile, polyethylene sheets of 7.5 cm 
diameter for anaerobiosis and invasive growth necessary for 
chlamydospores induction. Plates were wrapped with para-
film and incubated at 30 °C for 14 days (Miller et al. 1974). 
Chlamydospore formation was monitored by observing the 
plates under dissecting microscope. Chlamydospores were 
stained using Lactophenol cotton blue, observed microscopi-
cally (OLYMPUS CX21i) and photographed using micro-
scope attached camera (OLYMPUS digital camera E-PL1) 
(Kim et al. 2002).

Harvesting of chlamydospores

Chlamydospores were harvested from 12-day-old plates 
grown at 30  °C. In brief, chlamydospores plates were 
washed with sterile distilled water to remove colonies of 
yeast phase cells growing on the agar surface. Rice extract 
agar containing chlamydospores was molten using warm 
(45 °C) sterile distilled water, centrifugation at 112 g for 
1 min. Chlamydospore pellets were washed thrice with ster-
ile distilled water and used for protein extraction. However, 
chlamydospores as harvested from semisolid agar, traces 
of hyphae producing chlamydospores were present along 
with chlamydospores in the sample. Cells from the colonies 
growing on the rice extract agar surface were harvested by 
centrifugation, washed with sterile distilled water and used 
as a control.

Cell surface hydrophobicity

Cell surface hydrophobicity of yeast phase cells and chlamyd-
ospores of C. albicans was analyzed using a method devel-
oped by Rosenberg, et al. (1980) and Hazen and Hazen (1987). 
Briefly, yeast cells and chlamydospores were re-suspended in 
PBS until the OD (at 620 nm) reaches to 0.5. 1.3 ml from each 
of these suspensions was distributed in three test tubes. 100 μl 
from each test tube were again added into the wells of 96 well 
micro titer plates and initial OD (at 620 nm) was recorded 
using Thermoscan-Ex micro plate reader (Thermo Fisher Sci-
entific Inc., 168 3rd Ave, Waltham, MA 02451, USA). 0.3 ml 
of octane was added to remaining cell suspension (1.2 ml) 
separately, mixed vigorously (3 min), and allowed to separate 
for 15 min. From these suspensions 100 μl were cautiously 
transferred to the wells of 96-well micro-titer plates and final 
OD was recorded. Triplicates were used for each samples 
and experiment was repeated thrice. Percentage CSH was 
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calculated using following formula and compared with control. 
Results were presented as percentage of CSH ± SD (standard 
deviation) (Hazen and Hazen 1987; Rosenberg et al. 1980).

Estimation of adhesion

Adhesion of yeast phase cells and chlamydospores of C. albi-
cans was determined using method described by Panagoda 
et al. (2001) and He et al. (2006). Briefly, 100 μl of cell sus-
pension (1 × 107 cells/chlamydospores/ml) was inoculated in 
96 wells micro titer plates and incubated at 30 °C for 90 min 
with moderate shaking (50 rpm) on orbital shaker for adhe-
sion. After incubation, wells were washed thrice with PBS to 
remove un-adhered ones and the numbers of adhered cells/
chlamydospores in each well were counted, microscopically 
(Metzer Make inverted Microscope) and compared. The aver-
age number of yeast phase cells adhered is considered as 100% 
adhesion. Experiment was repeated thrice and triplicates were 
used for each sample and results were shown as adhesion per-
centage ± SD (standard deviation) (He et al. 2006; Panagoda 
et al. 2001).

Ergosterol extraction

Ergosterol content of yeast phase cells and chlamydospores 
of C. albicans was estimated as per Arthington-Skaggs et al. 
(1999). Briefly, 0.1 g of washed cell/chlamydospore pellets 
were suspended into 300 μl of ethanolic KOH (25%) and incu-
bated at 85 °C for 1 h and 2 h, respectively. Samples were 
cooled to room temperature and ergosterol was extracted using 
n-heptane [75% (v/v)] with vortexing. Layers were allowed 
to separate and n-heptane layer was transferred to new vial, 
cautiously. 200 μl of n-heptane layer was diluted to fivefold in 
ethanol (100%) and spectrum was recorded in the wavelength 
range of 230–300 nm using a UV–Visible spectrophotometer 
(Shimadzu Analytical (India) Pvt. Ltd. Mumbai- 400 059, 
India).

Ergosterol estimation

Ergosterol content was determined using the values of absorb-
ance at 230 nm and 281.5 nm and the formula by Arthington-
Skaggs et al. (1999):

[

CSHpercentage

= (1 − final ODof aqueous phase∕initial ODof cell suspension) × 100
]

.

Percentage ergosterol + %24(28)DHE =
[

(A281.5∕290) × F
]

∕pellet weight

%24(28)DHE =
[

(A230∕518) × F
]

∕pellet weight,

So, percentage ergosterol =
[

percentage ergosterol + 24(28)DHE
]

− %24(28)DHE]

where F is the dilution factor in ethanol and 290 and 518 
are the E values (percent/centimeter) determined for crystal-
line ergosterol and 24(28) DHE, respectively. Results were 
showed as ergosterol percentage ± SD (standard deviation).

Cell lysis and protein extraction

Proteins (chlamydospore and yeast phase cells) were 
extracted using the protocol optimized by Haar (2007). 
Briefly, chlamydospores and yeast phase cells (1x108 equiv-
alent cells) were resuspended in 200 µl of freshly prepared 
lysis buffer (0.1 M NaOH, 0.5 M EDTA, 2% SDS and 2% 
β-mercaptoethanol) containing (10 µl/ml) PIC (protease 
inhibitor cocktail) and vortexed. Samples were incubated 
at 90 °C for 15 min and neutralized using 5 µl of 4 M ace-
tic acid after incubation. Samples were further incubated 
at 90 °C for 15 min and centrifuged at 2800 g for 5 min. 
Supernatants were transferred to new vials containing 5 µl 
of PMSF (Phenyl methane sulphonyl fluoride). Proteins 
were precipitated using 4 volumes of methanol, 1 volume 
of chloroform and 3 volumes of sterile distilled water with 
vortexing. Precipitated proteins were centrifuged at 2800g 
for 5 min, pellets were washed using 3 volumes of metha-
nol, centrifuged at 2800 g for 5 min and air dried. Air dried 
pellets were re-suspended in rehydration buffer (6 M urea, 
2 M Thiourea, 2% CHAPS, 1% DTT, pH 8.75) (Haar 2007) 
and protein concentrations were determined as per Bradford 
method (Bradford 1976).

Sample preparation

Proteins (50 µg) were dissolved in ammonium bicarbonate 
buffer (50 mM) containing rapigest (0.1%). Proteins were 
reduced with 3 µl of DTT (100 mM) at 60° C for 15 min, 
alkylated using 3 µl of Idoacetamide (200 mM) at room tem-
perature for 30 min, and digested at alkaline pH using 2 µg 
of trypsin per 50 µg of proteins (i.e. 2:50). Digestion was 
stopped by adding 2 µl of concentrated HCL after 18 h of 
digestion. Peptides were separated by spinning at high speed 
(1500 rcf) for 15 min at 4 °C, washed several times with 
0.1% TFA, size fractionated (̴̴ 3 kDa) using Zip tip C18 chro-
matography columns (Millipore; Billerica, MA) and eluted 
in 100% Acetonitrile. Samples were reconstituted in 15 µl 
of Acetonitrile (3%) and formic acid (0.1%) with continuous 
vortexing and used for further analysis (Gillet et al. 2012).
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Liquid chromatography and mass spectrometry 
analysis

Peptides (4 µg) were separated and mass was determined 
using Micro LC 200 (Eksigent; Dublin, CA) coupled with 
Triple- TOF 5600 (AB Sciex; Concord, Canada) mass spec-
trometer in high-sensitivity mode. Equal amounts of samples 
of chlamydospores and control were spiked to generate the 
SWATH (sequential window acquisition of all theoretical 
fragment ion spectra) spectral library of fragment ions and 
analyzed using Information Dependant acquisition (IDA) 
(Collins et al. 2013; Gillet et al. 2012; Liu et al. 2006, 2013).

