
https://doi.org/10.1007/s42484-021-00050-0

REVIEW ARTICLE

Quantum computing methods for supervised learning

Viraj Kulkarni1 ·Milind Kulkarni1 · Aniruddha Pant2

Received: 29 June 2020 / Accepted: 3 August 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
The last two decades have seen an explosive growth in the theory and practice of both quantum computing and machine
learning. Modern machine learning systems process huge volumes of data and demand massive computational power. As
silicon semiconductor miniaturization approaches its physics limits, quantum computing is increasingly being considered to
cater to these computational needs in the future. Small-scale quantum computers and quantum annealers have been built and
are already being sold commercially. Quantum computers can benefit machine learning research and application across all
science and engineering domains. However, owing to its roots in quantum mechanics, research in this field has so far been
confined within the purview of the physics community, and most work is not easily accessible to researchers from other
disciplines. In this paper, we provide a background and summarize key results of quantum computing before exploring its
application to supervised machine learning problems. By eschewing results from physics that have little bearing on quantum
computation, we hope to make this introduction accessible to data scientists, machine learning practitioners, and researchers
from across disciplines.

Keywords Quantum machine learning · Quantum computing · Machine learning · Artificial intelligence

1 Introduction

Supervised learning is the most commonly applied form
of machine learning. It works in two stages. During the
training stage, the algorithm extracts patterns from the train-
ing dataset that contains pairs of samples and labels and
converts these patterns into a mathematical representation
called a model. During the inference stage, this model is
used to make predictions about unseen samples. Machine
learning algorithms, in general, are data hungry; their per-
formance depends heavily on the size of the datasets used
for training. However, this training process is computation-
ally expensive, and working with large datasets requires
huge amounts of computational horsepower. As the number
and volume of datasets available for research and commer-
cial purposes continues to grow exponentially, new tech-
nologies such as NVIDIA CUDA (Nickolls et al. 2008) and
Google TPUs (Jouppi et al. 2017) have emerged to enable

� Viraj Kulkarni
viraj.kulkarni-310@vupune.ac.in

1 Vishwakarma University, Pune, India

2 DeepTek Inc, Pune, India

faster processing of data. Computational speeds have been
increasing rapidly over the last several decades in accor-
dance with the observation that the number of transistors in
a dense integrated circuit (IC) doubles about every 2 years—
this is informally known as Moore’s Law (Friedman 2015).
The semiconductor manufacturing process has shrunk from
10 μm in 1970 to about 5 nm in 2020. It is believed, how-
ever, that we are nearing the limits of the processing power
that classical computers can offer us (Leiserson et al. 2020).
At scales smaller than this, quantum mechanical effects
come into play (Sperling 2018), and they impose physical
limitations on how small electronic components can get.

Quantum computing, on the other hand, proposes to
leverage these quantum mechanical effects to carry out
computation. In contrast to classical computers that operate
on bits that can exist in only one out of two states at a
time, quantum computers exploit the fact that quantum bits
(qubits) can exist in any one of the infinite possible linear
superpositions of these two states. This allows quantum
computers to execute multiple paths of computation
simultaneously. Quantum computers can efficiently solve
computational problems which are believed to be intractable
for classical computers (Nielsen and Chuang 2002). Owing
to its roots in theoretical physics, most research articles
on the topic are written for physicists; this makes them
difficult to access for researchers from other fields. The

/ Published online: 6 September 2021

Quantum Machine Intelligence (2021) 3: 23

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-021-00050-0&domain=pdf
http://orcid.org/0000-0001-8246-7234
mailto: viraj.kulkarni-310@vupune.ac.in

purpose of this paper is to give a broad overview of
the synergies between quantum computing and machine
learning. We briefly outline the history of quantum physics,
describe the preliminaries of quantum computation, and
then review the latest research on applying the principles
of quantum computation to supervised machine learning.
A large-scale general-purpose quantum computer does
not yet exist, but restricted quantum machines capable
of solving optimization problems are already being sold
commercially (Castelvecchi 2017; Johnston 2013). By
eschewing results from physics that have little bearing
on quantum computation and by providing additional
background that may benefit the unfamiliar reader, we
hope to make this introduction accessible to data scientists,
machine learning practitioners, and researchers from other
fields.

Quantum mechanics arose through a number of discover-
ies in the early twentieth century. Einstein (1905) explained
the photoelectric effect in 1905 by postulating that light and
all electromagnetic radiation is made up of discrete par-
ticles that later came to be called photons. Previously in
1865, Maxwell (1865) had demonstrated that electric and
magnetic fields travel through space as waves. de Broglie
(1924) proposed in 1923 that particles can exhibit wave-
like properties and waves can behave like particles. Building
on his approach, Heisenberg (Edwards 1979) developed
matrix mechanics, and Schrödinger (1926) developed wave
mechanics, both of which were later found to be equiva-
lent. These developments laid the foundation of quantum
mechanics. The equations of quantum mechanics have since
been extensively tested in innumerable experiments, but
even after almost a century of debate, physicists strongly
disagree over how those equations should be interpreted and
mapped to reality (Schlosshauer et al. 2013).

Benioff (1980) in 1980 and Feynman (1999) in 1982
observed that simulating the evolution of certain quantum
systems may be an intractable problem that cannot be solved
efficiently by computers, and yet, these quantum systems
solved the problem by merely evolving thus suggesting
that the evolution of quantum systems could be used as a
method of computation. In 1985, Deutsch (1985) designed
a universal quantum computer as a quantum-counterpart
to the Universal Turing Machine. Deutsch and Jozsa
(1992) proposed the Deutsch-Jozsa problem for which the
deterministic quantum algorithm is exponentially faster than
any deterministic classical solution. Shor’s algorithm (1999)
for factoring large integers was the first quantum algorithm
that could solve a problem of practical significance
faster than any classical algorithm. Grover’s algorithm
(1996) showed quadratic improvement in unordered search
problems. These results laid the foundation of quantum
computation. Since then, quantum algorithms have been
proposed for numerous areas including cryptography,

search and optimisation, simulation of quantum systems,
solving large systems of linear equations, and machine
learning (Montanaro 2016).

The volume of training data available to us as well as
the sizes of machine learning models in terms of trainable
parameters are both growing at a rapid pace. On the other
hand, the computational power that classical computing can
afford us is fast approaching its limits. In this scenario,
quantum computing is increasingly being looked upon as
a front-running candidate to cater to the computational
demands of machine learning and artificial intelligence
in the future. Machine learning algorithms often involve
repeated execution of linear algebra routines on large matri-
ces. Quantum solutions can offer exponential speed-up for
these routines (Harrow et al. 2009; Wiebe et al. 2012). The
benefits quantum computing can bring to machine learn-
ing, however, go beyond speed-up in execution. Many tasks
in machine learning such as maximum likelihood estima-
tion using hidden variables, principal component analysis,
and training of neural networks. require optimization of
a non-convex objective function. Optimizing non-convex
functions is an NP-hard problem. Classical optimization
methods such as gradient descent can get stuck at local min-
imum or saddle points and may never find the global mini-
mum. Adiabatic quantum computers use quantum annealing
to solve non-convex optimization problems by finding low-
energy configurations of an appropriate energy function by
exploiting tunneling effects to escape local minima (San-
toro and Tosatti 2006). Methods based on Grover’s search
can find the global minimum in a discrete unordered search
space. Under certain conditions, there is a provable separa-
tion between quantum learnability and classical learnability,
and there are classes of functions that can be learned in poly-
nomial time using quantum methods but not using classical
methods (Ciliberto et al. 2018; Servedio and Gortler 2004).
In other words, quantum computers may not only find solu-
tions faster than classical computers, but they may even find
solutions that are better than those found classically.

The term quantum machine learning is generally used
to denote analysis of classical data on quantum comput-
ers. This is known as quantum-enhanced machine learning.
There are however other ways in which the fields of quan-
tum computing and machine learning overlap. Classical
machine learning can be applied to data emanating from
quantum systems to solve problems in physics. Another
stream of research deals with generalizing classical machine
learning to work with quantum data where the input and
output are quantum states. Recently, Tang (2019) developed
a classical algorithm for recommendation systems that was
inspired by quantum computing creating a new category
referred to as quantum-inspired algorithms. These are clas-
sical algorithms that can be run on conventional computers
which borrow ideas from quantum computing to achieve

Quantum Machine Intelligence (2021) 3: 23Page 2 of 1423

significant theoretical speed-ups over the best prevailing
classical algorithms. This paper limits itself to quantum-
enhanced machine learning and presents a selection of
quantum approaches for implementing supervised machine
learning algorithms on quantum computers. Far from being
a comprehensive review of the field, it aims to offer the
reader a background on the multitude of approaches pro-
posed over the years with enough detail to set the stage
for a more detailed exploration. For additional informa-
tion, we recommend the following excellent surveys and
reviews: (Schuld et al. 2015b; Wittek 2014; Biamonte et al.
2017; Adcock et al. 2015; Arunachalam and de Wolf 2017;
Kopczyk 2018; Dunjko and Briegel 2018; Dunjko and
Wittek 2020; Montanaro 2016).

