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Abstract
With the rapid advance of quantum machine learning, several proposals for the quantum-analogue of convolutional neural
network (CNN) have emerged. In this work, we benchmark fully parameterized quantum convolutional neural networks
(QCNNs) for classical data classification. In particular, we propose a quantum neural network model inspired by CNN
that only uses two-qubit interactions throughout the entire algorithm. We investigate the performance of various QCNN
models differentiated by structures of parameterized quantum circuits, quantum data encoding methods, classical data pre-
processing methods, cost functions and optimizers on MNIST and Fashion MNIST datasets. In most instances, QCNN
achieved excellent classification accuracy despite having a small number of free parameters. The QCNN models performed
noticeably better than CNN models under the similar training conditions. Since the QCNN algorithm presented in this work
utilizes fully parameterized and shallow-depth quantum circuits, it is suitable for Noisy Intermediate-Scale Quantum (NISQ)
devices.

Keywords Quantum machine learning · Convolutional neural network · Deep learning

1 Introduction

Machine learning techniques with artificial neural networks
are ubiquitous in modern society as the ability to make
reliable predictions from the vast amount of data is
essential in various domains of science and technology. A
convolutional neural network (CNN) is one such example,
especially for data with a large number of features. It
effectively captures spatial correlation within data and
learns important features (Lecun et al. 1998), which is
shown to be useful for many pattern recognition problems,
such as image classification, signal processing, and natural
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language processing (LeCun et al. 2015). It has also
opened the path to Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014). CNNs are also rising
as a useful tool for scientific research, such as in high-
energy physics (Aurisano et al. 2016; Acciarri et al. 2017),
gravitational wave detection (George and Huerta 2018)
and statistical physics (Tanaka and Tomiya 2017). By all
means, the computational power required for the success
of machine learning algorithms increases with the volume
of data, which is increasing at an overwhelming rate.
With the potential of quantum computers to outperform
any foreseeable classical computers for solving certain
computational tasks, quantum machine learning (QML)
has emerged as the potential solution to address the
challenge of handling an ever-increasing amount of data.
For example, several innovative quantum machine learning
algorithms have been proposed to offer speedups over
their classical counterparts (Lloyd et al. 2013; 2014;
Wiebe et al. 2015; Rebentrost et al. 2014; Kerenidis
et al. 2019; Blank et al. 2020). Motivated by the benefits
of CNN and the potential power of QML, quantum
convolutional neural network (QCNN) algorithms have
been developed (Cong et al. 2019; Kerenidis et al. 2019;
Liu et al. 2021; Henderson et al. 2020; Chen et al. 2020;
Li et al. 2020; MacCormack et al. 2020; Wei et al.
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2021; Mangini et al. 2021) (see Appendix A for a brief
summary and comparison of other approaches to QCNN).
Previous constructions of QCNN have reported success
in developing efficient quantum arithmetic operations that
exactly implement the basic functionalities of classical
CNN or in developing parameterized quantum circuits
inspired by key characteristics of CNN. While the former
likely requires fault-tolerant quantum devices, the latter has
been focused on quantum data classification. In particular,
Cong et al. proposed a fully parameterized quantum circuit
(PQC) architecture inspired by CNN and demonstrated its
success for some quantum many-body problems (Cong et al.
2019). However, the study of fully parameterized QCNN
for performing pattern recognition, such as classification, on
classical data is missing.

In this work, we present a fully parameterized quan-
tum circuit model for QCNN that solves supervised clas-
sification problems on classical data. In a similar vein
to Cong et al. (2019), our model only uses two-qubit inter-
actions throughout the entire algorithm in a systematic way.
The PQC models—also known as variational quantum cir-
cuits (Cerezo et al. 2021)—are attractive since they are
expected to be suitable for Noisy Intermediate-Scale Quan-
tum (NISQ) hardware (Preskill 2018; Bharti et al. 2021).
Another advantage of QCNN models for NISQ comput-
ing is their intrinsically shallow circuit depth. Furthermore,
QCNN models studied in this work exploit entanglement,
which is a global property, and hence have the potential to
transcend classical CNN that is only able to capture local
correlations. We benchmark the performance of the param-
eterized QCNN with respect to several variables, such as
quantum data encoding methods, structures of parameterized
quantum circuits, cost functions, and optimizers using two
standard datasets, namely MNIST and Fashion MNIST, on
Pennylane (Bergholm et al. 2020). The quantum encoding
benchmark also examines classical dimensionality reduc-
tion methods, which is essential for early quantum com-
puters with a limited number of logical qubits. The various
QCNN models tested in this work employs a small number
of free parameters, ranging from 12 to 51. Nevertheless, all
QCNN models produced high classification accuracy, with
the best case being about 99% for MNIST and about 94%
for Fashion MNIST. Moreover, we discuss a QCNN model
that only requires nearest neighbor qubit interactions, which
is a desirable feature for NISQ computing. Comparing clas-
sification performances of QCNN and CNN models shows
that QCNN is more favorable than CNN under the similar
training conditions for both benchmarking datasets.

The remainder of the paper is organized as follows.
Section 2 sets the theoretical framework of this work by
describing the classification problem, the QCNN algorithm,
and various methods for encoding classical data as a
quantum state. Section 3 describes variables of the QCNN

model, such as parameterized quantum circuits, cost
functions, and classical data pre-processing methods, that
are subject to our benchmarking study. Section 4 compares
and presents the performance of various designs of QCNN
for binary classification of MNIST and Fashion MNIST
datasets. Conclusions are drawn and directions for future
work are suggested in Section 5.

2 Theoretical framework

2.1 Classification

Classification is an example of pattern recognition, which
is a fundamental problem in data science that can be
effectively addressed via machine learning. The goal of L-
class classification is to infer the class label of an unseen
data point , given a labelled dataset

The classification problem can be solved by training
a parameterized quantum circuit. Hereinafter, we refer to
fully parameterized quantum circuits trained for machine
learning tasks as quantum neural network (QNN). For
this supervised classification task, a QNN is trained by
optimizing the parameters of quantum gates so as to
minimize the cost function

C(θ) =
M∑

i=1

αic(yi, f (xi, θ))

where f (xi, θ) is the machine learning model defined by
the set of parameters θ that predicts the label of xi , c(a, b)

quantifies the dissimilarity between a and b, and αi is
a weight that satisfies

∑M
i=1 αi = 1. After the training

is finished, the class label for the unseen data point x̃ is
determined as ỹ = f (x̃, θ∗), where θ∗ = arg minθ C(θ).
If the problem is restricted to binary classification (i.e.,
L = 2), the class label can be inferred from a single-
qubit von Neumann measurement. For example, the sign
of an expectation value of σz observable can represent the
binary label (Park et al. 2021). Hereinafter, we focus on the
binary classification, albeit potential future work towards
multi-class classification will be discussed in Section 5.

2.2 Quantum convolutional neural network

An interesting family of quantum neural networks utilizes
tree-like (or hierarchical) structures (Grant et al. 2018)
with which the number of qubits from a preceding layer
is reduced by a factor of two for the subsequent layer.
Such architectures consist of O(log(n)) layers for n input
qubits, thereby permitting shallow circuit depth. Moreover,
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they can avoid one of the most critical problems in the
PQC based algorithms known as “barren plateau”, thereby
guaranteeing the trainability (Pesah et al. 2021). These
structures also make a natural connection to the tensor
network, which serves as a useful ground for exploring
many-body physics, neural networks, and the interplay
between them.

