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Abstract
The probabilistic nature of quantum particles, state space, and the superposition principle are among the important
concepts in quantum mechanics. A framework was previously developed by the authors that allowed to take advantage
of these quantum aspects in the field of image processing. This was done by modeling each image’s pixel by a two-state
quantum system which allowed efficient single-object segmentation. However, the extension of the framework to multi-
object segmentation would be highly complex and computationally expensive. In this paper, we propose a classical image
segmentation algorithm inspired by the continuous-variable quantum theory that overcomes the challenges in extending
the framework to multi-object segmentation. By associating each pixel with a quantum harmonic oscillator, the space of
coherent states becomes continuous. Thus, each pixel can evolve from an initial state to any of the continuous coherent
states under the influence of an external resonant force. The Hamiltonian operator is designed to account for this force and is
derived from the features extracted at the pixel. Therefore, the system evolves from an initial ground state to a final coherent
state depending on the image features. Finally by calculating the fidelity between the final state and a set of reference states
representing the objects in the image, the state with the highest fidelity is selected. The collective states of all pixels produce
the final segmentation. The proposed method is tested on a database of synthetic and natural images, and compared with
other methods. Average sensitivity and specificity of 97.86% and 99.61% were obtained respectively indicating the high
segmentation accuracy of the algorithm.
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1 Introduction

Quantum image processing has been an active area of
research recently. The usual tasks of image processing are
performed utilizing the theory of quantum mechanics. This
includes image representation (Yan et al. 2016), image
matching (Jiang et al. 2016), similarity analysis (Zhou
et al. 2018b), interpolation (Zhou et al. 2018a), denoising
(Mastriani 2015a), coding (Chapeau-Blondeau and Belin
2016), watermarking (Li et al. 2016), and segmentation
(Caraiman and Manta 2015). These attempts are based
on representing the pixels of an image as qubits operated
on via suitable quantum circuits. However, there are
major challenges facing this approach that need further
investigation as in Mastriani (2015b). On the other hand,
another approach exists in which classical images are
processed on classical computers using quantum-inspired
models. This includes for example the classical image
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segmentation algorithm in Youssry et al. (2015), and
its application in segmenting biomedical retinal images
(Youssry et al. 2016), quantum K-means (Casper et al.
2012), quantum Gaussian mixture models (Tanaka and
Tsuda 2008), and quantum pattern recognition (Sergioli
et al. 2016). Some of these methods can be ported to work
on a quantum computer such as Youssry et al. (2015, 2016)
which opens the path for many future applications.

Conventionally, discrete degrees of freedom of particles
(such as the spin of an electron or the polarization of a
photon) are used for encoding information in the form of
qubits. In general, this approach faces some technological
difficulties when it comes to the implementation. For
example, we might have to control the polarization of
a single photon system or the spin of a single electron
which is not easily realizable. As a result, many of the
developed ideas and algorithms have not been fully realized
yet. Continuous-variable quantum information processing
is another approach that depends on using the continuous
degrees of freedom of the particle (such as position
and momentum) for manipulating the information. This
approach provides easier technological implementations,
but can be challenging in porting algorithms and protocols
from the discrete domain to the continuous domain.
Examples of this category of information processing include
quantum computation (Adcock et al. 2016), machine
learning (Lau et al. 2016), quantum key distribution (Borelli
et al. 2016), and identity authentication (Ma et al. 2016).

Image segmentation is an area of image processing
that has many applications. It deals with delineating the
significant objects in the image and isolating them from
the background. Many methods exists to segment images
including thresholding, edge detection, supervised and
unsupervised machine learning, morphological methods,
and deformable models. There exist also quantum-based
methods for image segmentation. A short review on these
techniques is given in Youssry et al. (2015). Some of
the authors previously proposed a general framework that
uses the theory of two-state quantum mechanics systems
to process images (Youssry et al. 2015). Based on this
framework, a general single-object image segmentation
was developed and applied to generic images as well
as in determining the vessel tree in retinal images. This
algorithm showed high efficiency in segmenting images.
Although the framework provides the theory for the
extension to multi-object segmentation by utilizing discrete
multi-state quantum systems, this extension is complex
and computationally expensive. The continuous-variable
quantum theory provides a solution to this challenge.

In this paper, we propose a new algorithm for image
segmentation based on the continuous-variable coherent
quantum states that occur in the theory of quantum
harmonic oscillators. The work is built upon the framework

presented in Youssry et al. (2015), but extends to the
case of multi-object segmentation. The paper starts in
Section 2 with a brief theoretical overview essential for
introducing the new methodology. Next, the proposed
algorithm is presented in Section 3. After that, the materials
used for testing as well as the obtained results are
shown in Sections 4 and 5. In Section 6, the analysis
and the significance of the results are discussed. Finally,
the conclusion and the future perspectives are given in
Section 7. The Appendices 1 and 2 include some additional
proofs given for the sake of completeness.

2 Background

This section starts with a brief overview on the theory
of quantum harmonic oscillators, needed for developing
the proposed methodology. The details can be found in
any standard reference on quantum mechanics or quantum
optics such as Griffiths (2005) or Gerry and Knight
(2005). Afterwards, a short review on the quantum fidelity
measure is given. Finally, the performance measures used
for evaluating the segmentation algorithm are discussed.

