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Abstract
In this article we present a new modelling framework for structured concepts using a category-theoretic generalisation
of conceptual spaces, and show how the conceptual representations can be learned automatically from data, using two
very different instantiations: one classical and one quantum. A contribution of the work is a thorough category-theoretic
formalisation of our framework. We claim that the use of category theory, and in particular the use of string diagrams to
describe quantum processes, helps elucidate some of the most important features of our approach. We build upon Gärdenfors’
classical framework of conceptual spaces, in which cognition is modelled geometrically through the use of convex spaces,
which in turn factorise in terms of simpler spaces called domains.We show how concepts from the domains of shape, colour,
size and position can be learned from images of simple shapes, where concepts are represented as Gaussians in the classical
implementation, and quantum effects in the quantum one. In the classical case we develop a new model which is inspired by
the β-VAE model of concepts, but is designed to be more closely connected with language, so that the names of concepts
form part of the graphical model. In the quantum case, concepts are learned by a hybrid classical-quantum network trained
to perform concept classification, where the classical image processing is carried out by a convolutional neural network and
the quantum representations are produced by a parameterised quantum circuit. Finally, we consider the question of whether
our quantum models of concepts can be considered conceptual spaces in the Gärdenfors sense.

Keywords Conceptual spaces · Category theory · Quantum cognition · Concept learning

1 Introduction

The study of concepts has a long history in a number of
related fields, including philosophy, linguistics, psychology
and cognitive science (Murphy 2002;Margolis and Laurence
2015). More recently, researchers have begun to consider
how mathematical tools from quantum theory can be used to
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model cognitive phenomena, including conceptual structure.
The general use of quantum formalism in psychology and
cognitive science has led to an emerging area called quantum
cognition (Aerts 2009; Pothos and Busemeyer 2013). The
idea is that some of the features of quantum theory, such as
entanglement, can be used to account for psychological data
which can be hard to model classically. Examples include
ordering effects in how subjects answer questions (Trueblood
and Busemeyer 2011) and concept combination (Aerts and
Gabora 2005; Tomas and Sylvie 2015).

Another recent development in the study of concepts has
been the application of machine learning to the problem of
how artificial agents can automatically learn concepts from
raw perceptual data (Higgins et al. 2017, 2018). The motiva-
tion for endowing an agent with conceptual representations,
and learning those representations automatically from the
agent’s environment, is that this will enable it to reason
and act more effectively in that environment, similar to how
humans use concepts (Lake et al. 2017). One hope is that the
explicit use of concepts will ameliorate some of the negative
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consequences of the “black-box” nature of neural architec-
tures currently being used in AI.

In this article we present a new modelling framework
for concepts based on the mathematical formalism used in
quantum theory, and demonstrate how the conceptual rep-
resentations can be learned automatically from data, using
both classical and quantum-inspired models. A contribution
of the work is a thorough category-theoretic formalisation of
our framework, following Bolt et al. (2019) and Tull (2021).
Formalisation of conceptual models is not new (Ganter and
Obiedkov 2016), but we claim that the use of category theory
(Fong 2019), and in particular the use of string diagrams to
describe quantum processes (Coecke and Kissinger 2017),
helps elucidate some of the most important features of our
approach to concept modelling. This aspect of our work also
fits with the recent push to introduce category theory into
machine learning and AI more broadly. The motivation is to
make deep learning less ad-hoc and less driven by heuristics,
by viewing deep learning models through the compositional
lens of category theory (Shiebler et al. 2021).

(Murphy 2002, p.1) describes concepts as “the glue that
holds our mental world together”. But how should con-
cepts be modelled and represented mathematically? There
are many modelling frameworks in the literature, including
the classical theory (Margolis andLaurence 2022), the proto-
type theory (Rosch 1973), and the theory theory (Gopnik and
Meltzoff 1997). Here we build upon Gärdenfors’ framework
of conceptual spaces (Gärdenfors 2004, 2014), inwhich cog-
nition is modelled geometrically through the use of convex
spaces, which in turn factorise in terms of simpler spaces
called domains.

Our category-theoretic formalisation of conceptual spaces
allows flexibility in how the framework is instantiated and
then implemented, with the particular instantiation deter-
mined by the choice of category. First we show how the
framework can be instantiated and implemented classically,
by using the formalisation of “fuzzy” conceptual spaces
fromTull (2021), and developing a probabilisticmodel based
on Variational Autoencoders (VAEs) (Rezende et al. 2014;
Kingma and Welling 2014). Having “fuzzy” probabilistic
representations not only extends Gärdenfors’ framework in a
useful way, it also provides a natural mechanism for dealing
with the vagueness inherent in the human conceptual system,
and allows us to draw on the toolkit from machine learning
to provide effective learning mechanisms. Our new model—
which we call the Conceptual VAE—is an extension of the
β-VAE from Higgins et al. (2017), with the concepts having
explicit labels and represented as multivariate Gaussians in
a factored conceptual space.

We use the Spriteworld software (Watters et al. 2019) to
generate simple images consisting of coloured shapes of cer-
tain sizes in certain positions, meaning our conceptual spaces
contain four domains: colour, size, shape and position.

The main question we investigate for the classical model
is a representational learning one: can the Conceptual VAE
induce factored representations in a latent conceptual space
which neatly separates the individual concepts, and under
what conditions? Here we demonstrate that, if the system
is provided with supervision regarding the domains, and
provided with the corresponding four labels for each train-
ing instance (e.g. (blue, small, circle, top)), then the VAE
can learn Gaussians which faithfully represent the colour
spectrum, for example. We also show the Conceptual VAE
naturally provides a concept classifier, in the form of the
encoder, which predicts a Gaussian for an image that can be
compared with the induced conceptual representations using
the KL divergence.

Our second instantiation of the abstract framework uses
a category for describing quantum processes (Coecke and
Kissinger 2017). In this case, the images of shapes are repre-
sented as quantum states in an underlying Hilbert space and
concepts are quantum effects. Applying a concept effect to
an instance state yields a scalar, which we interpret as speci-
fying how well the instance fits the concept. The factoring of
the conceptual space is represented naturally in our models
through the use of the tensor product as themonoidal product.
We choose to implement our quantum model using a hybrid
quantum-classical network trained to perform concept clas-
sification, where the classical image processing is carried out
by a convolutional neural network (Goodfellow et al. 2016,
Ch.9) and the quantum representations are produced by a
parameterised quantum circuit (Benedetti et al. 2019). Even
though the framework is instantiated at a level of abstraction
independent of any particular implementation, the use-case
we have in mind is one in which the models are (eventually)
run on a quantum computer, exploiting the potential advan-
tages such computers may bring. Here the implementation is
a classical simulation of a quantum computation.1

We demonstrate how the training of the hybrid network
produces conceptual representations in the Hilbert space
which are neatly separated within the domains. We also
show how discarding—which produces mixed effects—can
be used when the concept to be learned only applies to a
subset of the domains, and how entanglement (together with
discarding) can be used to capture interesting correlations
across domains.

What are some of the main reasons for applying the for-
malism of quantum theory to the modelling of concepts?
First, it provides an alternative, and interesting, mathemat-
ical structure to the convex structure of conceptual spaces

1 Note that we are not making any claims of “quantum supremacy”
(Preskill 2012) for the particular set of quantum models that we imple-
ment in this article.However,wedoanticipate the possibility of quantum
models of concepts satisfying our framework which require quantum
hardware for their efficient training and deployment, especially as we
scale to more realistic datasets and larger quantum circuits.
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(see Section 2.7). Second, this structure comes with features
which are well-suited to modelling concepts, such as entan-
glement for capturing correlations, and partial orders for
capturing conceptual hierarchies.2 Third, the use of the tensor
product for combining domains leads to machine learn-
ing models with different characteristics to those typically
employed in concept learning, such as the Conceptual VAE
(i.e. neural networks which use direct sum as the monoidal
product plus non-linearities to capture interactions between
features) (Havlicek et al. 2019; Schuld and Killoran 2019).
The advantages this may bring, especially with the advent
of larger, fault-tolerant quantum computers in the future,
is still being worked out by the quantum machine learning
community, but the possibilities are intriguing at worst and
transformational at best.

Note that, in this article, our goal is to set out a novel frame-
work for concept modelling, and demonstrate empirically—
with two very different implementations—how concepts can
be learned in practice. Further work is required to demon-
strate that the framework can be applied fruitfully to data
from a psychology lab—which is one of the goals of quantum
cognition (Pothos and Busemeyer 2013)—and also to agents
acting in (virtual) environments—one of the goals of agent-
based AI (Abramson et al. 2020). Note also that no claims
are being made here regarding the existence of quantum pro-
cesses in the brain, only that some cognitive processes can be
effectively modelled at an abstract level using the quantum
formalism.

The rest of the article is structured as follows. Section 2
provides a thorough category-theoretic formalisation of our
modelling framework, using the language of string diagrams
to describe the structured models. Section 3 then describes
our first instantiation of the framework, which is a novel
adapation of the variational autoencoder. This section also
contains experiments showing how Gaussian concept repre-
sentations can be learned from images of coloured shapes.
Section 4 then describes our quantum instantiation, as well
as a hybrid implementation applied to the same image data.
The hybrid network uses a CNN for the classical image pro-
cessing and a parameterised quantum circuit for inducing
the concept representations (as quantum effects). Finally,
Sections 5 and 6 describe related and future work.

2 Formalising conceptual spaces

Gärdenfors’ framework of conceptual spaces (Gärdenfors
2004, 2014) models conceptual reasoning in both human
and artificial cognition. The approach models cognition
geometrically, using convex spaces factorised in terms of

2 Section 2.6 describes entanglement; we leave the use of partial orders
in experiments for future work.

“elementary” spaces called domains. Examples include the
domains of colour, taste, sound, and time. Concepts are
represented as convex regions, or more generally as “fuzzy”
functions defined over the space. We begin with a brief
formalisation of this framework. While many have been pre-
sented (Aisbett and Gibbon 2001; Rickard et al. 2007; Lewis
and Lawry 2016; Bechberger and Kühnberger 2017), we
draw on the categorical approaches (Bolt et al. 2019; Tull
2021) and the latter’s treatment of fuzzy concepts.