2 Background of quantum computation

Quantum mechanics is based on four fundamental postu-
lates (Dunjko and Briegel 2018; Nielsen and Chuang 2002):
(1) the pure state of a quantum system is given by a unit
vector |ψ〉 in a complex Hilbert space; (2) the evolution of a
pure state in a closed system is governed by a Hamiltonian
H as specified by Schrödinger’s equation H |ψ〉 = i� ∂

∂t
|ψ〉;

(3) the quantum state of a composite system is given by the
tensor product of the individual systems; (4) projective mea-
surements (observables) are specified by Hermitian opera-
tors, and the process of measurement changes the observed
system from |ψ〉 to an eigenstate |φ〉 with probability given
by the Born rule p(φ) = |〈ψ |φ〉|2. In this section, we briefly
set up the background of quantum computation based on the
above postulates.

2.1 Single qubit

A classical bit can exist in one of two states denoted as 0
and 1. A quantum bit or qubit can exist not only in these
two discrete states but in all possible linear superpositions
of them. Mathematically, the quantum state of a qubit is
represented as a state vector in a two-dimensional Hilbert
space. In the Dirac notation, the state vector of a qubit ψ is
called a ket and is written as:

|ψ〉 = α|0〉 + β|1〉 (1)

where α and β are complex numbers and |α|2 + |β|2 = 1.
The Born’s rule tells us that if this qubit is measured, we
will get |0〉 with probability |α|2 and |1〉 with probability
|β|2. Quantum measurements are non-deterministic, and the
act of measurement changes the quantum state irreversibly.
Before measurement, the qubit exists in a quantum
superposition of the states |0〉 and |1〉. The outcome of the
measurement, however, is not quantum but classical, i.e. you
get either a |0〉 or a |1〉 but not a superposition of the two.

During the measurement, the quantum state collapses1 to
the classical state it gets observed in, and all subsequent
measurements deterministically result in this same outcome
with a probability equal to 1.

The choice of basis vectors |0〉 and |1〉 is arbitrary. We
can represent the system using a different set of orthogonal
basis vectors such as |+〉 and |−〉 (called the Hadamard or
sign basis). Once the computational basis is decided, kets
can be represented as column vectors:

|0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
(2)

|ψ〉 = α

[
1
0

]
+ β

[
0
1

]
=

[
α

β

]
(3)

The two representations for |ψ〉 given in Eqs. 1 and 3 are
equivalent.

2.2 Multiple qubits

The quantum state of a system consisting of more than one
unentangled qubits can be represented as the tensor product
of the quantum states of the individual qubits. The state of a
two-qubit system comprising of qubits represented by |ψ1〉
and |ψ2〉 can be written as |Ψ 〉 = |ψ1〉⊗|ψ2〉. In general, the
state of n qubits {|ψ1〉, |ψ2〉, . . . , |ψn〉} can be represented
as:

|Ψ 〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉 = |ψ1ψ2 . . . ψk〉 . (4)

However, not all multi-qubit states can be represented as a
tensor product of individual states. Consider the state below,
one of the Bell states:

|Φ+〉 = 1√
2
(|00〉 + |11〉) (5)

Suppose it could be decomposed into the tensor product of
two states as below:

|Φ+〉 = (a1|0〉 + b1|1〉) ⊗ (a2|0〉 + b2|1〉)
= a1a2|00〉 + a1b2|01〉 + a2b1|10〉 + b1b2|11〉 (6)

From Eqs. 5 and 6, we know that a1b2 = a2b1 = 0.
Therefore, either a1a2 = 0 or b1b2 = 0. But, from Eq. 5,
both a1a2 �= 0 and b1b2 �= 0. This proves that the Bell
state |Φ+〉 cannot be decomposed into the tensor product
of two single-qubit states. In such cases, we say that the
two qubits are entangled. Given an entangled pair of qubits,

1Different interpretations exist regarding the collapse of the quantum
state (Schlosshauer et al. 2013). The popular Copenhagen Interpreta-
tion suggests that the wave function of a quantum system collapses on
observation. The alternative Many Worlds Interpretation suggests that
there is no collapse of the wave function; instead, the act of observation
results in the observer getting entangled with the observed system.

Quantum Machine Intelligence (2021) 3: 23 Page 3 of 14 23

measurement on one qubit instantaneously affects the other
qubit. Entanglement plays a central role in many quantum
algorithms especially in the field of quantum cryptography.
There is no counterpart to quantum entanglement in
classical physics.

2.3 Quantum gates

Classical computers manipulate information stored in bits
using logic gates such as AND, OR, NOT, NAND, and
XOR. Likewise, quantum computers manipulate qubits
using quantum gates. Transformations on quantum states
are represented as rotation of the Hilbert space. Rotation is
linear and reversible. Consequently, all transformations on
quantum states must be linear and reversible. Quantum gates
essentially transform the system from one state to another
state. These transformations can be represented as matrices.

The simplest quantum gate is the NOT gate. The NOT
gate transforms |ψ1〉 = α|0〉 + β|1〉 to |ψ2〉 = α|1〉 + β|0〉
and can be represented as:

NOT =
[

0 1
1 0

]
(7)

The Hadamard gate acts on a single qubit. It is often
used to map a qubit from one of its basis states into an
equal superposition of all basis states. It transforms |0〉 to

1√
2
(|0〉 + |1〉) and |1〉 to 1√

2
(|0〉 − |1〉) and is given by:

H = 1√
2

[
1 1
1 −1

]
(8)

In general, an n-qubit Hadamard gate is used to initialize an
n-qubit system into an equal superposition of all basis states:

(9)

where x ∈ {0, 1}n denotes all strings of length n consisting
of 0 and 1.

The CNOT (controlled-NOT) gate acts on two qubits
where the first qubit acts as a control signal that decides
whether the NOT operation should be performed on the
second qubit. If the control qubit is |1〉, the NOT operation
is applied; if it is |0〉, it is not applied. The CNOT gate leaves
the states |00〉 and |01〉 unchanged, while it maps |10〉 to
|11〉 and |11〉 to |10〉. It is represented as:

CNOT =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ (10)

The SWAP gate swaps the states of two qubits trans-
forming |ψ, φ〉 to |φ, ψ〉. The CSWAP (controlled-SWAP)
gate acts on three qubits and swaps the state of the sec-
ond and third qubit if the first qubit is |1〉. The Toffoli gate

(CCNOT) acts on three qubits and performs the computa-
tion:

|a, b, c〉 → |a, b, c ⊕ ab〉 (11)

2.4 Quantum parallelism

While classical computers can execute only one compu-
tational path at a time, quantum computers can leverage
the ability of quantum states to exist in superpositions to
simultaneously execute multiple computational paths. For
example, consider the classical function f (x) : {0, 1}2 →
{0, 1}. The function takes two bits as input and outputs
a single bit. To evaluate f on all two-bit permutations
using classical computation, we need to call f four times:
f (0, 0), f (0, 1), f (1, 0), and f (1, 1). Quantum superposi-
tion allows us to evaluate all four inputs in a single call to
f .

Since quantum transformations must be reversible and f

is not reversible, we define a reversible quantum function:

Uf |x〉|y〉 → |x〉|y ⊕ f (x)〉 (12)

The input |φ〉 is set up in a superposition of states by
initializing two qubits to |0〉 and applying the Hadamard
transform:

|φ〉 = (H ⊗ H)|00〉 = |0〉 + |1〉√
2

⊗ |0〉 + |1〉√
2

= 1

2
(|00〉 + |01〉 + |10〉 + |11〉) (13)

Setting |y〉 = |0〉, we apply Uf as follows:

Uf |φ〉|0〉 = 1

2
Uf (|00〉 + |01〉 + |10〉 + |11〉) ⊗ |0〉

= 1

2
Uf (|00, 0〉 + |01, 0〉 + |10, 0〉 + |11, 0〉)

= 1

2
(|00, f (00)〉 + |01, f (01)〉

+|10, f (10)〉 + |11, f (11)〉) (14)

Thus, with a single application of f , we simultaneously
evaluate four inputs. Using the Hadamard transform, the set-
up in the input in an equal superposition of all basis vectors
is a useful starting point for many quantum algorithms.