2.1 Quantum harmonic oscillator

The classical harmonic oscillator is a physical model that
describes the motion of a particle under the influence of
a restoring force, causing the particle to oscillate about
its equilibrium position. A simple example of this model
is a simple mass-spring system. The quantum harmonic
oscillator (QHO) is the quantum analogue of the classical
harmonic oscillator. However, the particle is microscopic
and thus follows the rules of quantum mechanics. The QHO
model can describe many physical systems such as: phonons
(the quanta of lattice vibrations), electromagnetic radiation
modes in a cavity, and vibration of diatomic molecules. The
Hamiltonian of the QHO described in terms of the position
and momentum operators is given by

H = p̂2

2m
+ 1

2
mω2x̂2. (1)

p̂ and x̂ are the momentum and position operators, m is
the mass of the particle, and ω is the angular frequency
of oscillation. The Hamiltonian can then be inserted in
Schrödinger’s equation to obtain the wavefunctions and the
energy levels. The lowest energy level (ground level) of the
QHO is called the vacuum state denoted as |0〉 with energy
E0 = 1

2�ω. This is the contrast of the classical picture where
the lowest level has zero energy. The nth excited state of the

QHO is denoted by |n〉, and has energy En = �ω
(
n + 1

2

)
.

An important feature to notice is that the number of energy
levels is infinite opposed to other finite quantum systems
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(such as the intrinsic spin of an electron). Therefore, the
quantum states and operators are represented in the form of
infinite-dimensional vectors and matrices. The states of a
QHO are orthonormal 〈n|m〉 = δnm. The eigenstates |n〉 are
also called number states in the field of quantum optics, as
they represent a state of the electromagnetic field confined
in a cavity with exactly n photons.

Two important operators in the theory of QHO are the
creation and annihilation operators. The creation operator
â† is defined by its action on a number state |n〉 as
â†|n〉 = √

n + 1|n + 1〉, (2)

while the annihilation operator â is defined as

â|n〉 = √
n|n − 1〉 (3)

â|0〉 = 0. (4)

In other words, the creation and annihilation operators
increase/decrease the energy of the QHO by one level.
These operators are not Hermitian and thus do not represent
physical observables, although they are related to the
position and momentum of the oscillator. Finally, these
operators do not commute,

[a, a†] = 1. (5)

Another related operator is the number operator defined as

n̂|n〉 = n|n〉, (6)

where

n̂ = â†â. (7)

This operator is Hermitian and thus can be measured
physically.

The aforementioned operators can be used to express the
free field Hamiltonian of a QHO (no external forces)

H = �ω

(
n̂ + 1

2

)
= �ω

(
â†â + 1

2

)
. (8)

This is the matrix (Hilbert space) representation of the
Hamiltonian operator, in contrast to the wavefunction
(configuration space) representation in Eq. 1. The matrix
form turns out to be the more suitable form in this paper.

As known from the postulates of quantum mechanics, a
system is generally in a superposition of its basis states until
a measurement is performed. An important superposition
state of a QHO is the coherent state. It is defined as the
eigenstate of the annihilation operator

â|α〉 = α|α〉. (9)

In order to satisfy this equation as well as the normalization
condition of the state, it can be shown that the general form
of the coherent state defined in terms of number states is

|α〉 = e− 1
2 |α|2

∞∑
n=0

αn

√
n! |n〉. (10)

A very important remark is that the eigenvalue α defining
the coherent state is a complex number. Thus, there is
a continuum set of coherent sates rather than a discrete
set. The real and imaginary parts of α are related to the
position/momentum of the oscillating particle. In quantum
optics, the real and imaginary parts are related to the field
quadratures, while the magnitude describes the average
number of photons in the field. Coherent states can be
practically generated. For example, a strong laser field is
considered a coherent state. The following are the most
important mathematical properties of coherent states:

– They are not orthogonal,

〈α|β〉 = e
1
2 (α∗β+αβ∗)e− 1

2 |β−α|2 . (11)

In the limit of large magnitudes, the states tend to be
orthogonal.

– They form an overcomplete basis
∫

|α〉〈α|d2α = π . (12)

If the QHO is coupled to an applied external force f (t), the
Hamiltonian in the matrix representation takes the following
form

H = �ω

(
â†â + 1

2

)
+ �

(
f (t)â + f ∗(t)â†

)
. (13)

If the force is in resonance with the oscillator, i.e.,

f (t) = f0e
iωt , (14)

and the initial state of the harmonic oscillator is the ground
state

|ψ(0)〉 = |0〉, (15)

then by solving Schrödinger’s equation, the final state can
be shown as in Appendix 1 to take the form of coherent state

|ψ(t)〉 = |α〉, α = −ie−iωtf0t . (16)

This equation is of great importance in this paper and
will be central in the development of the proposed image
segmentation algorithm.

2.2 Fidelity distancemeasure

Commonly in quantum information processing, it is
required to define a distance metric between quantum states.
There exist many measures in quantum information for this
purpose such as the trace distance and fidelity (Nielsen and
Chuang 2010). Fidelity is chosen in this paper as it can be
easily computed with a closed form in the case of coherent
states. But in principle any other distance measure can be
used. The fidelity between two quantum states is defined as

F =
√

ρ1/2σρ1/2, (17)
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where ρ and σ are the density matrices corresponding to
each state. If the two states are pure quantum states |ψ〉 and
|φ〉, the definition of fidelity reduces to
F = |〈φ|ψ〉|. (18)

Since coherent states are pure states, then we can use
this last definition for evaluating the fidelity between two
coherent states. This leads to the following form of fidelity

F = |〈β|α〉| = e− 1
2 |β−α|2 . (19)

Fidelity measures the overlap between the two states, and it
satisfies the inequality

0 ≤ F ≤ 1. (20)

A fidelity of 1 corresponds to a full overlap between the
two states (i.e., they are identical), while a fidelity of 0
corresponds to a non-overlapping situation (i.e., orthogonal
states).