Definition 1 A convex space is a set Z which forms a
measurable space, i.e. is given with a σ -algebra of ‘mea-
surable’ subsets �Z ⊆ P(Z), and which moreover comes
with operations which allow us to take convex combina-
tions of elements. That is, for all p1, . . . , pn ∈ [0, 1] with∑n

i=1 pi = 1, we have an operation on Z denoted:

(z1, . . . , zn) �→ p1 · z1 + · · · + pn · zn
These operations are related by axioms one would expect
from the familiar example of combinations in a vector space.
In particular, the order of elements in a combination doesn’t
matter, iterated convex combinations are given by multiply-
ing weights, and we always have 1 · z + 0 · z′ = z. For a full
formal definition see Bolt et al. (2019).

Definition 2 A conceptual space is a convex space Z given
as a subset of a product of convex spaces:

Z ⊆ Z1 × · · · × Zn

where the product is equipped with element-wise con-
vex operations and the product σ -algebra �Z1×···×Zn of
the σ -algebras �Z1, . . . , �Zn . We call an element z =
(z1, . . . , zn) ∈ Z an instance of the conceptual space, fol-
lowing Clark et al. (2021).

Any factor Zi can be considered a conceptual space itself,
with each zi an instance. A conceptual space is often written
as a product of domains, such as colour or sound. Each
domain itself factorises as a (subset of a) product of dimen-
sions. For example, the sound domain has the dimensions
of pitch and volume. Here we simply use the neutral term
“factor” to treat either dimensions or domains.

Definition 3 A crisp concept in a conceptual space Z is a
measurable subset C ⊆ Z which is convex, meaning it is
closed under convex combinations. When z ∈ C we say z is
an instance of C.

Convexity means that any point lying “in-between” two
instances of a concept will again form an instance of the
concept, and is justified by Gärdenfors using experimental
evidence in the division of colour space, and the ease of
learning convex regions (Gärdenfors 2004).
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More generally, it is natural to consider concepts C which
are graded or “fuzzy”. To make sense of this, first we will
from now on often abuse notation slightly and equate a crisp
concept C ⊆ Z with its corresponding indicator function
1C , writing it as C : Z → [0, 1]. Then we have C(z) = 1 if
z ∈ C and C(z) = 0 otherwise.

For a fuzzy concept, the degree C(z) to which z is an
instance of a concept should now be able to take any value
between 0 (“not at all”) to 1 (“fully satisfied”). In Tull (2021)
it is shown that to be well-behaved compositionally and
also satisfy a natural generalisation of convexity known as
“quasi-concavity”, the membership function should satisfy
the following.

Definition 4 A fuzzy concept of Z is a measurable function
C : Z → [0, 1] which is log-concave:

C(pz + (1 − p)z′) ≥ C(z)pC(z′)1−p (1)

for all z, z′ ∈ Z and p ∈ [0, 1]. A prototypical instance of C
is an instance z with C(z) = maxw∈Z C(w), whenever such
an instance exists.

The collection of prototypical instances of a fuzzy concept
always forms a crisp concept. Conversely, any crisp concept
C ⊆ Z may be seen as a special case of a fuzzy concept
via its indicator function 1C as above, with C as its subset
of prototypical instances. From now on, for a crisp concept
we will not distinguish sharply between the subset and its
indicator function, denoting both by C .

Example 1 Any convex subset Z ⊆ R
d forms a conceptual

space, taking �Z to be the Lebesgue measurable subsets.
Thus any product Z = Z1 × · · · × Zn of convex subsets
Zi ⊆ R

di forms a conceptual space. In general any product
of fuzzy concepts yields a new one on any convex subset
Z ⊆ Z1 × · · · × Zn via:

C(z) =
n∏

i=1

Ci (zi ) (2)

The following example of a fuzzy concept will form the
basis of our classical implementation of the framework in
Section 3.

Example 2 We may define a fuzzy concept on Z = R
n

from any multivariate Gaussian with mean μ and covariance
matrix �:

C(z;μ,�) = e− 1
2 (z−μ)T�−1(z−μ) (3)

= e

∑n
i=1 − 1

2σ2i
(zi−μi )

2

(4)

In the second line we restrict to the case where� is diagonal,
with i-th diagonal entryσ 2

i . In this caseC is given as a product
of one-dimensional Gaussians Ci (zi ;μi , σ

2
i ) as in Eq. 2.

Example 3 A simple taste domain from Bolt et al. (2019),
left-hand below, is given as a convex subset of R3 generated
by the points sweet, bitter, salt and sour. Highlighted in red
is a crisp concept for sweet. Right-hand below shows a fuzzy
concept on R

2 from Tull (2021). From a set of exemplars
(white crosses) the convex closure is formed, yielding the
crisp concept P given by the inner triangle. A fuzzy concept

is then defined by C(x) = e− 1
2σ2

d(x,P)2 where dH (x, P) =
inf p∈P d(x, p), where each point in P is prototypical.

2.1 Categorical setup

Our aim will now be to lift these basic notions from con-
ceptual space theory into a general categorical framework,
allowing us to pass them from the classical to the quantum
setting in a principled manner. Here we introduce the cate-
gorical preliminaries.

Wewill work in a symmetricmonoidal category (C,⊗, I ).
Recall that this consists of a collection of objects A, B, . . .

and a collection of morphisms, where a morphism from A
to B is denoted f : A → B. We may compose morphisms
in sequence when their types match, as well as composing
objects and morphisms in parallel via a ‘tensor’ operation⊗.
For more details see e.g. (Coecke 2006).

Wewillmake use of the graphical calculus (Selinger 2010)
in which objects are depicted as labelled wires, and mor-
phisms f : A → B as boxes with input wire A and output
wire B, read here from bottom to top. Identity morphisms
and sequential composition are depicted as follows.

idA =
A A

AA

g ◦ f =
A

A

C

C

f

g

B

Parallel composition via the tensor ⊗ is given by drawing
diagrams side-by-side.

f ⊗ g

A ⊗ B

C ⊗ D

= f

A

C

g

B

D
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The (identity on the) monoidal unit I is the empty dia-
gram. Morphisms ω : I → A, e : A → I and r : I → I are
called states, effects and scalars respectively, depicted with
no input, output or neither, respectively.

Here we consider categories C with further structure.
First, each object A will come with a distinguished discard-
ing effect denoted A, which we interpret as “throwing the
system away”, with I = idI and X⊗Y = X ⊗ Y . A
morphism f : A → B is called a channel when it preserves
discarding, as in left-hand below. A special case is that we
call a state ω of A normalised when the right-hand equation
below holds.

f =
B

A A

ω
= 1

A

We also assume C is enriched in partial orders, so that each
homset C(A, B) forms a partially ordered set ≤, so that we
may now have f ≤ g for a pair of morphisms f , g : A → B.
Moreover this ordering is ‘respected’ by composition so that
if f ≤ g then any composite of both sides with the same
morphism h still satisfies this relation3.

This allows us to generalise inclusions of convex subsets
via the following, related to “comprehensions” (Cho et al.
2015) and “compression” maps in quantum reconstructions
(Tull 2019, Chap. 4).

Definition 5 A projection is a morphism p : A → A with

A ◦ p ≤ A and such that:

1. For all f : A → B we have B ◦ f ≤ A ◦ p �⇒ f =
f ◦ p;

2. For all f : B → A we have A ◦ f ≤ A ◦ p ◦ f �⇒
f = p ◦ f .

It follows that p = p◦ p. An embedding of an object A into B
is given by a channel e : A → B and morphism e† : B → A,
depicted using triangles as below, such that e† ◦ e = idA and
p = e ◦ e† is a projection.

A

A

B =

A

A

e

e
A

B

B

is a projection

We often simply call the morphism e the embedding, and e†

the projection, of the pair.

3 For example if f ≤ g then h ◦ f ≤ h ◦ g, f ◦ h ≤ g ◦ h and
f ⊗ h ≤ g ⊗ h where h is any morphism h of an appropriate type for
each case.

Any channel which is an isomorphism A  B forms a
special case of an embedding, where e† = e−1. Another
important special case is an embedding of I into A, which
we call a point of A.4 By definition it includes a normalised
state ψ with an effect ψ† ≤ satisfying:

ψ

ψ

= 1 (5)

Embeddings are always closed under composition in the
following sense.

Lemma 6 If d : A → B and e : B → C are embeddings then
so is e ◦ d : A → C , with projection d† ◦ e†.

2.2 Conceptual models

Let us now see how each of our earlier features from concep-
tual space theory can be described in a general category C
with the structure outlined in Section 2.1. Firstly, monoidal
categories immediately allowus to describe the compositions
of factors Zi appearing in a conceptual space, as follows.

Definition 7 A conceptual model5 is given by an object Z
along with an indexed collection of objects Z1, . . . , Zn ,
called the factors, and an embedding of Z into Z1⊗· · ·⊗Zn .

. . .

Z1 Zn

Z

For simplicity we refer to a model as Z , with the factors
and embedding implicit. Often the embedding is an isomor-
phism Z  Z1 ⊗ · · · ⊗ Zn exhibiting Z as a product of the
factors.

Definition 8 A concept of a conceptual model Z is an effect
C on Z .

C

Z

4 Later wewill define instances as special cases of points. Instances and
points differ in quantummodels, because of entanglement, but coincide
classically.
5 Henceforthwe use the generic term “model” rather than “space” since
a conceptual model can be defined in a category without any spatial
character.
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An instance is a point z of Z which forms a product of points
zi of the factors Zi , as below:

. . .

Z1 Zn

=

z

. . .

Z1 Zn

z1 znZ
(6)

The order structure onmorphismsmeans that the concepts
are automatically partially ordered. We interpret C ≤ D as
stating that D is a “more general” concept thanC . The factori-
sation property Eq. 6 generalises the fact that in a conceptual
space every instance z = (z1, . . . , zn) factors as a product of
one instance zi per factor Zi . Composing a concept C with
any input state, in particular any instance z, will yield a scalar.
For an instance we interpret this as specifying how well the
instance fits the concept:

z

C
Z

We say that an instance z is prototypical for a concept C
when C ◦ w ≤ C ◦ z for all instances w. It remains for us to
identify those concepts which are crisp.

Definition 9 A conceptC on Z is crispwhen it is of the form

K

Z

C =
Z

for someprojectionmorphism Z → K inducedby an embed-
ding of K into Z . When the projection is given by a point of
Z we call C a pure concept.