The progressive reduction of the number of qubits is anal-
ogous to the pooling operation in CNN. A distinct feature of
the QCNN architecture is the translational invariance, which
forces the blocks of parameterized quantum gates to be iden-
tical within a layer. The quantum state resulting from an ith
layer of QCNN can be expressed as

|ψi(θ i )〉〈ψi(θ i )|=TrBi
(Ui(θ i ) |ψi−1〉〈ψi−1| Ui(θ i )

†), (1)

where TrBi
(·) is the partial trace operation over subsystem

Bi ∈ C
2n/2i

, Ui is the parameterized unitary gate operation
that includes quantum convolution and the gate part of
pooling, and |ψ0〉 = |0〉⊗n. Following the existing
nomenclature, we refer to the structure (or template) of
the parameterized quantum circuit as ansatz. In our QCNN
architecture, Ui always consists of two-qubit quantum
circuit blocks, and the convolution and pooling part each
uses the identical quantum circuit blocks within the given
layer. Since a two-qubit gate requires 15 parameters at
most (Vatan and Williams 2004), in ith layer consisting of
li > 0 independent convolutional filter and one pooling
operation the maximum number of parameters subject to
optimization is 15(li + 1). Then, the total number of

parameters is at most 15
∑log2(n)

i=1 (li + 1) if the convolution
and pooling operations are iterated until only one qubit
remains. One can also consider an interesting hybrid
architecture in which the QCNN layers are stacked until m

qubits are remaining and then a classical neural network
takes over from the m qubit measurement outcomes. In
this case, the number of quantum circuit parameters is
less than the maximum number given above. Usually, li is
set to be a constant. Therefore, the number of parameters
subject to optimization grows as O(log(n)), which is an
exponential reduction compared to the general hierarchical
structure discussed in Ref. Grant et al. (2018). This also
implies that the number of parameters can be suppressed
double-exponentially with the size of classical data if the
exponentially large state space is fully utilized for encoding
the classical data. An example quantum circuit for a QCNN
algorithm with eight qubits for binary classification is
depicted in Fig. 1. Generalizing Fig. 1 to larger systems
can be done simply by connecting all neighboring qubits
with the two-qubit parameterized gates in the translationally
invariant way.

The optimization of the gate parameters can be carried
out by iteratively updating the parameters based on the

gradient of the cost function until some condition for the
termination is reached. The cost function gradient can be
calculated classically or by using a quantum computer
via parameter-shift rule (Li et al. 2017; Mitarai et al.
2018; Schuld et al. 2019). When the parameter-shift rule
is used, QCNN requires an exponentially smaller number
of quantum circuit executions compared to the general
hierarchical structures inspired by tensor networks (e.g., tree
tensor network) in Ref. Grant et al. (2018). While the latter
uses O(n) runs, the former only uses O(log(n)) runs.

2.3 Quantum data encoding

Many machine learning techniques transform input data X
into a different space to make it easier to work with. This
transformation φ : X → X ′ is often called a feature map.
In quantum computing, the same analogy can be applied to
perform a quantum feature map, which acts as φ : X → H
where the vector space H is a Hilbert space (Schuld and
Killoran 2019). In fact, such feature mapping is mandatory
when one uses quantum machine learning on classical
data, since classical data must be encoded as a quantum
state (Rebentrost et al. 2014; Lloyd et al. 2014; Giovannetti
et al. 2008; Park et al. 2019; Veras et al. 2020; Araujo et al.
2021). The quantum feature map x ∈ X → |φ(x)〉 ∈ H is
equivalent to applying a unitary transformation Uφ(x) to the
initial state |0〉⊗n to produce Uφ(x)|0〉⊗n = |φ(x)〉, where
n is the number of qubits. This refers to the green rectangle
in Fig. 1.

There exist numerous structures of Uφ(x) to encode the
classical input data x into a quantum state. In this work, we
benchmark the performance of the QCNN algorithm with
several different quantum data encoding techniques. These
techniques are explained in detail in this section.

2.3.1 Amplitude encoding

One of the most general approaches to encode classical
data as a quantum state is to associate normalized input
data with probability amplitudes of a quantum state. This
encoding scheme is known as the amplitude encoding (AE).
The amplitude encoding represents input data of x =
(x1, ..., xN)T of dimension N = 2n as amplitudes of an
n-qubit quantum state |φ(x)〉 as

Uφ(x) : x ∈ R
N → |φ(x)〉 = 1

‖x‖
N∑

i=1

xi |i〉, (2)

where |i〉 is the ith computational basis state. Clearly, with
amplitude encoding, a quantum computer can represent
exponentially many classical data. This can be of great
advantage in QCNN algorithms. Since the number of
parameters subject to optimization scales as O(log(n))
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Fig. 1 A schematic of the QCNN algorithm for an example of 8
input qubits. The quantum circuit consists of three parts: quantum data
encoding (green rectangle), convolutional filters (blue rounded rectan-
gle), and pooling (red circle). The quantum data encoding is fixed in
a given structure of QCNN, while the convolutional filter and pooling
use parameterized quantum gates. There are three layers in this exam-
ple, and in each layer, multiple convolutional filters can be applied.
The number of filters for ith layer is denoted by li . In each layer,
the convolutional filter applies the same two-qubit ansatz to nearest

neighbor qubits in a translationally invariant way. Similarly, pooling
operations within the layer use the same ansatz. In this example, the
pooling operation is represented as a controlled unitary transforma-
tion, which is activated when the control qubit is 1. However, general
controlled operations can also be considered. The measurement out-
come of the quantum circuit is used to calculate the user-defined cost
function. The classical computer is used to compute the new set of
parameters based on the gradient, and the quantum circuit parameters
are updated accordingly for the subsequent round

(see Section 2.2), the amplitude encoding reduces the
number of parameters doubly-exponentially with the size
(i.e., dimension) of the classical data. However, the quantum
circuit depth for amplitude encoding usually grows as
O(poly(N)), although there exists a method to reduce it to
O(log(N)) at the cost of increasing the number of qubits to
O(N) (Araujo et al. 2021).

2.3.2 Qubit encoding

The computational overhead of amplitude encoding moti-
vates qubit encoding, which uses a constant quantum circuit
depth while using O(N) number of qubits. The qubit encod-
ing embeds one classical data point xi , that is rescaled to
lie between 0 and π , into a single qubit as |φ(xi)〉 = cos
(
xi

2 )|0〉+sin(
xi

2 )|1〉 for i = 1, ..., N . Hence, the qubit encod-
ing maps input data of x = (x1, . . . , xN)T to N qubits as

Uφ(x) : x ∈ R
N → |φ(x)〉

=
N⊗

i=1

(cos(
xi

2
)|0〉 + sin(

xi

2
)|1〉), (3)

where xi ∈ [0, π) for all i. The encoding circuit can be
expressed with a unitary operator Uφ(x)=⊗N

j=1 Uxj
where

Uxj
= e−i

xj
2 σy :=

[
cos(

xj

2 ) − sin(
xj

2 )

sin(
xj

2 ) cos(
xj

2 )

]
.

2.3.3 Dense qubit encoding

In principle, since a quantum state of one qubit can be
described with two real-valued parameters, two classical
data points can be encoded in one qubit. Thus, the qubit
encoding described above can be generalized to encode two
classical vectors per qubit by using rotations around two
orthogonal axes (LaRose and Coyle 2020). By choosing
them to be the x and y axes of the Bloch sphere, this
method, which we refer to as dense qubit encoding, encodes
xj = (xj1 , xj2) into a single qubit as

|φ(xj )〉 = e−i
xj2

2 σy e−i
xj1

2 σx |0〉.

Hence, the dense qubit encoding maps an N-dimensional
input data x = (x1, . . . , xN)T to N/2 qubits as

Uφ(x) : x ∈ R
N → |φ(x)〉

=
N/2⊗

j=1

(
e−i

xN/2+j
2 σy e−i

xj
2 σx |0〉

)
. (4)

Note that there is freedom to choose which pair of classical
data to be encoded in one qubit. In this work, we chose the
pairing as shown in Eq. (4), but one may choose to encode
x2j−1 and x2j in j th qubit.
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2.3.4 Hybrid encoding

As shown in previous sections, the amplitude encoding
is advantageous when the quantum circuit width (i.e., the
number of qubits) is considered while the qubit encoding is
advantageous when the quantum circuit depth is considered.
These two encoding schemes represent the extreme ends of
the quantum circuit complexities for loading classical data
into a quantum system. In this section, we introduce simple
hybrid encoding methods to compromise the quantum
circuit complexity between these two extreme ends. In
essence, the hybrid encoding implements the amplitude
encoding to a number of independent blocks of qubits
in parallel. Let us denote the number of qubits in each
independent block that amplitude-encodes classical data by
m. Then, each block can encode O(2m) classical data. Let
us also denote that there are b such blocks of m qubits
by b. Then, the quantum system of b blocks contains b2m

classical data. The first hybrid encoding, which we refer to
as hybrid direct encoding (HDE), can be expressed as

Uφ(x) : x ∈R
N → |φ(x)〉=

b⊗

j=1

⎛

⎝ 1

‖x‖j

2m∑

i=1

xij |i〉j
⎞

⎠ . (5)

Note that each block can have a different normalization
constant, and hence, the amplitudes may not be a faithful
representation of the data unless the normalization constant
have similar values. To circumvent this problem, we also
introduce hybrid angle encoding (HAE), which can be
expressed as

|φ(x)〉=
b⊗

k=1

⎛

⎝
2m∑

i=1

m−1∏

j=0

cos1−ij
(
xg(j),k

)
sinij

(
xg(j),k

) |i〉k
⎞

⎠,

(6)

where i ∈ {0, 1}m is the binary representation of i with ij

being the j + 1th bit of the bit string, xj,k represents the
j th element of the data assigned to the kth block of qubits,
and g(j) = 2j + ∑j−1

l=0 il2l . In this case, having b block
of m qubits allows b(2m − 1) classical data to be encoded.
The performance of these hybrid encoding methods will be
compared in Section 4.