2.3 Performancemeasures

The proposed image segmentation algorithm takes a
classification approach, where each pixel is classified to
belong to either the foreground or the background of one
of the objects in the image. Accordingly, the sensitivity
and specificity measures are suitable for evaluating the
performance of the algorithm quantitatively (Youssry et al.
2015). Sensitivity measures the percentage of pixels of
the object’s foreground that are correctly classified by
the algorithm as foreground. Specificity measures the
percentage of the object’s background that is correctly
classified as background. Ideally, it is favorable to have both
sensitivity and specificity of 100%. However, practically
this may not be possible. In the case of multi-object
segmentation, the algorithm may succeed in segmenting
some objects and fails to segment others. Thus, the
sensitivity and specificity for each individual object in the
image are calculated to evaluate the performance in all
cases.

3Methods

In this section, the proposed methodology is presented.
First, an overview is given on the quantum-based framework
upon which the proposed image segmentation algorithm
is built. This framework has been proposed recently in
Youssry et al. (2015). The challenges of extending this
framework to the multi-object case are discussed, as well
as how the novel algorithm overcomes these challenges.
After that, the detailed steps of the developed algorithm for
multi-object image segmentation are elaborated.

3.1 Overview of the framework

The proposed algorithm follows the quantum-based frame-
work developed in Youssry et al. (2015). In this framework,
an analogy between the signal processing task required to be
performed and quantum mechanics is formed. This allows
transforming the signal processing problem into a problem
that can be solved easily within the well-developed quan-
tum mechanics theory. Afterwards, the obtained quantum
solution can be transformed back to the signal processing
domain. This idea is used to develop an image segmentation
algorithm that was suitable for segmenting single-object
images. A classification approach is adopted, where each
pixel in the image is classified into one of the two possible
classes: background or foreground of the object. In order to
accomplish this task, each pixel in the image is associated
to a two-level quantum system (qubit). The quantum system
starts from an initial state and is evolved to a final state. By
measuring the final state, the final outcome representing the
class of the pixel is obtained. In order to reach a correct final
state, the Hamiltonian operator is designed to be a function
in the features of extracted from the pixel. In other words,
the feature vector guides the quantum system to reach its
correct final state. This requires estimating some parameters
so that the features can be combined together in the Hamil-
tonian. This is done using a supervised learning method.
A small window in the image is selected together with its
ground truth, and both are used to estimate the parameters
targeting the minimization of the error between the resulting
segmentation of this window and its ground truth. After this
learning phase, the obtained parameters do not change any-
more for this image, and they can also be used to segment
any other visually similar image.

A straightforward approach to extend this algorithm
to the case of multi-object image segmentation is to use
multi-level quantum systems (qudit). However, there are
four problems in this approach. First, the complexity of
computations will increase, as the state vector of an N-
level quantum system is represented as an N × 1 vector,
and the quantum operators will be represented by N × N

matrices. Since the framework is mainly designed to work
on a classical computer, then this can form a bottleneck
in the execution in the case of large number of objects.
Second, it may be difficult to derive a closed-form solution
for Schrödinger’s equation in the general case (N-level
system) as was proven for the qubit case (2-level system).
In this case, the solution must be numerically obtained.
When the number of levels increases, this again increases
the overall complexity. Third, there is an important issue
concerning the controllability of quantum systems. Not
every Hamiltonian allows an arbitrary transition between
states. Therefore, this issue must be taken into consideration
while choosing the Hamiltonian form. Besides increasing
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the difficulty of the design process, the result may be a
Hamiltonian that does not correspond to an actual physical
process. This may prevent the realization of the algorithm
on a quantum computer. This opposes the case of the 2-
level system where any Hamiltonian can be realized easily.
Finally, the number of Hamiltonian parameters (degrees of
freedom in the matrix representation) generally increases
for larger systems which adds more complexity.

In principle, these challenges can be solved to obtain
a generalized model for multi-object image segmentation.
However, in this paper a novel model is proposed that does
not face those challenges. Additionally, it can be generalized
to any number of image objects without an increase in the
overall complexity. The basic idea is to map each pixel
in the image to a quantum harmonic oscillator system
instead of a qudit system. The oscillator is initialized to the
ground state. By applying an external resonant force, the
oscillator evolves to a final state which will be a particular
coherent state. By choosing the Hamiltonian parameters,
the final state can be controlled. Therefore, image features
are extracted at each pixel and combined together. Next,
a training phase is performed to estimate the Hamiltonian
parameters. A small window of the image and its ground
truth are provided for this step. The training pixels should
include representative pixels for all objects. The pixels of
each object of the image in the ground truth are assigned
to a particular coherent state referred to as the reference
state in this paper. For instance, if the image contains
N − 1 objects plus the background, then we need to
define a set of N coherent states to be used as reference
states. So, the background is treated as an object as well.
Each pixel is associated to its corresponding reference state
according to the ground truth segmentation. Consequently,
the Hamiltonian will be trained such that it results in the
evolution of all the pixels in the training set from the initial
state (which is the ground state) to the final state (which
should be the corresponding reference coherent state). Once
the Hamiltonian is constructed, it is used afterwards without
further change. It will be used to evolve the states of pixels
in the testing set (the remaining image pixels that are outside
the training set). In general, the final state of those test pixels
may not coincide exactly with any of reference states. So,
in order to determine the class/state of the pixel, the final
state is compared with the whole set of reference coherent
states representing each object. If the final state of system
is close to an object’s reference state, the pixel is classified
as belonging to the foreground of this object. The quantum
fidelity measure is used as a distance measure to quantify
the closeness of the final state to any of the reference states.

