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Abstract
Natural language processing (NLP) is at the forefront of great advances in contemporary AI, and it is arguably one of the
most challenging areas of the field. At the same time, in the area of quantum computing (QC), with the steady growth
of quantum hardware and notable improvements towards implementations of quantum algorithms, we are approaching
an era when quantum computers perform tasks that cannot be done on classical computers with a reasonable amount of
resources. This provides an new range of opportunities for AI, and for NLP specifically. In this work, we work with the
Categorical Distributional Compositional (DisCoCat) model of natural language meaning, whose underlying mathematical
underpinnings make it amenable to quantum instantiations. Earlier work on fault-tolerant quantum algorithms has already
demonstrated potential quantum advantage for NLP, notably employing DisCoCat. In this work, we focus on the capabilities
of noisy intermediate-scale quantum (NISQ) hardware and perform the first implementation of an NLP task on a NISQ
processor, using the DisCoCat framework. Sentences are instantiated as parameterised quantum circuits; word-meanings
are embedded in quantum states using parameterised quantum-circuits and the sentence’s grammatical structure faithfully
manifests as a pattern of entangling operations which compose the word-circuits into a sentence-circuit. The circuits’
parameters are trained using a classical optimiser in a supervised NLP task of binary classification. Our novel QNLP model
shows concrete promise for scalability as the quality of the quantum hardware improves in the near future and solidifies a
novel branch of experimental research at the intersection of QC and AI.

Keywords String diagrams · Compositionality · Natural language processing · Quantum computing

1 Introduction

NLP is a rapidly evolving area of AI of both theoretical
importance and practical interest (Jurafsky and Martin 2000;
Blackburn and Bos 2005). Large language models, such as
the relatively recent GPT-3 with its 175 billion parameters
(Brown et al. 2020), show impressive results on general
NLP tasks and one dares to claim that humanity is entering
Turing-test territory (Turing 1950). Such models, almost
always based on neural networks, work by learning to
model conditional probability distributions of words in the
context of other words. The textual data on which they are
trained are mined from large text corpora; the probability
distribution to be learned captures the statistical patterns of
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cooccurrence of words in the data. Due to this, in this work
we shall refer to such models as distributional.

NLP technology becomes increasingly entangled with
everyday life as part of search engines, personal assistants,
information extraction and data-mining algorithms, medical
diagnoses, and even bioinformatics (Searls 2002; Zeng et al.
2015). Despite success in both language understanding and
language generation, under the hood of mainstream NLP
models one exclusively finds deep neural networks, which
famously suffer the criticism of being uninterpretable black
boxes (Buhrmester et al. 2019).

One way to bring transparency to said black boxes
is to explicitly incorporate linguistic structure, such as
grammar and syntax (Lambek 1958; Montague 2008;
Chomsky 1957), into distributional language models.
Note, in this work we will use the terms grammar
and syntax interchangeably, the essence of these terms
being that they refer to structural information that the
textual data could be supplemented with. A prominent
approach attempting this merge is the Distributional
Compositional Categorical model of natural language
meaning (DisCoCat) (Coecke et al. 2010; Grefenstette and
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Sadrzadeh 2011; Kartsaklis and Sadrzadeh 2013), which
pioneered the paradigm of combining explicit grammatical
(or syntactic) structure with distributional (or statistical)
methods for encoding and computing meaning (or semantics).
There has also been follow-up related work on neural-
based models where syntax is also incorporated in a recursive
neural network, where the syntactic structures dictate the
order of the recursive calls to the recurring cell (Socher
et al. 2013). This approach also provides the tools for
modelling linguistic phenomena such as lexical entailment
and ambiguity, as well as the transparent construction of
syntactic structures like, relative and possessive pronouns
(Sadrzadeh et al. 2013; 2014), conjunction, disjunction, and
negation (Lewis 2020).

From a modern lens, DisCoCat, as it is presented in the
literature, is a tensor network language model. Recently,
the motivation for designing interpretable AI systems has
caused a surge in the use of tensor networks in language
modelling (Pestun and Vlassopoulos 2017; Gallego and
Orus 2019; Bradley et al. 2019; Efthymiou et al. 2019). A
tensor network is a graph whose vertices are endowed with
tensors. Every vertex has an arity, i.e. a number of edges
to which it belongs which represent the tensor’s indices.
Edges represent tensor contractions, i.e. identification of
the indices joined by the edge and summation over their
range (Eistein summation). Intuitively, a tensor network
is a compressed representation of a multilinear map.
Tensor networks have been used to capture probability
distributions of complex many-body systems, both classical
and quantum, and they also have a formal appeal as rigorous
algebraic tools (Eisert 2013; Orús 2019).

Quantum computing (QC) is a field which, in parallel with
NLP is growing at an extremely fast pace. The prominence
of QC is now well-established, especially after the
experiments aiming to demonstrate quantum advantage for
the specific task of sampling from random quantum circuits
(Arute et al. 2019). QC has the potential to reach the whole
range of human interests, from foundations of physics and
computer science, to applications in engineering, finance,
chemistry, and optimisation problems (Bharti et al. 2021),
and even procedural map generation (Wootton 2020).

In the last half-decade, the natural conceptual fusion
of QC with AI, and especially the subfield of AI known
as machine learning (ML), has lead to a plethora of
novel and exciting advancements. The quantum machine
learning (QML) literature has reached an immense size
considering its young age, with the cross-fertilisation of
ideas and methods between fields of research as well as
academia and industry being a dominant driving force.
The landscape includes using quantum computers for
subroutines in ML algorithms for executing linear algebra
operations (Harrow et al. 2009), or quantising classical
machine learning algorithms based on neural networks

(Beer et al. 2020), support vector machines, clustering
(Kerenidis et al. 2019), or artificial agents who learn from
interacting with their environment (Dunjko et al. 2016), and
even quantum-inspired and dequantised classical algorithms
which nevertheless retain a complexity theoretic advantage
(Chia et al. 2020). Small-scale classification experiments
have also been implemented with quantum technology
(Havlı́ček et al. 2019; Li et al. 2015).