SWATH MS analysis

Swath MS analysis was carried out using the instrument set-
ting as described in Ingle et al. (2017), Collins et al. (2013); 
Gillet et al. (2012); Liu et al.(2006); Liu et al. (2013). The 
mass spectral data acquired in triplicates was searched 
against Candida databases, Uniprot ids were searched using 
Protein Pilot software and differentially expressed proteins 
were identified using markerview software. Subsequently 
SWATH-MS was performed for relative quantification of 
differentially expressed proteins as mentioned in Ingle et al. 
(2017).

Statistical analysis

The student t test and probability were performed for sta-
tistical analysis. Samples with probability (p) value ≤ 0.05, 
number of matching peptides ≥ 2 and fold change ≥ 2, were 
considered for further analysis.

Validation of proteomic data using real‑time qPCR 
analysis of selected genes

Expression of selected genes during chlamydosporulation 
was evaluated at mRNA level using real-time qPCR analy-
sis. Gene-specific primers were designed using primer3 plus 
software (Tm 58–60 °C, product size 120–150 bp preferred 
for primer pairs) (Table 5). Total RNAs were prepared using 
RNeasy Mini kit (50 reactions) (Cat. No. 74104, Qiagen Pvt. 
Ltd) by lysing Chlamydospores using lyticase and purified 
using RNA Sure Mini Kit, Nucleo-pore (Genetix) according 
to the manufacturer’s instructions. cDNAs were prepared 
using purified RNA (2 µg) as a template and High-Capacity 
cDNA Reverse Transcription Kit as per the manufacturer’s 
instructions (Green et al. 2004). RNA level was measured 
using KAPA SYBR® FAST qPCR Kit as per manufacturer’s 
instructions and parameters and CFX96 Touch TM Real-
Time PCR Detection System (Biorad Pvt. Ltd). Samples 
were analyzed in triplicates using biological replicates and 
data are reported as mean ± SD. Using ANOVA, statistical 

significance was calculated and p-values less than 0.05 were 
considered significant. Gene expression was normalized 
with GAPDH levels and with control cells.

Results

Induction of chlamydosporulation

Embedded and microaerophilic growth on rice extract agar 
medium at 30 °C induced invasive growth in Candida albi-
cans, initially. The invading hyphae later developed suspen-
sor cells that produced thick-walled chlamydospores, termi-
nally within 4 days of incubation. Further incubation up to 
12 days leads to increase in the number of chlamydospores 
(Fig. 1).

Modulation in cell surface hydrophobicity 
(CSH), adhesion and ergosterol 
during chlamydosporulation

In present study, in response to diverse morphology cell sur-
face hydrophobicity, adhesion as well as ergosterol signifi-
cantly modulated. Cell surface hydrophobicity of C. albicans 
yeast phase cells and chlamydospores (with filaments) at 30° 
C were found (37.92 ± 4.98, 31.70 ± 3.64, 27.61 ± 3.12) and 
(9.12 ± 1.29, 11 ± 3.33, 10 ± 4.05) respectively (Fig. 2a). 
This showed that CSH of yeast phase cells more as com-
pare to chlamydospores (with filaments). However, adhesion 
of yeast phase cells and chlamydospore (with filaments) at 
30° were found (82 ± 3.61, 79.67 ± 4.51, 77.67 ± 3.79) and 
(2.33 ± 0.58, 3 ± 2, 2.33 ± 2.08), respectively (Fig. 2b). Yeast 
pahse cells are more adhesive than chlamydospores (with 
filaments). In addition to this, ergosterol content was ana-
lyzed through spectrophotomer, which showed that chlamyd-
ospore (with filaments) contain more ergosterol as compare 
to yeast phase cells (Fig. 2c). Percent ergosterol content of 
yeast phase cells and chlamydospores (with filaments) was 
found (0.0073 ± 0.00076, 0.0087 ± 0.0013, 0.0076 ± 0.001) 
and (0.124 ± 0.06, 0.0207 ± 0.002, 0.0196 ± 0.0018) respec-
tively (Fig. 2c).

Identification of chlamydosporulation specific 
proteins using LC–MS/MS analysis

LC–MS/MS analysis identified 1177 proteins out of which, 
319 were modulated significantly (Ingle et al. 2017). MS/MS 
data is submitted to Peptide Atlas and data set is publically 
available with the data set identifier PASS01061 at http://
www.pepti​deatl​as.org/PASS/PASS0​1061. Differentially 
expressed proteins were identified; functionally annotated 
and grouped into different categories according to their func-
tions using databases like CGD, SGD, KEGG and Uniprot 

http://www.peptideatlas.org/PASS/PASS01061
http://www.peptideatlas.org/PASS/PASS01061
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etc., using David software (Functional annotation Bioinfor-
matics Microarray). Among these differentially expressed 
proteins, 137 were up-regulated while 182 were Down-reg-
ulated under chlamydospore inducing condition (Ingle et al. 
2017). The number of up-regulated and down-regulated pro-
teins in different biological processes viz. metabolism, cell 
wall and membrane composition, stress response and signal-
ing, gene expression, transport etc. were shown in Tables 1, 
2, 3 and 4, Fig. 2a, b.    

Modulation of proteins involved in metabolism

A total of 108 proteins involved in metabolism were modu-
lated significantly, out of which 51 were involved in car-
bohydrate metabolism and energy generation (Table 1). 
The maximum up regulation of 259.37-fold was observed 
in case of Pgk1 followed by 64.83 (CAWG_04860/
Mal32), 35.99 (Ald4), 17.93 (CAWG_01786/Hxk2), 13.85 
(LELG_01826/Icl1) fold while maximum down-regulation 
of 46.59-fold was observed in case of (CaO19.285/Ctn1) 

followed by 32.83 (Ams1) and 10.48 (Glo2) fold etc. 
(Table 1). Five proteins involved in fermentation were up-
regulated and maximum up regulation of 12.10-fold was 
observed in case of Ife2 (Table 1).

Eleven out of the thirteen proteins involved in lipid, 
sterol and fatty acid biosynthesis were up-regulated and 
maximum up-regulation of 36.85 was observed in case of 
Scs7 (Sphingolipid alpha-hydroxylase), while two were 
down-regulated (Table 1). Seventeen proteins expressed 
differentially indicating significant modulation in amino 
acid metabolism, wherein Gcv1 was up-regulated by 
10.66-fold while maximum down-regulation of 14.55-
fold was observed in case of Gln1 (Table 1). Similarly, 
differential expression of fourteen proteins indicates sig-
nificant modulation in nucleotide metabolism i.e. Ysa1 
was down-regulated by 18.19-fold while Ura4 was up-reg-
ulated by 6.25-fold (Table 1). Heme (Hem13, Hem15) and 
Vitamin (Snz1) biosynthesis and fatty acid degradation 
were enhanced under chlamydospore inducing condition 
(Table 1).