The quantum harmonic oscillator is an infinite-
dimensional quantum system. Working with number states

of the QHO will result in matrices that are of infinite-
dimensions. So, it will be impossible to store and process
them on a classical computer. However, although the sys-
tem is infinite-dimensional, it is completely defined by a
single complex-valued parameter α. All operations can be
done by manipulating this parameter. This simple parame-
ter can be stored and manipulated efficiently on a classical
computer. Consequently, the representation of the quantum
states as well the required quantum operators will be of a
fixed size independent on the number of classes (objects) in
the image. This solves the complexity problem in the orig-
inal framework. The choice of the Hamiltonian generating
the coherent states of the QHO solves the second problem as
the solution exists in a closed form, as shown in Appendix 1,
independent on the number of objects in the image. Addi-
tionally, this form guarantees that starting from the ground
state, any final coherent state can be reached. Thus, the third
challenge related to controllability is resolved. Moreover,
the chosen Hamiltonian can be realized easily in the case
of implementing on a quantum computer. Finally, as will
be shown later, there are only three degrees of freedom in
the Hamiltonian representation irrespective to the number of
image objects.

3.2 Proposed algorithm

Based on the previous discussion, the algorithm shown in
Algorithm 1 is proposed and it consists of five main steps
discussed as below.

3.2.1 Reference state preparation

The first step is to associate each object in the classical
image to a predefined coherent state, that will be referred
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to as the reference state. The choice of reference states is
arbitrary. In this work, it is assumed that there are N − 1
objects to extract as well as the background. Thus, the
reference states are chosen to take the form

|βk〉 = ei 2π
N

k

2 sin
(

π
N

) , k = 0, 1, ...N − 1 (21)

Thus, on the complex plane formed of the real and
imaginary components of the coherent state (phase space),
the reference states are distributed evenly on a circle
with radius

(
2 sin

(
π
N

))−1 centered at the origin. Once the
reference states are selected, they do not change anymore.
The magnitude of these states is scaled to provide enough
separation between them. This is related to the uncertainty
principle, as experimentally the real and imaginary parts
of the state cannot be measured simultaneously. The actual
representation of a coherent state in the phase space is a
small circle to reflect this uncertainty. In order to prevent the
overlap of the reference states, the amplitudes are scaled.
However, the scaling factor does not change the result of
the algorithm as shown in Appendix 2; therefore, it can be
chosen arbitrary. It may also be selected to have sufficiently
large value such that the classical behavior dominates.
Consequently, normal optical components can be used in
this case for experimental realization. It is worth noting that
the choice of the reference states affects the training of the
Hamiltonian as the goal of this step is to find a set of optimal
parameters of the Hamiltonian that results in evolving the
initial states to the corresponding reference states as final
states.

3.2.2 Pixel state initialization

In order to classify a particular pixel to one of the objects in
the image, it is associated to a QHO system. The initial state
of the pixel is taken to be the vacuum state.

|ψ(0)〉 = |0〉. (22)

3.2.3 Feature extraction

In this step, the feature vector is extracted from the pixel and
is denoted by x. Next, the features are combined together
into a single feature, denoted by T = T (x). This function
can be chosen arbitrarily. In this paper, it is chosen to take
the following form

T (x) = p(x)u (p(x)) + 0.01. (23)

p(•) is a polynomial function chosen to be of 6th order,
(in some cases it was selected to have a Gaussian form
depending on the problem) while u(•) is the Heaviside

unit step function which returns 1 if its argument is greater
than 0 and returns 0 otherwise. This form assures that T is
positive-valued, and thus can represent a time variable. It
also guaranties that T −1 is not singular at any point. These
two requirements are needed as will be shown in the next
step of the algorithm. The coefficients of the polynomial are
evaluated during the learning phase of the algorithm and are
kept fixed afterwards through out the testing.

3.2.4 State evolution

The QHO system of the pixel is then allowed to evolve to its
final state governed by the Hamiltonian

H = �ω

(
â†â + 1

2

)
+ �f0

(
âeiωt + â†âe−iωt

)
. (24)

The final state under this form of the Hamiltonian is
guaranteed to be the coherent state

|ψ(t)〉 = |α〉, α = −ie−iωtf0t . (25)

This equation shows that the final state depends on three
factors: ω, f0, and t . But actually, there are only two
degrees of freedom since the state is defined by a complex
number that has only real and imaginary parts. The angular
frequency is chosen arbitrary in this paper to be unity
(ω = 1). The time instant at which we observe the state is
chosen to be t = T (x). The force amplitude is chosen to be
f0 = 1

2 sin( π
N )T (x)

. Therefore, the final state of the QHO is

|ψ(T )〉 = |α(T )〉, α(T ) = −ie−iT

2 sin
(

π
N

) . (26)

It is clear now that final state is a function in T which is
itself a function of the image-based feature vector x. In other
words, the image-derived features at the pixel control the
final state of the QHO.