By definition each crisp concept hasC ≤ . Intuitivelywe
can identify the crisp conceptwith object K via its embedding
e. Indeed by the definition of an embedding, for any instance
z of Z we have C ◦ z = 1 iff z = e ◦ k for some point k of
K . Moreover any concept D with D ≤ C restricts to K in
that D = E ◦ e† for some effect E on K . A pure concept can
be thought of as a “maximally sharp” concept, being of the
form z = ψ† as in Eq. 5 where z = ψ is in fact a point of Z .

2.3 Classical conceptual models

Let us now meet our main classical examples of categories
and their notions of conceptual model.

Class: discrete probability In the category Class the
objects are finite sets and the morphisms M : X → Y are
functions M : Y × X → R

+. We think of such a morphism

as a ‘matrix’ with values in R
+, indexed by the elements of

Y , X , which we write as (M(y | x))y∈Y ,x∈X . Composition
is matrix multiplication:

(N ◦ M)(z | x) :=
∑

y∈Y
N (z | y)M(y | x)

Identity morphisms satisfy idX (y | x) = δx,y . X ⊗ Y =
X × Y , with I = {�} the singleton set, and M ⊗ N the
Kronecker product of matrices. We can equate states ω and
effects e of X each with functions X → R

+. In particular,
scalars correspond to positive reals s ∈ R

+. is the function
x �→ 1 for all x ∈ X .

A state ω of X is normalised iff it describes a probability
distribution, with

∑
x∈X ω(x) = 1. More generally, a mor-

phism M : X → Y is a channel iff it is a finite probability
channel (Stochastic matrix) with

∑
y∈Y M(y | x) = 1 for

each x ∈ X . ≤ is the element-wise ordering from R
+. The

points of X are precisely the point distributions δx for x ∈ X .
An embedding X ↪→ Y is given by an inclusion of a subset
X ⊆ Y via x �→ δx , and its projection Y → X is given by
y �→ δy when y ∈ X and y �→ 0 otherwise.

A conceptual model in Class is thus a finite set Z given as
a subset Z ⊆ Z1×· · ·×Zn . A concept is an arbitrary function
C : Z → R

+, ordered point-wise. An instance is any element
z = (z1, . . . , zn) ∈ Z , with Eq. 6 holding automatically.
Applying a concept C to an instance z gives C(z) ∈ R

+.
Crisp concepts are the indicator functions 1K of arbitrary
subsets K ⊆ Z , while pure concepts are those of instances
z ∈ Z .

Prob:measure-theoretic probability InProb the objects
are measurable spaces (X , �X ). A morphism f : X → Y is
a Markov (sub)kernel, a function sending each x ∈ X to a
sub-probability measure f (x) over Y , in a “measurable” way
(Panangaden 1998; Cho and Jacobs 2019). Composition of
f : X → Y and g : Y → Z is via integration6:

(g ◦ f )(x, A) :=
∫

y∈Y
g(y, A)d f (x)(y)

for each x ∈ X , A ∈ �Z . The identity sends each x to the
point measure δx . We set X ⊗ Y = X × Y , with I being the
singleton set, and define f ⊗ g to send each pair (x, y) to
the product measure of the measures f (x) and g(y). States
of X may be identified with sub-probability measures ω over
X , and are normalised iff they form a probability measure,
with ω(X) = 1. Effects correspond to measurable functions
e : X → [0, 1]. is the constant function at 1. Scalars are
probabilities p ∈ [0, 1]. Composing a state with an effect
yields the expectation value e ◦ω = ∫

x∈X e(x)dω(x) ∈ R
+.

6 Here we use the standard definition of integration on a measurable
space, which exists since g(−, A) is measurable and bounded in [0, 1]
by assumption.
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A morphism f : X → Y is a channel iff it sends each
x ∈ X to a probability measure. Then f ≤ g whenever
f (x, A) ≤ g(x, A) for all x ∈ X , A ∈ �Y . An embedding
X ↪→ Y is an inclusion of a subset X ⊆ Y via x �→ δx for
x ∈ X , with the projection Y → X given by y �→ δy when
y ∈ X and y �→ 0 otherwise.

A conceptual model in Prob is thus a measurable space
given as ameasurable subset Z ⊆ Z1×· · ·×Zn of spaces Zi .
Concepts aremeasurable functionsC : Z → [0, 1], instances
and pure concepts correspond to points z ∈ Z , crisp concepts
1K correspond to arbitrary measurable subsets K ⊆ Z .

ConSp: conceptual spaces The category ConSp (Tull
2021) is defined just like Prob except that the objects are
now convex spaces and morphisms are (sub)kernels f which
are log-concave, meaning that

f (px + (1− p)y, pA+ (1− p)B) ≥ f (x, A)p f (y, B)1−p

(7)

for all p ∈ [0, 1], x, y ∈ X and A, B ∈ �Y . Here X ⊗ Y =
X × Y is the product of convex spaces, with element-wise
convex operations.

A conceptual model in ConSp is precisely a conceptual
space, i.e. a convex space viewed as a convex subset Z ⊆
Z1×· · ·×Zn of convex spaces Zi . Instances are points z ∈ Z .
Crisp concepts are precisely those ofDefinition 3, namely the
indicator functions 1K of convexmeasurable subsets K ⊆ Z ,
with pure concepts being the indicator functions 1z of points
z ∈ Z . Concepts are fuzzy concepts C : Z → [0, 1] in the
sense of Definition 4.

2.4 Quantum conceptual models

We can now define our quantum model of concepts inspired
by the conceptual space framework. To do so we will sim-
ply unpack our definitions from Section 2.2 in the following
category of quantum processes.

Quant: Quantum processes In the category Quant the
objects are finite dimensional Hilbert spaces, and morphisms
f : H → K are completely positive (CP) maps f : L(H) →
L(K), where L(H) is the space of linear operators on H.
Such a map f is linear, and such that for any H′ the map
g = f ⊗ idH′ is positive in that whenever a is a positive
operator then g(a) is also. We set f ≤ g whenever g − f is
CP.

Here ⊗ is the usual tensor of Hilbert spaces and linear
maps, with I = C. In particular, states ω and effects e onH
may both be identified with positive operators a ∈ L(H) via
a = ω(1) and e(b) = Tr(ab), respectively, where Tr denotes
the trace. Scalars are again positive reals r ∈ R

+. Discarding
is the functional (a) = Tr(a), corresponding to the identity
operator idH.

A morphism f is a channel iff it is a completely positive
trace-preserving (CPTP) map, with Tr( f (a)) = Tr(a) for all
a ∈ L(H). A state ρ is normalised precisely when it is a
density matrix, with Tr(ρ) = 1.

A special class of morphisms are the pure CP maps
f̂ : L(H) → L(K), given by f̂ (a) = f ◦a◦ f † for some lin-
ear map f : H → K. All other morphisms are called mixed.
Embedding morphisms are the pure maps induced by inclu-
sions i : K ↪→ H of subspaces into H. The corresponding
projection is the pure map induced by the linear projection i†

ontoK. A point ofHmay be identified with a pure quantum
state |ψ〉〈ψ | for some unit vector ψ ∈ H.7

Wenowarrive at our quantumadaptation of the conceptual
space framework.

Definition 10 A quantum conceptual model is a conceptual
model in Quant:

. . .

H1 Hn

H

Thus a quantum conceptual model is a Hilbert space H
given as a subspace of a tensor product of Hilbert spaces
H ⊆ H1 ⊗ · · · ⊗ Hn . A quantum concept is then precisely
a quantum effect, i.e. a positive operator C ∈ L(H), ordered
via C ≤ D whenever D − C is positive. An instance is
a pure state |ψ〉〈ψ | given by a unit vector ψ ∈ H, which
furthermore factorises as

ψ = ψ1 ⊗ · · · ⊗ ψn (8)

for unit vectors ψi ∈ Hi , giving it a well-defined pure state
value on each factor Hi . All instances are pure, with mixed
states ρ interpreted as states of uncertainty (i.e. probabilistic
mixtures) over pure states such as instances. In contrast con-
cepts may be mixed or pure. The application of a quantum
concept C to an instance ψ is given by

C

ψ

H = 〈ψ |C |ψ〉 ∈ R
+

More generally applying C to a mixed state ρ yields
Tr(Cρ) ∈ R

+.
Crisp concepts correspond to subspaces K ⊆ H. More

precisely, any such subspace defines a crisp concept via the

7 Here we use the standard “bra-ket” notation whereby vectors and
linear functionals on H are written in the form |ψ〉, 〈φ| respectively.
Then for a unit vector ψ ∈ H, |ψ〉〈ψ | is the density operator of the
corresponding pure state on H.
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projection operator P onto K with P(ψ) = ψ for ψ in K
and P(ψ) = 0 for ψ in K⊥.

Pure quantum concepts are precisely those crisp quantum
concepts which are themselves pure as effects. For these,K is
given by a one-dimensional subspace 〈ψ〉 spanned by some
unit vectorψ ∈ H. Thus pure quantumconcepts are precisely
effects of the form |ψ〉〈ψ | where ψ is any unit vector (not
necessarily an instance). Such a concept sends each instance
φ to |〈ψ |φ〉|2 ∈ [0, 1].
Example 4 A quantum conceptual model H = HHue ⊗
HSat ⊗ HLight for colour with factors hue, saturation
and lightness is given in Yan et al. (2021), where hue is
encoded on a single qubit, represented on the Bloch sphere.
In particular each instance (colour) is taken to be a tensor of
pure states over each of the factors.

We will meet further examples of quantum conceptual
models in Section 4.

2.5 Entangled concepts

It is natural to wonder what advantages, if any, quantum
concepts might possess over classical ones. One feature
distinguishing quantum models from classical ones is the
presence of pure entangled concepts. For the following we
restrict to categories with scalars given by R

+, as in all of
our examples here.

Definition 11 A concept C is a product concept when there
are effects C1, . . . ,Cn such that

C

Z

=
. . .

C1 Cn

Z

Z1 Zn

(9)

A concept C is separable when its value on instances is
equal to a convex mixture of product concepts. That is,
there are product concepts C (1), . . . ,C (k) such that C ◦ z =
∑k

j=1 C
( j) ◦ z for all instances z, where the sum is taken in

R
+. If a conceptC is not separablewe say that it is entangled.

A product concept treats the factors independently, apply-
ing a fixed concept to each. Entangled concepts capture
correlations between factors which cannot be reduced to
any mixture over such product concepts. Class, Prob and
ConSp contain product concepts as well as separable (but
non-product) concepts. Nonetheless in Class every con-
cept is separable. However, these categories do not contain
any pure entangled concepts, since every point of a model
Z ⊆ Z1 × · · · × Zn forms an instance z = (z1, . . . , zn) and

hence every pure concept is a product of pure effects z†i on
each factor.