Since the hybrid methods are parallelized, the quantum
circuit depth is reduced to O(2m) where m < N , while
the number of qubits is O(mN/2m). Therefore, the hybrid
encoding algorithms use fewer number of qubits than the
qubit encoding and use shallower quantum circuit depth
than the amplitude encoding. Finding the best trade-off
between the quantum circuit width and depth (i.e., the
choice of m) depends on the specific details of given
quantum hardware.

3 Benchmark variables

3.1 Ansatz

An important step in the construction of a QCNN model
is the choice of ansatz. In general, the QCNN structure is
flexible to use an arbitrary two-qubit unitary operation at
each convolutional filter and each pooling step. However,
we constrain our design such that all convolutional filters
use the same ansatz, and the same applies to all pooling
operations (but differ from convolutional filters). We later
show that the QCNN with fixed ansatz provides excellent
results for the benchmarking datasets. While using different
ansatz for all filters can be an interesting attempt for further
improvements, this will increase the number of parameters
to be optimized.

In the following, we introduce a set of convolutional
and pooling ansatz (i.e., parameterized quantum circuit
templates) used in our QCNN models.

3.1.1 Convolution filter

Parameterized quantum circuits for convolutional layers in
QCNN are composed of different configurations of single-
qubit and two-qubit gate operations. Most circuit diagrams
in Fig. 2 are inspired by past studies. For instance, circuit
1 is used as the parameterized quantum circuit for training
a tree tensor network (TTN) (Grant et al. 2018). Circuits
2, 3, 4, 5, 7, and 8 are taken from the work by Sim et al.
(2019) which includes the analysis on expressibility and
entangling capability of four-qubit parameterized quantum
circuits. We modified these quantum circuits to two-qubit
forms to utilize them as building blocks of the convolutional
layer, which always consists of two qubits. Circuits 7 and
8 are reduced versions of circuits that recorded the best
expressibility in the study. Circuit 2 is a two-qubit version
of the quantum circuit that exhibited the best entangling
capability. Circuits 3, 4 and 5 are drawn from circuits
that have balanced significance in both expressibility and
entangling capability. Circuit 6 is developed as a proper
candidate of two-body Variational Quantum Eigensolver
(VQE) entangler in Ref. Parrish et al. (2019). This circuit
is also known to be able to implement an arbitrary SO(4)

gate (Wei and Di 2012). In fact, a total VQE entangler
can be constructed by linearly arranging the SO(4) gates
throughout input qubits. Since this structure is similar
to the structure of convolutional layers in QCNN, the
SO(4) gate would be a great candidate to be used in the
convolution layer. Circuit 9 represents the parameterization
of an arbitrary SU(4) gate (Vatan and Williams 2004;
MacCormack et al. 2020).
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(a) Convolutional circuit 1

(g) Convolutional circuit 7

(b) Convolutional circuit 2 (c) Convolutional circuit 3

(d) Convolutional circuit 4 (e) Convolutional circuit 5 (f) Convolutional circuit 6

(h) Convolutional circuit 8

(i) Convolutional circuit 9

Fig. 2 Parameterized quantum circuits used in the convolutional layer.
Ri(θ) is a rotation around the i axis of the Bloch sphere by an angle
of θ , and H is the Hadamard gate. U3(θ, φ, λ) is an arbitrary single-
qubit gate that can be expressed as U3(θ, φ, λ) = Rz(φ)Rx(−π/2)

Rz(θ)Rx(π/2)Rz(λ). (a) Convolutional circuit 1. (b) Convolutional
circuit 2. (c) Convolutional circuit 3. (d) Convolutional circuit 4. (e)
Convolutional circuit 5. (f) Convolutional circuit 6. (g) Convolutional
circuit 7. (h) Convolutional circuit 8. (i) Convolutional circuit 9

3.1.2 Pooling

The pooling layer applies parameterized quantum gates to
two qubits and traces out one of the qubits to reduce the
two-qubit states to one-qubit states. Similar to the choice
of ansatz for the convolutional filter, there exists a variety
of choices of two-qubit circuits of the pooling layer. In
this work, we choose a simple form of a two-qubit circuit
consisting of two free parameters for the pooling layer. The
circuit is shown in Fig. 3.

Application of the parameterized gates in the pooling
step in conjunction with the convolutional circuit 9 might
be redundant since it is already an arbitrary SU(4) gate.
Thus, for the convolutional circuit 9, we test two QCNN
constructions, with and without the parameterized two-qubit
circuit in the pooling layer. In the latter, the pooling layer
only consists of tracing out one qubit.

3.2 Cost function

The variational parameters of the ansatz are updated to min-
imize the cost function calculated on the training dataset.
In this benchmark study, we test the performance of QCNN

Fig. 3 Parameterized quantum circuit used in the pooling layer. The
pooling layer applies two controlled rotations Rz(θ1) and Rx(θ2),
respectively, each activated when the control qubit is 1 (filled circle)
or 0 (open circle). The control (first) qubit is traced out after the gate
operations in order to reduce the dimension
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models with two different cost functions, namely the mean
squared error and the cross-entropy loss.

3.2.1 Mean squared error

Before training QCNN, we map original class labels of
{0, 1} to {1, −1} respectively to associate them with the
eigenvalues of the qubit observables. Then, the mean
squared error (MSE) between predictions and class labels
becomes

C(θ) = 1

N

N∑

i=1

(M̂z(ψi(θ)) − ỹi )
2, (7)

where M̂z(ψi) = 〈ψi |σz|ψi〉 is the Pauli-Z expectation
value of one-qubit state extracted from QCNN for ith
training data, and ỹi ∈ {1, −1} is the label of the
corresponding training data (i.e., ỹi = 1 − 2yi). Since
QCNN performs a single-qubit measurement in the Z basis,
the final state can be thought of as a mixed state ai |0〉〈0| +
bi |1〉〈1|. Then, minimizing the cost function above with
respect to θ would correspond to forcing ai to be as larger
as possible than bi if the ith training data is labelled 0, and
vice versa if it is labelled 1.

3.2.2 Cross-entropy loss

Cross-entropy loss is widely used in training classical neural
networks. It measures the performance of a classification
model whose output is a probability between 0 and 1. Due to
the probabilistic property of quantum mechanics, one could
consider the cross-entropy loss by considering probabilities
of measuring computational basis states in the single-qubit
measurement of QCNN. The cross-entropy loss for the ith
training data can be expressed as

C(θ) =
N∑

i=1

yi log (Pr[ψi(θ) = 1])

+(1 − yi) log (Pr[ψi(θ) = 0]) , (8)

where yi ∈ {0, 1} is the class label and Pr[ψi(θ) = yi] is the
probability of measuring the computational basis state |yi〉
from the QCNN circuit.

3.3 Classical data pre-processing

The size of quantum circuits that can be reliably exe-
cuted on NISQ devices is limited due to the noise and
technical challenges of building quantum hardware. Thus,
the encoding schemes for high-dimensional data usually
require the number of qubits that are beyond the cur-
rent capabilities of quantum devices. Therefore, classical
dimensionality reduction techniques will be useful in the

near-term application of quantum machine learning tech-
niques. In this work, we pre-process data with three clas-
sical dimensionality reduction techniques, namely bilinear
interpolation, principal component analysis (PCA) (Jol-
liffe 2002) and autoencoding (AutoEnc) (Goodfellow et al.
2016). For the simulation presented in the following section,
amplitude encoding is used only with bilinear interpolation
while all other encoding schemes are tested with PCA and
autoencoding. Bilinear interpolation and PCA are carried
out by utilizing tf.image.resize from TensorFlow
and sklearn.decomposition.PCA from scikit-learn,
respectively. Autoencoders are capable of modelling com-
plex non-linear functions, while PCA is a simple linear
transformation with cheaper and faster computation. Since
the pre-processing step should not produce too much com-
putational resource overhead or result in overfitting, we
train a simple autoencoder with one hidden layer. The data
in the latent space (i.e., hidden layer) is then fed to quantum
circuits.