2.5 No cloning theorem

An important result that has profound implications is the
no cloning theorem (Wootters and Zurek 1982) which states
that it is not possible to create a copy of an unknown
quantum state. Since measurement irreversibly changes the
quantum state, given a single copy of the state |ψ〉 = α|0〉+
β|1〉, the values of the amplitudes α and β cannot be exactly
determined. Although quantum parallelism can be leveraged
to simultaneously execute multiple computational paths, the

Quantum Machine Intelligence (2021) 3: 23Page 4 of 1423

no cloning theorem places restrictions on the amount of
information one can extract from the final quantum state2.

2.6 Adiabatic quantum computation

Numerous models have been proposed for quantum comput-
ing such as the quantum Turing machine, quantum circuit
model, adiabatic quantum computing, measurement-based
quantum computing, blind quantum computing, and topo-
logical quantum computing (Dunjko and Briegel 2018).
All these models are computationally equivalent, but they
are implemented very differently. An approach that has
shown promise in solving optimization problems is adia-
batic3 quantum computing (Farhi et al. 2000) and is of
particular interest because building restricted quantum com-
puters to perform quantum annealing (Section 3.2) based
on adiabatic quantum computing is simpler than building
universal quantum computers. In adiabatic quantum com-
puting, the optimization problem to be solved is encoded
as a boolean satisfiability problem such that the ground
state of its Hamiltonian4 represents the desired solution. The
quantum system is initially set up with a simple Hamilto-
nian that is easy to construct. The system is then evolved
from the initial state to a final state. The adiabatic theorem
states that if the system is evolved slowly enough, it will
remain in the ground state of the instantaneous Hamiltonian
throughout the evolution. The final system configuration
then represents the solution to the optimization problem.

3 Quantummachine learning

Quantum computing methods for machine learning can
be divided into two broad classes: (1) methods designed
to run on a universal quantum computer that involve
preparation, storage, and processing of quantum states and
the retrieval of the classical solution from these states; (2)
methods designed to run on quantum annealers that solve
optimization problems through the physical evolution of
quantum systems according to the principles of adiabatic
quantum computing. In Section 3.1, we describe common
subroutines designed for circuit quantum computers that can
be applied to machine learning problems. In Section 3.2,
we present quantum annealing that can solve quadratic

2Although perfect cloning is impossible, Bužek and Hillery (1996)
proposed a universal cloning machine that can make imperfect copies
of unknown quantum states with high fidelity.
3In the context of quantum computing, an adiabatic process is a
process which changes the state of a system so gradually that the state
can adapt its configuration at each point.
4The Hamiltonian operator represents the total energy of the system.

unconstrained binary optimization (QUBO) problems.
Finally, in Section 3.3, we present quantum versions of
selected classical machine learning algorithms.

3.1 Important subroutines of quantum algorithms

A straightforward approach to achieving speed-ups over
classical machine learning algorithms is to identify their
computationally expensive and frequently executed subrou-
tines and develop quantum alternatives for them. In this
section, we describe some common subroutines that form a
part of many quantum learning algorithms.

3.1.1 Quantum encoding

Qubits are a scarce and expensive resource. The restricted
physical implementations of quantum computers available
today have very few qubits5. Furthermore, the procedure
to encode classical data into quantum states is far from
trivial and, in many cases, contributes significantly to the
overall complexity of the quantum algorithm. An important
question therefore that has implications for performance
and feasibility of quantum algorithms is how to represent
classical data in quantum states.

Basis encoding Suppose we have a dataset D having M

instances: D = {x(1), ..., x(m), ..., x(M)}. Suppose for each
instance x(m) ∈ D, x(m) consists of N binary features
so that x(m) = {b(m)

1 , ..., b(m)
n , ..., b(m)

N }. In basis encoding,
each instance x(m) is encoded as the basis state |x(m)〉. The
dataset D can thus be represented as a superposition of all
computational basis states:

|ψ〉 = 1√
M

M∑
i=1

|x(i)〉 (15)

For example, if D = {010, 011}, it can be represented using
basis encoding as:

|D〉 = 1√
2
|010〉 + 1√

2
|011〉 (16)

In general, preparing a quantum state representing a dataset
D of M instances consisting of N binary features each has
a runtime of O(MN) and requires N qubits as described by
Ventura and Martinez (2000). Since M
 2N in most cases,
basis encoding tends to be sparse, i.e. most basis states have
zero amplitude.

Amplitude encoding In amplitude encoding, data is
encoded in the amplitudes of quantum states. A single data

5The recent quantum supremacy experiment conducted by Google
used only 54 qubits (Arute et al. 2019).

Quantum Machine Intelligence (2021) 3: 23 Page 5 of 14 23

instance x with N normalized real-valued features can be
encoded as:

|ψx〉 =
N∑

i=1

xi |i〉 (17)

For example, x = {2, 3} can be encoded in the amplitudes
of the two basis states |0〉 and |1〉 as:

|x〉 = 1√
22 + 32

(2|0〉 + 3|1〉) (18)

Consider a dataset D of M such instances D =
{x(1), ..., x(m), ..., x(M)}. All individual instances x(m) can
be concatenated into a single MN-dimensional vector
D′ = {x(1)

1 , ..., x(1)
N , ..., x(M)

1 , ..., x(M)
N } and then further

encoded into the amplitudes of a quantum state as described
in Eq. 17. This encoding requires log(MN) qubits and
assumes an efficient procedure to prepare a quantum state
with arbitrary amplitudes. Although some quantum states
can be prepared efficiently, there exist states in the Hilbert
space that cannot be prepared efficiently (Kliesch et al.
2011). Schuld and Petruccione (2018b) present a list of
methods to prepare amplitude encoded states.

Besides basis and amplitude encoding, many other meth-
ods of encoding exist such as Qsample encoding, dynamic
encoding, squeezing embedding, displacement embedding,
and Hamiltonian encoding (Schuld and Killoran 2019;
Lloyd et al. 2020).

3.1.2 Quantum random access memory

Classical computers store the input data required for the
computation in random access memory (RAM). A RAM
consists of an address register, an output register, and
memory cells. It takes an n bit address as input in the
address register and returns the data stored in one of N =
2n memory cells in the output register. This operation
incurs a runtime of O(N) in the typical implementations
used today. The quantum analog of RAM, referred to
as Quantum Random Access Memory (QRAM), performs
the same operation using quantum registers. It takes as
input a superposition of addresses

∑
a ca|a〉 and returns a

superposition of the data at those addresses
∑

a ca|a〉|Da〉
in O(log N) time:

(19)

Many quantum algorithms proceed by assuming the
existence of a QRAM that can encode classical data in a
superposition and later retrieve it efficiently. Giovannetti
et al. (2008) show that conventional RAM architectures are
not suitable for such a purpose and propose a bucket-brigade
architecture for the QRAM where the N data points are

stored in the leaves of a tree-like structure. Such a QRAM
can encode N d−dimensional vectors in O(log Nd) using
log(Nd) qubits.

Implementing such a QRAM system in hardware is not
trivial, and it has so far not been experimentally realized.
It also remains to be seen whether the theoretical speedup
that QRAM offers to quantum algorithms will be nullified
by practical physical considerations. Although the runtime
of the QRAM scales logarithmically, the physical resources
it requires scale as O(Nd). In the presence of noise, active
error correction will be necessary to compensate for the
errors it causes, and this may nullify the speedup QRAM
offers (Arunachalam et al. 2015; Adcock et al. 2015).
Loading data into the QRAM is possible in logarithmic time
only when the data exhibits a certain level of uniformity.
In the absence of this uniformity, the QRAM loses its
efficiency and needs O(

√
N) time. In addition to these

caveats, the above analyses do not consider the speed
of communication and memory latency. These factors
become prominent only when the amount of data is very
large. However, since quantum computing’s appeal for
machine learning is based on the premise that it will
enable us to train models on data volumes larger than what
classical computers can support, the limitations imposed by
latency need to be studied further. Hardware considerations
will ultimately play an important role in determining the
feasibility of the QRAM.