3.2.5 Measurement

In order to obtain the final outcome for the pixel under
consideration, the final state is observed. If it is one of the
reference states defined in the first step of the algorithm,
then the corresponding class is the final outcome. However,
practically this may not happen. In this case, we have to
choose one of the reference states and consequently choose
the corresponding class for this pixel. An intuitive solution
is to choose the reference state that is nearest to the pixel’s
final state. The fidelity measure in Eq. 19 can be used to
obtain the distance between the final state and each of the
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reference states. Thus, the pixel is classified to belong to
object j if it satisfies that

j = argmax
i

Fi = argmax
i

|〈α|βi〉|. (27)

4Materials

Following the work in Youssry et al. (2015), the proposed
algorithm is tested on two datasets. The first dataset consists
of synthetic images of geometric shapes with different types
and different number of objects. The ground truth of these
images is generated manually. Moreover, noise is applied
to some of these images in order to test the performance
of the algorithm in the presence of noise. The second
dataset consists of natural images and is chosen from the
publicly available image segmentation database of Alpert
et al. (2007). This database provides images with single and
double objects as well as the human segmentation for all
images to test the accuracy of segmentation methods. The
number of synthetic images are 19 images of which 11 of
them are noisy images. Five natural images are included
which adds up to a total of 24 images.

5 Results

The presented algorithm is tested on the datasets described
in the previous section. For each image in the dataset,
features are selected to better represent the objects in the
image and used to estimate the Hamiltonian parameters.
Many features are used depending on the nature of the
image which are mostly simple features such as the gray-
level, mean, and median. Nevertheless, in few cases, more
complex features like the Morlet transform–based features
are utilized. The features used are based on the nature of the
object and background in the image. For most of the simple
noiseless images (examples are first and third images in
Fig. 1 and first image in Fig. 2), the pixels’ gray values were
sufficient to segment the object. However, in some cases
there were no clear class separation between the object and
background in the grayscale domain. Thus, other features
were incorporated. For example, the second image in Fig. 2
is a textured image, so Morlet wavelet–based features were
found to perform better than grayscale features. Moreover,
in the presence of noise as in the images in Fig. 3, features
from median filters with window size depending on the
amount of noise were utilized and provided highly accurate
segmentation. The feature selection is a design issue and
should depend on the analysis of the images in order to

Fig. 1 Proposed algorithm segmentation of single-object images from
Youssry et al. (2015)

estimate the Hamiltonian’s parameters that will derive the
evolution and in turn the segmentation.

The sensitivity and the specificity measures for each class
in each image are calculated. First, the algorithm is applied
to the images with single object that are used to validate
the original framework (Youssry et al. 2015). This system
is considered an enhancement to the previously introduced
framework. Thus, the purpose of this step is to verify that
the system can produce comparable results in case of single
object before proceeding to multi-object images. Average
sensitivity and specificity of 98.23% and 99.53% were
obtained, respectively. This shows that the coherent state–
based algorithm performs very efficiently in segmenting
images with single object. Samples of segmented objects
are shown in Fig. 1. In addition, the results are very
similar to the former framework (sensitivity = 98.5% and
specificity = 99.7%) which were shown to exceed other
existing segmentation methods like active contours and
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Fig. 2 Proposed algorithm
segmentation of multi-object
images

Fig. 3 Proposed algorithm
segmentation of noisy images
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graph cuts. In this paper, four methods are compared against
the proposed algorithm. These segmentation algorithms are
K-means clustering (Lloyd 1982), Otsu’s multithreshold
(Otsu 1979), lazy snapping graph cuts (Li et al. 2004),
and random forests (Sommer et al. 2011). The results
of applying the five algorithms to the entire dataset
are summarized in Table 1. Regarding the single-object
images, the sensitivities of both the quantum (98.23%)
and random forests (98.55%) methods were close and
significantly higher than those of the other three methods.
The quantum, Otsu, and K-means techniques produced
similar specificities (around 99.72%) which were 1–2%
better than the other two algorithms.

For the multi-objects’ dataset including synthetic, noisy,
and natural images, the quantum method gave the highest
sensitivity over all techniques in comparison with a
sensitivity of 97.52%. The sensitivities of the other methods
were approximately 4.5–9.2% lower than those of the
proposed technique. In terms of specificity, the quantum
had a value of 99.61% which is only 0.03% lower than
K-means and higher than the rest by up to 7.25%. In
order to assess the noise performance, Gaussian, salt and
pepper, and compression noise are added to some of the
synthetic images to create eleven noisy images. Salt and
pepper noise was added to the three-objects image in Fig. 3
while other images were modified by the inclusion of
Gaussian noise such as the first two images in Fig. 3. The
compression noise was added to the single-object image
in Fig. 4 at low and medium quality levels, as well as
the two-object image in Fig. 4 at low- and high-quality
levels. Compression noise was added by compressing then
decompressing the image using lossy JPEG scheme at the
corresponding quality level. Furthermore, the first image in
Fig. 1 was blurred using a multiplicative noise. The test
with the noisy images illustrates that the introduced method
performed very well in the presence of noise with sensitivity
and specificity of 98.30% and 99.30%, respectively. The
best noise performing algorithm was the random forests
which is slightly higher than the quantum approach by

0.5% and 1.2% for sensitivity and specificity, respectively.
Nevertheless, the sensitivities of the quantum method were
3.3–7.2% better than those of the remaining three methods
in comparison. Examples of segmented objects in images
with multi-objects (Fig. 2) in addition to noisy images
(Figs. 3 and 4) are demonstrated for qualitative assessment
of the algorithm.

The reported overall average performance measures
indicate that the specificities from all methods, except the
graph cuts (93.92%), are in close proximity to each other
(99.00 to 99.69%) with quantum and K-means at the top of
the range. However, the superiority of the proposed method
over all the other methods under comparison in capturing
the target objects for different types of images is evident
from the sensitivity results. The quantum technique’s
average sensitivity is 97.86% compared with the closest
value of 94.58% from random forests and the least value of
90.03% from the graph cuts method.