4 Simulation

4.1 QCNN results overview

This section reports the classical simulation results of the
QCNN algorithm for binary classification carried out with
Pennylane (Bergholm et al. 2020). The test is performed
with two standard datasets, namely MNIST and Fashion
MNIST, under various conditions as described in the
previous section. Note that the MNIST and Fashion MNIST
datasets are 28×28 image data, each with ten classes. Our
benchmark focuses on binary classification, and hence, we
select classes 0 and 1 for both datasets.

The variational parameters in the QCNN ansatze are
optimized by minimizing the cost function with an
optimizer provided in Pennylane (Bergholm et al. 2020).
In particular, we tested Adam (Kingma and Ba 2017) and
Nesterov moment (Nesterov 1983) optimization algorithms.
At each iteration t , we create a small batch by randomly
selecting data from the training set. Compared to training
on the full dataset, training on the mini-batch not only
reduces simulation time but also helps the gradients to
escape from local minima. For both Adam and Nesterov
moment optimizers, the batch size was 25 and the learning
rate was 0.01. We also fixed the number of iterations to be
200 to speed up the training process. Note that the training
can alternatively be stopped at different conditions, such
as when the validation set accuracy does not increase for
a predetermined number of consecutive runs (Grant et al.
2018). The numbers of training (test) data are 12665 (2115)
and 12000 (2000) for MNIST and fashion MNIST datasets,
respectively.
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Tables 1 and 2 show the mean classification accuracy and
one standard deviation obtained from five instances with
random initialization of parameters. The number of random
initialization is chosen to be the same as that of Ref. Grant
et al. (2018). The results are obtained for various QCNN
models of different convolutional and pooling circuits and
data encoding strategies. When benchmarking with the
hybrid encoding schemes (i.e., HDE and HAE), we used
two blocks of four qubits, which results in having 32 and
30 features encoded in 8 qubits, respectively. For all results
presented here, training is done with the cross-entropy
loss. Similar results are obtained when MSE is used for
training, and we present the MSE results in Appendix C.
Here we only report the classification results obtained with
the Nesterov optimizer, since it consistently provided better
convergence. The ansatze in the table are listed in the same
order as the list of convolutional circuits shown in Fig. 2.
The last row of the table (i.e., Ansatz 9b) contains the results
when the QCNN circuit only consists of the convolutional
circuit 9 without any unitary gates in the pooling step.

The simulation results show that all ansatze perform
reasonably well, while the ones with more number of
free parameters tend to produce higher score. Since all
ansatze perform reasonably well, one may choose to use
the ansatz with smaller number of free parameters to save
the training time. For example, by choosing ansatz 4 and
amplitude encoding, one can achieve 97.8% classification
accuracy while using only 24 free parameters total instead
of achieving 98.4% at the cost of increasing the number of
free parameters to 51. It is also important to note that most
of the results obtained with the hybrid data encoding and
PCA is considerably worse than the others. This is due to
the normalization problem discussed in Section 2.3.4, which
motivated the development of the hybrid angle encoding.
We observed that the normalization problem is negligible in
the case with autoencoding. The simulation results clearly
demonstrates that the normalization problem is resolved
by the hybrid angle encoding as expected, and reasonably
good results can be obtained with this method. For MNIST,
HAE with PCA provides the best solution among the hybrid

Table 1 Mean accuracy and
one standard deviation of the
classification for 0 and 1 in the
MNIST dataset when the
model is trained with the
cross-entropy loss

Classification accuracy

Ansatz # of params Amplitude Qubit Dense HDE HAE

1 12 96.8 ± 5.3 98.0 ± 0.4 97.6 ± 1.1 68.7 ± 5.1 97.9 ± 0.3

91.4 ± 2.3 88.4 ± 9.2 88.4 ± 2.6 77.7 ± 6.0

2 12 94.5 ± 3.1 98.2 ± 4.5 98.2 ± 0.5 62.2 ± 3.2 94.7 ± 2.1

98.2 ± 6.6 85.6 ± 4.5 93.4 ± 5.4 80.0 ± 4.0

3 18 93.8 ± 4.4 98.5 ± 0.2 96.9 ± 1.6 76.4 ± 2.7 98.1 ± 0.2

93.3 ± 3.8 95.8 ± 1.7 95.3 ± 3.4 84.4 ± 0.7

4 24 97.8 ± 2.4 98.2 ± 0.4 98.2 ± 0.4 70.2 ± 1.3 98.0 ± 0.3

98.5 ± 1.2 97.2 ± 1.1 96.6 ± 1.0 90.4 ± 3.8

5 24 96.7 ± 2.1 98.3 ± 0.4 98.1 ± 0.5 72.6 ± 5.7 98.0 ± 0.1

94.9 ± 2.1 96.0 ± 1.3 93.5 ± 1.3 86.5 ± 5.0

6 24 97.2 ± 2.2 98.1 ± 0.4 98.1 ± 0.3 77.4 ± 1.7 98.3 ± 0.2

97.7 ± 1.0 93.4 ± 0.5 97.0 ± 2.0 86.9 ± 7.3

7 36 98.3 ± 2.2 98.2 ± 0.3 98.7 ± 2.4 74.6 ± 3.2 98.2 ± 0.1

93.7 ± 4.5 95.1 ± 1.6 97.2 ± 2.2 90.2 ± 3.0

8 36 98.1 ± 0.7 98.3 ± 0.4 98.7 ± 0.1 79.7 ± 1.6 98.3 ± 0.1

96.9 ± 2.4 95.4 ± 2.8 96.6 ± 1.7 89.1 ± 2.6

9a 51 98.4 ± 0.2 98.4 ± 0.5 98.7 ± 0.4 78.1 ± 2.8 98.2 ± 0.2

96.4 ± 2.3 96.7 ± 1.4 97.8 ± 2.2 87.0 ± 5.3

9b 45 98.3 ± 0.2 97.7 ± 0.6 98.3 ± 0.5 77.4 ± 2.5 98.1 ± 0.1

96.6 ± 2.2 96.5 ± 1.7 98.0 ± 1.2 88.5 ± 2.8

The mean and the standard deviation are obtained from five repetitions with random initialization of
parameters. The first column shows the ansatz label. The second column shows the total number of
parameters that are subject to optimization. For qubit, dense and hybrid encoding, two rows indicate the
values obtained with different classical data pre-processing, namely PCA and autoencoding, respectively.
The best result under each quantum data encoding method is written in bold
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Table 2 Mean accuracy and
one standard deviation of the
classification for 0 (t-shirt/top)
and 1 (trouser) in the Fashion
MNIST dataset when the
model is trained with the
cross-entropy loss