From this collection of ingredients, there organically
emerges the interdisciplinary field of quantum natural lan-
guage processing (QNLP), a research area still in its infancy
(Zeng and Coecke 2016; O’Riordan et al. 2020; Wiebe et al.
2019; Bausch et al. 2020; Chen 2002), combines NLP and
QC and seeks novel quantum language model designs and
quantum algorithms for NLP tasks. Building on the recently
established methodology of QML, one imports QC algo-
rithms to obtain theoretical speedups for specific NLP tasks
or use the quantum Hilbert space as a feature space in which
NLP tasks are to be executed.

The first paper on QNLP, using the DisCoCat framework
by Zeng and Coecke (Zeng and Coecke 2016), introduced
an approach where a standard NLP task are instantiated as
quantum computations. The task of sentence similarity was
reduced to the closest-vector problem, for which there exists
a quantum algorithm providing a quadratic speedup, albeit
assuming a Quantum Random Access Memory (QRAM).
The mapping of the NLP taks to a quantum computation
is attributed to the mathematical similarity of the structures
underlying DisCoCat and quantum theory. This similarity
becomes apparent when both are expressed in the graphi-
cal language of string diagrams of monoidal categories or
process theories (Coecke and Kissinger 2017). The categor-
ical formulation of quantum theory is known as Categorical
Quantum Mechanics (CQM) (Abramsky and Coecke 2004)
and it becomes apparent that the string diagrams describing
CQM are tensor networks endowed with a graphical lan-
guage in the form of a rewrite-system (a.k.a. diagrammatic
algebra with string diagrams). The language of string dia-
grams places syntactic structures and quantum processes on
equal footing, and thus allows the canonical instantiation of
grammar-aware quantum models for NLP.

In this work, we bring DisCoCat to the current age of
noisy intermediate-scale quantum (NISQ) devices by per-
forming the first-ever proof-of-concept QNLP experiment
on actual quantum processors. We employ the framework
introduced in Meichanetzidis et al. (2020) by adopting
the paradigm of parameterised quantum circuits (PQCs)
as quantum machine learning models (Schuld et al. 2020;
Benedetti et al. 2019), which currently dominates near-term
algorithms. PQCs can be used to parameterise quantum
states and processes, as well as complex probability distri-
butions, and so they can be used in NISQ machine learn-
ing pipelines. The framework we use in this work allows
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for the execution of experiments involving non-trivial text
corpora, which moreover involves complex grammatical
structures. The specific task we showcase here is binary
classification of sentences in a supervised-learning hybrid
classical-quantum QML setup.

2 Themodel

The DisCoCat model relies on algebraic models of grammar
which use types and reduction-rules to mathematically
formalise syntactic structures of sentences. Historically,
the first formulation of DisCoCat employed pregroup
grammars (Appendix A), which were developed by Lambek
(2008). However, any other typeological grammar, such as
Combinatory Categorial Grammar (CCG), can be used to
instantiate DisCoCat models.

In this work, we will work with pregroup grammars, to
stay close to the existing DisCoCat literature. In a pregroup
grammar, a sentence’s type is composed of a finite product
of words σ = ∏

i wi . A parser tags a word w ∈ σ with its
part of speech. Accordingly, w is assigned a pregroup type
tw = ∏

i b
κi

i comprising a product of basic (or atomic) types
bi from the finite set B. Each type carries an adjoint order
κi ∈ Z. Pregroup parsing is efficient; specifically, it is linear
time under reasonable assumptions (Preller 2007). The type
of a sentence is the product of the types of its words and
it is deemed grammatical if it type-reduces to the special
type s0 ∈ B, i.e. the sentence-type, tσ = ∏

w tw → s0.
Reductions are performed by iteratively applying pairwise
annihilations of basic types with adjoint orders of the form
bibi+1. As an example, consider the grammatical reduction:

At the core of DisCoCat is a process-theoretic model of
natural language meaning. Process theories are alternatively

known as symmetric monoidal (or tensor) categories (Baez
and Stay 2009). Process networks such as those that
manifest in DisCoCat can be represented graphically with
string diagrams (Selinger 2010). String diagrams are not
just convenient graphical notation, but they constitute a
formal graphical language for reasoning about complex
process networks (see Appendix B for an introduction
to string diagrams and concepts relevant to this work).
String diagrams are generated by boxes with input and
output wires, with each wire carrying a type. Boxes can
be composed to form process networks by wiring outputs
to inputs and making sure the types are respected. Output-
only processes are called states and input-only processes are
called effects.

A grammatical reduction is viewed as a process and
so it can be represented as a string diagram. In string
diagrams representing pregroup-grammar reductions, words
are represented as states and pairwise type-reductions are
represented by a pattern of nested cup-effects (wires bent
in a U-shape), and identities (straight wires). Wires in
the string diagram carry the label of the basic type being
reduced. As an example, in Fig. 1 we show the string
diagram representing the pregroup reductions for ‘Romeo
who loves Juliet dies’. Only the s-wire is left open, which is
the witness of grammaticality.

Given a string diagram resulting from the grammatical
reduction of a sentence, we can instantiate a model for nat-
ural language processing by giving semantics to the string
diagram. This two-step process of constructing a model,
where syntax and the semantics are treated separately, is the
origin of the framework’s name; ‘Compositional’ refers to
the string diagram describing structure and ‘Distributional’
refers to the semantic spaces where meaning is encoded
and processed. Any choice of semantics that respects the
compositional structure is allowed, and is implemented by
component-wise substitution of the boxes and wires in the
diagrams. Such a structure preserving mapping constitutes a
functor, and ensures that the model instantiation is ‘canoni-
cal’. Valid choices of semantics range from neural networks,
to tensor networks (which was the default choice for the

Fig. 1 Diagram for ‘Romeo who loves Juliet dies’. The grammati-
cal reduction is generated by the nested pattern of non-crossing cups,
which connect words through wires of types n or s. Grammatical-
ity is verified by only one s-wire left open. The diagram represents

the meaning of the whole sentence from a process-theoretic point of
view. The relative pronoun ‘who’ is modeled by the Kronecker tensor.
Interpreting the diagram in CQM, it represents a quantum state
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majority of the DisCoCat literature), to quantum processes,
and even hybrid combinations involving components from
the whole range of available choice by interpreting the string
diagram correspondingly.