Due to its general nature, QRAM is used by many
quantum algorithms as a black-box oracle, and it plays a
central role in achieving speedup over classical alternatives.
However, it is worth noting that not all quantum algorithms
depend on the QRAM, and there exist alternative methods
to encode classical data into quantum states and retrieve it
efficiently (Grover and Rudolph 2002; Aaronson 2015).

3.1.3 Grover’s algorithm and amplitude amplification

Grover’s algorithm (1996) is a quantum search algorithm
that offers a quadratic speed-up over classical algorithms
when performing a search over an unstructured search
space. Suppose we are given a set of N elements X =
{x1, ..., xi, ..., xN } where xi ∈ {0, 1}m and a boolean
function f : {0, 1}m → {0, 1} such that:

f (x) =
{

1 x = x∗

0 x �= x∗ (20)

Any classical algorithm that performs a search for x∗ in X is
O(N) in time. Grover’s algorithm can perform such a search
in O(

√
N). The algorithm has three steps to it.

In the first step, a quantum state is set up in an equal
superposition of basis states using the Hadamard transform.

Quantum Machine Intelligence (2021) 3: 23Page 6 of 1423

As an example, consider N = 8. We set up the state using 3
qubits as:

|ψ1〉 = (H ⊗ H ⊗ H)|000〉
= 1

2
√

2
(|000〉 + |001〉 + |010〉 + |011〉

+|100〉 + |101〉 + |110〉 + |111〉)
=

[
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2

]T

(21)

The second step referred to as phase inversion deals
with flipping the amplitude of each |x〉 if f (x) = 1 and
leaving it unchanged if f (x) = 0. To do this, we define a
unitary quantum oracle O|x〉 = (−1)f (x)|x〉. Suppose, in
our example, x∗ is present at the fourth position. Applying
gate O on |ψ1〉 gives us:

|ψ2〉 =
[

1
2
√

2
1

2
√

2
1

2
√

2
−1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2

]T

(22)

The third step referred to as inversion around the mean
involves flipping all amplitudes around their collective
mean μ = 1

N

∑
x αx . This is performed by the Grover

diffusion operator G:

(23)

Applying G to |ψ2〉 gives us:

|ψ3〉 =
[

1
4
√

2
1

4
√

2
1

4
√

2
5

4
√

2
1

4
√

2
1

4
√

2
1

4
√

2
1

4
√

2

]T

(24)

These two operations of phase inversion and inversion
around the mean constitute one round of the algorithm.
Each successive round increases the amplitude of the target
element x∗ and reduces that of all other elements. If we
were to measure the system at the end of the first round, we
would get the target element as outcome with a probability
of (5

4
√

2
)2 = 78%.

After application of the second round (i.e. performing
phase inversion and inversion around the mean once again),
we get the below state which will find the target element
with a probability of 95%:

|ψ4〉 =
[−1

8
√

2
−1

8
√

2
−1

8
√

2
11

8
√

2
−1

8
√

2
−1

8
√

2
−1

8
√

2
−1

8
√

2

]T

(25)

For a list of N inputs,
√

N such rounds are usually
performed. The same algorithm can also find k matching
entries instead of a single entry. Several modifications have
been proposed that extend this work. Durr and Hoyer (1996)
propose a quantum algorithm to find the index of the
minimum value from a list of N values in time O(c

√
N)

with a probability of at least (1 − 1
2c). These methods

generalize Grover’s search and are collectively referred to
as amplitude amplification techniques (Brassard and Hoyer
1997).

Fig. 1 Circuit diagram describing swap test. Computation proceeds
from left to right

3.1.4 Calculating inner products using swap test

The swap test (Buhrman et al. 2001) is a simple subroutine
used to compute the overlap between two quantum states
|φ〉 and |ψ〉. Quantum procedures can be easily described
using circuit diagrams. The circuit diagram of the swap test
is shown in Fig. 1.

The system is initially prepared in the state |0, φ, ψ〉.
The Hadamard gate applied on the first ancilla qubit6

transforms the state to 1√
2
(|0, φ, ψ〉 + |1, φ, ψ〉). The

CSWAP further transforms it to 1√
2
(|0, φ, ψ〉 + |1, ψ, φ〉).

After the application of the second Hadamard gate to the
first qubit, the state can be written as 1

2 |0〉(|φ, ψ〉+|ψ, φ〉)+
1
2 |1〉(|φ, ψ〉−|ψ, φ〉). The probability of measuring the first
qubit as |0〉 is given by p = 1

2 + 1
2 |〈ψ |φ〉|2. If |φ〉 and

|ψ〉 are equal, |〈ψ |φ〉|2 = 1, and the observed value of p

is 1. If |φ〉 and |ψ〉 are orthogonal, |〈ψ |φ〉|2 = 0, and the
observed value of p is 1

2 . The degree of overlap given by
the inner product of the two states can be estimated with
this method to precision ε using O(1/ε) copies (Dunjko and
Briegel 2018).

3.1.5 Solving systems of linear equations (HHL)

Solving a system of linear equations is an important
problem ubiquitous throughout science and engineering.
A seminal result in quantum computation is the HHL
algorithm (Harrow et al. 2009) that solves the following
problem: given a Hermitian matrix A ∈ R

N×N and a unit
vector

−→
b ∈ R

N , find a solution vector −→
x ∈ R

N that
satisfies the equation A

−→
x = −→

b .
We present here a condensed outline of the algorithm.

The solution we are interested in is |x〉 = A−1|b〉. Let
{v1, ..., vN } be the eigenvectors of A with corresponding
eigenvalues {λ1, ..., λN }. The vector

−→
b is encoded using

amplitude encoding (Section 3.1.1) as |b〉 = ∑N
i=1 βi |vi〉.

Hamiltonian simulation is used to transform the matrix

6Input qubits that do not hold any input data but are added to satisfy
other conditions (most often reversibility of the transformation) are
called auxiliary or ancillary qubits.

Quantum Machine Intelligence (2021) 3: 23 Page 7 of 14 23

A into a unitary operator, and quantum phase estimation7

is used to carry out eigendecomposition to get the
state

∑N
i=1 βi |vi〉|λi〉. An ancilla qubit is added, rotation

conditioned on |λi〉 is carried out, and the eigenvalue
register |λi〉 is uncomputed to yield a state proportional to∑N

i=1 βiλ
−1
i |vi〉 = A−1|b〉 = |x〉.

It is important to note that while a classical algorithm
finds all coefficients xi for x, the HHL algorithm finds
the quantum state |x〉 = ∑N

i=1 xi |i〉. Obtaining values
for all xi takes O(N) repetitions; this observation nullifies
the speed-up the quantum algorithm has over the classical
counterparts. Hence, the HHL algorithm is most useful
when used as a subroutine carrying out an intermediate step
in a larger process where the quantum state |x〉 is consumed
by the next subroutine in the process.

3.2 Quantum annealing

Quantum annealing is a metaheuristic optimization algo-
rithm that leverages quantum effects to solve quadratic
unconstrained binary optimization (QUBO) problems that
deal with optimizing functions of the form:

C(x1, x2, ..., xn) =
∑

i

aixi +
∑
i,j

bi,j xixj (26)

where ai ∈ R, bi,j ∈ R, xi ∈ {0, 1}. A wide range
of problems can be mapped to QUBO and then solved
by quantum annealers which are special-purpose quantum
computers specifically built to perform quantum annealing.

The Ising model is used in physics to represent a large
variety of systems. It was originally proposed to model
magnetic materials where every molecule has a spin that
can align or anti-align with an applied magnetic field (Bian
et al. 2010). The Hamiltonian of the system representing its
energy is given by:

H =
∑

i

hisi +
∑
i,j

Ji,j sisj (27)

where si ∈ {−1, +1} is the spin of the ith molecule, hi is the
strength of the magnetic field at the ith molecule, and Ji,j

is the strength of the interaction between neighboring spins
i and j . From Eqs. 26 and 27, it can be seen that the QUBO
problem convenient maps onto the Ising Hamiltonian with
the mapping si = 2xi − 1.

Quantum annealing works as follows. An initial Hamil-
tonian H0 that is easy to construct is chosen. The system is
evolved under a time-dependent Hamiltonian given by:

H(t) = (1 − t)H0 + tHf (28)

where t is gradually changed from 0 to 1 and the final
Hamiltonian Hf is the same as in Eq. 27. At t = 0,

7The quantum phase estimation algorithm can estimate the phase (or
eigenvalue) of an eigenvector of a unitary operator.

the system starts in the ground state of H0. According
to the quantum adiabatic theorem, the system remains in
the ground state of the instantaneous Hamiltonian H(t)

throughout its evolution provided it is changed sufficiently
slowly (Ambainis and Regev 2004). At t = 1, the final
Hamiltonian of the system will encode the solution to the
problem.