Fig. 1   Light microscopy images of Chlamydospore (with hyphae) formation of C. albicans, ATCC 10231. Numbers indicates the days of incu-
bation, white arrow indicates developing chlamydospores, and black arrow indicates mature chlamydospores
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Modulation of proteins involved in cell wall and membrane 
biosynthesis

A total of eighteen proteins involved in biosynthesis of cell 
wall components viz. mannan (2), beta 1, 3-glucan (1), beta 1, 
6-glucan (2), chitin (1), cell wall proteins (7) and membrane 
(5) were modulated significantly during chlamydosporula-
tion (Table 2). The cell wall proteins viz. Hyr1, Als3 (hyphae 
specific) and Ldg1 were up-regulated maximally by 218.24, 
38.16 and 38.43-fold respectively while maximum down-reg-
ulation of 49.15-fold was observed in case of Kre9 involved 
in biosynthesis of beta 1,6-glucan (Table 2). Among the pro-
teins involved in membrane structure and biosynthesis like 
Fmp52, Scs7, Ino1 etc., were up-regulated by 82.65 36.85 and 
12.82-fold respectively (Table 2). It indicates that cell wall of 
chlamydospore is rich in mannan, chitin and beta 1, 3-glucan 
while membrane is enriched with sphingolipids, phospholip-
ids, sterols etc.

Modulation of proteins involved in stress response 
and signal transduction

Twenty out of the twenty-six proteins modulated during 
chlamydospore growth were involved in oxidative stress 
response while four in heat stress and one each in metal 
ion and drug-induced stress (Table 2). Among these, ten 
were up-regulated while sixteen were down-regulated and 
maximum up-regulation of 242.48-fold was observed in 
case of Yhb1 (Nitric oxide dioxygenase), and down-regu-
lation in case of Whs11 (176.48-fold) (Table 2).

Among the six proteins involved in signal transduction, 
maximum up-regulation of 8.83-fold and down-regulation 
of 16.7-fold was observed in case of Rsr1 (CLUG_ 03767) 
and Asr2 (CAWG_02167), respectively (Table 2).

Fig. 2   Determination of a cell surface hydrophobicity b adhesion and c ergosterol content of yeast phase cells and Chlamydospore (with fila-
ments) of C. albicans (ATCC 10231)
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Table 1   Modulation of proteins involved in metabolism during chlamydosporulation in Candida albicans (ATCC 10231)

Protein name Function Fold change

Yeast Chlamydospores

Metabolism
Starch and Xylose degradation CAWG_04860 (Mal32) Maltase + + 64.83

Xyl2 Xylitol dehydrogenase + + 5.62
Ifr2 Zinc-binding dehydrogenase + − 3.17

Glycolysis Pgk1 3-Phosphoglycerate kinase + + 259.37
CAWG_01786 (Hxk2) Hexokinase II + + 17.93
Cdc19 Pyruvate kinase + + 9.62
G210_5347 (Eno1) Enolase I Ortholog(s) C. dubliniensis CD36 + + 5.47
Glk1 Glucokinase + + 5.45
CAWG_03619 (Fba1) Fructose-bis-P aldolase + + 5.40
CaO19.1946 Similar to an aldose 1-epimerase-related protein + + 4.95
CAWG_00576 (Eno1) Enolase I Ortholog(s) Candida maltose + + 4.06
CANTEDRAFT_ Triosephosphate isomerase + + 2.95
116913 (Tim)
Tpi1 Triose-phosphate isomerase + + 2.36
CD36_08010 (Eno1) Enolase I + + 2.32
CAWG_04094(Gpm1) Glycerate phosphoMutase + + 2.21
CAWG_01943 (Pgi1) Glucose-6-P isomerise + + 2.20
Tdh3 Triose phosphate dehydrogenase + + 2.07

Pyruvate catabolism CAWG_03171(Pdc11) Pyruvate decarboxylase + + 2.85
Pyc2 Pyruvate carboxylase + − 4.19
CaO19.285 (Ctn1) Carnitine acetyl transferase + − 46.59

Galactose and glycogen metabolism CAWG_05451 (Gph1) Glycogen phosphorylase + + 3.03
Pgm2 Phosphoglucomutase + + 2.73
Glc3 Cytoplasmic glyoxalase II + − 2.76

Trehalose metabolism CD36_30070 (Ugp1) UTP-glucose-1-phosphaturidyl transferase + + 2.74
Ugp1 UTP-glucose-1-phosphaturidyl transferase + + 2.67
CAWG_06130 (Tps3) Trehalose-phosphate synthase regulatory 

subunit
+ + 2.61

Oligosaccharide degradation Ams1 Putative 1,4-glucan branching enzyme + − 32.83
Acetyl CoA and Acetaldehyde Formation Ald4 Mitochondrial aldehyde dehydrogenase + + 35.99

CAWG_05515 (Lat1) Dihydrolipoamide acetyltransferase (E2) of 
(PDC)

+ − 2.87

TCA cycle CAWG_00467 (Idh1) Isocitrate dehydrogenase subunit 1 + + 4.45
CAWG_02112 (Aco1) Aconitase + + 2.51
CD36_28700 (Cit1) Citrate synthase + + 2.19
Lsc1 Putative succinyl-CoA ligase + + 2.15
Mdh1-3 Malate dehydrogenase + + 2.03

Glyoxylate and
Methylglyoxal

LELG_01826 (Icl1) Isocitrate lyase + + 13.85
Glo2 Cytoplasmic glyoxalase II + − 10.48
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Table 1   (continued)

Protein name Function Fold change

Yeast Chlamydospores

Electron Transport chain Piso0_005603 (Sdh2) Iron-sulfur protein subunit + + 52.15
CaO19.1682 Membrane protein of complex I + + 5.47
Nuc2 Putative NADH-ubiquinone oxidoreductase + + 4.48
Qcr7 Putative ubiquinol-cytochrome-c reductase + + 4.21
Cor1 Core protein of QH2 cytochrome c reductase + + 2.38
Atp16 Subunit of the mitochondrial F1F0 ATP syn-

thase
+ − 2.51

CD36_63930 (Atp15) Predicted proton-transporting ATP synthase 
activity

+ − 2.76

Cqr1 Potential reductase + − 2.76
CD36_64885 (Cox12) OrthologsVIb Subunit, cytochrome c oxidase 

activity
+ − 2.85

Pst2 Putative, NADH: quinone oxidoreductase + − 3.32
CaO19.287 (Nuo2) Nadh:Ubiquinone oxidoreductase + − 3.53
Atp5 Putative F0-ATP synthase FO subunit B + − 3.75
Cyt1 Cytochrome c1 respiratory + − 3.79
CORT_0B04410 (Qcr6) Ortholog 6 subunit ubiquinol cytochrome-c 

reductase
+ − 5.57

CAWG_03509 (Qcr9) Putative ubiquinol cytochrome c reductase 
Subunit 9

+ − 9.75

CAWG_03893 (Cox17) Cytochrome c Oxidase + − 9.89
CAWG_04373 (Atp14) Putative mitochondrial F1F0 ATP synthase

subunit h
+ − 11.77

Fermentative pathway Ife2 Putative alcohol dehydrogenases + + 12.10
CAWG_04871 (Adh1) Alcohol dehydrogenase + + 4.87
CAWG_04871 (Adh1) Alcohol dehydrogenase + + 4.87
Adh5 Alcohol dehydrogenase + + 3.75
CAWG_00592 (Adh2) Alcohol dehydrogenase + + 3.31

Fatty acid metabolism Pox1-3 Acyl-coenzyme A oxidase + + 2.95
Phospholipid Ino1 Inositol-1-phosphate synthase + + 12.82
Sterol Ach1 Acetyl CoA hydrolase + + 5.95