In this work, we focus on the latter choice of quantum
processes, and in particular, we will be realising quantum
processes using pure quantum circuits. As we have
described in Meichanetzidis et al. (2020), the string diagram
of the syntactic structure of a sentence σ can be canonically
mapped to a PQC Cσ (θσ ) over the parameter set θ . The key
idea here is that such circuits inherit their architecture, in
terms of a particular connectivity of entangling gates, from
the grammatical reduction of the sentence.

Quantum circuits also, being part of pure quantum theory,
enjoy a graphical language in terms of string diagrams.
The mapping from sentence diagram to quantum circuit
begins simply by reinterpreting a sentence diagram, such
as that of Fig. 1, as a diagram in categorical quantum
mechanics (CQM). The word-state of word w in a sentence
diagram is mapped to a pure quantum state prepared from
a trivial reference product-state by a PQC as |w(θw)〉 =
Cw(θw)|0〉⊗qw , where qw = ∑

b∈tw
qb. The width of the

circuit depends on the number of qubits assigned to each
pregroup type b ∈ B from which the word-types are
composed and cups are mapped to Bell effects.

Given a sentence σ , we instantiate its quantum circuit
by first concatenating in parallel the word-circuits of each
word as they appear in the sentence, corresponding to
performing a tensor product, Cσ (θσ ) = ⊗

w Cw(θw) which
prepares the state |σ(θσ )〉 from the all-zeros basis state. As
such, a sentence is parameterised by the concatenation of
parameters of its words, θσ = ∪w∈σ θw. The parameters
θw determine the word-embedding |w(θw)〉. In other words,
we use the Hilbert space as a feature space (Havlı́ček
et al. 2019; Schuld and Killoran 2019; Lloyd et al. 2020)
in which the word-embeddings are defined. Finally, we
apply Bell effects as dictated by the cup pattern in the
grammatical reduction, a function whose result we shall
denote gσ (|σ(θσ )〉). Note that in general this procedure
prepares an unnormalised quantum state. In the special case
where no qubits are assigned to the sentence type, i.e. qs =
0, then it is an amplitude which we write as 〈gσ |σ(θσ )〉.
Formally, this mapping constitutes a parameterised functor
from the pregroup grammar category to the category of
quantum circuits. The parameterisation is defined via a
function from the set of parameters to functors from the
aforementioned source and target categories.

Our model has hyperparameters (Appendix E). The wires
of the DisCoCat diagrams we consider carry types n or s.
The number of qubits that we assign to each pregroup type
are qn and qs . These determine the arity of each word, i.e.
the width of the quantum circuit that prepares each word-
state. We set qs = 0 throughout this work, which establishes

that the sentence-circuits represent scalars. For a unary
word w, i.e. a word-state on 1 qubit, we choose to prepare
using two rotations as Rz(θ

2
w)Rx(θ

1
w)|0〉. For a word w of

arity k ≥ 2, we use a depth-d IQP-style parameterisation
(Havlı́ček et al. 2019) consisting of d layers where each
layer consists of a layer of Hadamard gates followed by
a layer of controlled-Z rotations CRz(θ

i
w), such that i ∈

{1, 2, . . . , d(k − 1)}. Such circuits are in part motivated by
the conjecture that circuits involving them are classically
hard to evaluate (Havlı́ček et al. 2019). The relative pronoun
‘who’ is mapped to the GHZ circuit, i.e. the circuit that
prepares a GHZ state on the number of qubits as determined
by qn and qs . This is justified by prior work where relative
pronouns and other functional words are modelled by a
Kronecker tensor (a.k.a. ‘spider’), whose entries are all
zeros except when all indices are the same for which case
the entries are ones (Sadrzadeh et al. 2013; 2014). It is also
known as a ‘copy’ tensor, as it copies the computational
basis.

In Fig. 2, we show an example of choices of word-
circuits for specific numbers of qubits assigned to each basic
pregroup type (Appendix Fig. 8). In Fig. 3, we show the
corresponding circuit to ‘Romeo who loves Juliet dies’. In
practice, we perform the mapping of sentence diagrams to
quantum circuits using the Python library DisCoPy (de
Felice et al. 2020), which provides a data structure for
monoidal string-diagrams and enables the instantiation of
functors, including functors based on PQCs.

Fig. 2 Example instance of mapping from sentence diagrams to PQCs
where qn = 1 and qs = 0. (a) The dashed square is the empty diagram.
In this example, (b) unary word-states are prepared by parameterised
Rx rotations followed by Rz rotations and (c) k-ary word-states are
prepared by parameterised word-circuits of width k and depth d = 2.
(d) The cup is mapped to a Bell effect, i.e. a CNOT followed by a
Hadamard on the control and postselection on 〈00|. (e) The Kronecker
tensor modelling the relative pronoun is mapped to a GHZ state
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Fig. 3 The PQC to which ‘Romeo who loves Juliet dies’ of Fig. 1 is
mapped, with the choices of hyper-parameters of Fig. 2. As qs = 0,
the circuit represents a scalar

Here, a motivating remark is in order. In ‘classical’
implementations of DisCoCat, where the semantics chosen
in order to realise a model is in terms of tensor
networks, a sentence diagram represents a vector which
results from a tensor contraction. In this case, meanings
of words are encoded in the state-tensors in terms of
cooccurrence frequencies or other vector-space word-
embeddings (Mikolov et al. 2013). In general, tensor
contractions are exponentially expensive to compute. The
cost scales exponentially with the order of the largest
tensors present in the tensor network and the base of
the scaling is the dimension of the vector spaces carried
by the wires. However, tensor networks resulting from
interpreting syntactic string diagrams over vector spaces and
linear maps do not have a generic topology; rather they
are tree-like. This means that contracting tensor networks
whose connectivity is given by pregroup reductions are
efficiently contractable as a function of the dimension of
the wires carrying the vector spaces playing the role of
semantic spaces. Even in this case however, the dimension
of the wires for NLP-relevant applications can become
prohibitively large (order of hunderds) in practice. In a fault-
tolerant quantum computing setting, ideally, as is proposed
in Zeng and Coecke (2016), one has access to a QRAM
and one would be able to efficiently encode such tensor
entries as quantum amplitudes using only 	log2 d
 qubits
to encode a d-dimensional vector. However, building a
QRAM currently remains challenging (Aaronson 2015). In
the NISQ case, we still attempt to take advantage of the
tensor-product structure defined by a collection of qubits
which provides an exponentially large Hilbert space as a

function of the number of qubits, and can be used as a
feature-space in which the word-embeddings can be trained.
Consequently, we adopt the paradigm of QML in terms of
PQCs to carry out near-term QNLP tasks. Any possible
quantum advantage is to be identified heuristically on a
case by case basis depending on the task, the data, and the
available quantum computing resources.