Quantum annealing should not be conflated with the
more general adiabatic quantum computing. Quantum
annealing specifically solves optimization problems; adi-
abatic quantum computing is a model of quantum com-
puting that is equivalent to a universal quantum computer.
The Hamiltonians used in quantum annealing are classi-
cal Hamiltonians, while adiabatic quantum computing uses
quantum Hamiltonians that have no classical counterparts
(Biswas et al. 2017). For a more comprehensive treatment
of adiabatic quantum computing, we refer the reader to
(Albash and Lidar 2018).

3.3 Quantum algorithms for machine learning

In this section, we explore how the background and
subroutines described in the previous sections can be
applied to solve machine learning problems. The common
supervised machine learning setting is as follows. The
training set consists of M instances {x1, ..., xM} where xi ∈
R

N with their corresponding labels {y1, ..., yM}. Each label
yi can be either a real value (for regression problems) or
a discrete class label (for classification problems). In the
training phase, the algorithm extracts patterns from the
dataset and learns a model. In the inference phase, this
model is used to process unseen instances and predict their
corresponding labels.

3.3.1 k-Nearest neighbors

The k-nearest neighbors (KNN) is one of the simplest
supervised learning algorithms. To predict the label of
a new unseen instance xtest , the algorithm looks at k

instances in the training set that are closest to xtest and
chooses the class that appears most often in the labels
of these k-nearest neighbors as the predicted label (for
regression, the algorithm assigns the mean value of the
k-nearest neighbors as the label). An advantage of KNN
is that, unlike many other supervised algorithms, it is
non-parametric and makes no assumptions about the data
distribution. However, since all computation is deferred,
inference can become prohibitively expensive for large
training sets. During inference, the distance of the test
instance from all other training instances is calculated; this
is the most computationally intensive step in the process.
Hence, quantum versions of KNN focus on faster evaluation
of the distance between two instances.

Quantum Machine Intelligence (2021) 3: 23Page 8 of 1423

Aı̈meur et al. (2006) propose using the overlap |〈a|b〉|
as computed by the swap test (Section 3.1.3) as a measure
of similarity between |a〉 and |b〉. Llyod et al. (Lloyd
et al. 2013) develop a technique based on the swap test
to compute the distance between −→

a and
−→
b . A state

|ψ〉 = 1√
2
(|0, a〉 + |1, b〉) is constructed by setting up

an ancilla. A second state given by |φ〉 = 1√
Z

(|−→a ||0〉 −
|−→b ||1〉) is constructed where Z = |−→a |2 + |−→b |2. Using
〈x|x〉 = |−→x |−1|−→x |, the authors make the observation
that |−→a − −→

b |2 = Z|〈φ|ψ〉|2. With this, the distance
between −→

a and
−→
b can be retrieved using a swap test

(Schuld et al. 2015b). The authors use the above technique
to implement the nearest-centroid classification algorithm
in which the centroids of all training instances belonging
to each class are precomputed; during inference, a class
label is assigned to the test instance by calculating its
distance from all centroids. Given a training set of M

instances, this procedure solves the problem of classifying
an N-dimensional test vector into one of several classes in
O(log(MN)) compared to O(MN) required by classical
algorithms.

Wiebe et al. (2014a, b) argue that the nearest-centroid
classification presented above can perform poorly in
practice since training instances are often embedded
in complicated manifolds, and the centroids may lie
outside these manifolds. They propose two fast methods
for computing the distance between vectors based on
an alternative representation of classical information in
quantum states, amplitude amplification, and Durr-Hoyer
minimum finding (Durr and Hoyer 1996).

3.3.2 Support vector machines

Support vector machines (SVM) (Cortes and Vapnik 1995)
is a popular classification algorithm that determines the
optimal hyperplane that separates instances of two classes
in the training data and classifies test instances based
on which side of the separating hyperplane they lie
on. Given a set of training instances with their labels
{(x1, y1), ..., (xi, yi), ..., (xM, yM)} where xi ∈ R

N and
yi ∈ {−1, +1}, the algorithm learns an N-dimensional
hyperplane given by w = [β1, β2, ..., βN]T that separates
the instances of the two classes with maximum margin.
Classification of a test instance xt is performed as:

yt = sign(wT xt + b) (29)

Since the instances may not be strictly separable, slack
variables are introduced that provide a soft margin by
allowing some data points to violate the margin criterion.
This formulation is known as the maximum margin
classifier or support vector classifier; this however still

requires the data points to be linearly separable. SVMs
overcome this limitation of linear separability by what is
known as the kernel trick which transforms the feature space
into a new, higher-dimensional feature space. Instances
that were not linearly separable in the original feature
space may be linearly separable in the new feature space.
Mathematically, the kernel trick generalizes the dot product
between two feature vectors 〈xi, xj 〉 by a kernel function
k(xi, xj). Different kernels can be chosen depending on
the data distribution. Training an SVM involves solving the
quadratic programming problem (Press et al. 2007):

minimize E = 1

2

∑
nm

αnαmtntmk(xn, xm) −
∑
n

αn,

subject to 0 ≤ αn ≤ C,

and
∑
n

αntn = 0 (30)

where αn ∈ R, C is the regularization parameter, and k(·, ·)
is the kernel function.

Anguita et al. (2003) observe that training support vector
machines may be a hard problem and propose a quantum
variant that uses Durr and Hoyer’s minimum finding (Durr
and Hoyer 1996) based on Grover’s algorithm to solve
the optimization problem. Rebentrost et al. (2012) suggest
computing inner products using a quantum method based
on an approach similar to the one discussed in Section 3.3.1
which leads to an exponential speed-up with respect to
the dimension of the feature vector N . They also describe
a least-squares reformulation of the SVM algorithm with
slack variables ej that converts the quadratic optimization
problem into a problem of solving a system of linear
equations which leads to an additional exponential speed-up
in terms of the number of training instances M:

yj (
−→w · −→

xj + b) ≥ 1 → (−→w · −→
xj + b) = yj − yj ej (31)

As shown in Section 3.2, quantum annealing is particu-
larly well-suited for solving optimization problems. Willsch
et al. (2020) demonstrate a practical implementation of
training SVMs on the commercially available D-Wave
DW2000Q quantum annealer by formulating it as a QUBO
problem. Mengoni and Di Pierro (2019) review approaches
for designing quantum computing techniques for kernel
methods in machine learning.

3.3.3 Neural networks

Artificial neural networks or simply neural networks were
originally inspired from biological neural networks that
model the activity of neurons in human brains. The basic
building block of a neural network is the neuron, also called

Quantum Machine Intelligence (2021) 3: 23 Page 9 of 14 23

node or perceptron, that maps the input x ∈ R
N to the

output y ∈ R as follows8:

y = g

(
N∑

i=1

wixi + b

)
(32)

where wi ∈ R, b ∈ R, and g : R → R is the activation
function. The outputs of some neurons can be fed as inputs
to other neurons thus creating layers within the network.

Even though neural networks were amongst the first
machine learning algorithms to be proposed, their research
stagnated for several decades from 1940s to 1980s due
to the inherent difficulty and large computational power
required to train them. They returned to popularity after
the introduction of backpropagation (Rumelhart et al.
1986) which eased these problems by offering a faster
method for training. In the last decade, with GPUs and
cloud computing providing cheaper access to massive
computational power, neural networks have dwarfed other
learning algorithms9 to become one of the biggest success
stories of modern computers finding applications in various
industries including healthcare, manufacturing, finance, and
analytics to solve problems in image processing, computer
vision, natural language processing, predictive modeling,
and many other areas. However, even today, significant
resources are required to train neural networks, and training
times for research and industrial problems can run into
weeks or even months.