Erg10 Acetyl-CoAC-acetyltransferase + + 5.24
Erg9 Farnesyl-diphosphate farnesyl transferase + + 4.42
CAWG_03271 (Cbr1) Putative cytochrome B5 reductase + + 2.94
CAWG_01359 (Mvd) Mevalonate diphosphate decarboxylase + + 2.26
Ncp1 NADPH-cytochrome P450 reductase + −3.41

Sphingolipid Scs7 Sphingolipid alpha-hydroxylase + + 36.85
Cfa1 Sphingolipid C9-methyltransferase + − 7.76

Fatty acid CAWG_02796 (Fas2) Alpha subunit of fatty acid synthetase complex + + 8.17
CORT_0C01740 (Fas2) Alpha subunit of fatty acid synthetase complex + + 4.61
Acp12 Acyl carrier protein domains + − 3.28
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Table 1   (continued)

Protein name Function Fold change

Yeast Chlamydospores

Amino acid metabolism Gcv1 Glycine decarboxylase + + 10.66
CAWG_04997 (Shm2) Serine hydroxymethyltransferase + + 8.28
CAWG_03282 (Lys1) Mitochondrial C1-tetrahydrofolate synthase 

precursor
+ + 5.64

Mis11 Saccharopine dehydrogenase + + 4.87
Cys4 Cystathionine beta-synthase + + 4.61
Ape2 Aminopeptidases yscII + + 3.48
Aat1 Aspartate aminotransferase + + 2.43
Gdh3 NADP (+)-dependent glutamate dehydrogenase + − 2.00
Leu42 Cobalamin-independent methionine synthase + − 2.59
CAWG_01512 (Met6) Putative alpha-isopropylmalate synthase + − 3.06
Hom6 Homoserine dehydrogenase + − 3.38
Ser1 3-phosphoserine aminotransferase + − 4.25
Pro3 ∆1-pyrroline-5-carboxylate reductase + − 4.55
Arg1 Argininosuccinate synthase + − 4.83
CAWG_04309 (Kti11) Zn-ribbon protein + − 10.00
Gcv3 Glycine decarboxylase + − 8.10
Gln1 Glutamine synthetase + − 14.55

Nucleotide Metabolism Ura4 Dihydroorotase + + 6.25
CAWG_03916 (Apt1) Adenine phosphoribosyltransferase + + 5.32
CaO19.5054 (Bna6) Putative quinolinate phosphoribosyl transferase + + 5.09
Fca1 Cytosine deaminase + + 3.07
CAWG_00458 (Ura1) Dihydroorotate dehydrogenase + + 2.65
Ade17 Adenine + − 2.08
CAWG_05175 (Adk1) Putative adenylate kinase + − 2.66
Fur1 Uracil phosphoribosyltransferase + − 3.23
CaO19.12103 (YdfG) Carbonyl reductase (NADPH) activity + − 4.39
CD36_51380 (Ura4) Dihydroorotase activity + − 4.60
Ura2 Bifunctional carbamoylphosphate synthetase 

CPSase
+ − 5.28

CaO19.12418 (Pof1) Promoter of filamentation + − 7.59
CaO19.11368 (Apa2) Putative ATP adenylyltransferase II + − 15.06
Ysa1 Predicted Nudix hydrolase family member + − 18.19

Heme Hem13 Coproporphyrinogen III oxidase + + 9.25
Hem15 Ferrochelatase + + 2.61

Vitamin Snz1 Snooze + + 2.64
Other Metabolism Osm1 Osmotic sensitivity + + 5.45

CD36_02580 Predicted dienelactone hydrolase domain + + 5.33
Paa11 Polyamine N-acetyl tranferase + − 2.47
CAWG_03805 (Stf2)  Stabilizing factor + − 2.95

+ Up-regulated, − down-regulated
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Table 2   Modulation of proteins involved in cell wall/membrane biosynthesis, cell signaling, stress response and transport during chlamydospor-
ulation in Candida albicans (ATCC 10231)

Protein name Function Fold change

Yeast Chlamydospores

Cell wall
Surface CAWG_00991 (Csh1) Cell surface hydrophobicity + − 6.79
Mannan Psa2 Mannose-1-phosphate guanyltransferase + + 6.53

CD36_87780 (Srb1) GDP-mannose pyrophosphorylase + + 3.41
GPI Hyr1 Hyphally regulated cell wall protein + + 218.24

Als3 Agglutinin like sequence + + 38.16
Als1 Agglutinin like sequence + − 11.75
CAWG_03911 (Plb) Phospholipase B + − 20.93

β1,6-Glu CAWG_01343 (Phr2) Glycosidase + − 2.49
Kre9 Killer resistant protein + − 49.15

β1,3-Glu CaO19.7214 Gucan-1,3-glucosidase + + 5.99
Chitin Uap1 UDP-N-acetylglucosamine pyrophosphorylase + + 3.49
Wall protein Ldg8 Secreted protein + + 38.43

Png2 Putative peptide:N-glycanase + − 6.11
Cell membrane
Membrane protein Fmp45 Predicted membrane protein + + 11.66

Lsp1 Long chain bases stimulate phosphorylation + − 2.95
CAWG_00926 (Pil1) Eisosome component + − 4.73

Phospholipid Ino1 Inositol-1-phosphate synthase + + 12.82
Sterol Ach1 Acetyl CoA hydrolase + + 5.95

Erg10 Acetyl-CoAC-acetyltransferase + + 5.24
Erg9 Farnesyl-diphosphate farnesyl transferase + + 4.42
CAWG_03271 (Cbr1) Putative cytochrome B5 reductase + + 2.94
CAWG_01359 (Mvd) Mevalonate diphosphate decarboxylase + + 2.26
Ncp1 NADPH-cytochrome P450 reductase + − 3.41

Sphingolipid Scs7 Sphingolipid alpha-hydroxylase + + 36.85
Cfa1 Sphingolipid C9-methyltransferase + − 7.76

Fatty acid CAWG_02796 (Fas2) Alpha subunit of fatty acid synthetase complex + + 8.17
CORT_0C01740 (Fas2) Alpha subunit of fatty acid synthetase complex + + 4.61
Acp12 Acyl carrier protein domains + − 3.28

Organelle Fmp52 Found in mitochondrial proteome + + 82.65
Rtn1 Reticulon-like + + 3.39

Signal transduction
CLUG_03767 (Rsr1) RAS-related protein + + 8.83
CaO19.12544 (Ofr1) Opaque formation regulator + − 2.10
Asr3 Adenylyl cyclase + − 3.72
CAWG_03886 (Bcy1) Bypass of cyclic-AMP requirement  + − 4.20
Cmd1 Calmodulin + − 5.12
CAWG_02167 (Asr2) Adenylyl cyclase + − 16.73
Stress responsive
Oxidative Yhb1 Nitric oxide dioxygenase + + 242.48

CAWG_02572 (Ccp1) Cytochrome c peroxidase + + 11.04
Lys7 Copper chaperone for SOD1 + + 5.74
CaO19.1682 (Nce103) Nonclassical export,carbonic anhydrase + + 5.47
CAWG_02689 (Gtt11) Glutathione S-transferase + + 3.95
Gcs1 Gamma-glutamylcysteine synthetase + + 3.34
Trr1 Thioredoxin reductase + + 3.11
Piso0_000124 Protein involved in zinc ion binding + + 2.11
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Table 2   (continued)