3 Classification task

Now that we have established our construction of sentence
circuits, we describe a simple QNLP task. The dataset
or ‘labelled corpus’ K = {(Dσ , lσ )}σ is a finite set
of sentence-diagrams {Dσ }σ constructed from a finite
vocabulary of words V . Each sentence has a binary label
lσ ∈ {0, 1}. In this work, the labels represent the sentences’
truth-values; 0 for False and 1 for True. Our setup trivially
generalises to multi-class classification by assigning qs =
log2(#classes) to the s-type wire and measuring in the
Z-basis.

We split K into the training set � containing the first
�p|{Dσ }σ |
 of the sentences, where p ∈ (0, 1), and the test
set E containing the rest.

We define the predicted label as

l
pr
σ (θσ ) = |〈gσ |σ(θσ )〉|2 ∈ [0, 1] (1)

from which we can obtain the binary label by rounding to
the nearest integer �lpr

σ 
 ∈ {0, 1}.
The parameters of the words need to be optimised (or

trained) so that the predicted labels match the labels in
the training set. The optimiser we invoke is SPSA (Spall
1998), a gradient-free optimiser which has shown adequate
performance in noisy settings (Bonet-Monroig et al. 2021)
(Appendix F). The cost function we define is

L(θ) =
∑

σ∈�

(l
pr
σ (θσ ) − lσ )2. (2)

Minimising the cost function returns the optimal parameters
θ∗ = argminL(θ) from which the model predicts the labels
l
pr
σ (θ∗). Essentially, this constitutes learning a functor from

the grammar category to the category of quantum circuits.
We then quantify the performance by the training and test
errors e� and eE , as the proportion of labels predicted
incorrectly:

eA = 1

|A|
∑

σ∈A

|∣∣�lpr
σ (θ∗)
 − lσ

∣
∣ , A = �, E.

This supervised learning task of binary classification for
sentences is a special case of question answering (QA) (de
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Felice et al. 2020; Chen et al. 2020; Zhao et al. 2020);
questions are posed as statements and the truth labels are
the binary answers. After training on �, the model predicts
the answer to a previously unseen question from E, which
comprises sentences containing words all of which have
appeared in �. The optimisation is performed over the
parameters of all the sentences in the training set θ =
∪σ∈�θσ . In our experiments, each word appears at least
once in the training set and so θ = ∪w∈V θw. Note that
what is being learned are the inputs, i.e. the quantum
word embeddings, to an entangling process corresponding
to the grammar. Recall that a given sentence-circuit does
not necessarily involve the parameters of every word.
However, every word appears in at least one sentence, which
introduces classical correlations between the sentences.
This makes such a learning task possible.

In this work, we use artificial data in the form of a very
small-scale corpus of grammatical sentences. We randomly
generate sentences using a simple context-free grammar
(CFG) whose production rules we define. Each sentence
then is accompanied by its syntax tree by definition of our
generation procedure. The syntax tree can be cast in string-
diagram form, and each CFG-generated sentence-diagram
can then be transformed into a DisCoCat diagram (see
Appendix C for details). Even though the data is synthetic,
we curate the data by assigning labels by hand so that the
truth values among the sentences are consistent with a story,
rendering the classification task semantically non-trivial.

Were one to use real-world datasets of labelled-
sentences, one could use a parser in order to obtain the
syntactic structures of the sentences; the rest of our pipeline
would still remain. Since the writing of this manuscript,
the open-source Python package lambeq (Kartsaklis et al.
2021) has been made available, which couples to the
end-to-end parser Bobcat. The parser, given a sentence,
returns its syntax tree as a grammatical reduction in the
Combinatory Categorial Grammar (CCG). The package
also has the capability to translate CCG reductions to
pregroup reductions (Yeung and Kartsaklis 2021), and so
effectively it is the first practical tool introduced for large-
scale parsing in pregroup grammar. The string diagrams in
lambeq are encoded using DisCoPy, and thus enables the
instantiation of large-scale DisCoCat models on real-world
data.

3.1 Classical simulation

We first show results from classical simulations of the
QA task. The sentence circuits are evaluated exactly on
a classical computer to compute the predicted labels in

Fig. 4 Convergence of mean cost function 〈L(θ)〉 vs number of SPSA
iterations for corpus K30. A lower minimum is reached for larger
d. (Top) qn = 1 and |θ | = 8 + 2d. Results are averaged over 20
realisations. (Bottom) qn = 2 and |θ | = 10d. Results are averaged
over 5 realisations. (Insets) Mean training and test errors 〈etr〉, 〈ete〉
vs d. Using the global optimisation basinhopping with local
optimisation Nelder-Mead (red), the errors decrease with d

Eq.1. We consider the corpus K30 of 30 sentences sampled
from the vocabulary of 7 words (Appendix D) and we set
p = 0.5. In Fig. 4 we show the convergence of the cost
function, for qn = 1 and qn = 2, for increasing word-circuit
depth d . To clearly show the decrease in training and test
errors as a function of d when invoking the global optimiser
basinhopping (Appendix F).

3.2 Experiments on IBMQ

We now turn to readily available NISQ devices provided by
the IBMQ in order to estimate the predicted labels in Eq.1.

Before each circuit can be run on a backend, in this
case a superconducting quantum processor, it first needs to
be compiled. A quantum compiler takes as input a circuit
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and a backend and outputs an equivalent circuit which
is compatible with the backend’s topology. A quantum
compiler also aims to minimise the most noisy operations.
For IBMQ, the gate most prone to erros is the entangling
CNOT gates. The compiler we use in this work is TKET
(Sivarajah et al. 2020), and for each circuit-run on a backend,
we use the maximum allowed number of shots (Appendix
G).