Classification accuracy

Ansatz # of params Amplitude Qubit Dense HDE HAE

1 12 90.9 ± 2.0 83.1 ± 3.3 85.0 ± 3.6 64.4 ± 3.2 83.9 ± 1.7

87.3 ± 4.2 84.7 ± 7.2 90.5 ± 1.3 82.7 ± 4.6

2 12 88.2 ± 3.8 87.2 ± 4.6 82.2 ± 2.1 63.1 ± 1.4 84.3 ± 4.1

86.6 ± 4.6 86.9 ± 7.7 86.0 ± 4.7 82.1 ± 5.0

3 18 90.1 ± 2.7 87.7 ± 3.6 87.2 ± 3.0 65.5 ± 1.3 85.5 ± 1.2

88.4 ± 7.4 88.8 ± 2.2 91.7 ± 1.5 88.1 ± 4.0

4 24 89.1 ± 2.2 87.2 ± 2.4 89.7 ± 1.6 64.7 ± 1.9 84.7 ± 1.1

91.6 ± 3.4 91.8 ± 1.7 91.2 ± 0.5 88.4 ± 4.4

5 24 90.7 ± 1.1 86.3 ± 2.9 87.6 ± 2.3 64.1 ± 2.4 84.5 ± 1.7

91.9 ± 1.4 93.7 ± 1.4 92.4 ± 1.3 85.9 ± 3.9

6 24 90.4 ± 1.7 87.9 ± 3.9 88.7 ± 2.4 65.7 ± 0.9 87.7 ± 2.6

93.6 ± 1.6 90.2 ± 1.9 94.3 ± 1.2 88.5 ± 2.6

7 36 88.2 ± 1.4 87.1 ± 3.8 88.7 ± 2.9 66.3 ± 0.9 86.7 ± 1.8

92.2 ± 0.5 92.7 ± 2.2 93.8 ± 0.8 89.7 ± 2.9

8 36 89.9 ± 1.9 89.8 ± 0.9 88.7 ± 2.6 66.5 ± 0.3 86.2 ± 1.5

91.6 ± 3.0 92.2 ± 2.6 93.2 ± 1.5 91.6 ± 3.6

9a 51 91.3 ± 2.3 88.9 ± 2.7 89.2 ± 2.0 65.0 ± 1.3 88.6 ± 2.0

92.4 ± 2.6 92.1 ± 1.3 94.3 ± 1.6 88.3 ± 3.7

9b 45 88.8 ± 1.6 88.0 ± 2.5 90.2 ± 0.5 64.7 ± 2.8 88.9 ± 1.6

94.1 ± 1.1 92.7 ± 1.5 92.9 ± 1.3 87.1 ± 3.6

The mean and the standard deviation are obtained from five repetitions with random initialization of
parameters. The first column shows the ansatz label. The second column shows the total number of
parameters that are subject to optimization. For qubit, dense and hybrid encoding, two rows indicate the
values obtained with different classical data pre-processing, namely PCA and autoencoding, respectively.
The best result under each quantum data encoding method is written in bold

encoding schemes on average. On the other hand, for
Fashion MNIST, HDE with autoencoding provides the best
solution among the hybrid encoding schemes on average.

In the following, we also compare the two classical
dimensionality reduction methods by presenting the overall
mean accuracy and standard deviation values obtained by
averaging over all ansatze and the random initializations.
The average values are presented in Table 3. As discussed
before, the HDE with PCA does not perform well for both
datasets due to the data normalization issue. Besides this
case, interestingly, PCA works better than autoencoding
for MNIST data, and vice versa for Fashion MNIST data,
thereby suggesting that the choice of the classical pre-
processing method should be data-dependent.

Finally, we also examine how classification performance
improves as the number of convolutional filters in each
layer increases. For simplicity, we set the number of
convolutional filters in each layer to be same, i.e., l1 = l2 =
l3 = L (see Fig. 1 for the definition of li). Without loss
of generality, we pick two ansatze and five encodings. For
ansatze, we choose the one with the smallest number of free
parameters and another with arbitrary SU(4) operations.

These are circuit 2 and circuit 9b, and they use 12 and
45 parameters total, respectively. For data encoding, we
tested amplitude, qubit, and dense encoding. The qubit and
dense encoding are further grouped under two different
classical dimensionality reduction techniques, PCA and
autoencoding. Since the qubit and dense encoding load
8 and 16 features, respectively, we label them as PCA8,
AutoEnc8, PCA16, and AutoEnc16 based on the number of
features and the dimensionality reduction techniques. The
classification accuracies for L = {1, 2, 3} are plotted in
Fig. 4. The simulation results show that in some cases,
the classification accuracy can be improved by increasing
the number of convolutional filters. For example, the
classification accuracy for MNIST data can be improved
from about 86% to 96% when circuit 2 and dense encoding
with autoencoding are used. For Fashion MNIST, the
classification accuracy is improved from about 88% to 90%
when circuit 2 and amplitude encoding are used, and from
about 86% to 90% when circuit 2 and qubit encoding with
PCA is used. However, we do not observe general trend with
respect to the number of convolutional filters. In particular,
the relationship between the classification accuracy and L is
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Table 3 Comparison of the
classical dimensionality
reduction methods for angle
encoding, dense encoding, and
hybrid encoding

Qubit Dense HDE HAE

MNIST PCA 98.0 ± 1.5 98.0 ± 1.0 73.7 ± 3.0 97.8 ± 0.4

AutoEnc 95.4 ± 3.6 94.2 ± 4.6 95.4 ± 2.3 86.1 ± 4.1

Fashion MNIST PCA 87.3 ± 3.7 87.7 ± 3.2 65.0 ± 1.6 86.1 ± 1.9

AutoEnc 91.0 ± 4.1 90.6 ± 4.4 92.0 ± 1.5 87.2 ± 3.8

For each encoding scheme, classification results from all instances (i.e., various ansatze and random
initialization of parameters) are averaged out to produce the mean and standard deviation

less obvious for circuit 9b. We speculate that this attributes
to the fact that circuit 9b implements an arbitrary SU(4),
which is an arbitrary two-qubit gate, and hence, repetitive
application of an arbitrary SU(4) is redundant.

4.2 Boundary conditions of the QCNN circuit

The general structure of QCNN shown in Fig. 1 uses two-
qubit gates between the first (top) and last (bottom) qubits,

which can be thought of as imposing periodic-boundary
condition. One may notice that all-to-all connectivity can
be established even without connecting the boundaries.
Thus, we tested the classification performance of a QCNN
architecture without having the two-qubit gates to close
the loop. We refer to this case as the open-boundary
QCNN. Without loss of generality, we tested QCNNs with
two different ansatz, the convolutional circuit 2 (Ansatz
2 in Tables 1 and 2) which uses the smallest number

Fig. 4 Classification accuracy vs the number of convolutional filters
L for MNIST and Fashion MNIST datasets. The number of filters
in each layer is set to be equal, i.e., l1 = l2 = l3 = L (see
Fig. 1 for the definition of li ). The simulation is carried out with two
ansatze, circuit 2 and circuit 9b, and five encoding schemes, amplitude

encoding (AE), qubit encoding with PCA (PCA8) and with autoen-
coding (AutoEnc8), and dense encoding with PCA (PCA16) and with
autoencoding (AutoEnc16). (a) Convolutional circuit 2 for MNIST. (b)
Convolutional circuit 2 for Fashion MNIST. (c) Convolutional circuit
9b for MNIST. (d) Convolutional circuit 9b for Fashion MNIST
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Fig. 5 A QCNN circuit with the open-boundary condition and no
gate operations for pooling. In this case, the QCNN circuit can be
constructed with nearest neighbor qubit interactions only

of free parameters and the convolutional circuit 9 which
implements an arbitrary SU(4). In case of the latter, pooling
was done without parameterized gates, and hence, the ansatz
is equivalent to ansatz 9b in Tables 1 and 2. By imposing
the open-boundary condition in conjunction with the ansatz
9b, one can modify the qubit arrangement of the QCNN
circuit so as to use nearest neighbor qubit interactions only.
For an example of 8-qubit QCNN circuit, the modified
structure is depicted in Fig. 5. Such design is particularly
advantageous for NISQ devices that have limited physical
qubit connectivity. For example, if one employs the qubit
or the dense encoding method, the QCNN algorithm can be
implemented with a 1-dimensional chain of physical qubits.

The simulation results are presented in Table 4 for
MNIST and Fashion MNIST datasets. These results are
attained with one convolutional filters per layer, i.e., l1 =
l2 = l3 = 1. The simulation results demonstrate that for
the case of two ansatze tested the classification performance
between open- and periodic-boundary QCNN circuits are
similar. Although the number of free parameters are the
same under these conditions, depending on the specification
of the quantum hardware such as the qubit connectivity,

the open-boundary QCNN circuit can have shallower
depth. The open-boundary circuit with ansatz 9b is even
more attractive for NISQ devices since the convolutional
operations can be done with only nearest neighbor qubit
interactions as mentioned above.

4.3 Comparison to CNN

We now compare the classification results of QCNN to that
of classical CNN. Our goal is to compare the classification
accuracy of the two given a similar number of parameters
subject to optimization. To make a fair comparison between
the two, we fix all hyperparameters of the two methods to
be the same, except we used the Adam optimizer for CNN
since it performed significantly better than the Nesterov
moment optimizer. A detailed description of the classical
CNN architecture is provided in Appendix B.

It is important to note that CNN can be trained with
such small number of parameters effectively only when the
number of nodes in the input layer is small. Therefore, the
CNN results are only comparable to that of the qubit and
dense encoding cases which requires 8 and 16 classical
input nodes, respectively. We designed four different CNN
models with the number of free parameters being 26, 34,
44 and 56 to make them comparable to the QCNN models.
In these cases, a dimensionality reduction technique must
precede. For hybrid and amplitude encoding, which require
relatively simpler data pre-processing, the number of nodes
in the CNN input layer is too large to be trained with a small
number of parameters as in QCNN.