In contrast, quantummodelsH contain both entangled and
pure entangled concepts. For any unit vector ψ ∈ H which
is entangled in the usual sense, i.e. not of the form Eq. 8, the
point |ψ〉〈ψ | is not an instance, and its corresponding pure
concept on H is entangled.

Example 5 Consider a Hilbert space H with orthonormal
basis {|i〉}n−1

i=0 . An entangled pure concept on H ⊗ H is
given by theBell effect, induced by the (unnormalised) vector
∑n−1

i=0 |i i〉 (where sum denotes superposition), with operator
∑n−1

i, j=0 |i i〉〈 j j |.
Remark 1 The finite sum in Definition 11 should ultimately
be replaced with an integral, so that each concept in Prob is
separable. It would be interesting to explore whether entan-
glement exists in ConSp.

2.6 Quantum and classical concept combinations

To compare classical and quantum concepts, and to demon-
strate the role of entangled concepts in quantum models, let
us now consider theways inwhichwemay “combine” (crisp)
concepts in each of our example categories. Given a collec-
tion of crisp concepts (Ci )

n
i=1, by a combination we mean a

new (crisp) concept C such that every prototypical instance
of one of the Ci is a prototypical instance of C .8

Wewill focus in particular on the natural scenario inwhich
we are given a model Z and wish to combine (the pure
concepts induced by) a collection of instances z1, . . . , zn .
The result is a concept C with the z1, . . . , zn as prototypical
instances,whichwe think of as learned from these exemplars.

A starting point is to observe that crisp concepts in each
category are closed under intersections

⋂
i∈I Ci (of arbitrary,

measurable, convex, linear subsets respectively). They hence
form a complete lattice with top element (and so may be
viewed as a Formal Concept Lattice in the sense of Ganter
andWille (1999)). This means that one way to combine crisp
concepts is via their disjunction or least upper bound C =∨

i∈I Ci .
Classical combinations In Class and Prob, the disjunc-

tion is given by the union of subsets Ci . In fact this is
seemingly the only natural way to combine concepts. Indeed
here any crisp concept may be identified with its set of
prototypical instances, so that any combination C satis-
fies

∨n
i=1 Ci ≤ C . In particular the classical combination

z†1∨· · ·∨z†n of instances z1, . . . , zn is the subset {z1, . . . , zn}.
8 In this article “combination” of concepts is always meant in this
sense. However there are many distinct meaningful operations on con-
cepts which could also be called their combination, such as the more
conjunction-like notion of combining “pet” and “fish” into “pet fish”
(Aerts and Gabora 2005).
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Spatial combinations In ConSp the disjunction is given
by the convex closureC = Conv(

⋃
i∈I Ci )of the convex sub-

sets Ci , the smallest convex subset containing all of them.
Again any combination C has

∨n
i=1 Ci ≤ C . The spatial

combination of z1, . . . , zn now includes any convex combi-
nation of them.

Example 6 Consider a model with factors C = colour and
T = taste and a concept B for bananawhich combines two
instances: a yellow (Y ) sweet (S) banana, and a green (G)

bitter (B) banana.

Y S G B

B B

= =1C T TC

For simplicity, suppose yellow and green are “orthogonal”
in that Y † ◦ G = 0. The classical combination yields
the crisp concept whose only points are the two instances
(Y , S), (G, B) themselves, which by orthogonality can be
equivalently written as a sum using element-wise addition of
matrices in Class:

D

C T

= Y S G B

C T C T

+ (10)

The classical combination is depicted left-handbelow.The
spatial combination instead corresponds to the line connect-
ing the two points (right-hand below).

✕

✕
y, s

g, b

Colour

Taste

✕

✕
y, s

g, b

Colour

Taste

(11)

Quantum combinations In Quant, the disjunction is
given by the linear closure C = Lin(

⋃
i∈I Ci ) of all the sub-

spaces Ci , the smallest subspace containing all of them. This
yields a mixed quantum concept which we may interpret as
their “coarse-graining”, and again refer to as their classical
combination. Crucially, however, in a quantum conceptual
model there are in fact many possible ways to combine crisp
concepts, aside from the disjunction, even into a pure con-
cept. That is, there are combinations C of the crisp concepts
Ci which do not satisfy

∨
i Ci ≤ C .

Definition 12 In a quantum conceptual model, by a quan-
tum combination of instances ψ1, . . . , ψn we mean a pure
concept C = φ† with these instances as prototypical.

The presence of quantum combinations is closely related
to entanglement, coming from the fact that instances are only
a subset of the points in a quantummodel, since they are non-
entangled. Indeed any quantum combination of two or more
instances will be entangled.

Example 7 The Bell effect in Example 5 is a pure concept
with prototypical instances being precisely those of the form
|ψ∗〉 ⊗ |ψ〉 for unit vectors |ψ〉, where |ψ∗〉 denotes the
conjugate vectorwith respect to the given basis. Thus it forms
a pure quantum combination of any such instances.

Example 8 Consider again the setting of the banana concept
combination from Example 6. In Quant we can form the
classical combination of instances which is again of the form
Eq. 10, where + is now the sum of CP maps. Alternatively,
we may form a a quantum combination |ψ〉〈ψ | where:

ψ = |Y , S〉 + |G, B〉 ∈ C ⊗ T (12)

More generally any linear map f : C → T such that
f (|Y 〉) = |S〉, f (|G〉) = |B〉 defines a suitable entangled
concept E = ◦( f ⊗id), where denotes the Bell Effect
from Example 5. Consider the case where C = T = C

2,
|Y 〉 = |S〉 = |0〉 and |G〉 = |B〉 = |1〉. A quantum combi-
nation E is now given by the Bell effect. The classical and
quantum combinations D, E act on instances as follows:

D

ψ φ
=

1∑

i=0

|〈i |ψ〉|2|〈i |φ〉|2

E

ψ φ
= |〈ψ∗ | φ〉|2

The classical combination D simply compares any input
to the two instances, with no further prototypical instances
besides those given. As a result the structure of each space
“between” |0〉 and |1〉 is lost,with the orthogonal states |±〉 =
1√
2
(|0〉 ± |1〉) treated identically and D(|+〉 ⊗ |−〉) = 1

2 . In
contrast the quantum combination E can be seen to encode a
structural relationship between the factors, generalising from
|00〉, |11〉. Any instance |φ∗〉 ⊗ |φ〉 is prototypical, and con-
versely, tensors of (conjugate) orthogonal points will not fit
the concept, e.g. E(|+〉 ⊗ |−〉) = 0.

In the above example we see that entangled quantum
concept combinations can encode relationships between fac-
tors, rather than simply (weighted) collections of exemplars.
Indeed any pure entangled concept on C ⊗ T corresponds
to a pure linear map f : C → T . We can understand this
as a generalisation from the instances into a structural rela-
tionship between the factors, akin to a concept of the form
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{(x, f (x)) | x ∈ C} where f is now affine (convexity-
preserving).

As such, quantum combinations share the benefits of spa-
tial combinations on a conceptual space, in that one may
form structured concepts by generalising from a small set of
instances, as on the right of Eq. 11. However, in the quantum
case this can be encoded even within a single pure concept.
Our conclusion is that entanglement provides an effective
way for concepts to encode relationships between factors in
quantum conceptual models.

2.7 Is a quantummodel a conceptual space?

In comparing conceptual spaces with quantum models, it is
natural to ask whether we may view the latter as an instance
of the former, while our discussion of entangled concepts
in the previous section suggested they should be considered
distinct. We now discuss this question in detail. We begin
with the case of a model with only a single factor, described
by a Hilbert space H.

Hilbert space as a convex space Naively we can first
observe that, as a complex vector space,H does indeed count
as a convex space according to Definition 1. However, arbi-
trary vectors inH do not have a direct physical interpretation
as states, but only the unit vectors ψ (after identification up
to global phase) which form the pure states. These pure states
do not straightforwardly form a convex space in the sense of
Definition 1, since convex combinations of unit vectors are
not unit vectors in general.

Pure states as a betweenness space We can nonetheless
view the pure states as a geometric space, in a different way.
This is most evident for a qubit H = C

2, whose pure states
are visualised via the surface of the Bloch sphere. Though
the surface of the sphere does not come with convex mixing
in the sense of Definition 1, it forms an instance of a broader
notion of convex space which may be used to formalise con-
ceptual spaces, known as a Betweenness space (Gärdenfors
2004, 2014; Aisbett and Gibbon 2001). This is a set Z along
with a ternary operation B(x, y, z) which says that the point
y is “in-between” x and z. A subset S is then convex if when-
ever x, z ∈ S and B(x, y, z), then y ∈ S also. The Bloch
sphere forms a Betweenness space when defining B(x, y, z)
whenever a geodesic from x to z passes through y; see
Fig. 1.

We now ask: is the quantum model of concepts on C
2

the same as that given by the Bloch sphere as a Between-
ness space? In fact the sets of concepts in each model are
distinct. Firstly, crisp concepts in the quantum model cor-
respond to subspaces, which on the Bloch sphere are either
single points (dimension 1) or the entire sphere (dimension
2). So most convex regions on the sphere, the crisp con-
cepts in the Betweenness space Z , are not valid quantum
concepts. Conversely, most quantum concepts are not valid

Fig. 1 The Bloch sphere as a Betweenness space, with marked exam-
ples of betweenness B(x, y, z), and a convex region shown in purple.
The states |ψi 〉〈ψi | are used to show that |0〉〈0| is not quasi-concave

fuzzy concepts in the Betweenness space Z . As argued in
Tull (2021) and mentioned before Definition 4, a fuzzy con-
cept C : Z → [0, 1] should at least satisfy the notion of
quasi-concavity, which states that if C(x),C(z) ≥ t then
the same holds for any y with B(x, y, z). Example 9 below
demonstrates that quantum concepts can fail to satisfy this
condition.

Example 9 Consider the pure concept C = |0〉〈0|. Let
|ψi 〉 = cos( θi

2 )|0〉 + sin( θi
2 )|1〉 for i = 1, 2, 3, as in Fig. 1.

Setting θ1 = 2π
3 , θ2 = π , θ3 = 4π

3 then |ψ2〉〈ψ2| = |1〉〈1|
is between |ψ1〉〈ψ1| and |ψ3〉〈ψ3|, making C not quasi-
concave, since

C(|ψ1〉〈ψ1|) = C(|ψ3〉〈ψ3|) = 1
4 > 0 = C(|ψ2〉〈ψ2|).