We consider the corpus K16 from 6 words (Appendix
D) and set p = 0.5. For every evaluation of the
cost function under optimisation, the circuits were run
on the IBMQ quantum computers ibmq montreal and
ibmq toronto. In Fig. 5, we show the convergence
of the cost function under SPSA optimisation and report
the training and testing errors for different choices of
hyperparameters. This constitutes the first non-trivial
QNLP experiment on a programmable quantum processor.
According to Fig. 4, scaling up the word-circuits results in
improvement in training and testing errors, and remarkably,
we observe this on the quantum computer, as well. This is
important for the scalability of our experiment when future
hardware allows for greater circuit sizes and thus richer
quantum-enhanced feature spaces and grammatically more
complex sentences.

Fig. 5 Convergence of the cost L(θ) evaluated on quantum computers
vs SPSA iterations for corpus K16. For qn = 1, d = 2, for which
|θ | = 10, on ibmq montreal (blue) we obtain etr = 0.125 and
ete = 0.5. For qn = 1, d = 3, where |θ | = 13, on ibmq toronto
(green) we get etr = 0.125 and a lower testing error ete = 0.375.
On ibmq montreal (red) we get both lower training and testing
errors, etr = 0, ete = 0.375 than for d = 2. In all cases, the CNOT-
depth of any sentence-circuit after TKET-compilation is at most 3.
Classical simulations (dashed), averaged over 20 realisations, agree
with behaviour on IBMQ for both cases d = 2 (yellow) and d = 3
(purple)

4 Discussion and outlook

We have performed the first-ever quantum natural language
processing experiment by means of classification of
sentences annotated with binary labels, a special case of
QA, on actual quantum hardware. We used a compositional-
distributional model of meaning, DisCoCat, constructed
by a structure-preserving mapping from grammatical
reductions of sentences to PQCs. This proof-of-concept
work serves as a demonstration that QNLP is possible on
currently available quantum devices and that it is a line of
research worth exploring.

A remark on postselection is in order. QML-based QNLP
tasks such as the one implemented in this work rely on
the optimisation of a scalar cost function. In general,
estimating a scalar encoded in an amplitude on a quantum
computer requires either postselection or coherent control
over arbitrary circuits so that a swap test or a Hadamard
test can be performed (Appendix H). Notably, in special
cases of interest to QML, the Hadamard test can be adapted
to NISQ technologies (Mitarai and Fujii 2019; Benedetti
et al. 2020). In its general form, however, the depth-cost
resulting after compilation of controlled circuits becomes
prohibitable with current quantum devices. However, given
the rapid improvement in quantum computing hardware, we
envision that such operations will be within reach in the
near-term.

Future work includes experimentation with other gram-
mars, such as CCG which returns tree-like diagrams, and
using them to construct PQC-based functors, as is done
in Socher et al. (2013) but with neural networks. This for
example would enable the design of PQC-based functors
that do not require postselection, such as the pregroup-based
models where in order for each Bell effect to take place one
needs to postselect on measurements involving the qubits on
which one wishes to realise a Bell effect.

We also look toward more complex QNLP tasks such as
sentence similarity and work with real-world large-scale data
using a pregroup parser, as made possible with lambeq
(Kartsaklis et al. 2021). In that context, regularisation
techniques during training will become important, which
is an increasingly relevant topic for QML that in general
deserves more attention (Benedetti et al. 2019).

In addition, our DisCoCat-based QNLP framework is
naturally generalisable to accommodate mapping sentences
to quantum circuits involving mixed states and quantum
channels. This is useful as mixed states allow for modelling
lexical entailment and ambiguity (Piedeleu et al. 2015;
Bankova et al. 2016). As also stated above, it is possible
to define functors in terms of hybrid models where both
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neural networks and PQCs are involved, where heuristically
one aims to quantify the possible advantage of such models
compared to strictly classical ones.

Furthermore, note that the word-embeddings are learned
in-task in this work. However, training PQCs to prepare
quantum states that serve as word embeddings can be
achieved by using the usual NLP objectives (Mikolov et al.
2013). It is interesting to verify that such pretrained word
embeddings can be useful in downstream tasks, such as the
simple classification task presented in this work.

Finally, looking beyond the DisCoCat model, it is well-
motivated to adopt the recently introduced DisCoCirc model
(Coecke 2020) of meaning and its mapping to PQCs
(Coecke et al. 2020), which allows for QNLP experiments
on text-scale real-world data in a fully-compositional
framework. In this model, nouns are treated as first-class
citizen ‘entities’ of a text and makes sentence composition
explicit. Entities go through gates which act as modifiers on
them, modelling for example the application of adjectives
or verbs. The model also considers higher-order modifiers,
such as adverbs modifying verbs. This interaction structure,
viewed as a process network, can again be used to instantiate
models in terms of neural networks, tensor networks, or
quantum circuits. In the latter case, entities are modelled
as density matrices carried by wires and their modifiers as
quantum channels.

Appendix

In this supplementary material, we begin by briefly
reviewing pregroup grammar. We then provide the neces-
sary background to the graphical language of process theo-
ries describe our procedure for generating random sentence
diagrams using a context-free grammar. For completeness
we include the three labelled corpora of sentences we used
in this work. Furthermore, we show details of our map-
ping from sentence diagrams to quantum circuits. Finally,
we give details on the optimisation methods we used for our
supervised quantum machine learning task and the specific
compilation pass we used from CQC’s compiler, TKET.

Appendix A: Pregroup grammar

Pregroup grammars where introduced by Lambek as an
algebraic model for grammar (Lambek 2008).

A pregroup grammar G is freely generated by the basic
types in a finite set b ∈ B. Basic types are decorated by an
integer k ∈ Z, which signifies their adjoint order. Negative

integers −k, with k ∈ N, are called left adjoints of order
k and positive integers k ∈ N are called right adjoints. We
shall refer to a basic type to some adjoint order (include
the zeroth order) simply as ‘type’. The zeroth order k = 0
signifies no adjoint action on the basic type and so we often
omit it in notation, b0 = b.

The pregroup algebra is such that the two kinds of
adjoint (left and right) act as left and right inverses under
multiplication of basic types

bkbk+1 → ε → bk+1bk,

where ε ∈ B is the trivial or unit type. The left hand side
of this reduction is called a contraction and the right hand
side an expansion. Pregroup grammar also accommodates
induced steps a → b for a, b ∈ B. The symbol ‘→’ is to be
read as ‘type-reduction’ and the pregroup grammar sets the
rules for which reductions are valid.