Comparing the values in Table 5 with the QCNN results,
one can see that QCNN models perform better than their
corresponding CNN models for the MNIST dataset. The
same conclusion also holds for the Fashion dataset, except
for the CNN models with 44 and 56 parameters that achieve
similar performance as their corresponding QCNN models.
Another noticeable result is that the QCNN models have
considerably smaller standard deviations than the CNN
models on average. This implies that the QCNN models not
only achieve higher classification accuracy than the CNN
models under similar training conditions but also are less
sensitive to the random initialization of the free parameters.

Table 4 Mean classification
accuracy and one standard
deviation of the classification
for 0 and 1 in the benchmarking
datasets when the QCNN
circuit is constructed under the
open-boundary condition

Ansatz AE PCA8 PCA16 AutoEnc8 AutoEnc16

MNIST 2 90.4 ± 2.5 98.0 ± 0.3 96.3 ± 3.2 97.7 ± 0.1 86.4 ± 4.6

9b 98.0 ± 0.4 98.1 ± 0.2 97.8 ± 0.3 96.8 ± 0.7 94.4 ± 1.9

Fashion 2 91.1 ± 1.4 86.2 ± 0.5 88.4 ± 3.0 83.3 ± 4.6 87.2 ± 5.7

MNIST 9b 90.1 ± 1.4 87.6 ± 2.4 89.1 ± 1.9 91.9 ± 1.4 92.6 ± 2.0

Each column represents the results produced under a different encoding scheme with the numbers 8 and 16
indicates the qubit and dense encoding, respectively
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Table 5 Mean classification
accuracy and one standard
deviation obtained with
classical CNN for classifying 0
and 1 in the MNIST and
Fashion MNIST datasets

Classification accuracy

# of params Input size PCA AutoEnc

MNIST 26 8 91.0 ± 12.7 82.7 ± 15.2

34 16 97.0 ± 3.5 83.5 ± 15.5

44 8 93.3 ± 13.2 90.4 ± 13.4

56 16 93.0 ± 13.4 95.5 ± 2.3

Fashion MNIST 26 8 82.2 ± 16.6 86.8 ± 12.7

34 16 78.8 ± 19.1 79.0 ± 19.0

44 8 89.4 ± 3.9 92.4 ± 2.8

56 16 91.9 ± 2.0 93.6 ± 2.2

Each column is named with the pre-processing method (PCA or AutoEnc). These results directly compare
to the second and third columns of Tables 1 and 2 denoted by Qubit and Dense

In Fig. 6, we present two representative examples of the
cross-entropy loss as a function of the number of training
iterations. For simplicity, we show such data for two cases
in MNIST data classification: circuit 9b and qubit encoding
with autoencoding, and circuit 9b and dense encoding with
PCA. Considering the number of free parameters, these
cases are comparable to the CNN models with 8 inputs with
autoencoding and 16 inputs with PCA, respectively. Recall
that the mean classification accuracy and one standard
deviation in QCNN (CNN) is 96.6 ± 2.2 (90.4 ± 13.4) for
the first case, and 98.3 ± 0.5 (93.0 ± 13.4) for the second
case. Figure 6 shows that in both cases, the QCNN models
are trained faster than the CNN models, while the advantage
manifests more clearly in the first case. Furthermore, the

standard deviations in the QCNN models are significantly
smaller than that of the CNN models.

5 Conclusion

Fully parameterized quantum convolutional neural net-
works pave promising avenues for near-term applications
of quantum machine learning and data science. This work
presented an extensive benchmark of QCNN for solving
classification problems on classical data, a fundamental
task in pattern recognition. The QCNN algorithm can be
tailored with many variables such as the structure of param-
eterized quantum circuits (i.e., ansatz) for convolutional

Fig. 6 Cross-entropy loss as a function of the number of training iter-
ations. The QCNN models use circuit 9b as the ansatz. (a) The QCNN
model with qubit encoding and autoencoding is compared to the CNN

model with 8-inputs. (b) The QCNN model with dense encoding and
PCA is compared to the CNN model with 16-inputs. (a) 8-input CNN
with AutoEnc vs QCNN. (b) 16-input CNN with PCA vs QCNN
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filters and pooling operators, quantum data encoding meth-
ods, classical data pre-processing methods, cost functions
and optimizers. To improve the utility of QCNN for clas-
sical data, we also introduced new data encoding schemes,
namely hybrid direct encoding and hybrid angle encoding,
with which the exchange between quantum circuit depth and
width for state preparation can be configured. With diverse
combinations of the aforementioned variables, we tested 8-
qubit QCNN models for binary classification of MNIST
and Fashion MNIST datasets by simulation with Penny-
lane. The QCNN models tested in this work operated with
a small number of free parameters, ranging from 12 to 51.
Despite the small number of free parameters, QCNN pro-
duced high classification accuracy for all instances, with the
best case being close to 99% for MNIST and 94% for Fash-
ion MNIST. We also compared QCNN results to CNN and
observed that QCNN performed noticeably better than CNN
given the similar training conditions for both benchmarking
datasets. The comparison between QCNN and CNN is only
valid for qubit and dense encoding cases in which the num-
ber of input qubits grows linearly with the dimension of the
input data. With amplitude or hybrid encoding, the number
of input qubits is substantially smaller than the dimension
of the data, and hence, there is no classical analogue. We
speculate that the advantage of QCNN lies in the ability to
exploit entanglement, which is a global effect, while CNN
is only capable of capturing local correlations.

The QCNN architecture proposed in this work can be
generalized for L-class classification through one-vs-one or
one-vs-all strategies. It also remains an interesting future
work to examine the construction of a multi-class classifier
by leaving 
log2(L)� qubits for measurement in the output
layer. Another interesting future work is to optimize the
data encoding via training methods provided in Ref. Lloyd
et al. (2020). However, since QCNN itself can be viewed
as a feature reduction technique, it is not clear whether
introducing another layer of the variational quantum circuit
for data encoding would help until a thorough investigation
is carried out. Understanding the underlying principle for
the quantum advantage demonstrated in this work also
remains to be done. One way to study this is by testing
QCNN models with a set of data that does not exhibit
local correlation but contains some global feature while
analyzing the amount of entanglement created in the QCNN
circuit. Since the circuit depth grows only logarithmically
with the number of input qubits and the gate parameters
are learned, the QCNN model is expected to be suitable
for NISQ devices. However, the verification through real-
world experiments and noisy simulations remains to be
done. Furthermore, testing the classification performance
as the QCNN models grow bigger remains an interesting
future work. Finally, the application of the proposed QCNN
algorithms for other real-world datasets such as those

relevant to high-energy physics and medical diagnosis is of
significant importance.

Appendix A. Related works

The term quantum convolutional neural network (QCNN)
appears in several places, but it refers to a number of
different frameworks. Several proposals have been made
in the past to reproduce classical CNN on a quantum
circuit by imitating the basic arithmetic of the convo-
lutional layer for a given filter (Kerenidis et al. 2019;
Li et al. 2020; Wei et al. 2021). Although these algo-
rithms have the potential to achieve exponential speedups
against the classical counterpart in the asymptotic limit,
they require an efficient means to implement quantum ran-
dom access memory (QRAM), expensive subroutines such
as the linear combination of unitaries or quantum phase
estimation with extra qubits, and they work only for spe-
cific types of quantum data embedding. Another branch
of CNN-inspired QML algorithms focuses on implement-
ing the convolutional filter as a parameterized quantum
circuit, which can be stacked by inserting a classical pool-
ing layer in between (Liu et al. 2021; Henderson et al.
2020; Chen et al. 2020). Following the nomenclature pro-
vided in Henderson et al. (2020), we refer to this approach
as quanvolutioanl neural network to distinguish it from
QCNN. The potential quantum advantage of using quanvo-
lutional layers lies in the fact that quantum computers can
access kernel functions in high-dimensional Hilbert spaces
much more efficiently than classical computers. In quanvo-
lutional NN, a challenge is to find a good structure for the
parametric quantum circuit in which the number of qubits
equals the size of the filter. This approach is also limited to
qubit encoding since each layer requires a quantum embed-
ding which has a non-negligible cost. Furthermore, stacking
quanvolutional layers via pooling requires each parameter-
ized quantum circuit to be measured multiple times for the
measurement statistics.