6 Discussion

The theory of quantum harmonic oscillators and coherent
states provide the bases for the proposed quantum-based
image segmentation algorithm. This method relies on
treating each pixel in a classical image as QHO initially
at the vacuum state. By allowing the system to evolve
controlled by features extracted from the image’s pixels,
the oscillator can reach any of the continuous eigenstates.
Principally, this allows for the segmentation of an infinite
number of objects. The Hamiltonian parameters are
estimated by supervised learning from the image features
to lead the evolution to the desired class. The results of
applying the system to segment different images indicate
that the algorithm can accurately segment multi-objects in
many types of images including noisy ones.

The presented method inherits the design flexibility
from the original framework (Youssry et al. 2015). So,
many design aspects can be adjusted to suit different

Table 1 Comparison of the proposed algorithm with other algorithms on different data subsets, showing the number of images in each subset, and
the sensitivity and specificity as percentages

Proposed K-means Multithreshold Graph cuts Random forests

Dataset Num Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Paper (Youssry et al. 2015) 9 98.23 99.53 92.75 99.76 93.16 99.85 95.53 96.88 98.55 98.75

Multi-objects 12 97.52 99.61 91.12 99.64 89.41 96.57 88.31 92.36 92.78 98.99

Noisy images 11 98.30 99.30 91.71 99.59 91.63 94.98 91.06 99.66 98.84 99.48

All 24 97.86 99.56 91.17 99.69 90.07 97.57 90.03 93.92 94.58 99.00
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Fig. 4 Proposed algorithm
segmentation of images with
compression noise

types of applications such as the form of the Hamiltonian.
In this work, the Hamiltonian was selected to lead to a
closed-form solution. However for other problems, a more
complicated form might be needed which may necessitate
obtaining a numerical solution of Schrödinger’s equation.
The construction of the Hamiltonian was performed using
supervised learning which can also be changed to possibly
unsupervised learning approach. Additionally, the fidelity
metric was adopted in this work as it can be optically
implemented as will be discussed later in this section.
However, other metrics can be used.

The analysis of the performance summarized in Table 1
shows that the quantum-based method outperforms two of
the classical image segmentation techniques in addition to
graph cuts and random forests in terms of overall accuracy.
All objects in all images were correctly identified by the
proposed algorithm. However, K-means, graph cuts, and
Otsu’s method failed to identify objects in some of the
images. For example, Otsu’s thresholding algorithm missed
the second object in the natural image in the third row
of Fig. 2 while all three techniques failed to identify the
second object in the noisy image in the second row of
Fig. 3. Also, it can be seen from Figs. 5 and 6 that

K-means and Otsu’s methods tend to undersegment the
objects in the natural image of the bird as well as in the
gradient noisy image while graph cuts produced greater
segmentation inaccuracies. Moreover, Otsu’s segmentation
of the image in Fig. 7 tends to identify part of object
2 as object 1. The random forests method did not suffer
from the aforementioned issues but performed poorly when
using complex features in textured images as shown in
Fig. 8. The proposed method succeeded in segmenting
all objects in the different types of images without
missing or undersegmenting any objects. Furthermore, the
performance was robust to noise with minimal effect on
accuracy. As can be observed from the average sensitivity
and specificity for all four types of inserted noise which
were only reduced by 1.70% and 0.31% in comparison
with the noiseless case. K-means is initialized randomly
and there is no guarantee that it will produce the correct
segmentation. Also, the repeated runs of the algorithm
do not yield the same segmentation results. For fair
comparison, the tests were done numerously in order to
achieve the best segmentation. Also, the features used in
the quantum method were used with the K-means. The
quantum method did not suffer from all the mentioned

Fig. 5 K-means, multithreshold,
and graph cuts segmentation of
a natural image of a bird
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Fig. 6 K-means, multithreshold,
and graph cuts segmentation of
a gradient image with Gaussian
noise of variance 0.1

problems. The results do not change by repeated runs of the
algorithm. Otsu’s method is not suitable for incorporating
multiple features (i.e., it works using only one feature).
A different approach for image segmentation is the active
contours method (Chan and Vese 2001). Although it is
very powerful in case of single-object images, it is not
suitable for multi-object images. The only way to solve
this problem is to customize the location and shape of the
initial contour so that it only captures one object and then
repeat for other objects. But this requires too much human
intervention which is a drawback. In addition to its higher
performance, the proposed algorithm does not face these
challenges and can automatically do the task with minimal
human intervention.

In Sergioli et al. (2016), a framework for pattern
recognition has been proposed in which features are mapped
to quantum density matrices on the Bloch sphere via a
stereographic mapping. This is suitable for a 2D feature
vector. For larger number of features, the model can be
generalized geometrically by using Bloch spheres of higher
dimensions. In this case, higher-dimensional matrices are
used. The classification is done by a nearest mean classifier
rule based on trace distance. In a broader sense, the work in
Sergioli et al. (2016) shares a quantum-based classification
approach as the proposed method. Nevertheless, the two
methods have many differences. First, the presented work
is based on the theory of quantum harmonic oscillators
which uses continuous states of infinite-dimensions and
is independent of the number of classes as previously
discussed. Second, the features are encoded through the
Hamiltonian governing the evolution of states. Third, the
identification of the final state is performed by first evolving
the system then by using the fidelity as a distance metric.

Fourth, the learning is done in a least-square sense for
evaluating the Hamiltonian parameters. Finally, despite
the ability of the suggested algorithm to be used as a
classifier, the focus is on developing a complete for image
segmentation technique.