Protein name Function Fold change

Yeast Chlamydospores

Glr1 Glutathione reductase + − 2.23
Trp99 Potential peroxiredoxin + − 2.32
Gps2 Putative glutathione peroxidase + − 2.98
Pst3 Protoplasts-secreted + − 3.79
Ca35A5.08 Rehydrin-like protein + − 4.19
Grp2 Methylglyoxal reductase + − 4.21
Dot5 Disruptor of telomeric silencing + − 4.33
Ttr1 Putative glutaredoxin + − 4.68
CAWG_01338 (Hbr1) Haemoglobin response gene + − 7.14
Mxr1 Putative methionine sulfoxide reductase + − 13.33
Sod3 Cytosolic manganese-containing superoxide dismutase + − 13.68
Trx1 Thioredoxin + − 18.65

Metal ion Crd2 Copper resistance determinant + − 12.34
Heat Shock CaO19.822 (Hsp21) Small heat shock protein + + 3.80

Hsp12 Heat shock protein 12 + − 8.41
Hsp12 Heat shock protein 12 + − 8.81
Whs11 White colony protein + − 176.48

Stress CAWG_02881(Rct1) Required for caspofungin tolerance + + 3.52
Transport
Cytoplasmic Vma5 Putative vacuolar H(+)-ATPase + + 35.08

Gdi1 Putative Rab GDP-dissociation inhibitor + + 9.04
Ypt521 Yeast protein two521 + + 7.79
CaO19.12543 (Het1) Putative sphingolipid transfer protein + − 2.18
CaO19.5689 (Sec28) Secretory 28 + − 2.75
CaO19.2304 (Prk1) Putative protein serine/threonine kinase + − 2.82
CaO19.1544 (Bug1) Binder of USO and GRH1 + − 2.83
CAWG_05907 (Yop1) YIP One Partner + − 2.96
Clc1 Clathrin light chain + − 3.44
Gsp1 Genetic suppressor of Prp20-1 + − 3.98
Pma1 Plasma membrane H(+)-ATPase + − 4.56
Hmt1 HnRNP methyltransferase + − 4.57
CAWG_03253 (Sec23) Secretory + − 4.71
Ycf1 Yeast cadmium factor + − 5.55
CD36_09500 (Ntf2) Nuclear transport factor + − 6.20
Gim3 Gene involved in microtubule biogenesis + − 12.77
CAWG_02936 (Erv25) Protein ERV25 + − 14.45
CAWG_05431(Acb1) Acyl-CoA binding + − 15.10
CaO19.10437 (Sbe22) Suppressor of BEm4 + − 23.44
Vma10 Subunit G V1 membrane domain of V-ATPase + − 5.59
Vma4 Vacuolar membrane Atpase − 15.33

Mitochondrial Fcj1 Formation of crista junctions protein 1 + + 6.22
CAWG_00983 (Por1) Mitochondrial outer membrane porin + + 2.86
CaO19.1236 (Gvp36) BAR domain protein + − 2.34
CAWG_03580 (Tim10) Translocase of the inner mitochondrial membrane + − 6.38
CaO19.7882 (Ymc2) Yeast mitochondrial carrier + − 8.81
CD36_73310 (Tim9) Translocase of the inner mitochondrial membrane + − 11.14

Nuclear Rna1 Rapid cessation of net RNA accumulation + − 2.97

+ Up-regulated, − down-regulated
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Modulation of proteins involved in transport

Twenty-eight proteins involved in transport were significantly 
modulated (23 down-regulated, 5 up-regulated) during chla-
mydospore form growth (Table 2). Among the twenty-one pro-
teins involved in cytoplasmic transport, six were up-regulated 
and fifteen were down-regulated (Table 2). Maximum up-reg-
ulation of 35.08-folds was observed in case of Vma5 (Putative 
vacuolar H (+)-ATPase) and down-regulation of 23.44-fold in 
Sbe22 (CaO19.10437), respectively (Table 2).

Modulation of proteins involved in regulation of cell cycle, 
cytoskeleton, genome organization, replication and repair

Among the sixteen proteins modulated, two, six, five and 
three were involved in cell cycle, cytoskeleton, genome 
organization and replication and repair, respectively 
(Table 3). One of the two involved in cell cycle regulation, 
four out of the six in cytoskeleton, all the five in genome 
organization and one of the three involved in replication 
and repair were up-regulated respectively (Table 3). Among 
these, maximum up- regulation of 8.15-fold and down-reg-
ulation of 12.5-fold was observed in case of Arp7 (genome 
organization) and Ssp2 (cell cycle) respectively (Table 3).

Modulation of proteins involved in genome function 
(transcription, RNA processing, translation and proteolysis)

Twelve proteins involved in transcription, six in RNA pro-
cessing, 71 in translation and fifteen in proteolysis were 
significantly modulated under chlamydospore form growth 
(Table 3). Among the twelve proteins involved, eight were 
involved in transcription initiation and four in elongation 
(Table 3). All the eight involved in transcription initiation 
were down-regulated while three of the five involved in elon-
gation were unregulated (Table 3). Similarly, six proteins 
involved in RNA processing were down-regulated (Table 3).

Out of the seventy-one proteins involved, thirty-eight (21 
up-regulated, 17 down-regulated) were involved in riboso-
mal assembly, nine in translation initiation (2 up-regulated, 
7 down-regulated), three in elongation (2 up-regulated, 1 
down-regulated), fifteen in post translational modification 
(2 up-regulated, 13 down-regulated) and six were involved 
in mitochondrial ribosome assembly (3) and mitochondrial 
PTM (3) (Table 3). Maximum up-regulation of 16.23-fold 
and down-regulation of 16.35-fold was observed in case of 
Rbp4 and Rtg1 respectively (Table 3). On the other hand, 
Snu13 (CAWG_02750) was down-regulated maximally by 
7.24-fold amongst the six down-regulated proteins involved 
in RNA processing (Table 3). Similarly amongst the 71 pro-
teins involved in translation and post-translational modifi-
cations, maximum up regulation of 11.15-fold observed in 
case of Rps23 while Tif3 was down-regulated maximally i.e. 

24.28-fold (Table 3). Among the fifteen proteins involved in 
proteolysis (2 up-regulated and 13 down-regulated), maxi-
mum up-regulation of 66.85-fold and down-regulation of 
84.5-fold was observed in case of Pre7 (AGOS_AGL324 W) 
and Pbi2 (CaO19.10285), respectively (Table 3). Thirteen 
modulated proteins were uncharacterized (Table 4).