Now, to go from word to sentence, we consider a finite
set of words called the vocabulary V . We call the dictionary
(or lexicon) the finite set of entries D ⊆ V × (B × Z)∗.
The star symbol A∗ denotes the set of finite strings that can
be generated by the elements of the set A. Each dictionary
entry assigns a product (or string) of types to a word tw =∏

i b
ki

i , ki ∈ Z.
Finally, a pregroup grammar G generates a language

LG ⊆ V ∗ as follows. A sentence is a sequence (or list)
of words σ ∈ V ∗. The type of a sentence is the product
of types of its words tσ = ∏

i twi
, where wi ∈ V and

i ≤ |σ |. A sentence is grammatical, i.e. it belongs to the
language generated by the grammar σ ∈ LG, if and only
if there exists a sequence of reductions so that the type of
the sentence reduces to the special sentence-type s ∈ B as
tσ → · · · → s. Note that it is in fact possible to type-reduce
grammatical sentences only using contractions.

Appendix B: String diagrams

String diagrams describing process theories are generated
by states, effects, and processes. In Fig. 6, we compre-
hensively show these generators along with constraining
equations on them. String diagrams for process theories for-
mally describe process networks where only connectivity
matters, i.e. which outputs are connected to which inputs. In
other words, the length of the wires carries no meaning and
the wires are freely deformable as long as the topology of
the network is respected.

It is beyond the purposes of this work to provide a
comprehensive exposition on diagrammatic languages. We
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Fig. 6 Diagrams are read from top to bottom. States have only outputs,
effects have only inputs, processes (boxes) have both input and output
wires. All wires carry types. Placing boxes side by side is allowed
by the monoidal structure and signifies parallel processes. Sequential
process composition is represented by composing outputs of a box with
inputs of another box. A process transforms a state into a new state.
There are special kinds of states called caps and effects called cups,
which satisfy the snake equation which relates them to the identity wire
(trivial process). Process networks freely generated by these generators
need not be planar, and so there exists a special process that swaps
wires and acts trivially on caps and cups

provide the necessary elements which are used for the
implementation of our QNLP experiments.

Appendix C: Random sentence generation
with CFG

A context-free grammar generates a language from a set of
production (or rewrite) rules applied on symbols. Symbols
belong to a finite set � and There is a special type S ∈
� called initial. Production rules belong to a finite set R

and are of the form T → ∏
i Ti , where T , Ti ∈ �. The

application of a production rule results in substituting a

symbol with a product (or string) of symbols. Randomly
generating a sentence amounts to starting from S and
randomly applying production rules uniformly sampled
from the set R. The production ends when all types
produced are terminal types, which are non other than words
in the finite vocabulary V .

From a process theory point of view, we represent
symbols as types carried by wires. Production rules are
represented as boxes with input and output wires labelled
by the appropriate types. The process network (or string
diagram) describing the production of a sentence ends
with a production rule whose output is the S-type. Then
we randomly pick boxes and compose them backwards,
always respecting type-matching when inputs of production
rules are fed into outputs of other production rules. The
generation terminates when production rules are applied
which have no inputs (i.e. they are states), and they
correspond to the words in the finite vocabulary.

In Fig. 7 (on the left hand side of the arrows), we
show the string-diagram generators we use to randomly
produce sentences from a vocabulary of words composed
of nouns, transitive verbs, intransitive verbs, and relative
pronouns. The corresponding types of these parts of speech
are N, T V, IV, RPRON . The vocabulary is the union of
the words of each type, V = VN ∪ VT V ∪ VIV ∪ VRPRON .

Having randomly generated a sentence from the CFG, its
string diagram can be translated into a pregroup sentence
diagram. To do so, we use the translation rules shown in
Fig. 7. Note that a cup labeled by the basic type b is used
to represent a contraction bkbk+1 → ε. Pregroup grammars

Fig. 7 CFG generation rules used to produce the corpora K30, K6, K16
used in this work, represented as string-diagram generators, where
wN ∈ VN , wT V ∈ VT V , wIV ∈ VIV , wRPRON ∈ VRPRON . They are
mapped to pregroup reductions by mapping CFG symbols to pregroup
types, and so CFG-states are mapped to DisCoCat word-states and
production boxes are mapped to products of cups and identities. Note
that the pregroup unit ε is the empty wire and so it is never drawn.
Pregroup type contractions correspond to cups and expansions to caps.
Since grammatical reduction are achievable only with contractions,
only cups are required for the construction of sentence diagrams
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are weakly equivalent to context-free grammars, in the sense
that they generate the same language (Buszkowski and
Moroz 2007; Pentus 1993).

Appendix D: Corpora

Here, we present the sentences and their labels used in the
experiments presented in the main text.

The types assigned to the words of this sentence are as
follows. Nouns get typed as tw∈VN

= n0, transitive verbs
are given type tw∈VT V

= n1s0n−1, intransitive verbs are
typed tw∈IV = n1s0, and the relative pronoun is typed
twho = n1n0s−1n0.

Corpus K30 of 30 labeled sentences from the vocabulary
VN = {’Dude’, ’Walter’}, VT V = {’loves’, ’annoys’},

VIV = {’abides’,’bowls’}, VRPRON = {’who’}:
[(’Dude who loves Walter bowls’, 1),
(’Dude bowls’, 1),
(’Dude annoys Walter’, 0),
(’Walter who abides bowls’, 0),
(’Walter loves Walter’, 1),
(’Walter annoys Dude’, 1),
(’Walter bowls’, 1),
(’Walter abides’, 0),
(’Dude loves Walter’, 1),
(’Dude who bowls abides’, 1),
(’Walter who bowls annoys Dude’, 1),
(’Dude who bowls bowls’, 1),
(’Dude who abides abides’, 1),
(’Dude annoys Dude who bowls’, 0),
(’Walter annoys Walter’, 0),
(’Dude who abides bowls’, 1),
(’Walter who abides loves Walter’, 0),
(’Walter who bowls bowls’, 1),
(’Walter loves Walter who abides’, 0),
(’Walter annoys Walter who bowls’, 0),
(’Dude abides’, 1),
(’Dude loves Walter who bowls’, 1),
(’Walter who loves Dude bowls’, 1),
(’Dude loves Dude who abides’, 1),
(’Walter who abides loves Dude’, 0),
(’Dude annoys Dude’, 0),
(’Walter who annoys Dude bowls’, 1),
(’Walter who annoys Dude abides’, 0),
(’Walter loves Dude’, 1),
(’Dude who bowls loves Walter’, 1)]