Although the algorithm is designed to work on classical
computer, the usage of coherent states opens the path for
practical implementation of the algorithm using optical
components. Laser beams are described using coherent
states and the quantum effects dominate as the number of
photons decreases (corresponding to reduction in the beam
power). Using a local oscillator (LO) beam, other beams
can be generated by splitting the LO beam and then phase-
modulating each sub-beam alone. These beams correspond
to the fixed reference states {|βi〉}. For each pixel in
the image, another beam from the LO is generated and
modulated according to the value of the extracted feature at
the pixel to produce the final state |α〉. The beams from the
pixel and from the reference states can be combined in a
Mach-Zehnder interferometer to estimate the fidelity using
the method in Ekert et al. (2002). Then, the state with the
highest fidelity is selected to produce the classification of
the pixel.

7 Conclusions and future work

This paper proposes an algorithm for segmenting classical
images that is formulated from the foundations of quantum
mechanics. It can be considered as enhanced extension of
the work done in Youssry et al. (2015). In addition to the
ability to deploy beneficial aspects from quantum mechan-
ics in image segmentation as the original framework, this

Fig. 7 Multithreshold
segmentation of a natural image
of marbles
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Fig. 8 Random forests
segmentation of a textured
image

algorithm has a major advantage as it can handle images
with multi-objects at no additional computational complex-
ity. This is accomplished by utilizing the theory of quantum
harmonic oscillators rather than two-state quantum system.
Since the number of coherent states is a continuum, their
eigenstates represents a continuous-variable and thus can
model any number of objects. The performance of the pro-
posed method demonstrates its high performance in terms of
accuracy even when noise is present, while being superior to
the original work in Youssry et al. (2015) in terms of com-
plexity. Despite being developed as a classical algorithm,
we provided a suggestion on the quantum implementation
of the system using the aforementioned optical hardware.
The following points should be considered in the future to
enhance the system. First, the interaction between neigh-
boring pixels is considered only indirectly in the feature
extraction. In order to provide a direct way to incorpo-
rate this information and replace the use of complicated
image features, the mathematical model of coupled quan-
tum harmonic oscillators could be exploited. Second, the
algorithm was presented generally and tested on generic
images to show its functionality. It remains to get advantage
of its flexibility to efficiently apply it to a particular appli-
cation. Finally, the system could be physically realized, as
described previously, to validate its practically.
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Appendix 1. Proof of Eq. 16

It is required to prove that given the Hamiltonian

H = �ω

(
â†â + 1

2

)
+ �

(
f (t)â + f ∗(t)â†

)
, (28)

such that

f (t) = f0e
iωt , (29)

and the initial state

|ψ(0)〉 = |0〉, (30)

then the final state obtained after evolution is a coherent
state

|α〉 = e− 1
2 |α|2

∞∑
n=0

αn

√
n! |n〉. (31)

The Hamiltonian in Eq. 28 can be written in the form

H = H0 + V, (32)

where

H0 = �ω

(
â†â + 1

2

)
(33)

is the free field Hamiltonian which is time independent,
while

V = �

(
f (t)â + f ∗(t)â†

)
(34)

is the interaction potential which is time dependent. As it is
known in the theory of quantum mechanics, there are three
pictures (representations) of states and operators:

– The Schrödinger picture in which the states are time
dependent, while the operators are time independent.

– The Heisenberg picture in which the states are time
independent, while the operators are time dependent

– The Dirac (interaction) picture, where both states and
operators are time dependent.

The three representations are equivalent to each other and
can be converted easily from one picture to another. The
state represented in the interaction picture |ψ(t)〉I is related
to Schrödinger’s picture |ψ(t)〉S via the transformation

|ψ(t)〉I = U
†
0 (t)|ψ(t)〉S, (35)

where

U0 = e− i
�
H0t = e

−iωt
(
â†â+ 1

2

)
(36)

is the free field evolution operator. The interaction
potential in the interaction picture VI (t) is related to the
Schrödinger’s picture V0 via the transformation

VI (t) = U
†
0 (t)V0U0(t). (37)

By substituting Eqs. 36 in Eq. 37, we get

VI (t) = e
iωt

(
â†â+ 1

2

)
�

(
f (t)â + f ∗(t)â†

)
e
−iωt

(
â†â+ 1

2

)
.

(38)
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This equation is expanded as

VI (t) = �f (t)eiωtâ†â âe−iωtâ†â + �f ∗(t)eiωtâ†â â†e−iωtâ†â .

(39)

The operator part in each of the two terms is in the form
esABe−sA, where s = iωt , A = â†â, and B = â for the
first term and â† for the second term. This allows us to use
the Baker-Campbell-Hausdorff (BCH) formula

esABe−sA = B + [A, B]s + [A, [A, B]] s
2

2!
+[A, [A, [A, B]]] s

3

3! + · · · . (40)

So, we need to calculate these nested commutators.
Rewriting the commutator relation in Eq. 5, in the form
ââ† − â†â = 1, we obtain

[â†â, â] = â†ââ − ââ†â = â†ââ − (1+ â†â)â = −â. (41)

[â†â, [â†â, â]] = [â†â, −â] = −[â†â, â] = â. (42)

and so on. The nested commutators form an alternating
series between â and−â. By substituting the result of Eq. 41
in the BCH formula of Eq. 40, we get

eiωtâ†â âe−iωtâ†â = â − (iωt)â + (iωt)2

2! â − (iωt)3

3! â + · · · (43)

= â

(
1+(−iωt)+ (−iωt)2

2! + (−iωt)3

3! +· · ·
)
(44)