Discussion

Chlamydospore, the thick-walled resting spores induced 
in response to stresses (like the nutrient limitation, micro-
aerophilic and osmotic stress etc.), is considered as a sur-
vival strategy of C. albicans (Citiulo et  al. 2009; Staib 
and Morschhäuser 2005; Nobile et al. 2003). C. albicans 
cells experience most of these stresses (except tempera-
ture 37 °C) during growth on rice extract agar containing 
Tween 80 in our study, citing the biological significance of 
our data (Berman and Sudbery 2002; Douglas et al. 2005). 
Though it was found in some of the tissue samples recently, 
chlamydospore is considered as a non-virulent form of C. 
albicans and thus neglected by the scientific community 
(Palige et al. 2013; Citiulo et al. 2009; Lim et al. 2012). 
However, few recent studies have provided some insights 
into the regulation of chlamydospore formation and survival 
strategies (Bottcher et al. 2016; Giosa et al. 2017; Palige 
et al. 2013; Lim et al. 2012). Mutant analysis by Navarathna 
et al. (2016) revealed significance of a component of chro-
matin remodeling complex (ISW2) in chlamydosporulation 
(Navarathna et al. 2016). Our study showed that nutrient 
limiting and microaerophilic condition enhances activity 
of Ras related protein Rsr1, the upstream regulator while 
down regulate Bcy1, a negative regulator of cAMP-PKA 
pathway (Table 2) (Biswas et al. 2007). It suggests that 
chlamydospore formation is induced through cAMP-PKA 
pathway (Table 2) (Biswas et al. 2007). Earlier studies have 
shown that nutrient starvation activate cAMP-PKA pathway 
through Ras1 and induce chlamydospore formation through 
EFG1 in presence of minimal cAMP i.e. surplus cAMP is 
inhibitory (Bottcher et al. 2016). It was further supported by 
down regulation of adenyl cyclases (to avoid surplus cAMP 
concentration) and Tfs1, a negative regulator of Ras protein 
in our study (Bottcher et al. 2016). It confirms that involve-
ment of cAMP-PKA pathway is essential for chlamydospore 
formation and thus osmotic, heat shock and cell wall integ-
rity damage induced stress tolerance (Bottcher et al. 2016; 
Chautard et al. 2004; Harcus et al. 2004). However, Hog1 
mitogen-activated protein (MAP) kinase and quorum sens-
ing molecule farnesol were also implicated in chlamydo-
sporulation (Eisman et al. 2006; Martin et al. 2005). Chla-
mydosporulation need reprogramming of the transcriptional 
program through chromatin remodeling complexes (ISW2) 
that leads to chlamydospore specific transcripts including 
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Table 3   Modulation proteins involved in cell cycle, genome organization, replication, gene expression during chlamydosporulation in Candida 
albicans (ATCC 10231)

Protein name Function Fold change

Yeast chlamydospores

Cell cycle
Tpd3 tRNA processing deficient + + 2.68
Ca38F10.10c (Ssp2) Sporulation specific meiosis + − 12.51
Cytoskeleton
Arp7 Actin-related protein + + 8.15
CAWG_04431 (Cof1) Putative cofilin + + 6.16
Tub1 Alpha-tubulin + + 5.63
Tub2 Tubulin beta chain + + 5.27
Arc15 Putative ARP2/3 complex subunit + − 2.08
Act1 Actin + − 2.75
Genome organization
Ctn2 Protein with DNA binding domain + − 2.21
Rpd31 Reduced potassium dependency + − 4.51
CAWG_03623 (Nhp6a) Non histone protein 6A + − 8.69
CANTEDRAFT_115395 (Hat2) Histone H2A + − 10.94
CORT_0B08290 (Htb1) Histone H2B + − 11.13
Replication and repair
Pol30 Polymerase + + 2.13
Ubc13 Ubiquitin-conjugating + − 5.21
CAWG_00976 (Hta2) Histone h two A 2 + − 10.34
Gene expression
Transcription
 Initiation CaO19.2296 (Rfx1) Regulatory factor X  + − 2.17

Hmo1 High mobility group (HMG) family + − 3.07
CAWG_01268 (Mbf1) Multiprotein-bridging factor 1 + − 3.11
Bdf1 Bromodomain transcription factor + − 3.44
CAWG_05532 (Rvb2) Putative trancription modulator + − 5.15
Taf10 TATA binding protein associated factor + − 8.02
Ncb2 Negative cofactor B + − 10.24
Cbf1 Putative centromer binding factor 1 + − 14.03

 Elongation Rbp4 RNA polymerase II fourth largest subunit + + 16.23
CAWG_04831 (Spt4) Elongation factor SPT4 (Suppressor of Ty’s) + + 15.57
Rnt1 RNase three + + 4.94
Rtg1 Retrograde regulation + − 16.35

RNA processing
Nop58 Nucleolar protein of 58 kDa + − 2.36
CaO19.1862 (Rtc3) Restriction of telomere capping + − 3.58
CAWG_00494 (Caf20) Cap associated factor  + − 3.81
Lhp1 La-homologous protein + − 4.05
CD36_72250 (Lsm4) Like SM + − 5.01
CAWG_02750 (Snu13) Putative U3 snoRNP protein + − 7.24
Translation and post translational modification
Ribosome assembly Rps23 Putative ribosomal protein23A + + 11.15

CD36_44070 (Rpl22B) Ribosomal 60S subunit protein L22B + + 6.24
Rps21 Ribosomal protein of the Small (40S) subu-

nit21
+ + 6.04

Rpl5 Ribosomal 60S subunit protein L5 + + 5.87
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Table 3   (continued)

Protein name Function Fold change

Yeast chlamydospores

Rpl4B Ribosomal protein L4B + + 5.60
Rps1 Putative ribosomal protein 10 of the 40S 

subunit
+ + 5.49

CAWG_03801 (Rpl38) Ribosomal 60S subunit protein L38 + + 5.44
Rpl9B Ribosomal protein L9Hap43-induced + + 5.22
CAWG_05436 (Yae1) Ortholog(s) have role in ribosomal large 

subunit biogenesis
+ + 3.96

CAWG_02808 (Rpl35) 60S ribosomal protein L35 + + 3.89
CD36_50810 (Rps11A) Ribosomal protein of the small subunit11A + + 3.85
CAWG_03325 (Rpl30) 60S ribosomal protein L30 + + 3.44
Rps8A 40S ribosomal protein S8A + + 3.25
G210_5404 60S ribosomal protein L2 + + 2.95
Rpl3 Ribosomal protein L3 + + 2.79
Rps5 Ribosomal protein S5 + + 2.62
Rpl15A Ribosomal 60S subunit protein L15A + + 2.59
CAWG_04143 (Rps9B) 40S ribosomal protein S9-B + + 2.37
CAWG_02763 (Rpl19A) Ribosomal protein L19 + + 2.28
CAWG_00346 (Rps17B) 40S ribosomal protein S17-B + + 2.23
Rpl18 Ribosomal 60S subunit protein L18A + + 2.15
CAWG_01150 (Rpl26B) 60S ribosomal protein L26-B + − 2.03
CPAR2_807560 (Rps15) Ribosomal protein of the small subunit15 + − 2.04
Rps12 Acidic ribosomal protein S12 + − 2.10
Rps18 Likely cytosolic ribosomal protein S18 + − 2.15
Rpp0 Ribosomal protein P0 + − 2.37
CAWG_02832 (Rps21B) Putative ribosomal protein S19 + − 2.72
Rpp2A Ribosomal protein P2 alpha + − 2.99
CAWG_01239 (Rps21B) Ribosomal protein S21 + − 3.06
Rps20 Ribosomal protein of the small subunit 20 + − 3.21
CAWG_05170 (Rpl25) 60S ribosomal protein L25 + − 3.35
Rps0 40S ribosomal protein S0 + − 3.36
Rpp2B Ribosomal protein P2 beta + − 3.45
Ubi3 Ubiquitin-ribosomal protein fusion S27a + − 3.50
CAWG_00923 (Rsa3) Ribosome assembly + − 5.08
Rrs1 Regulator of ribosome synthesis + − 6.78
CAWG_04900 (Sot1) Suppressor of QSR1truncations + − 7.43
CTRG_03083 (Rps29-A) 40S ribosomal protein S29-A + − 8.67

Initiation Anb1 Anaerobically induced + + 5.12
Scd6 Suppressor of clathrin deficiency + + 3.17
CAWG_01241 (Tif) Translation initiation factor + − 2.26
Tif6 Eukaryotic translation initiation factor 6 + − 2.79
CAWG_02919 (Ded1) Defines essential domain  + − 4.15
Tif11 Translation initiation factor eIF1a + − 5.76
Sgn12 Slower growth on non-fermentable carbon 

sources
+ − 12.28

Tif3 Translation initiatioin factor 3 + − 13.26
CAWG_05493 (Gir2) Genetically interacts with ribosomal genes + − 24.28