An obvious difficulty arises in considering quantum
computation as a means for implementing neural networks.
Quantum computation (and indeed quantum mechanics
itself) is a theory fundamentally based on linear trans-
formations, while an important practical advantage neural
networks enjoy over many other learning algorithms is
that they can model non-linear data distributions. Bring-
ing non-linearity into quantum algorithms is a non-trivial
task (Cao et al. 2017). However, classical neural networks
do make heavy use of linear algebra, and the inherent ran-
domness of quantum mechanical effects can be leveraged
to automatically introduce noise in the training process
to improve model robustness—something that needs to be
done purposefully in classical training (Allcock et al. 2018).
Numerous neural network architectures have emerged in
recent times to tackle problems belonging to a wide range of
supervised, unsupervised, and reinforcement learning tasks
(Goodfellow et al. 2016). Research in this field has been

8This is the general form used in modern feedforward neural networks.
The original perceptron used a step activation function and produced
only binary outputs 0 and 1.
9Many informal texts now relegate all other learning algorithms to the
category conventional machine learning.

scattered with different proposals addressing narrow prob-
lems in piecemeal style. We present here a select subset of
these proposals.

Most early work on quantizing10 neural networks
focussed on Hopfield networks (1982) which differ from the
neural networks presently used in practice. In a Hopfield
network, all neurons have undirected connections with all
other neurons as opposed to feed-forward networks that
are organized as layers; also, each neuron outputs a binary
0 or 1 instead of a real number. Hopfield networks are
used to model associative memories which allow retrieval
of data based on content rather than addresses. Kak (1995)
introduces the idea of quantum neural computation and
Peruš (2000) describes a quantum associative network by
drawing analogies between Hopfield networks and quantum
information processing. Behrman et al. (2000) present a
quantum realization of neural networks by showing that
a single quantum dot11 molecule can act as a recurrent
quantum neural network. More recently, Rebentrost et al.
(2018) present a technique based on quantum Hebbian
learning and fast quantum matrix inversion to train Hopfield
networks.

Boltzmann machines (Ackley et al. 1985), closely related
to Hopfield networks, are stochastic generative networks
that can learn a probability distribution over a set of
inputs. They are trained by adjusting the interconnection
weights between the neurons so that the thermal statistics
of the system as described by the Boltzmann-Gibbs
distribution reproduces the statistics of the data (Biamonte
et al. 2017). Boltzmann machines can be conveniently
represented by an Ising model whose spins encode features
and interactions encode statistical dependencies between the
features. In a restricted Boltzmann machine, connections
exist only between neurons belonging to different layers;
this makes them easier to train than fully-connected
Boltzmann machines. Restricted Boltzmann machines can
be stacked together to form deep belief networks that
can be used to learn internal representations or can be
trained under supervision to perform classification. Training
Boltzmann machines is exponentially hard and is performed
using approximation techniques like contrastive divergence
(Hinton 2002; Salakhutdinov and Hinton 2009) that rely on
Gibbs sampling. Wiebe et al. (2014a, b) propose quantum
methods to efficiently train full Boltzmann machines by
preparing a coherent analog of the Gibbs state from which
samples can be drawn. Adachi et al. (2015) investigate an
alternative approach of performing the sampling on a D-
Wave quantum annealer instead of classical Gibbs sampling.

10Developing a quantum alternative to a classical computation
technique is often referred to as quantizing it although we prefer this
term is used sparingly.
11Quantum dots are nanometre-scale semiconductor particles.

Quantum Machine Intelligence (2021) 3: 23Page 10 of 1423

A different line of research involves developing quantum
analogs for classical perceptrons. Schuld et al. (2015a)
introduce a quantum perceptron model with a step activation
function that can be used to develop superposition-based
learning schemes in which a superposition of training
vectors can be processed in parallel. Kapoor et al. (2016)
develop two quantum techniques for modeling perceptrons;
the first provides quadratic speed-up with respect to the
number of training instances, and the second provides a
quadratic reduction in the scaling of the training time with
the margin between the two classes.

Feedforward networks are one of the simplest neural
network architectures in which the connections between
neurons do not form any loops or cycles. They are usually
trained using backpropagation, and the optimization is
performed using some variant of gradient descent. Most
machine learning architectures used in practice today are
based on feedforward networks or their derivatives such as
convolutional neural networks or recurrent neural networks
(Goodfellow et al. 2016). Allcock et al. (2018) define
an efficient quantum subroutine for robust inner product
estimation using QRAM (Giovannetti et al. 2008) and
use it to demonstrate quadratic speed-ups in the size of
the network over classical counterparts; they additionally
claim that the proposed quantum method naturally imitates
regularization techniques like drop-out leading to more
robust networks. Farhi et al. (2000) present a general
framework for binary classification specifically designed
for near-term quantum processors in which the input
strings are mapped to computational basis states, and the
predicted label is given by the outcome of a Pauli operator
measured on a readout qubit. This framework extends
to a full quantum neural network that can classify both
classical and quantum data. Convolutional neural networks
(CNNs) (Lecun et al. 1998) have achieved great success
(Krizhevsky et al. 2012) in image classification tasks in
recent times. They, however, suffer from the fact that
the operation of convolution is computationally expensive.
Kerenidis et al. (2019) design a quantum CNN based on
quantum computation of the convolution product between
two tensors. They also propose a quantum tomography12

sampling approach to recover classical information from the
network output and a quantum backpropagation algorithm
for efficient training of the quantum CNN.

3.3.4 Variational quantum classifiers

As discussed in the preceding sections, a trove of
quantum techniques have been proposed to solve problems

12Quantum tomography is the process by which a quantum state
is reconstructed using measurements on an ensemble of identical
quantum states.

in machine learning. Most of them, however, require
computational resources that are far beyond what quantum
computers provide today. A new research direction has
emerged in recent times that focuses on developing
techniques that can be practically implemented on the
noisy, intermediate-scale quantum (NISQ) computers that
we expect to have in the next few years. These techniques
need fewer than 100 qubits, are robust against errors, and are
generally aimed at solving problems that have immediate
useful applications.

A quantum circuit is composed of a series of unitary
transformations that act on the given input state. Such a
circuit can be trained to solve a classification problem by
tuning its parameters based on how a cost function responds
to the training data. Low-depth quantum circuits are suitable
for error-correction (Li and Benjamin 2017; Temme et al.
2017), and this makes them a natural candidate for quantum
machine learning on NISQ processors. A quantum classifier
consists of a circuit U(θ) parameterized by the set of
parameters θ that is initialized in a fixed initial state (usually
the zero state). An observable B̂ is defined to represent
the output of the circuit. The cost function of such a
classifier can be defined as f (θ) = 〈0|U†(θ)B̂U(θ)|0〉. The
training process involves finding optimum candidates for
the parameters θ to minimize the cost function f (θ). This
optimization is carried out using classical methods, most
often some variation of gradient descent.

A general theory of variational algorithms and quantum
circuit learning is presented in McClean et al. (2016) and
Mitarai et al. (2018). Havlı́ček et al. (2019) propose using
a variational quantum circuit as a classifier by representing
the feature space as quantum states. Schuld et al. (2020)
present a circuit-based supervised classification algorithm
for amplitude-encoded data that can be trained using
a hybrid quantum-classical scheme of gradient descent.
Farhi and Neven (2018) introduce a quantum neural
network based on variational circuits for near-term quantum
computers that learn boolean functions by tuning the circuit
parameters.

Ensemble methods have achieved state-of-art perfor-
mance on many machine learning challenges. In an ensem-
ble, multiple models are trained on the same task, and their
predictions are weighed or combined together to arrive at
the final decision. Schuld and Petruccione (2018a) intro-
duce the quantum ensemble of quantum classifiers where
the parameters of the classifier are held in superposition
allowing a quantum computer to train an exponentially large
number of classifiers in parallel. Abbas et al. (2020) show
that this quantum ensemble framework contains a classi-
cally intractable computation that can be solved efficiently
on a quantum computer by reducing it to the Deutsch Jozsa
algorithm. Chen et al. (2021) extend circuit learning to
quantum data and propose using a shallow parameterized

Quantum Machine Intelligence (2021) 3: 23 Page 11 of 14 23

quantum circuit trained using classical methods to classify
quantum states.

4 Discussion

Quantum computation has made great strides in the last two
decades in both theory and practice. A significant corpus of
research has emerged in applying the principles of quantum
computation to problems across many fields of science
and engineering. At the same time, several approaches
for physical realization of quantum computers based on
superconducting quantum bits, trapped ions, optical lattices,
photonic computing, nuclear magnetic resonance, etc. have
shown promise. However, fundamental challenges remain
unresolved on both fronts. While developing quantum
algorithms, we must consider the input problem and the
output problem (Biamonte et al. 2017). The input problem
refers to the fact that the cost of reading classical data
and encoding it in quantum states can sometimes dominate
performance and render the further downstream speed-
up irrelevant. The output problem refers to the reverse
process of decoding the full classical solution from quantum
states. Some important hardware challenges to constructing,
operating, and maintaining large-scale quantum computers
include achieving longer coherence, greater circuit depth,
higher qubit quality, and higher control over qubits.
Quantum error correction plays an important role, and
it will likely span across hardware and software in the
future.