Spaces of mixed states One may be tempted to instead
view a quantum conceptual model as a different convex
space, namely the space Z = St(H) of (pure andmixed) den-
sity matrices on H, so that these form the instances z ∈ Z .
Indeed it follows from linearity that quantum concepts C do
satisfy quasi-concavity on this space. However, since den-
sity matrices are interpreted as states of uncertainty over pure
quantum states, it is more natural to view them as the ana-
logues of distributions over a conceptual space, rather than
instances. Finally, even if one attempts to view a quantum
model as a convex space St(H), the manner in which we
compose such models via the tensor is fundamentally differ-
ent, making both classes of models distinct:

St(H ⊗ K) = St(H) ⊗ St(K) �= St(H) × St(K)
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In summary, due to their treatment of entangled concepts
and the arguments above, it is most natural to view quantum
models as distinct from conceptual spaces. Nonetheless they
possess the same benefits for learnability, replacing convex
by linear subspaces, and thanks to entanglement may be even
more natural for describing correlated concepts.

3 Classical implementation: the conceptual
VAE

Our first implementation comes from instantiating the frame-
work using the ConSp category from Section 2.3, and
implementing fuzzy concepts as Gaussians, as described in
Example 2. There is already an existing literature on learn-
ing Gaussian representations of concepts, using a tool from
machine learning called the Variational Autoencoder (VAE)
(Higgins et al. 2017). Here we show how to extend that work
by defining a new VAE model which provides explicit rep-
resentations of concepts which fit our framework.

3.1 VAEs for concept modelling

The Variational Autoencoder (VAE) (Kingma and Welling
2014; Rezende et al. 2014) provides a framework for the
generative modeling of data, where the data potentially lives
in some high-dimensional space. It uses the power of neu-
ral networks to act as arbitrary function approximators to
capture complex dependencies in the data (e.g. between the
pixels in an image). TheVAEuses a latent spaceZwhich acts
as a bottleneck, compressing the high-dimensional data into
a lower dimensional space.9 The question we investigate is
whether the VAE model can be adapted so that Z has desir-
able properties from a conceptual space perspective, such
as interpretable dimensions which contain neatly separated,
labelled concepts from individual domains. First we describe
the standard VAE model before describing how to adapt it in
order to incorporate labelled concepts.

3.1.1 The vanilla VAE

Figure 2 (left) shows the graphical model for the VAE. In
terms of the generative story, which is represented by the
solid arrows in the plate diagram, first a point z in the
latent space Z is sampled according to the prior p(z), and
then a data point x is generated according to the likelihood
pθ (x|z). The dashed arrows denote the variational approxi-
mation qφ(z|x) to the intractable posterior pθ (z|x). The prior
is assumed to be a centered isotropic multivariate Gaussian

9 In this sectionwe use bold font for variables, e.g. the conceptual space
Z, to be consistent with the machine learning literature.

p(z) = N (z; 0, 1) (Kingma andWelling 2014). The approx-
imate posterior qφ(z|x) is also assumed to be a multivariate
Gaussian with a diagonal covariance matrix, but with means
and variances predicted by a neural network with learnable
parameters φ. In our case, since X is a dataset of images,
qφ will be instantiated by a convolutional neural network
(CNN), which is referred to as the encoder. Similarly, pθ

will be instantiated by a de-convolutional neural network
(de-CNN), and referred to as the decoder.

The function that is optimised during training is the RHS
of the following equation (Doersch 2016):

log p(x) − D(q(z|x), p(z|x))
= Ez∼q(z|x)[log p(x|z)] − D(q(z|x), p(z)) (13)

where D is the KL divergence. Note that, since the KL on
the LHS is positive, the equation provides a lower bound on
the likelihood, known as the evidence lower bound (ELBO).
The advantage of this formulation is that the RHS can be
maximised using gradient-based optimisation techniques.
Since the KL on the RHS is between two multivariate Gaus-
sians, there is an analytical expression for calculating this
quantity, and estimate of the expectation can be obtained
using numerical methods, in particular Monte Carlo sam-
pling (togetherwith the reparametrisation trick (Kingma and
Welling 2014)).

Are the latent representations induced by a VAE in any
way conceptual? First, note that there is no pressure within
the model to induce the sorts of factored representations
in which the dimensions of Z correspond to conceptual
domains. Higgins et al. (2017) attempt to address this prob-
lemby introducing aweighting factor on theKL loss. Second,
there is currently no mechanism in the model which allows
concepts to be referred to using their names (e.g.blue square).

3.1.2 The conceptual VAE

One feature that we would like in the model is an explicit
representation of the words or symbols that are used to refer
to a concept (whichwe’ll call the concept label). The obvious
way to include the concept label in the model is as an explicit
random variable c.We could use a conditional VAE (Doersch
2016), with the label acting as an additional input into the
decoder, so that when the decoder generates a data instance
x, it does so conditioned on c as well as a point from the latent
space z (Fig. 2; centre). However, with this model there is
no explicit representation of a concept (beyond its symbolic
label). The key to the conceptual VAE is to introduce a new
random variable for a concept label, c, but introduce it at the
very top of the graphical model (Fig. 2; right). The difference
with the conditional VAE is that each concept c now has an
explicit set of parameters associated with it, which acts as c’s
representation.
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Fig. 2 Graphical models for the
VAE (left), conditional VAE
(centre) and the Conceptual
VAE (right). Grey nodes
represent observed variables and
white nodes hidden variables

In terms of the generative story, first a concept label c is
generated, and then a point z in the latent conceptual space
is generated, conditioned on c; after that the generative story
is the same as for the vanilla VAE: an instance x is generated
conditioned on z. In thisworkwe assume a uniformprior over
the concept labels (more specifically a uniform prior over the
atomic labels corresponding to each conceptual domain ci ),
and c can effectively be thought of as a fixed input to the
model, as provided by the data.

How do we model p(z|c)? As before we use multivari-
ate Gaussians with diagonal covariance matrices, but now
the means and variances are learnable parameters ψ . We
will sometimes refer to pψ(z|c) for a given concept c as a
conceptual “prior” (since these Gaussians replace the unit
normal prior in the vanilla VAE), as well as c’s learned repre-
sentation. Since c is factored, each ci has its own (univariate)
Gaussian distribution; e.g., red will have its own mean and
variance which define a Gaussian on the dimension corre-
sponding to the colour domain. It is this Gaussian which
provides the anwser to the question “what is the conceptual
representation for red?”.

The ELBO equation now takes the following form:

log p(x|c) − D(q(z|x), p(z|x, c))
= Ez∼q(z|x)[log p(x|z)] − D(q(z|x), p(z|c)) (14)

How is this model trained, and what are the pressures that
lead to conceptual representations being learned? For a train-
ing instance x labelled with a concept c, the training proceeds
as before for the vanilla VAE: the encoder predicts a Gaus-
sian q(z|x); this is sampled from (using the reparametrisation
trick) to give a sample zs ; and − log p(x|zs) is calculated to
give the reconstruction loss. The key difference is in the cal-
culation of the KL loss. Suppose that c = (green, medium,
triangle, bottom). The KL is calculated for each dimension,
relative to theGaussian for the particular atomic label for that
dimension. For example, for the colour domain (dimension

0), the KL would be between qφ(z0|x) and pψ(z0|green). So
note that the supervision regarding the domains is provided
here in the calculation of the KL.10 Unlike the vanilla VAE,
the conceptual “priors” depend on the learned parametersψ ,
which are the means and variances of the individual (univari-
ate) Gaussians.We expect these learnedmeans and variances
to result in a neat separation along a dimension, since this
will make it easier for the model to fit q to the conceptual
representations, leading to a lower KL.

Conceptual space description Explicitly, in terms of
our framework from Section 2.2, our conceptual model is
given in the category ConSp, i.e. by a conceptual space. The
model is Z = R

n , viewed as a product of n one-dimensional
domains Z = ∏n

i=1 Zi with Zi = R. An instance is a vector
z = (z1, . . . , zn) ∈ Z. In particular for each image x ∈ X
we obtain an instance via the (deterministic) encoder qφ(x).
Each concept label c = (c1, . . . , cn)defines aGaussian fuzzy
concept c(z) = p(z | c) with diagonal covariance matrix, as
in Example 2. It forms a product concept over the domains
as in Eq. 9, via:

c(z) =
n∏

i=1

ci (zi )

where each ci (zi ) = ci (zi ;μi , σ
2
i ) is a one-dimensional

Gaussian concept for concept label ci on Zi , with mean μi

and variance σ 2
i as trainable parameters.

3.1.3 A concept classifier

Here we show how the model can be adapted to act as a con-
cept classifier. Note that, from a computer vision perspective,
the classification task is trivial, and one that we would expect

10 The question of whether, and how, the level of supervision could be
reduced and the domains learned automatically is an ongoing debate
(Higgins et al. 2017; Locatello et al. 2019).
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Fig. 3 Example shapes: (green, large, triangle, centre); (blue, small, square, bottom); (red, medium, circle, top); (red, medium, square, centre);
(green, large, circle, bottom)

a well-trained CNN to solve. The classification task is being
used here as a test of whether the induced conceptual repre-
sentations can be employed in a useful way.

From a probabilistic perspective, the goal is to find the
most probable concept c′ given an input image x:

c′ = argmax
c

p(c|x) (15)

= argmax
c

p(x|c) (16)

≈ argmax
c

−D(q(z|x), p(z|c)) + recon_loss (17)

= argmax
c

−D(q(z|x), p(z|c)) (18)

Line Eq. 16 follows from Eq. 15 because of the assumed
uniform prior over concepts, and we use the ELBO from Eq.
14 as an approximation to the likelihood in going from Eqs.
16 to 17 (where recon_loss is the remaining part of the loss
after the KL). The reconstruction loss is independent of c
and so we end up with the satisfying form of the classifier
in Eq. 18, in which the most likely concept for an input x is
the one with the smallest KL relative to the encoding of x, as
provided by q.

3.2 Experiments

We use the Spriteworld software (Watters et al. 2019) to gen-
erate simple images. These consist of coloured shapes of
particular sizes in particular positions in a 2D box, against
a black background. For the main dataset, there are three
shapes: {square, triangle, circle}; three colours: {red, green,
blue}; three sizes: {small, medium, large}; and three (ver-
tical) positions: {bottom, centre, top} (see Fig. 3). We ran
the sampler to generate a training set of 3,000 instances, and
development and test sets with 300 instances each. Appendix
A contains the parameters used in the Spriteworld software
to generate the main dataset.