Elongation Rpp1B Ribosomal protein P1 beta + + 4.14
Cam1-1 Putative translation elongation factor + + 3.15
Efb1 Elongation factor 1-beta + − 2.93
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Table 3   (continued)

Protein name Function Fold change

Yeast chlamydospores

Post translation modification CAWG_02226 (Yke2) Yeast Ortholog of mouse KE2 + + 12.56
Cct2 Chaperonin containing TCP-1 + + 4.93
CAWG_04567 (Sti1) Stress inducible + − 2.07
CAWG_01012 (Fpr3) Fk 506-sensitive proline rotamase + − 2.14
Hsp104 Heat shock protein 104 + − 2.23
Sti1 Stress inducible + − 2.49
CD36_13060 (Hsp10) Heat shock protein 10 + − 3.10
CAWG_00045 (Hsp10) Heat shock protein 10 + − 3.16
CAWG_05601 (Rbp1) Rapamycin-binding protein + − 3.79
Smt3 Suppressor of Mif two + − 3.93
CAWG_05587 (Cyp1) Cyclophilin peptidyl-prolyl cis–trans isomer-

ase
+ − 4.32

CAWG_00272 (Egd1) Putative GAL4 DNA-binding enhancer 
protein

+ − 4.53

CAWG_05553 (Hsp90) Heat shock protein 90 + − 5.94
CTRG_00453 (Rub1) Related to ubiquitin + − 6.24
CAWG_02324 (Cpr6) Cyclosporin-sensitive proline rotamase + − 9.42

Mitochondrial ribosome assembly Mrpl10 Mitochondrial ribosomal protein L10 + + 4.40
Mrpl27 Putative 60S ribosomal protein L27 + − 2.94
Mrpl12 Likely mitochondrial ribosomal protein + − 2.08

Mitochondrial post translation modification Phb12 Prohibitin + + 4.40
Cpr3 Cyclosporin A-sensitive proline rotamase  + − 2.94
Mge1 Mitochondrial GrpE + − 2.08

Proteolysis
AGOS_AGL324 W (Pre7) Proteosome subunit beta type-6 + + 66.85
CAWG_00970 (Rpn13) Regulatory particle non-ATPase + + 8.66
Pre5 Alpha6 subunit of the 20S proteasome + − 2.03
01-Apr (Apr1) Aspartic proteinase + − 2.14
Pre9 Alpha3 (C9) subunit of the 20S proteasome + − 4.07
CAWG_05677 (Hsm3) enHanced spontaneous mutability + − 4.33
CAWG_03436 (Tma17) Translation machinery associated + − 4.89
Pup2 Putative proteasome subunit  + − 4.97
Fes1 Factor exchange for Ssa1p + − 6.16
CD36_00370 (Ubp6) UBiquitin-specific protease + − 6.28
Tfs1 cdc twenty-five suppressor + − 8.95
Pre3 Putative beta-1 proteasome subunit + − 11.20
Pre1 Putative beta 4 subunit of the 20S proteasome + − 33.97
Prb2 Proteinase B + − 47.69
CaO19.10285 (Pbi2) Putative protease B inhibitor + − 84.51

+ Up-regulated, − down-regulated
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components of cytoskeleton (actin, tubulin and cofilin) 
(Cao et  al. 2005; Navarathna et  al. 2016). Components 
of cytoskeleton (actin, tubulin and cofilin) and chromatin 
remodeling complex (Arp7) were up regulated in our study. 
Similarly, enhanced levels of components (Yke2 and Cct2) 
involved in proper folding of alpha, beta tubulin and actin 
indicate increased strain on PTM machinery, as reported 
earlier in response to GlcNAc (García-Sánchez et al. 2005; 
Kamthan et al. 2012). Enhanced Phb12 level in our study 
contributes in stabilizing newly synthesized proteins (CGD 
2010; Schleit et al. 2013). Up-regulation of Pre7 (66.85-
fold) a proteasome component indicates that ubiquitin-
dependent proteasome activity was enhanced during chla-
mydospore growth (Table 3) (CGD 2010; Liu et al. 2016; 
Verma et al. 2000). Up-regulation of Tpd3 in our study con-
firms enhanced cytokinesis) during chlamydosporulation as 
reported earlier (Liu et al. 2016; Lorenz et al. 2004; Sarkar 
et al. 2002).

Nutrient limitation, microaerophilic and osmotic stress 
modulate metabolism during chlamydospore growth that 
leads to acquire unique morphological and architectural 
characteristics in addition to survival using nonconven-
tional and complex carbohydrates (viz. maltose, xylitol etc.) 
(Fig. 3) (Jamai et al. 2007; Bruno et al. 2006). Significant 
up-regulation of maltase (64-fold) followed by enhanced 
glycolysis and tricarboxylic acid cycle in our study con-
firms earlier hypothesis that states, “Enhanced glycolysis 
and tricarboxylic acid cycle under glucose limiting condi-
tion contribute to link the regulation of chlamydospores 
production in Candida” (Table 1 and Fig. 3) (Brown et al. 
2014; Bottcher et al. 2016; CGD 2010; Han et al. 2011). 
Enhanced glyoxylate cycle reported to facilitate survival of 

C. albicans under glucose limiting condition is enhanced 
in our study (Fig. 3) (Barelle et al. 2006; Ene et al. 2012). 
Microaerophilic condition triggers alcohol production lead-
ing to hyphae induction required for chlamydospore forma-
tion (Fig. 3) (Chauhan et al. 2011; Smith et al. 2004). In 
addition to energy generation, glycolysis provides precur-
sors for the biosynthesis of lipids (storage molecules) and 
trehalose required for stress (oxidative, heat, desiccation, 
osmotic etc.) tolerance (Fig. 3) (Brown et al. 2014; Pereira 
et al. 2001; Yoda et al.2000). Inhibition of NAD+ synthesis 
increases oxidative stress tolerance and extend lifespan as 
NAD is an essential cofactor for cellular redox reactions 
(Table 1) (Pereira et al. 2001; Bedalov et al. 2003; Kato and 
Lin 2014). Enhanced glutathione biosynthesis, up-regula-
tion of Osm1, Yhb1 and down-regulation of Ysa1 could be 
the compensatory responses to enhanced oxidative, nitros-
sative and osmotic stresses during chlamydospore growth 
(Table 2) (Chen et al. 2008; Cottier et al. 2012; Liu et al. 
2000; Michán and Pueyo 2009; Nett et al. 2009; Yadav 
et al. 2011). Enhanced level of Yhb1 was also validated at 
RNA level using qRT-PCR analysis (Tables 2, 5 and Figs. 4, 
5). Chlamydospore inducing condition further potentiates 
antioxidant machinery through the maturation of Sod1 and 
trehalose homeostasis (through up-regulation of Lys7 and 
Hsp21 respectively) (Dong et al. 2013; Gleason et al. 2014; 
Mayer et al. 2012). Morpho-physiological and cellular archi-
tectural modulations seems to affect cellular and mitochon-
drial membrane functions like transport and osmotic stabil-
ity as proteins involved in maintaining these functions like 
Gdi1, Cof1, Por1 were up-regulated (Cederquist et al. 2012; 
Curwin et al. 2012; Kamthan et al. 2012; Lin et al. 2010; 
Cao et al. 2005). However vacuolar transport and vacuolar 