Corpus K6 of 6 labeled sentences from the vocab-
ulary VN = {’Romeo’, ’Juliet’}, VT V = {’loves’},
VIV = {’dies’}, VRPRON = {’who’}:
[(’Romeo dies’, 1.0),
(’Romeo loves Juliet’, 0.0),

(’Juliet who dies dies’, 1.0),
(’Romeo loves Romeo’, 0.0),
(’Juliet loves Romeo’, 0.0),
(’Juliet dies’, 1.0)]

Corpus K16 of 16 labeled sentences from the vocabulary
VN = {’Romeo’, ’Juliet’}, VT V = {’loves’, ’kills’}, VIV =
{’dies’}, VRPRON = {’who’}:
[(’Juliet kills Romeo who dies’, 0),
(’Juliet dies’, 1),
(’Romeo who loves Juliet dies’, 1),
(’Romeo dies’, 1),
(’Juliet who dies dies’, 1),
(’Romeo loves Juliet’, 1),
(’Juliet who dies loves Juliet’, 0),
(’Romeo kills Juliet who dies’, 0),
(’Romeo who kills Romeo dies’, 1),
(’Romeo who dies dies’, 1),
(’Romeo who loves Romeo dies’, 0),
(’Romeo kills Juliet’, 0),
(’Romeo who dies kills Romeo’, 1),
(’Juliet who dies kills Romeo’, 0),
(’Romeo loves Romeo’, 0),
(’Romeo who dies kills Juliet’, 0)]

Appendix E: Sentence to circuit mapping

Quantum theory has formally been shown to be a process
theory. Therefore it enjoys a diagrammatic language in
terms of string diagrams. Specifically, in the context of
the quantum circuits we construct in our experiments, we
use pure quantum theory. In the case of pure quantum
theory, processes are unitary operations, or quantum gates
in the context of circuits. The monoidal structure allowing
for parallel processes is instantiated by the tensor product
and sequential composition is instantiated by sequential
composition of quantum gates.

In Fig. 8, we show the generic construction of the
mapping from sentence diagrams to parameterised quantum
circuits for the hyperparameters and parameterised word-
circuits we use in this work.

A wire carrying basic pregroup type b is given qb qubits.
A word-state with only one output wire becomes a one-
qubit-state prepared from |0〉. For the preparation of such
unary states we choose the sequence of gates defining
an Euler decomposition of one-qubit unitaries Rz(θ1) ◦
Rx(θ2) ◦ Rz(θ3). Word-states with more than one output
wires become multiqubit states on k > 1 qubits prepared
by an IQP-style circuit from

∏k
i=1 |0〉. Such a word-circuit

is composed of d-many layers. Each layer is composed of a
layer of Hadamard gates followed by a layer in which every
neighbouring pair of qubit wires is connected by a CRz(θ)

10 Page 10 of 16



Quantum Machine Intelligence (2023) 5:10

Fig. 8 Mapping from sentence
diagrams to parameterised
quantum circuits. Here, we show
how the generators of sentence
diagrams are mapped to
generators of circuits, for the
hyperparameters we consider in
this work

gate,
(⊗k

i=1H
) ◦

(
⊗k−1

i=1 CRz(θi)i,i+1

)
. Since all CRz gates

commute with each other it is justified to consider this
as a single layer, at least abstractly. The Kronecker tensor
with n-many output wires of type b is mapped to a GHZ
state on nqb qubits. Specifically, GHZ is a circuit that
prepares the state

∑2qb

x=0
⊗n

i=1 |bin(x)〉, where bin is the
binary expression of an integer. The cup of pregroup type b

is mapped to qb-many nested Bell effects, each of which is
implemented as a CNOT followed by a Hadamard gate on
the control qubit and postselection on 〈00|.

Appendix F: Optimisationmethod

The gradient-free otpimisation method we use, Simultane-
ous Perturbation Stochastic Approximation (SPSA), works
as follows. Start from a random point in parameter space. At
every iteration pick randomly a direction and estimate the
derivative by finite difference with step-size depending on c

towards that direction. This requires two cost function eval-
uations. This provides a significant speed up the evaluation
of L(θ). Then take a step of size depending on a towards
(opposite) that direction if the derivative has negative (pos-
itive) sign. In our experiments we use minimizeSPSA

from the Python package noisyopt https://github.com/
andim/noisyopt, and we set a = 0.1 and c = 0.1, except
for the experiment on ibmq for d = 3 for which we set
a = 0.05 and c = 0.05.

Note that for classical simulations, we use just-in-time
compilation of the cost function by invoking jit from
jax (Bradbury et al. 2018). In addition, the choice of the
squares-of-differences cost we defined in Eq.2 is not unique.
One can as well use the binary cross entropy

LBCE(θ)=− 1

|�|
∑

σ∈�

lσ log l
pr
σ (θσ )+(1−lσ ) log(1−l

pr
σ (θσ ))

and the cost function can be minimised as well, as shown in
Fig. 9.

In our classical simulation of the experiment, we also
used basinhopping (Olson et al. 2012) in combi-
nation with Nelder-Mead (Gao and Han 2010) from
the Python package SciPy https://pypi.org/project/scipy.
Nelder-Mead is a gradient-free local optimisation
method. basinhopping hops (or jumps) between basins
(or local minima) and then returns the minimum over local
minima of the cost function, where each minimum is found
by Nelder-Mead. The hop direction is random. The hop
is accepted according to a Metropolis criterion depending
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Fig. 9 Minimisation of binary cross entropy cost function LBCE with
SPSA for the question answering task for corpus K30

on the the cost function to be minimised and a temperature.
We used the default temperature value (1) and the default
number of basin hops (100).

F.1: Error decay

In Fig. 10, we show the decay of mean training and test
errors for the question answering task for corpus K30

simulated classically, which is shown as inset in Fig. 4.
Plotting in log-log scale we reveal, at least initially, an
algebraic decay of the errors with the depth of the word-
circuits.