The encoder, which takes an image x as input, is instan-
tiated as a CNN, with 4 convolutional layers followed by a
fully-connected layer. A final layer predicts the means and
variances of the multivariate Gaussian qφ(z|x). The ReLU
activation function is used throughout. The decoder, which

takes a latent point z as input, is instantiated as a de-CNN,
with essentially the mirrored architecture of the encoder. The
reconstruction loss we use on the decoder for predicting the
pixel values in an image x is the MSE loss.

The implementation was in Tensorflow. The full set of
parameters to be learned is θ ∪ φ ∪ ψ , where θ is the set of
parameters in the encoder, φ the parameters in the decoder,
and ψ the means and variances for the conceptual repre-
sentations (12 each for the main dataset). The training was
run for 200 epochs (unless stated otherwise), with a batch
size of 32, and the Adam optimizer was used. Finally, we
added 2 “slack” dimensions to the latent space Z, in addi-
tion to the 4 dimensions for the conceptual domains. These
slack dimensions are intended to capture any remaining vari-
ability in the images, beyond that contained in the concepts
themselves. Appendix B contains more details of the neural
architectures used in our experiments, including the various
hyper-parameter choices.

3.2.1 Clustering effects and classification accuracy

Figure 4 shows the means and log-variances predicted by the
encoder for each dimension, for a set of instances, with the
colour-coding indicating the atomic concept labels from the
different domains. For example, in the set of 4 plots at the top
left, the means and log-variances for dimension 0 are plotted;
and in the top-left of those 4 plots, each point is colour-coded
with the colour of the corresponding instance. What this plot
shows is the neat separation for the means along the colour
dimension, for each of the 3 colours. The other 3 plots contain
the same set of points, but colour-coded with atomic labels
from the remaining domains of size, shape and position.
With the 3 remaining plots we expect to see no discerning
pattern, since we would like the first dimension to encode
colour only (although note that, in this particular training
run, dimension 1—corresponding to size—does appear to be
encoding some information about the colour).

The plots were created using the model evaluated on
classification accuracy below, which performed well on the
development data. The instanceswere taken from the training
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Fig. 4 The means and log-variances for each dimension predicted by the encoder, for a set of instances; means on the x-axis, log-variances on the
y-axis. Colour-coding, from top-left clockwise: colour, size, position, slack- dim- 2, slack- dim- 1, shape
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Fig. 5 Traversals along each latent dimension for a large red circle in the centre

data.11 The plots in the top-right are for dimension 1 (corre-
sponding to size), and again we obtain a neat separation for
the means, when colour-coded with the size of the instance,
with instances labelled medium sitting in the middle. The
second-row (right) plots are for dimension 3 (position), and
again we see a neat separation of the means with instances
labelled centre sitting between those labelled top and bottom.
The second-row (left) plots are for dimension 2 (shape).Here
we see a clear separationwith the predictedmeans occupying
a short range, which reflects the discrete nature of these con-
cepts. The plots for the slack dimensions are in the bottom
row, with no discernible pattern (except perhaps in the size
dimension bottom-right).

We evaluated the same model as a classifier, using the
formulation in Eqs. 15, 16, 17 and 18 above. The accuracy on
thedevelopment data for thecolour and shapedomainswas
100%, with accuracies above 98% for the other two domains.
These high accuracies transferred over to the test data.

3.2.2 Continuity within domains

Figures 5 and 6 provide further qualitative demonstration of
how the conceptual domains are neatly represented on each
dimension.An instance of a large red circle in the centre and a
medium-sized blue square at the bottom are passed through
the encoder, giving a mean for each of the 4 dimensions.
Then, the mean value is systematically varied for one of the
dimensions only (through regular increases and decreases),
keeping the other 3 fixed. All resulting combinations of the 4
mean values are then input to the decoder, giving the images

11 The same patterns were observed on the development data. We used
the training data since this gives denser plots.

in the figure.12 What the transitions clearly demonstrate is
not only how one latent dimension encodes just one domain,
but also how the concepts smoothly vary along one dimen-
sion. Note how in both examples dimension 2 encodes a
shape somewhere between a triangle and a circle, and also a
shape somewhere between a circle and a square. Dimension
1 shows a smooth transition from small to medium to large,
and dimension 3 from bottom to center to top.

In order to investigate these ordering effects further, we
created a new dataset which contains all the colours of the
rainbow, with the same shapes, sizes and positions. The con-
tinuous colour ranges now cover a much larger proportion
of the range of possible values (see Appendix A.1), with the
occasional gap (e.g. between green and blue). The training
data again consisted of 3,000 randomly generated instances,
with a development set of 300 instances.

Again we chose a trained model which performed well
on the classification task on the development data (with
accuracies well into the 90s for all domains), and plotted
the colour-coded means and variances as predicted by the
encoder. Figure 7 again shows a neat separation for the
colour domain, with very similar patterns for the other
domains (not shown), and to those exhibited in Fig. 4. Look-
ing carefully at the plot in the top-left, we see that the
colours are not only neatly separated along the colour
dimension, but also that the ordering of the rainbow is
faithfully represented: blue, indigo, violet, red, orange, yel-
low, green. Figure 8 shows an example traversal along the
colour dimension only, for the colour-extended dataset,
again demonstrating an ordering consistent with a rainbow.

12 The idea of plotting transitions along a dimension is taken from
Higgins et al. (2017).
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Fig. 6 Traversals along each latent dimension for a medium-sized blue square at the bottom

Fig. 7 The means and
log-variances for colour
predicted by the encoder, for the
rainbow colour set

Fig. 8 Traversals along the colour dimension for two examples from the colour-extended dataset
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4 Quantum implementation: a hybrid
network with PQCs

In this sectionwe also set up a probabilistic learning objective
in order to induce conceptual representations, but using a
discriminative classifier rather than a generative model. In
addition, the classifier is implemented as a hybrid network
consisting of a classical convolutional neural network (CNN)
(Goodfellow et al. 2016, Ch.9) followed by a parameterised
quantum circuit (PQC) (Benedetti et al. 2019). We use the
network to classify the same set of images and labels from
the classical experiments in Section 3.

4.1 The hybrid network

An input image is first processed by a CNN which outputs
classical parameters which are fed into a PQC. This PQC
we call the encoder PQC; it implements a quantum state z
which is the representation of the image in our model. Given
a concept C , a separate concept PQC implements a quantum
effect corresponding toC which canbe applied to the instance
z, as described in Sections 2.2 and 2.4. We assume that the
factorisation of the model into the domains H1, . . . ,Hn is
known by the model; in our experiments these will be the
four domains shape, colour, size, position. The overall
setup is shown below, with thin wires denoting classical data
and each thick wire denoting a Hilbert space given by some
number of qubits.

CNN

Encoder PQC

Concept PQC

Image

θ

Concept
params

. . .

Classification

H1 Hn

. . .

Measurement

Given an input image and the parameters encoding a con-
cept, a single run of the circuit produces a “yes” or “no” to
determine whether the concept has been deemed to fit the
image. The probability of each outcome is obtained either
by sampling the circuit many times (on a physical device) or
direct calculation (in simulation). With the probabilities for
each concept, one can then classify which concept best fits
the input image.

In more detail, each instance z is a pure quantum state
given by passing an image X into the CNN and then using
the resulting parameters in the encoder PQC network:

CNN

Encoder PQC

X

. . .

H1 Hn

z

. . .

H1 Hn

=

Each specific concept C can be understood as a measure-
ment with two outcomes “yes” and “no”, such that outcome
“yes” means the concept has been deemed to fit the instance.
The measurement is given by a Pauli-Z measurement on
each qubit, with the overall outcome “yes” identified with
obtaining outcome 0 on every qubit individually, and all
other outcomes labelled as “no”. Diagrammatically this is
expressed as follows:

Concept PQC

. . .

H1 Hn

C

. . .

H1 Hn

:=

0

φC

0

(19)

where φC are the parameters encoding the concept C . Each
conceptC can be either pure ormixed, depending onwhether
a pure or mixed circuit is chosen for the concept PQC, which
we discuss in Section 4.1.1.

4.1.1 The CNN and PQCs

We use the same CNN from the classical experiments in
Section 3.2 for the image processing. For the classical exper-
iments the CNN predicted the means and variances of a
multivariate Gaussian, whereas here the CNN predicts the
parameters of the encoder PQC. The PQCs make use of
the parameterised circuit ansatz shown below, defined over
any finite collection of qubits. The ansatz U (θ) is given by
performing parameterised X ,Y , Z rotations on each qubit,
followed by entangling pairs of adjacent qubits using con-
trolled Z gates (with an additional gate operating on the
two outermost qubits to complete the chain). Multiple lay-
ers of this ansatz can be composed to give a more complex
circuit. We define another ansatz V (θ) in the same way
but with initial rotations in the reverse order Z ,Y , X . An
important special case is that, when given on a single qubit,
U (θ) is simply equal to sequential parameterised X ,Y and Z
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rotations. Similarly V (θ) on a single qubit amounts to rotat-
ing in the order Z ,Y , X .

RX
θ1

RY
θ1

RZ
θ1

U (θ) :=
. . .

. . .

. . .

RX
θ2

RY
θ2

RZ
θ2

RX
θ3

RY
θ3

RZ
θ3

RX
θn−1

RY
θn−1

RZ
θn−1

RX
θn

RY
θn

RZ
θn

. . .

(20)

In the above each θ j = (θ j,X , θ j,Y , θ j,Z ) consisting of
three single parameters passed respectively to the X ,Y , Z
rotations on qubit j = 1, . . . , n. All are in turn contained in
the parameters vector θ . In fact this ansatz is universal in that
with sufficient layers of the form U (θ) one may implement
any unitary circuit.13

Now let us describe the encoder and concept PQCs inmore
detail. Both consist of some number of qubits per domainHi .
The form of the encoder PQC is as follows:

Encoder PQC

H1 Hn

= U (θ1)

H1 Hn

U (θn). . .

. . .

θ 0 0

More generally we can compose multiple layers of such
U circuits on each domain. Here the |0〉 states denote prod-
uct states |0 . . . 0〉 on each Hi . Thus by construction the
encoder never involves entanglement across domains, and
can be viewed as a single encoder per domain. Since the
ansatz U is universal, the encoder is able to prepare an arbi-
trary quantum instance.