Table 4   Modulation of 
un-characterized proteins 
during chlamydosporulation 
in Candida albicans (ATCC 
10231)

+ Up-regulated, − down-regulated

Protein name Function Fold change

Yeast Chlamydospores

Uncharacterized proteins
QRI8 Protein of unknown function + + 23.60
CaO19.7199 Putative uncharacterized protein + + 13.57
CaO19.4947 Putative uncharacterized protein + + 8.79
CD36_25110 Putative uncharacterized protein + + 6.23
CaO19.7740  Putative uncharacterized protein + + 4.59
CaO19.13072 Putative uncharacterized protein + − 2.74
ykr049 Protein of unknown function DUF1687 + − 3.29
CaO19.1394 Putative protein of unknown function + − 3.95
NDAI0G02900 Uncharacterized protein + − 4.79
Q9P826(Uni Id) Putative uncharacterized protein + − 5.67
CaO19.7531 Uncharacterized protein + − 7.15
CaJ7.s006 Putative uncharacterized protein CaJ7.s006 + − 7.90
G210_2803  Uncharacterized protein + − 99.58
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(H)-ATPase activities (viz. endocytosis, tagging of lysoso-
mal enzymes) were modulated in our study (Cabezon et al. 
2009; Cabrera et al. 2013; Johnston et al. 2013).  

Metabolic modulation enhances biosynthesis of com-
ponents of cell wall and membrane during chlamydospore 
growth. The thick cell wall is reported to provide protection 
against adverse microenvironment, however, structure and 
composition of cell wall of chlamydospore is not very clear 
(Hazel and Williams 1990; Citiulo et al. 2009; Jansons and 
Nickerson 1970). Different environmental stresses/factors 
reported to modulate cell surface chemistry viz. cell surface 
hydrophobicity (CSH) and adhesion, the two important viru-
lence factors facilitating survival of C. albicans (Odds and 
Bernaerts 1994). These morphophysiological modulations 
are results of modulation in central metabolic pathway that 
leads to modulations in cellular architecture and thus cell 
surface properties (Ingle et al. 2017). Cell surface properties 
are defined by cell surface chemistry, cell surface hydropho-
bicity (CSH) and adhesion etc. (Brown et al. 2014; Hazen 
et al. 1986; Hazen 1990; Klotz and Penn 1987). Cell surface 
properties are extremely important in survival and virulence 
of C. albicans (Odds and Bernaerts 1994). CSH determines 
host-Candida cell interaction, i.e. adhesion and colonization 

followed by tissue invasion at different tissue sites with var-
ied microenvironments (Ener and Douglas 1992). In general, 
adhesion increases with increase in CSH i.e. CSH and adhe-
sion is directly proportional (Ener and Douglas 1992; Klotz 
et al. 1985). More numbers of adhesins in C. albicans com-
pared to non-virulent yeast S. cerevisiae cites the importance 
of cell surface molecules in pathogenicity (Guthrie and Fink 
2002). Csh1 (Cell surface hydrophobicity protein 1) was 
down regulated in our study (Table 5). Down regulation of 
Csh1 during chlamydosporulation correlates positively with 
adhesion (Klotz 1990; Samaranayake et al. 2003). Decreased 
cell surface hydrophobicity is indicative of decreased viru-
lence in chlamydospores (Fig. 2a) (Guthrie and Fink 2002; 
Samaranayake et al. 2003).

Our result suggests that enhanced mannan, β1, 3-glu-
can and chitin biosynthesis thicken and strengthen the cell 
wall of chlamydospore (Table 2) (CGD 2010). Increased 
components viz. β-glucan (β 1, 3-glucan) and chitin are 
reported to strengthen cell wall under hypo-osmotic and 
hypoxic stress (Table  2) (Ene et  al. 2012; Hall 2015; 
Smits et al. 2001). Interestingly, down regulation of Kre9 
(at protein and RNA level) and Phr2 indicates lack of β 
1,6-glucan leading to abnormal cross-linking, however 

Fig. 3   Chlamydospore specific proteins of Candida albicans (ATCC 10231). a Up-regulated b down-regulated proteins

Table 5   Primers used in real time-qPCR analysis

Sr. no Gene name Forward primer (5 → 3) Reverse primer (5 → 3) Amplicon size

1. Pgk1 TTG​GAT​GCT​GCT​GTC​AAA​TC TGA​AGC​ACC​ACC​ACC​AGT​AG 132
2. Yhb1 CGT​TGC​TGG​TGG​TAT​TGG​TA TTT​GAA​AAG​GTT​GCC​GAA​AG 130
3. Hyr1 CAA​TAC​CGG​TGC​TCA​CAC​TG TTT​TCC​ATC​AAA​GCC​AGT​CA 136
4. Kre9 CGG​ATC​AAG​CTT​CAG​GAT​TT CAT​TTG​CAT​TGG​TGC​GTA​TC 107
5. Ald4 ATT​GAA​TGT​GGT​GGG​GTT​CA GAA​ACT​CAT​CAA​TCC​CCC​ATT​ 124
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enhanced chitin content could be a compensatory response 
to maintain cell wall strength (Tables 2, 5 and Figs. 3, 4, 
5) (Aimanianda et al. 2009; Lee et al. 2012; Smits et al. 
2001). Over expression of two hyphae specific GPI (gly-
cosylphosphatidylinositol) anchored proteins (Als3, Hyr1) 
involved in adhesion, indicates that sample exhibit hyphae 
producing chlamydospores and those were highly adhesive 
(Table 2, Fig. 5) (Heilmann et al. 2011; Klis et al. 2009; 
Richard et al. 2002). However, reduced hydrophobicity 
(down-regulation of Csh1) as well as down regulation 
of potential virulence factors (Pst3 and Ttr1) known to 
affect redox state of target proteins of host cells confirms 
attenuated virulence in chlamydospores (Table 2) (Col-
linson et al. 2002; Karababa et al. 2004; Seneviratne et al. 
2008). Enhanced biosynthesis confirms that lipids (ergos-
terol, sphingolipid, phospholipids and fatty acids) are the 
storage molecules of chlamydospores in addition to pro-
viding more strength and rigidity to membranes (Table 2) 
(Fu et al. 2012; Walther et al. 2006; Young et al. 2002).

Our proteomic data confirms that nutrient limiting and 
microaerophilic microenvironment is sensed by C. albicans 
through RAS mediated cAMP-PKA pathway that modu-
late metabolism to use complex carbohydrates like maltose 
(Fig. 6). Enhanced degradation of complex carbohydrates 

releases simple sugars and enhances glycolysis and TCA 
cycle, significantly. In addition to energy, enhanced glyco-
lysis and TCA cycle provides precursors for biosynthesis of 

Fig. 4   Hypothetical model based on proteomic analysis showing modulation of metabolism in C. albicans ATCC 10231 during chlamydosporu-
lation

Fig. 5   Real Time qPCR analysis of selected genes. Data is shown 
as mRNA copies in cells, where significance refers to the differ-
ence between chlamydospores and control (yeast form cells), (n = 3), 
****P < 0.001, **P < 0.01, Bar indicates mean and error bars indi-
cates SD
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lipids and glycogen (energy reserve), sterol and fatty acids 
(strengthen membrane), chitin, mannan, Beta, 1–3, glucan 
(strengthen cell wall architecture) and glutathione and tre-
halose (potentiate stress tolerance) (Fig. 6). In general, we 
conclude that chlamydosporulation confer tolerance towards 
hostile microenvironment by strengthening cellular architec-
ture and stress responses through modulations in metabolic 
pathways and thus survival of C. albicans. 
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