Fig. 10 Algebraic decay of mean training and testing error for the data
displayed in Fig. 4 (bottom) obtained by basinhopping. Increasing
the depth of the word-circuits results in algebraic decay of the mean
training and testing errors. The slopes are log etr ∼ log −1.2d and
log ete ∼ −0.3 log d. We attribute the existence of the plateau for
etr at large depths is due the small scale of our experiment and the
small values for our hyperparameters determining the size of the
quantum-enhanced feature space

F.2: On the influence of noise to the cost function
landscape

Regarding optimisation on a quantum computer, we
comment on the effect of noise on the optimal parameters.
Consider a successful optimisation of L(θ) performed on
a NISQ device, returning θ∗

NISQ. However, if we instantiate
the circuits Cσ (θ∗

NISQ) and evaluate them on a classical

computer to obtain the predicted labels lCC
pr (θ∗

NISQ), we
observe that these can in general differ from the labels
l
NISQ
pr (θ∗

NISQ) predicted by evaluating the circuits on the
quantum computer. In the context of a fault-tolerant
quantum computer, this should not be the case. However,
since there is a non-trivial coherent-noise channel that our
circuits undergo, it is expected that the optimiser’s result are
affected in this way.

Appendix G: Quantum compilation

In order to perform quantum compilation, we use pytket
(Sivarajah et al. 2020). It is a Python module for interfacing
with CQC’s TKET, a toolset for quantum programming.
From this toolbox, we need to make use of compilation
passes.

At a high level, quantum compilation can be described as
follows. Given a circuit and a device, quantum operations
are decomposed in terms of the devices native gateset.
Furthermore, the quantum circuit is reshaped in order to
make it compatible with the device’s topology (Cowtan et al.
2019). Specifically, the compilation pass that we use is
default compilation pass(2). The integer option
is set to 2 for maximum optimisation under compilation
https://github.com/CQCL/pytket.

Circuits written in pytket can be run on other devices
by simply changing the backend being called, regardless
whether the hardware might be fundamentally different in
terms of what physical systems are used as qubits. This
makes TKET it platform agnostic. We stress that on IBMQ
machines specifically, the native gates are arbitrary single-
qubit unitaries (‘U3’ gate) and entangling controlled-not
gates (‘CNOT’ or ‘CX’). Importantly, CNOT gates show
error rates which are one or even two orders of magnitude
larger than error rates of U3 gates. Therefore, we measure
the depth of or circuits in terms of the CNOT-depth. Using
pytket this can be obtained by invoking the command
depth by type(OpType.CX).

For both backends used in this work, ibmq montreal
and ibmq toronto, the reported quantum volume is 32
and the maximum allowed number of shots is 213.
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Appendix H: Swap test and Hadamard test

In our binary classification NLP task, the predicted label
is the norm squared of zero-to-zero transition amplitude
where the unitary U represents the word-circuits and the
circuits that implement the Bell effects as dictated by the
grammatical structure. Estimating |〈0 . . . 0|U |0 . . . 0〉|2, or
the amplitude 〈0 . . . 0|U |0 . . . 0〉 itself in case one wants
to define a cost function where it appears instead of its
norm, can be done by postselecting on 〈0 . . . 0|. However,
postselection costs exponential time in the number of
postselected qubits; in our case, it needs to discard all
bitstring sampled from the quantum computer that have
Hamming weight other than zero. This is the procedure we
follow in this proof of concept experiment, as we can afford
doing so due to the small circuit sizes.

In such a setting, postselection can be avoided by using
the swap test to estimate the normed square of the amplitude
or the Hadamard test for the amplitude itself (Aharonov
et al. 2008). See Fig. 11 for the corresponding circuits of
those routines. In Fig. 12, we show how the swap test or
the Hadamard test can be used to estimate the amplitude
represented by the postselected sentence-circuit of Fig. 3.
Furthermore, at least for tasks that are defined such that
every sentence corresponds to a circuit, we argue that
sentences do not grow arbitrarily long, and so the cost of
evaluating the cost function is upper bounded in practical
applications.

Fig. 11 (Left) Circuit for the Hadamard test. Measuring the control
qubit in the computational basis allows one to estimate 〈Z〉 =
Re(〈ψ |U |ψ〉) if b = 0, and 〈Z〉 = Im(〈ψ |U |ψ〉) if b = 1. The state
ψ can be a multiqubit state, and in this work we are interested in the
case ψ = |0 . . . 0〉. (Right) Circuit for the swap test. Sampling from
the control qubit allows one to estimate 〈Z〉 = |〈ψ |φ〉|2

Fig. 12 Use of swap test (top) and Hadamard test (bottom) to estimate
the norm-squared of the amplitude or the amplitude itself respectively,
which is represented by the postselected circuit of Fig. 3
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E, Garnett R (eds) Advances in neural information processing
systems, vol 32. Curran Associates Inc, pp 4134–4144. https://
proceedings.neurips.cc/paper/2019/file/16026d60ff9b54410b34
35b403afd226-Paper.pdf

Lambek J (1958) The mathematics of sentence structure. American
Mathematical Monthly. 154–170

Lambek J (2008) From word to sentence
Lewis M (2020) Towards logical negation for compositional distribu-

tional semantics
Li Z, Liu X, Xu N, Du J (2015) Experimental realization of

a quantum support vector machine. Physical Review Letters
114(14). https://doi.org/10.1103/physrevlett.114.140504

Lloyd S, Schuld M, Ijaz A, Izaac J, Killoran N (2020) Quantum
embeddings for machine learning

Meichanetzidis K, Gogioso S, Felice GD, Chiappori N, Toumi A,
Coecke B (2020) Quantum natural language processing on near-
term quantum computers

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of
word representations in vector space

Mitarai K, Fujii K (2019) Methodology for replacing indirect measure-
ments with direct measurements. Physical Review Research 1(1).
https://doi.org/10.1103/physrevresearch.1.013006

Montague R (2008) Universal grammar. Theoria 36(3):373–398.
https://doi.org/10.1111/j.1755-2567.1970.tb00434.x

O’Riordan LJ, Doyle M, Baruffa F, Kannan V (2020) A hybrid
classical-quantum workflow for natural language processing.
Machine Learning: Science and Technology. https://doi.org/10.
1088/2632-2153/abbd2e

Olson B, Hashmi I, Molloy K, Shehu A (2012) Basin hopping as a gen-
eral and versatile optimization framework for the characterization
of biological macromolecules. Advances in Artificial Intelligence
2012:1–19. https://doi.org/10.1155/2012/674832
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