In the initial basic setup used, beginning in Section 4.2, we
only have one qubit per domainHi , and only use one layer in
the encoder. In this case the encoder simply carries an X ,Y
and Z rotation per qubit, involving no entanglement. In this

13 The entangling layer is self-inverse, so that two layers allow us to
implement a rotation on any qubit. A swap operation on any pair of
qubits can be implemented using three layers, and from this anyCXgate.
Hence we may implement the universal gate set given by single-qubit
phase and Clifford gates; see, for example, Van de Wetering (2021).

basic setup, the concept PQC also involves no entanglement,
taking the following form.

Concept PQC

H1 Hn

:= V (φC
1 )

H1 Hn

V (φC
n ). . .

. . .

. . .

H1 Hn H1 Hn
φC

(21)

Concretely, with four domains and one qubit per domain,
in this setup the application of a concept C to an instance z
amounts to the (probability of the) circuit shown below with
post-selection, where θ is the encoding of the image from the
CNN, φC are the learned concept parameters and each wire
is a single qubit.

RX
φC
1

RY
φC
1

RZ
φC
1

RX
φC
2

RY
φC
2

RZ
φC
2

RX
φC
3

RY
φC
3

RZ
φC
3

RX
φC
4

RY
φC
4

RZ
φC
4

0 0 0 0

=

C

RX
θ1

RY
θ1

RZ
θ1

RX
θ2

RY
θ2

RZ
θ2

RX
θ3

RY
θ3

RZ
θ3

RX
θ4

RY
θ4

RZ
θ4

0 0 0 0

z

(22)

In order to capture mixed and entangled concepts, in
Section 4.4 we use a richer form for the concept PQC. Entan-
glement is provided by using the full ansatz V (θ) over all
domains. To introduce mixing, we use an ancilliary copy of
each domain H1, . . . ,Hn , prepared in initial state |0〉, and
then discard the original domains as in the following circuit:

Concept PQC

H1 Hn

:=

H1 Hn

. . .

. . .

. . .

H1 Hn H1 Hn
φC

V (φC )

0

H1

H1

Hn

Hn

. . . . . .

. . .

0

(23)

More generally one can include multiple V layers prior
to discarding. Note that since this ansatz is universal we can
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Fig. 9 Visualisation of the pure concept effects and instance states on the Bloch sphere, for shape, colour, size and position

implement any unitary with sufficient layers of the form V ,
and thus any (sub-normal) quantum concept.

4.1.2 Discriminative training

The classical concepts model from earlier is a generative
model consisting of an encoder and a decoder. Here we
choose to train the quantummodel to perform binary classifi-
cation; hence the basic model is a discriminative model with
an encoder only.14 The loss function is the standard binary
cross entropy (BCE) loss for binary classification. The full
set of parameters to be learned isψ ∪φ, whereψ is the set of
parameters in the classical encoder CNN and φ is the set of
PQC parameters associated with the set of 12 basic concepts.

The training data contains the 3,000 positive examples
from Section 3.2 and an additional 3,000 negative examples.
Each negative example is created from a positive one by ran-
domly sampling an incorrect concept for each domain; for
example, if the positive example is (green, large, triangle,
centre) then a negative example could be (blue, medium,
square, bottom). Since we are effectively learning each
domain independently in the basicmodel, a negative example
disagrees on every domain. Later models will use variations
on this data.

14 In Section 4.2.2 below we investigate how the addition of a decoder
can affect the instance and concept representations.

The implementation is in Tensorflow Quantum, and the
whole hybrid network—both the quantum and the classical
parts—are trained end-to-end in simulation on a GPU. The
training was run for 100 epochs (unless stated otherwise),
with a batch size of 64 (32 images, each with a postive and
negative label), and the Adam optimizer was used.

4.2 Instance states and concept effects

We trained a quantum model, using the circuit shown in
Eq. 22 above, and tested it on the 300 examples in the
development set. The model was trained to perform binary
classification, but at test time we choose the concept for
each domain which has the highest probability of applying
to the input image. The classification model performed with
almost perfect accuracy, obtaining 100% on the colour and
shape domains, and 99% and 97% on the position and size
domains, respectively. This high accuracy carried over to the
300 examples in the test set, obtaining 100% on the colour
and shape domains, and 96% and 97% on the position and
size domains, respectively.

Figure 9 visualises the pure effects for each of the 3 con-
cepts on the 4 domains, by plotting the corresponding pure
states on a Bloch sphere. We are able to perform the visu-
alisation for this basic model since only one qubit is being
used per domain, with no entanglement. The clusters of dots
around each concept are the corresponding instances (pure
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Fig. 10 Visualisation of the concept effects and instance states on the Bloch sphere, for 3 trained models, for the colour domain on the rainbow
dataset

states) in the training data. This visualisation is for the model
which performs as described above on the classification task;
a model trained from a different random initialisation would
have the concepts and instances distributeddifferently around
the sphere, but this visualisation is representative in terms of
how the concepts are typically separated and the instances
clustered. Note how the 3 concepts on each domain are
being pushed apart (strikingly so in the case of the posi-
tion domain) and how the concepts sit neatly in the centre
of each cluster of instances.

4.2.1 The rainbow dataset

In order to test ourmodel further, we used the rainbowdataset
from Section 3.2, and in order to train the discriminative
model, we added a further 3,000 negative examples (for each
epoch) to the 3,000 positive ones, randomly generated as
before. Perhaps unsurprisingly, it was more difficult with
this data to obtain a clean separation of the colours on a
single qubit.15 However, with a weighting of 0.5 applied
to the negative examples in the binary cross-entropy loss,
and running the training for 200 epochs, we were able to
obtain the distribution of colours around the Bloch sphere
shown in Fig. 10 (with instances again taken from the training
data). The three visualisations are for three separately trained
models (i.e. with three different random initialisations of the
model parameters).

In terms of accuracy on the development data, the classi-
fication model for the Bloch sphere on the far left achieved
similar scores on the non-colour domains as before, and an
overall accuracy of 95% on colour, with F1-scores rang-
ing from 91% to 100% for the individual colours. The Bloch
sphere in the middle is for a model with similar performance,

15 Of course there is nothing to prevent us from using more than one
qubit per domain, in order to provide a larger Hilbert space in which
to represent the additional colours, but the visualisation is harder with
more qubits.

and is shown to demonstrate the variation in models. The
example on the far right is cherry-picked as an example of
how the training is able to neatly represent the various colours
on the Bloch sphere: note how the yellow, orange and red
instances are beautifully placed on the circumference of a
circle, with the red instances leading into orange and then
yellow.

4.2.2 Adding a decoder loss

One notable feature of the visualisations in Fig. 9 is how
“tight” the instance clusters are, despite the variation in the
images for a single concept (for example the variation in red
shapes in Fig. 3). There may be use-cases where we would
like the representation of instances to better reflect the varia-
tion in the underlying images, for example in order to better
capture correlations across domains (see Section 4.3 below).

In order to provide more of a “spread” of the instances,
we experimented with an additional decoder loss in the loss
function below, where BCE is the binary cross-entropy loss,
D is the data with N instances {Xi }i , and ψ and φ are the
parameters of the encoder network:

Loss(D, ψ, φ, χ) = BCE(D, ψ, φ)

+ λ

N

∑

i

SE(DeCNN(χ,CNN(ψ, Xi )), Xi )

(24)

The decoder is a deconvolutional neural network (DeCNN),
with parametersχ , which essentially is theCNN“in reverse”:
it takes as input the angles output by theCNN, given an image
Xi , and outputs RGB values for each pixel in the image. SE is
the sum of squared errors across all RGB values in the image,
and λ is a weighting term in the overall loss. The intuition
is that, in order to obtain a low SE loss, the encoder CNN
has to output angles which are sufficiently informative in
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Fig. 11 Visualisation of the
concept effects and instance
states for all 4 domains, for the
basic dataset with an additional
decoder loss

order for the DeCNN to accurately reconstruct the original
image. Now the model is similar to the Conceptual VAE
(albeit without the generative model interpretation), in that
it has both “encoder” and “decoder” parts to the loss.16

Figure 11 shows how the instances can be distributed
more broadly around the Bloch sphere, using the additional
decoder loss (with λ = 0.1). This model still performs well
as a classification model on the development data, achieving
98% accuracy on size, 99% on colour, 100% on shape,
and 98% on position. As a qualitative demonstration of this
approach, note how the instances for centre and top start to
merge into each other (blue and red instance dots bottom
right), and also for medium and small (blue and red instance
dots bottom left), which is what we would expect for a less
discrete representation.

4.3 Capturing correlations

Here we show how one of the characteristic features of quan-
tum theory, namely entanglement, can be used to capture
correlations across domains. In order to test whether our

16 One possibility for future work is to develop and implement a “quan-
tum VAE” (Khoshaman et al. 2018) for concept modelling, and have a
generative model in which all parts of the model are quantum.

model can handle concepts which contain correlations, we
define a new concept which we call twike, which is defined
as (red and circle) or (blue and square) (i.e. it applies to
images containing red circles or blue squares). Figure 12
shows some examples of twikes and non-twikes.

The concept PQCs we have considered so far, of the form
in Eq. 21, are unable to learn the concept twike, since the
domains have been treated independently, with each of the
4 domains effectively containing its own independent con-
cept. In order to create connections between the domains
in the concept PQC, we can apply our full ansatz V from
Section 4.1.1, involving controlled-Z gates between wires,
across multiple domains. In this first experiment we assume
knowledge of the fact that, for the twike concept, the cor-
relations are across the shape and colour domains, with
entangling gates only between the qubits for shape and
colour. (This assumption will be relaxed for some of the
experiments below.) We also assume that the remaining
domains are not relevant and so are not measured, thus effec-
tively being discarded in the concept. We apply potentially
multiple layers of ansatz V to the relevant domains, and so
the resulting form of the twike concept over the four domains
is as shown in Fig. 13, where φ are the learned parameters
for the twike concept.
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Fig. 12 Examples of twikes (on the left) and non-twikes (on the right)

The training of thismodel only updates the rotation param-
eters of the concept PQC; the parameters of the encoder (i.e.
the CNN) are kept fixed from the earlier training of the basic
model. The loss function is binary cross entropy, as before,
with the 3,000 examples from Section 3.2 used as training
data. Roughly 20% of these instances are positive exam-
ples of twike, with the remaining being negative examples.
We trained this model for 50 epochs, using 2 layers of the
rotation and entangling V ansatz for the concept PQC, and
obtained 100% accuracy on the unseen test examples. It was
only through the introduction of the entangling gates that we
were able to learn the twike concept at all.