Variational quantum circuits with the hierarchical struc-
ture consisting of O(log(n)) layers do not exhibit the
problem of “barren plateau” (Pesah et al. 2021). In other
words, the precision required in the measurement grows at
most polynomially with the system size. This result guar-
antees the trainability of the fully parameterized QCNN
models studied in this work when randomly initializing
their parameters. Furthermore, numerical calculations in
Ref. Pesah et al. (2021) show that the cost function gradi-
ent vanishes at a slower rate (with n, the number of initial
qubits) when all unitary operators in the same layer are
identical as in QCNN (Cong et al. 2019). The hierarchical
structure inspired by tensor network, without translational
invariance, was first introduced in Ref. Grant et al. (2018).
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The hierarchical quantum circuit can be combined with a
classical neural network as demonstrated in Ref. Huang
et al. (2021).

We note in passing that there exist several works propos-
ing the quantum version of perceptron for binary classifica-
tion (Tacchino et al. 2020; Mangini et al. 2020; Monteiro
et al. 2021). While our QCNN model defers from them as it
implements the entire network as a parameterized quantum
circuit, interesting future work is to investigate the alterna-
tive approach to construct a complex network of quantum
artificial neurons developed in the previous works.

Appendix B. Classical CNN

In order to compare the classification accuracy of CNN and
QCNN in fair conditions, we fixed hyperparameters used in
the optimization step to be the same, which include iteration
numbers, batch size, optimizer type, and its learning rates.
In addition, we modified the structure of CNN in ways
that its number of parameters subject to optimization is
as close to that used in QCNN as possible. For example,
since QCNN attains the best results with about 40 to 50
free parameters, we adjust the CNN structure accordingly.
This led us to come up with two CNN, one with the input
shape of (8, 1, 1) and another with the input shape of (16,

1, 1). In order to occupy the small number of input nodes
for MNIST and Fashion MNIST classification, PCA and
autoencoding are used for data pre-processing as done in
QCNN. The CNNs go through convolutional and pooling
stages twice, followed by a fully connected layer. The
number of free parameters used in the CNN models is 26 or
44 for the case of 8 input nodes and 34 or 56 for the case of
16 input nodes.

The training also mimics that of QCNN. For every
iteration step, 25 data are randomly selected from the
training dataset, and trained via Adam optimizer with the
learning rate of 0.01. We also fixed the number of iterations
to be 200 as done in QCNN. The number of training (test)
data are 12665 (2115) and 12000 (2000) for MNIST and
fashion MNIST datasets, respectively.

Appendix C. QCNN simulation results
for MSE loss

In Section 4 of the main text, we presented the Pennylane
simulation results of QCNN trained with the cross-entropy
loss. When MSE is used as the cost function, similar results
are obtained. We report classification results for MNIST and
Fashion MNIST data attained from QCNN models that are
trained with MSE in Tables 6 and 7.

Fig. 7 A schematic of CNN used in this work for comparing to the
classification performance of QCNN. To make the comparison as fair
as possible, the number of free parameters are adjusted to be similar to

that used in QCNN. This leads to starting with a small number of input
nodes. While we used two CNN structures with 8 and 16 input nodes,
the figure shows a CNN structure with 8 input nodes as an example
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Table 6 Mean accuracy and
one standard deviation of the
classification for 0 and 1 in the
MNIST dataset when the
QCNN model is trained with
MSE

Classification accuracy

Ansatz # of params Amplitude Qubit Dense HDE HAE

1 12 92.4 ± 3.1 96.1 ± 3.3 91.4 ± 8.6 60.3 ± 3.0 97.8 ± 1.2

86.1 ± 8.8 88.9 ± 7.1 83.4 ± 4.0 77.9 ± 6.1

2 12 88.2 ± 7.1 86.4 ± 7.1 91.4 ± 0.3 54.4 ± 4.6 93.0 ± 2.7

84.2 ± 10.0 88.9 ± 1.4 87.5 ± 8.6 78.7 ± 6.6

3 18 94.1 ± 1.7 98.0 ± 1.4 98.3 ± 0.1 69.8 ± 6.2 98.3 ± 0.3

91.6 ± 8.9 95.3 ± 3.2 94.2 ± 3.8 83.5 ± 3.9

4 24 90.1 ± 2.0 98.2 ± 0.1 84.9 ± 2.5 63.2 ± 3.7 98.0 ± 0.2

88.8 ± 6.3 85.8 ± 6.3 94.8 ± 1.1 85.5 ± 2.0

5 24 91.9 ± 1.7 98.1 ± 0.1 98.3 ± 0.1 65.7 ± 2.3 98.0 ± 0.1

92.7 ± 3.5 94.0 ± 2.0 91.8 ± 3.5 83.0 ± 4.5

6 24 96.2 ± 2.0 98.1 ± 0.1 97.8 ± 0.2 74.4 ± 3.9 98.3 ± 0.2

94.4 ± 3.9 92.5 ± 1.7 94.8 ± 2.8 86.6 ± 4.2

7 36 93.2 ± 4.3 98.4 ± 0.1 98.0 ± 0.3 68.9 ± 3.8 98.1 ± 0.2

95.2 ± 4.5 92.4 ± 3.0 94.7 ± 4.1 80.2 ± 3.5

8 36 95.2 ± 1.4 98.5 ± 0.1 98.3 ± 0.1 68.5 ± 3.7 98.2 ± 0.1

97.0 ± 2.8 93.4 ± 2.0 94.0 ± 2.8 86.1 ± 4.5

9a 51 97.0 ± 1.0 98.2 ± 1.0 98.4 ± 0.1 77.4 ± 1.8 98.5 ± 0.2

96.2 ± 1.4 96.6 ± 1.7 97.2 ± 1.8 85.0 ± 5.8

9b 45 98.4 ± 0.1 98.5 ± 0.3 98.5 ± 0.1 75.9 ± 0.9 98.3 ± 0.3

97.0 ± 2.0 95.7 ± 1.7 96.7 ± 1.7 85.9 ± 3.8

The mean and the standard deviation are obtained from five repetitions with random initialization of
parameters. The first column shows the ansatz label. The second column shows the total number of
parameters that are subject to optimization. For qubit, dense and hybrid encoding, two rows indicate the
values obtained with different classical data pre-processing, namely PCA and autoencoding, respectively.
The best result under each quantum data encoding method is written in bold

Table 7 Mean accuracy and
one standard deviation of the
classification for 0 (t-shirt/top)
and 1 (trouser) in the Fashion
MNIST dataset when the
QCNN model is trained with
MSE

Classification accuracy

Ansatz # of params Amplitude Qubit Dense HDE HAE

1 12 88.1 ± 3.0 79.6 ± 10.9 81.4 ± 5.5 58.6 ± 2.4 84.2 ± 1.3

80.0 ± 2.4 77.8 ± 8.4 89.7 ± 1.8 83.1 ± 4.3

2 12 87.8 ± 3.0 80.0 ± 8.4 78.0 ± 5.2 54.1 ± 3.5 78.8 ± 4.5

70.0 ± 10.0 78.5 ± 8.3 88.7 ± 2.8 81.8 ± 5.1

3 18 87.0 ± 3.0 87.6 ± 3.6 92.7 ± 2.4 61.2 ± 2.9 86.0 ± 2.6

85.1 ± 5.7 84.7 ± 7.2 90.1 ± 1.1 86.2 ± 3.3

4 24 89.7 ± 1.3 85.4 ± 2.9 90.7 ± 1.5 62.5 ± 2.0 84.0 ± 1.7

81.2 ± 2.2 84.2 ± 5.6 88.4 ± 4.9 88.8 ± 3.6

5 24 90.7 ± 1.2 83.8 ± 4.4 88.8 ± 3.0 60.4 ± 0.9 84.7 ± 3.5

81.1 ± 1.4 86.2 ± 3.3 90.7 ± 1.9 84.9 ± 4.8

6 24 88.8 ± 3.0 86.6 ± 2.4 89.4 ± 4.4 63.9 ± 2.2 84.4 ± 1.0

86.1 ± 3.0 84.6 ± 5.3 91.7 ± 1.8 85.8 ± 4.0

7 36 90.0 ± 1.2 85.4 ± 3.2 92.5 ± 3.6 64.4 ± 1.8 84.6 ± 0.8

86.4 ± 2.7 87.7 ± 6.1 91.9 ± 1.8 89.0 ± 3.2

8 36 89.7 ± 2.8 82.3 ± 2.1 90.0 ± 2.3 64.9 ± 2.5 86.5 ± 1.9

85.8 ± 2.2 90.1 ± 3.6 92.9 ± 0.7 86.3 ± 7.2

Quantum Machine Intelligence (2022) 4: 3 Page 15 of 18 3



Table 7 (continued)
Classification accuracy

Ansatz # of params Amplitude Qubit Dense HDE HAE

9a 51 90.8 ± 1.2 89.9 ± 1.9 88.8 ± 1.9 66.8 ± 1.7 88.4 ± 1.4

92.7 ± 0.4 93.3 ± 1.1 92.8 ± 1.3 90.8 ± 2.1

9b 45 91.0 ± 1.1 89.4 ± 2.5 93.0 ± 1.1 65.6 ± 2.6 89.3 ± 1.5

89.1 ± 2.0 90.4 ± 3.1 92.9 ± 1.6 89.2 ± 4.6

The mean and the standard deviation are obtained from five repetitions with random initialization of
parameters. The first column shows the ansatz label. The second column shows the total number of
parameters that are subject to optimization. For qubit, dense and hybrid encoding, two rows indicate the
values obtained with different classical data pre-processing, namely PCA and autoencoding, respectively.
The best result under each quantum data encoding method is written in bold