It is important to distinguish between quantum-enhanced
machine learning that focuses on techniques to implement
learning on classical data using quantum computers from
quantum-generalisation of machine learning algorithms
that deals with developing fully quantum algorithms that
work with quantum data. This is especially true for
neural networks for which active research is underway on
both fronts. We restrict this paper to quantum-enhanced
techniques and refer the reader to Cao et al. (2017), Beer
et al. (2020), Amin et al. (2018), Wan et al. (2017), and
Cong et al. (2019) for work on quantum generalisations.
The principles of quantum computing have inspired
development of new classical randomized algorithms that
show exponential speed-ups over conventional algorithms
(Tang 2019). With these quantum-inspired algorithms, the
gap between certain classical and quantum algorithms is no
longer exponential but polynomial. Arrazola et al. (2019)
provide a study of these algorithms and observe that they
work well only under stringent conditions which occur
rarely in practice. We do not cover these in this paper.

Owing to its roots in quantum physics, research in
quantum computing has so far been confined within the
purview of the physics community. Although realization of

quantum computers in the form of hardware will remain
a problem for physicists, we believe this need not be
the case when it comes to applying quantum computing
to solve machine learning problems. Classical computing
and machine learning, like physics and many other fields,
serve as prime examples of disciplines where theoretical
results were obtained far before technological progress
made possible their experimental realizations. Small-scale
quantum computers with less than 100 qubits and quantum
annealers with around 2000 qubits have been developed and
are already being sold commercially (Castelvecchi 2017;
Johnston 2013). We hope this article serves its purpose
as introductory material for interested machine learning
researchers and practitioners from various disciplines.

References

Aaronson S (2015) Read the fine print. Nat Phys 11(4):291
Abbas A, Schuld M, Petruccione F (2020) On quantum ensembles of

quantum classifiers. Quantum Mach Intell 2(1):1
Ackley DH, Hinton G, Sejnowski TJ (1985) A learning algorithm for

Boltzmann machines. Cogn Sci 9(1):147
Adachi SH, Henderson MP (2015) Application of quantum annealing

to training of deep neural networks. arXiv:1510.06356
Adcock J, Allen E, Day M, Frick S, Hinchliff J, Johnson M, Morley-

Short S, Pallister S, Price A, Stanisic S (2015) Advances in
quantum machine learning. arXiv:1512.02900

Aı̈meur E, Brassard G, Gambs S (2006) Machine learning in a
quantum world. In: Conference of the Canadian society for
computational studies of intelligence. Springer, pp 431–442

Albash T, Lidar DA (2018) Adiabatic quantum computation. Rev
Modern Phys 90(1):015002

Allcock J, Hsieh CY, Kerenidis I, Zhang S (2018) Quantum algorithms
for feedforward neural networks. arXiv:1812.03089

Ambainis A, Regev O (2004) An elementary proof of the quantum
adiabatic theorem. arXiv:quant-ph/0411152

Amin MH, Andriyash E, Rolfe J, Kulchytskyy B, Melko R (2018)
Quantum boltzmann machine. Phys Rev X 8(2):021050

Anguita D, Ridella S, Rivieccio F, Zunino R (2003) Quantum
optimization for training support vector machines. Neural Netw
16(5-6):763

Arrazola JM, Delgado A, Bardhan BR, Lloyd S (2019) Quantum-
inspired algorithms in practice. arXiv:1905.10415

Arunachalam S, Gheorghiu V, Jochym-O’Connor T, Mosca M,
Srinivasan PV (2015) On the robustness of bucket brigade
quantum RAM. New J Phys 17(12):123010

Arunachalam S, de Wolf R (2017) Guest column: a survey of quantum
learning theory. ACM SIGACT News 48(2):41

Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R,
Biswas R, Boixo S, Brandao FG, Buell DA, et al. (2019) Quantum
supremacy using a programmable superconducting processor.
Nature 574(7779):505

Beer K, Bondarenko D, Farrelly T, Osborne TJ, Salzmann R,
Scheiermann D, Wolf R (2020) Training deep quantum neural
networks. Nat Commun 11(1):1

Behrman EC, Nash L, Steck JE, Chandrashekar V, Skinner SR (2000)
Simulations of quantum neural networks. Inform Sci 128(3-4):257

Benioff P (1980) The computer as a physical system: a micro-
scopic quantum mechanical Hamiltonian model of computers as
represented by Turing machines. J Stat Phys 22(5):563

Quantum Machine Intelligence (2021) 3: 23Page 12 of 1423

http://arxiv.org/abs/1510.06356
http://arxiv.org/abs/1512.02900
http://arxiv.org/abs/1812.03089
http://arxiv.org/abs/quant-ph/0411152
http://arxiv.org/abs/1905.10415

Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S
(2017) Quantum machine learning. Nature 549(7671):195

Bian Z, Chudak F, Macready WG, Rose G (2010) The Ising model:
teaching an old problem new tricks. D-wave systems 2

Biswas R, Jiang Z, Kechezhi K, Knysh S, Mandrà S., O’Gorman
B, Perdomo-Ortiz A, Petukhov A, Realpe-Gómez J., Rieffel
E, et al. (2017) A NASA perspective on quantum computing:
Opportunities and challenges. Parallel Comput 64:81

Brassard G, Hoyer P (1997) An exact quantum polynomial-time
algorithm for Simon’s problem. In: Proceedings of the fifth Israeli
symposium on theory of computing and systems. IEEE, pp 12–23

de Broglie L (1924) XXXV. A tentative theory of light quanta.
The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 47(278):446

Buhrman H, Cleve R, Watrous J, De Wolf R (2001) Quantum
fingerprinting. Phys Rev Lett 87(16):167902

Bužek V, Hillery M (1996) Quantum copying: Beyond the no-cloning
theorem. Phys Rev A 54(3):1844

Cao Y, Guerreschi GG, Aspuru-Guzik A (2017) Quantum Neuron:
an elementary building block for machine learning on quantum
computers. arXiv:1711.11240

Castelvecchi D (2017) IBM’s quantum cloud computer goes commer-
cial. Nature News 543(7644):159

Chen H, Wossnig L, Severini S, Neven H, Mohseni M (2021) Universal
discriminative quantum neural networks. Quantum Mach Intell
3(1):1

Ciliberto C, Herbster M, Ialongo AD, Pontil M, Rocchetto A, Severini
S, Wossnig L (2018) Quantum machine learning: a classical
perspective. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 474(2209):20170551

Cong I, Choi S, Lukin MD (2019) Quantum convolutional neural
networks. Nat Phys 15(12):1273–1278. https://doi.org/10.1038/
s41567-019-0648-8

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20(3):273

Deutsch D (1985) Quantum theory, the Church–Turing principle and
the universal quantum computer. Proceedings of the Royal Society
of London A Mathematical and Physical Sciences 400(1818):97

Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum
computation. Proceedings of the Royal Society of London Series
A: Mathematical and Physical Sciences 439(1907):553

Dunjko V, Briegel HJ (2018) Machine learning & artificial intelligence
in the quantum domain: a review of recent progress. Reports on
Progress in Physics 81(7):074001

Dunjko V, Wittek P (2020) A non-review of quantum machine
learning: trends and explorations. Quantum Views 4:32

Durr C, Hoyer P (1996) A quantum algorithm for finding the
minimum. arXiv:quant-ph/9607014

Edwards DA (1979) The mathematical foundations of quantum
mechanics. Synthese 42(1):1

Einstein A (1905) On a heuristic viewpoint concerning the production
and transformation of light. Annalen der Physik

Farhi E, Goldstone J, Gutmann S, Sipser M (2000) Quantum
computation by adiabatic evolution. arXiv:quant-ph/0001106

Farhi E, Neven H (2018) Classification with quantum neural networks
on near term processors. arXiv:1802.06002

Feynman RP (1999) Simulating physics with computers. 1982,
reprinted in: Feynman and Computation

Friedman TL (2015) Moore’s law turns 50. The New York Times 13
Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access

memory. Phys Rev Lett 100(16):160501
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT

Press, Cambridge
Grover LK (1996) A fast quantum mechanical algorithm for database

search. In: Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, pp 212–219

Grover L, Rudolph T (2002) Creating superpositions that correspond
to efficiently integrable probability distributions. arXiv:quant-ph/
0208112

Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for
linear systems of equations. Phys Rev Lett 103(15):150502

Havlı́ček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow
JM, Gambetta JM (2019) Supervised learning with quantum-
enhanced feature spaces. Nature 567(7747):209

Hinton G (2002) Training products of experts by minimizing
contrastive divergence. Neural computation 14(8):1771

Hopfield JJ (1982) Neural networks and physical systems with
emergent collective computational abilities. Proceedings of the
National Academy of Sciences 79(8):2554

Johnston H (2013) D-Wave sells second quantum computer-this time
to NASA. Phys World 26(07):9

Jouppi NP, Young C, Patil N, Patterson D, Agrawal G, Bajwa
R, Bates S, Bhatia S, Boden N, Borchers A et al (2017) In-
datacenter performance analysis of a tensor processing unit.
In: Proceedings of the 44th annual international symposium on
computer architecture, pp 1–12

Kak SC (1995) Quantum neural computing. In: Advances in imaging
and electron physics, vol 94. Elsevier, pp 259–313

Kapoor A, Wiebe N, Svore K (2016) Quantum perceptron models.
In: Advances in neural information processing systems, pp 3999–
4007

Kerenidis I, Landman J, Prakash A (2019) Quantum algorithms for
deep convolutional neural networks. arXiv:1911.01117

Kliesch M, Barthel T, Gogolin C, Kastoryano M, Eisert J (2011)
Dissipative quantum church-turing theorem. Phys Rev Lett
107(12):120501

Kopczyk D (2018) Quantum machine learning for data scientists.
arXiv:1804.10068

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification
with deep convolutional neural networks. In: Advances in neural
information processing systems, pp 1097–1105

Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based
learning applied to document recognition. Proc IEEE 86(11):2278

Leiserson CE, Thompson NC, Emer JS, Kuszmaul BC, Lampson BW,
Sanchez D, Schardl TB (2020) There’s plenty of room at the Top:
What will drive computer performance after Moore’s law? Science
368(6495)

Li Y, Benjamin SC (2017) Efficient variational quantum simulator
incorporating active error minimization. Phys Rev X 7(2):021050

Lloyd S, Mohseni M, Rebentrost P (2013) Quantum algorithms for
supervised and unsupervised machine learning. arXiv:1307.0411

Lloyd S, Schuld M, Ijaz A, Izaac J, Killoran N (2020) Quantum
embeddings for machine learning

Maxwell JC (1865) VIII. A dynamical theory of the electromagnetic
field. Philosophical Transactions of the Royal Society of London
155:459. https://royalsocietypublishing.org/doi/10.1098/rstl.1865.
0008

McClean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The
theory of variational hybrid quantum-classical algorithms. New J
Phys 18(2):023023

Mengoni R, Di Pierro A (2019) Kernel methods in quantum machine
learning. Quantum Mach Intell 1(3):65

Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit
learning. Phys Rev A 98(3):032309

Montanaro A (2016) Quantum algorithms: an overview. npj Quantum
Information 2(1):1

Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel
programming with CUDA. Queue 6(2):40

Nielsen MA, Chuang I (2002) Quantum computation and quantum
information

Quantum Machine Intelligence (2021) 3: 23 Page 13 of 14 23

http://arxiv.org/abs/1711.11240
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1038/s41567-019-0648-8
http://arxiv.org/abs/quant-ph/9607014
http://arxiv.org/abs/quant-ph/0001106
http://arxiv.org/abs/1802.06002
http://arxiv.org/abs/quant-ph/0208112
http://arxiv.org/abs/quant-ph/0208112
http://arxiv.org/abs/1911.01117
http://arxiv.org/abs/1804.10068
http://arxiv.org/abs/1307.0411
https://royalsocietypublishing.org/doi/10.1098/rstl.1865.0008
https://royalsocietypublishing.org/doi/10.1098/rstl.1865.0008

Peruš M (2000) Neural networks as a basis for quantum associative
networks. Neural Netw World 10(6):1001

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007)
Numerical recipes 3rd edition: The art of scientific computing.
Cambridge University Press, Cambridge

Rebentrost P, Bromley TR, Weedbrook C, Lloyd S (2018) Quantum
Hopfield neural network. Phys Rev A 98(4):042308

Rebentrost P, Mohseni M, Lloyd S (2012) Quantum support
vector machine for big feature and big data classifica-tion.
arXiv:1307.0471 2014

Rumelhart DE, Hinton G, Williams RJ (1986) Learning representa-
tions by back-propagating errors. Nature 323(6088):533

Salakhutdinov R, Hinton G (2009) Deep boltzmann machines. In:
Artificial intelligence and statistics, pp 448–455

Santoro GE, Tosatti E (2006) Optimization using quantum mechanics:
quantum annealing through adiabatic evolution. J Phys A Math
Gen 39(36):R393

Schlosshauer M, Kofler J, Zeilinger A (2013) A snapshot of
foundational attitudes toward quantum mechanics. Studies in
History and Philosophy of Science Part B: Studies in History and
Philosophy of Modern Physics 44(3):222

Schrödinger E (1926) An undulatory theory of the mechanics of atoms
and molecules. Phys Rev 28(6):1049

Schuld M, Bocharov A, Svore KM, Wiebe N (2020) Circuit-centric
quantum classifiers. Phys Rev A 101(3):032308

Schuld M, Killoran N (2019) Quantum machine learning in feature
Hilbert spaces. Phys Rev Lett 122(4):040504

Schuld M, Petruccione F (2018) Quantum ensembles of quantum
classifiers. Scientific Reports 8(1):1

Schuld M, Petruccione F (2018) Supervised learning with quantum
computers. Springer, Berlin

Schuld M, Sinayskiy I, Petruccione F (2015) Simulating a perceptron
on a quantum computer. Phys Lett A 379(7):660

Schuld M, Sinayskiy I, Petruccione F (2015) An introduction to
quantum machine learning. Contemp Phys 56(2):172

Servedio RA, Gortler SJ (2004) Equivalences and separations between
quantum and classical learnability. SIAM J Comput 33(5):1067

Shor PW (1999) Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM review
41(2):303

Sperling E (2018) Quantum effects at 7/5nm and beyond. Semicon-
ductor Egineering

Tang E (2019) A quantum-inspired classical algorithm for recommen-
dation systems. In: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pp 217–228

Temme K, Bravyi S, Gambetta JM (2017) Error mitigation for short-
depth quantum circuits. Phys Rev Lett 119(18):180509

Ventura D, Martinez T (2000) Quantum associative memory. Inform
Sci 124(1-4):273

Wan KH, Dahlsten O, Kristjánsson H, Gardner R, Kim M (2017)
Quantum generalisation of feedforward neural networks. npj
Quantum Information 3(1):1

Wiebe N, Braun D, Lloyd S (2012) Quantum algorithm for data fitting.
Phys Rev Lett 109(5):050505

Wiebe N, Kapoor A, Svore K (2014a) Quantum algorithms for nearest-
neighbor methods for supervised and unsupervised learning.
arXiv:1401.2142

Wiebe N, Kapoor A, Svore K (2014b) Quantum deep learning.
arXiv:1412.3489

Willsch D, Willsch M, De Raedt H, Michielsen K (2020) Support
vector machines on the D-Wave quantum annealer. Comput Phys
Commun 248:107006

Wittek P (2014) Quantum machine learning: what quantum computing
means to data mining. Academic Press, Cambridge

Wootters WK, Zurek WH (1982) A single quantum cannot be cloned.
Nature 299(5886):802

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Quantum Machine Intelligence (2021) 3: 23Page 14 of 1423

http://arxiv.org/abs/1307.0471
http://arxiv.org/abs/1401.2142
http://arxiv.org/abs/1412.3489

	Quantum computing methods for supervised learning
	Abstract
	Introduction
	Background of quantum computation
	Single qubit
	Multiple qubits
	Quantum gates
	Quantum parallelism
	No cloning theorem
	Adiabatic quantum computation

	Quantum machine learning
	Important subroutines of quantum algorithms
	Quantum encoding
	Basis encoding
	Amplitude encoding

	Quantum random access memory
	Grover's algorithm and amplitude amplification
	Calculating inner products using swap test
	Solving systems of linear equations (HHL)

	Quantum annealing
	Quantum algorithms for machine learning
	k-Nearest neighbors
	Support vector machines
	Neural networks
	Variational quantum classifiers

	Discussion
	References