= âe−iωt , (45)

where the last equation comes from the Taylor expansion of
the exponential function. By taking the adjoint we obtain

eiωtâ†â â†e−iωtâ†â = â†eiωt . (46)

Now we can insert the results into Eq. 39 to get

VI (t) = �

(
f (t)âe−iωt + f ∗(t)â†eiωt

)
. (47)

This interaction part does not generally commute in time
[VI (t1), VI (t2)] �= 0, which makes the exact solution
difficult to obtain; however, if the external force is resonant
with the oscillator so that it takes the form in Eq. 29, and f0
chosen to be real, we obtain the interaction Hamiltonian in
the form

VI (t) = �f0

(
â + â†

)
, (48)

which clearly commutes in time, so we can obtain a closed-
form solution in the interaction picture

|ψ(t)〉I = UI |ψ(0)〉I = e− i
�
VI t |ψ(0)〉I (49)

= e−if0t (â+â†)|ψ(0)〉I . (50)

We can now return back to Schrödinger’s picture for the
initial and final states by using Eq. 35

U
†
0 (t)|ψ(t)〉S = e−if0t (â+â†)U

†
0 (0)|ψ(0)〉S, (51)

which is equivalent to

|ψ(t)〉S = U0(t)e
−if0t (â+â†)U

†
0 (0)|ψ(0)〉S . (52)

Since |ψ(0)〉S = |0〉, and U
†
0 (0) = 1, therefore

|ψ(t)〉S = e
−iωt

(
â†â+ 1

2

)
e−if0t (â+â†)|0〉. (53)

For two operatorsA andB, if [A, B] �= 0 and [A, [A, B]] =
[B, [A, B]] = 0, then the following identity holds

eA+B = eAeBe− 1
2 [A,B] = eBeAe

1
2 [A,B]. (54)

The second exponential clearly satisfies these two condi-
tions with A = (−if0t)â and B = (−if0t)â

†; consequently
the final state becomes

|ψ(t)〉S = e
−iωt

(
â†â+ 1

2

)
e−if0t â

†
e−if0t âe− (f0 t)2

2 |0〉. (55)

Rearranging the non-operator terms,

|ψ(t)〉S = e− iωt
2 e− (f0 t)2

2 e−iωtâ†âe−if0t â
†
e−if0t â|0〉. (56)

The first term is an overall phase shift that does not change
the state, so it can be neglected to get

|ψ(t)〉S = e− (f0 t)2

2 e−iωtâ†âe−if0t â
†
e−if0t â|0〉. (57)

The last exponential can be expanded as a Taylor series:

|ψ(t)〉S = e− (f0 t)2

2 e−iωtâ†âe−if0t â
†

∞∑
n=0

(−if0t)
n

n! ân|0〉.

(58)

All the terms in the series vanish due to definition of
annihilation operator except for the first term (n = 0) which
is equal to 1 so

|ψ(t)〉S = e− (f0 t)2

2 e−iωtâ†âe−if0t â
† |0〉. (59)

Again expanding the last exponential as a Taylor series we
get

|ψ(t)〉S = e− (f0 t)2

2 e−iωtâ†â
∞∑

n=0

(−if0t)
n

n! (â†)n|0〉. (60)

By the repeated application of the creation operator on the
vacuum state and using Eq. 2,

|ψ(t)〉S = e− (f0 t)2

2 e−iωtâ†â
∞∑

n=0

(−if0t)
n

n!
√

n!|n〉. (61)
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Due to linearity, we can operate on the series term by term
to get

|ψ(t)〉S = e− (f0 t)2

2

∞∑
n=0

(−if0t)
n

n!
√

n!e−iωtn̂|n〉. (62)

Given that |n〉 are eigenstates of the number operator n̂ =
â†â, with eigenvalues n, the expression becomes

|ψ(t)〉S = e− (f0 t)2

2

∞∑
n=0

(−if0t)
n

n!
√

n!e−iωtn|n〉. (63)

Simplifying this expression, we get

|ψ(t)〉S = e− (f0 t)2

2

∞∑
n=0

(−if0te
−iωt )n√
n! |n〉. (64)

Now let

α = −ie−iωtf0t → |α|2 = (f0t)
2, (65)

then the final state becomes

|ψ(t)〉S = e− 1
2 |α|2

∞∑
n=0

αn

√
n! |n〉. (66)

This is exactly the definition of the coherent state |α〉, which
is required to prove.

Appendix 2. Proof of invariance of scaling
factor in the reference states

Given that the fidelity between a final state |α〉 and two
reference states |β1〉 and |β2〉 with equal magnitudes and
different phases (i.e lying on the same circle in the complex
plane) satisfy that

F1 > F2. (67)

It is required to prove that scaling the reference states do not
change that relation. Evaluating the fidelity yields

〈α|β1〉 > 〈α|β2〉, (68)

or,

e− 1
2 |α−β1|2 > e− 1

2 |α−β2|2 . (69)

This is equivalent to

|α − β1|2 < |α − β2|2 (70)

(α − β1)(α − β1)
∗ < (α − β2)(α − β2)

∗ (71)

−αβ∗
1 − β1α

∗ + |β1|2 < −αβ∗
2 − β2α

∗ + |β2|2. (72)

Since |β1|2 = |β2|2, then
− αβ∗

1 − β1α
∗ < −αβ∗

2 − β2α
∗ (73)

α

α∗ < − β1 − β2

β∗
1 − β∗

2
. (74)

If scaling is done, such that β1 → γβ1 and β2 → γβ2

for positive γ , then the above equation does not change.
Consequently, decisions based on fidelity do not change.
This can be generalized to any number of reference states.
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