Appendix D. Classification with hierarchical
quantum classifier

The hierarchical structure inspired by tensor network named
as hierarchical quantum classifier (HQC) was first intro-
duced in Ref. Grant et al. (2018). The HQC therein does not
enforce translational invariance, and hence, the number of
free parameters subject to optimization grows as O(n) for
a quantum circuit with n input qubits. Although the simu-
lation presented in the main manuscript aims to benchmark

the classification performance of the QML model in which
the number of parameters grows as O(log(n)), we also
report the simulation results of HQC with the tensor tree
network (TTN) structure (Grant et al. 2018) in this supple-
mentary section for interested readers. The TTN classifier
does not employ parameterized quantum gates for pooling.
Thus, for certain ansatz, the number of parameters differs
from that of QCNN models. For example, although the con-
volutional circuit 2 in Fig. 2 has two free parameters, only
one of them is effective since one of the qubits is traced out

Table 8 Mean accuracy and
one standard deviation of the
classification for 0 and 1 in the
MNIST dataset when the HQC
model is trained with
cross-entropy loss

Classification accuracy

Ansatz # of params Amplitude Qubit Dense HDE HAE

1 14 96.5 ± 0.4 94.7 ± 2.2 50.5 ± 3.5 69.9 ± 1.4 98.5 ± 0.1

91.8 ± 1.2 82.1 ± 6.5 94.2 ± 3.0 81.6 ± 2.3

2 7 55.6 ± 1.7 57.3 ± 3.2 52.7 ± 1.2 53.8 ± 0.2 60.3 ± 0.2

64.5 ± 15.9 74.0 ± 3.4 76.4 ± 8.9 56.1 ± 6.9

3 28 98.7 ± 0.2 98.2 ± 0.5 97.8 ± 0.2 81.2 ± 0.9 98.3 ± 0.1

97.7 ± 1.2 95.7 ± 1.8 97.8 ± 1.4 88.7 ± 4.3

4 42 95.6 ± 2.2 87.4 ± 15.0 84.2 ± 15.5 77.0 ± 2.2 90.0 ± 10.3

95.9 ± 1.1 95.7 ± 1.4 89.5 ± 8.0 81.5 ± 3.0

5 42 97.8 ± 0.5 96.7 ± 2.0 97.0 ± 1.1 77.1 ± 0.8 98.2 ± 0.2

96.0 ± 3.1 96.5 ± 1.0 94.1 ± 3.4 88.1 ± 2.1

6 35 98.6 ± 0.2 98.0 ± 0.8 97.8 ± 0.1 81.6 ± 0.4 98.3 ± 0.3

98.1 ± 1.5 95.7 ± 3.1 98.2 ± 0.9 90.2 ± 3.0

7 56 89.9 ± 13.0 88.7 ± 14.8 63.0 ± 5.1 72.4 ± 0.4 93.0 ± 10.8

92.8 ± 1.5 94.9 ± 1.6 90.2 ± 7.1 85.2 ± 1.9

8 56 98.6 ± 0.2 95.8 ± 2.5 97.5 ± 0.6 77.8 ± 1.8 92.2 ± 12.2

98.3 ± 1.0 97.9 ± 0.9 96.7 ± 1.1 85.7 ± 7.1

9 84 98.9 ± 0.1 98.6 ± 0.2 98.6 ± 0.2 81.0 ± 5.4 98.3 ± 0.0

97.6 ± 0.9 96.9 ± 0.6 98.6 ± 0.2 82.2 ± 5.5

The mean and the standard deviation are obtained from five repetitions with random initialization of
parameters. The first column shows the ansatz label. The second column shows the total number of
parameters that are subject to optimization. For qubit, dense and hybrid encoding, two rows indicate the
values obtained with different classical data pre-processing, namely PCA and autoencoding, respectively.
The best result under each quantum data encoding method is written in bold
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Table 9 Mean accuracy and
one standard deviation of the
classification for 0 (t-shirt/top)
and 1 (trouser) in the Fashion
MNIST dataset when the HQC
model is trained with
cross-entropy loss

Classification accuracy

Ansatz # of params Amplitude Qubit Dense HDE HAE

1 14 90.1 ± 2.27 89.7 ± 2.3 61.8 ± 12.8 87.7 ± 1.9 61.2 ± 1.1

89.0 ± 3.6 76.2 ± 12.2 85.6 ± 5.5 83.4 ± 18.8

2 7 77.7 ± 5.7 66.5 ± 0.0 52.6 ± 13.3 60.3 ± 0.0 49.5 ± 0.3

63.5 ± 9.4 55.9 ± 6.8 64.7 ± 10.1 69.0 ± 13.4

3 28 89.5 ± 2.0 90.4 ± 2.6 85.0 ± 2.3 89.4 ± 1.7 68.7 ± 3.1

93.3 ± 1.0 93.7 ± 1.7 91.0 ± 1.8 93.8 ± 1.7

4 42 91.4 ± 1.2 75.0 ± 22.7 91.6 ± 0.5 88.0 ± 1.3 63.8 ± 2.5

92.2 ± 1.1 94.4 ± 0.4 82.0 ± 5.0 84.2 ± 19.1

5 42 90.1 ± 2.0 83.7 ± 18.4 92.0 ± 0.9 89.2 ± 2.5 66.3 ± 1.5

93.0 ± 1.4 91.0 ± 2.1 86.2 ± 3.4 75.9 ± 23.7

6 35 92.5 ± 1.1 88.8 ± 1.8 86.6 ± 1.8 89.8 ± 1.9 68.9 ± 2.9

94.2 ± 1.1 92.3 ± 1.5 91.4 ± 3.4 67.4 ± 23.8

7 56 90.9 ± 0.6 85.3 ± 14.0 76.4 ± 2.8 81.4 ± 6.9 62.9 ± 1.8

91.6 ± 3.4 92.3 ± 2.5 81.4 ± 8.7 67.1 ± 23.4

8 56 90.7 ± 2.4 90.8 ± 0.8 91.1 ± 0.4 89.5 ± 1.7 67.6 ± 1.9

94.1 ± 1.1 92.8 ± 1.0 88.7 ± 3.2 84.9 ± 19.5

9 84 89.9 ± 1.9 92.0 ± 1.6 91.3 ± 2.2 89.6 ± 1.0 69.0 ± 1.7

93.8 ± 0.7 94.5 ± 0.8 91.0 ± 1.8 85.4 ± 19.8

The mean and the standard deviation are obtained from five repetitions with random initialization of
parameters. The first column shows the ansatz label. The second column shows the total number of
parameters that are subject to optimization. For qubit, dense and hybrid encoding, two rows indicate the
values obtained with different classical data pre-processing, namely PCA and autoencoding, respectively.
The best result under each quantum data encoding method is written in bold

as soon as the parameterized gate is applied. For brevity,
here we only report the results obtained with the cross-
entropy loss but similar results can be obtained with MSE.
As can be seen from Table 8 and Table 9, the number of
effective parameters (i.e., the second column) grows faster
than that of QCNN models. An interesting observation is
that there is no clear trend as the number of parameters
is increased beyond 42, which is close to the maximum
number of parameters used in QCNN. In other words,
there is no clear motivation to increase the number of free
parameters beyond 42 or so when seeking to improve the
classification performance. Studying overfitting under the
growth of the number of parameters remains an interesting
open problem.
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