In terms of the discussion of entanglement and classical
correlation in Section 2.5, we can say that the twike con-
cept can be naturally described without entanglement, as a
classical combination of the pure concepts red circle and
blue square (at least in the case where these pure effects
are orthogonal). However, such correlations are not always

immediately implementable in many conventional classical
models. In terms of the Conceptual VAE, it would be pos-
sible to capture correlations using the covariance matrix of
the multivariate Gaussian. However, a standard assumption
in VAEs is to assume amultivariate Gaussian with a diagonal
covariance matrix (and so no correlations across domains).
Whether a concept like twike could be easily modelled using
the Conceptual VAE, especially as the number of domains is
increased, is left as a question for future work.

4.4 Learning general mixed and entangled concepts

One assumption made above in the twike experiments was
that the relevant domains—in this case shape and colour—
areknown in advance, so that the concept PQCcan effectively
ignore the wires corresponding to the other domains. One
interesting question is whether the concept PQC could also

Fig. 13 Encoder PQC for
learning twike, here shown with
3 layers of the rotation and
entangling V ansatz
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learn which domains are relevant, as well as which of those
domains should be correlated, if provided with all 4 wires
as input. To allow for such correlations between arbitrary
domains, the concept PQC should allow for entanglement
between any of its domains. Furthermore, to enable discard-
ing of domains, we require mixed quantum effects. Both of
these features can be included by using ourmost general form
of the concept PQC Eq. 23.

In order to test the learning of these general concepts, we
set up a similar experiment to twike, but this time with just
red as the concept to be learned. Of course the encoder had
already learned red when trained to perform classification in
the basic setup, but in this experiment we remove knowledge
of which wire the colour domain is on, and see whether
a new concept PQC can learn red, given red and non-red
instances as input.

Again the training of this model only updates the rotation
parameters of the concept PQC; the parameters of the CNN
are kept fixed. The loss function is again binary cross entropy,
with the usual 3,000 examples as training data. Roughly 33%
of these instances are positive examples of red, with the
remaining being negative examples. We trained this model
for 50 epochs, using 2 layers of rotation and entangling gates
for the concept PQC, and obtained 100% accuracy on the
unseen test examples. It was only through the introduction
of the discarding (plus entangling gates) that we were able
to obtain these high accuracies.

4.5 Concepts containing logical operators

For one final set of experiments, we investigated whether the
entangling and discarding PQC Eq. 23 could learn concepts
built from logical operators, with concepts such as red or
blue.

4.5.1 Conjunction across domains

The first concept with a logical operator that we consider is
red and circle, firstly with the knowledge of which domains
are relevant for the concept (in this case colour and shape).
The encoder PQC is the simple one fromEq. 22, butwith only
the colour and shapewires (so the other two are effectively
discarded). We used the same 3,000 training examples, of
which roughly 17% are positive examples and 83% negative
examples. In this case the learning is particularly easy, and
the model obtains 100% accuracy with only a single layer
of rotations for the PQC, without any entangling gates or
discarding of any ancilliary qubits. The reason is that the
factorisation of the domains through the tensor product has
effectively provided all the structure required to use conjunc-
tion.

When the knowledge of which domains are relevant is
removed, and the more general encoder PQC in Eq. 23 is

used, learning becomes harder but an encoder PQC with 4
layers of rotation and entangling gates is able to learn the
concept with 100% accuracy.

4.5.2 Disjunction within domains

Next we consider disjunction, but within rather than across
domains, with the concept to be learned being red or blue. Of
the 3,000 training examples, 61% are positive examples and
39%negative. Again, when knowledge of which domains are
relevant is provided to the concept PQC, the learning is easy,
with 100% accuracy obtained with a single layer of rotations.

If each point on the Bloch sphere were to correspond to an
instance of the colour domain, i.e. a single colour, as in our
model, then the PQC learning such a pure effect for red or
bluewill in fact be simply learning a single colour, intuitively
somewhere “in between” red and blue. When the domain
only comes with a few concepts, such as the 3 concepts used
here, this single instance may do well in approximating red
or blue, as with the 100% accuracy. However, in the pres-
ence of more concepts, we expect that a concept for red or
blue should involve mixing. And when knowledge of which
domains are relevant is not provided to the PQC, red or blue
can alsobe successfully learnedwith themoregeneral PQC in
Eq. 23 with 3 layers of rotation and entangling gates, includ-
ing discarding.

5 Related work

The Conceptual VAE is inspired by Higgins et al. (2017),
who introduced the β-VAE for unsupervised concept learn-
ing. However, the focus of Higgins et al. (2017) is on learning
the conceptual domains, i.e. the underlying factors gener-
ating the data (Bengio et al. 2013), which they refer to as
learning a disentangled representation. The main innovation
to encourage the VAE to learn a disentangled, or factored,
latent space is the introduction of a weighting term β on the
KL loss. Higgins et al. (2017) show that setting β to a value
greater than 1 can result in the dimensions of Z correspond-
ing to domains such as the lighting or elevation of a face
in the celebA images dataset, or the width of a chair in a
dataset of chair images. Our focus is more on the concep-
tual representations themselves, assuming the domains are
already known, and the question of how concept labels can
be introduced into the VAE model.

A paper in NLP that uses a model very similar to the Con-
ceptual VAE is Bražinskas et al. (2018) which introduces the
Bayesian skip-gram model for learning word embeddings.
One key difference which distinguishes our work from the
word embeddings typically used in NLP is that we do not
restrict ourselves to the textual domain,meaning that our con-
ceptual representations are grounded in some other modality
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(in our case images) (Harnad 1990), bringing them closer
to the human conceptual system. Another relevant paper
from the NLP literature, which does consider grounding, is
Schlangen et al. (2016), where the meanings of words are
treated as classifiers of perceptual contexts, similar to how
we use classification to induce conceptual representations.

The Conceptual VAE uses Gaussians to represent con-
cepts, since they are the typical distributions used with VAEs
and because they are convenient from a mathematical per-
spective. However, the use of Gaussians is also prevalent
in the neuroscience literature, appearing for example as the
Laplace assumption in the “free-energy” or “predictive pro-
cessing” framework (Friston andKiebel 2009;Bogacz 2017).

In terms of the quantum models, Smolensky has a large
body of work arguing for tensor product representations in
linguistics and cognitive science more broadly (Smolensky
and Legendre 2006). Recently these techniques have been
integrated into neural models for NLP (Huang et al. 2018).
Another line of work which associates tensor-product rep-
resentations with grammatical structure is the “DisCoCat”
research program attempting to build distributed, composi-
tional representations of language, which began with Coecke
et al. (2010). Recently this work has culminated in the run-
ning of quantum NLP models on real quantum hardware
(Lorenz et al. 2023).

The field of quantum cognition (Pothos and Busemeyer
2013) has already been mentioned. Some recent work in this
area includesEpping andBusemeyer (2022) andEpping et al.
(2021), where the latter is concerned with modelling human
judgements of colour similarity and uses a Hilbert space rep-
resentation similar to our models. The learning of concepts
containing logical operators has a formal connection to quan-
tum logic (Birkhoff and von Neumann 1936) and Boolean
concept learning in general, for which there is a large litera-
ture (Goodwin and Johnson-Laird 2013).

6 Conclusion and further work

In this article we have presented a newmodelling framework
for structured concepts using a category-theoretic generali-
sation of Gärdenfors’ conceptual spaces, and shown how the
conceptual representations canbe learned automatically from
data, using two very different instantiations: one classical and
one quantum. The main contributions of this foundational
work are the category-theoretic formalisation, and the two
practical demonstrations, especially the quantum implemen-
tation which is particularly novel. Substantial further work
is required to demonstrate that the framework can be applied
fruitfully to data from a psychology lab, which would con-
nect our work directly with quantum cognition, and also to
agents acting in (virtual) environments, whichwould connect
it to agent-based AI (Abramson et al. 2020).

In future more interpretative work on quantum concepts
is needed to clarify their advantages, such as those offered by
entanglement discussed in Section 2.5, and their naturality
as a model in cognition. Another benefit of quantum models
over conceptual spaces not explored here is the presence of
a “negation” C⊥ on concepts with C ≤ (Rodatz et al.
2021; Shaikh et al. 2021). In contrast, negation is harder to
define for concepts in conceptual spaces; for example the
complement of a convex region is generally non-convex.

Another interesting question is whether the Conceptual
VAE can be applied to data generated from a conceptual
hierarchy—for example having shades of colour such as
dark-red—andwhether the learnedGaussian representations
for concepts can be partially ordered in an appropriate way
(Clark et al. 2021). The quantum concepts as effects have a
natural ordering, as discussed in Section 2.4, and it would be
an interesting comparison to see if hierarchies could be more
easily learned with the quantum models.

To make full use of the compositional approach, one
should also describe conceptual processes, such as reasoning
processes and “metaphorical” mappings between domains,
now given by CP maps between quantummodels. One could
then compare thesewith the processes in the categoryConSp
of fuzzy conceptual processes from Tull (2021).

Finally, even though all the practical work here has been
carried out in simulation on a classical computer, the num-
ber of qubits is relatively small, and the circuits relatively
shallow, and so the running of these models on real quantum
hardware is a distinct possibility. Also left for future work
is the search for tasks which could demonstrate advantages
for our quantum representations, for example establishing
whether non-separable effects in the theory do provide an
advantage over classical correlation in modelling conceptual
structure.

A The shapes dataset

The parameters used in the Spriteworld software to generate
the Shapes dataset:
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Additional parameters for the colour domain:

A.1 The extended colour dataset

The parameters used in the Spriteworld software to generate
the Shapes dataset with more (rainbow) colours:

B Neural architectures
and hyper-parameters

image width 64
image height 64
image channels 3
CNN kernel size 4 × 4
CNN stride 2 × 2
CNN layers 4
CNN filters 64
CNN dense layers 2
CNN dense layer size 256
dimensions of latent space 6
initialization interval [−1.0, 1.0]
for means of priors
initialization interval [−7.0, 0.0]
for log-variances of priors
batch size 32
Adam learning rate 10−3

Adam β1 0.9
Adam β2 0.999
Adam ε 10−7
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