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Abstract

Logic is an algebraic structure that defines a set of abstract rules which govern an area of interest. The abstraction property
of the rules makes them reusable tools to model different problems and to reason with them. The proliferation of quantum
theory brought attention to quantum logic which is a lattice of projectors and it is of importance to quantum computing.
Unfortunately, basic tools like implication are not sufficiently studied in that logic, which prevents us from exploiting the
power of quantum mechanics in reasoning. This note investigates the implication issue in quantum logic and defines a
quantum implication operator for compatible events as well as for incompatible events. The suggested operator depends
both on the angle between the vector sub-spaces of the involved events and the angles between the system state and the
vector sub-spaces. It differentiates between three cases depending on the angle between the events’ sub-spaces. The article
further shows through an example that some classical reasoning rules such as Modus Ponens and Modus Tollens hold given

the suggested implication.
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1 Introduction

The emergence of Quantum Theory (QM) is promising a new
era of computing. So researchers in computer science in gen-
eral and in database and information retrieval, in particular,
are seeking to use quantum formalism to build new and more
effective information processing systems (Schmitt 2008).

Relational database systems are the most common
database systems. Their query language which is known as
SQL (Structured Query Language) is founded on relational
algebra and first order (predicate) logic. Predicate logic
builds on classical logic which is linked to classical mechan-
ics (Heelan 1970). Now, one open question in information
technology is how to use Quantum Logic (QL), the logic
that is based on quantum theory, to build information pro-
cessing systems that enable us to represent data and reason
new facts out of them.
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In their seminal paper, Birkoff and Von Neumann have
introduced quantum logic as a lattice of projectors (Birkhoff
and Neumann 1936). Later many algebraic structures were
considered as quantum logic but none of them provides
a solid basis for a logical system that can be used for
reasoning; because those logics still have problems with
the basic reasoning tools like implication. Although there
are five QL implication operators in the literature, none
of them addressed the difference between compatible and
incompatible events (Dalla Chiara et al. 2013) (Megill and
Pavici¢ 2003).

The contributions of this article are threefold. First, it
shows the limitations of available implication operators that
prevent us from using them as QL implication operators due
to the special properties of QL. Second, It defines a quantum
implication that can be used for compatible as well as for
incompatible events. Third, it shows, by an example, how
the new operator preserves some of the classical reasoning
rules for the compatible case.

The roadmap of this paper is as follows. Section 2
presents an overview of the probability theory and QM.
Next, Section 3 introduces quantum logic. After that, the
different types of implications are listed along with some
criticism in Section 4. Then, a quantum implication operator
is introduced in Section 5. Finally, we conclude in Section 6
by indicating directions for future research.
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2 Background

In order to make the paper self-contained and reachable
to a wide audience, this section provides a quick reminder
of probability theory and quantum mechanics. If you are
familiar with these concepts, feel free to skip or skim
through this section.

2.1 Probability theory

This subsection provides a quick and detailed overview of
the probability theory showing its relation to the measure
theory (the theory which studies measures). After that, it
recalls the different types of events, probability distributions
and finishes by introducing the copula concept.

Probability theory is the science behind randomness. The
sample space 2 is the set of all possible outcomes of a
random experiment. An event A is a subset of the sample
space i.e. A € Q and it occurs when the outcome w of the
experiment belongs to it w € A. An algebra F is a collection
of subsets of 2 that includes the empty set ¢ and is closed
under complement (if A € F, then ~A € F) and finite
unions (if Ay, Az, ...A, € F then U!_|A; € F). If Fis
also closed under countable unions (if Ay, Aj.... € F then
U;?il A;€F) then we call it o-Algebra, the subsets of F are
called F-measurable sets and (€2, F') is a measurable-space.
A measure is a function p that maps F-measurable sets
to the interval [0, oo[ and satisfies the countable additive
axiom (P(U'E;) = Y7_; P(E;) where E; are n disjoint
events) and (¢) = 0. If the measure u satisfies () = 1
then it is called a probability measure and denoted by P, the
space (2, F, P) is a probability space and the F-measurable
sets are events. Depending on that probability theory is a
special case of measure theory that works on a o-Algebra
defined over €2 (Ross 2006).

Since events are subsets of €2, we can distinguish
between different types of them based on the relation
between their corresponding subsets as depicted in Fig. 1.
Mutual exclusive events do not occur simultaneously and

TN

\_/

Fig. 1 Relation types of two events
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are represented by disjoint subsets like A and B whose
intersection is ® so P(A N B) = 0. In contrast, non-mutual
exclusive events are represented by overlapping sets like C
and D. The union’s probability of two independent events is
defined as:

P(XUY)=P(X)+PY)—P(XNY) (1)

Independent events have no effect on each other’s probabil-
ity of occurrence like tossing a coin and rolling a dice. The
joint probability of such events is defined as

P(XNY) = P(X)*P(Y) 2)

Dependent events affect the probabilities of each other like
in the experiment of drawing two cards from a deck. The
first card will affect the probability of the second. The last
type of events is the subsumed events, like E and F, is the
essence of material implication (E— F) in classical logic.

In classical probability, there are three different types
of multivariate probability distributions. First, the marginal
probability of an event Q is the probability that Q occurs
regardless of the results of other experiments. Second, the
joint probability of two events Q and R is the probability
of their intersection. Third, the conditional probability is
the measure of the probability that an event Q will occur
given that another event R occurred. It is defined when
(P(R) #0)as

P(ONR)

P(QIR) = PR 3)

Copula is the last concept that we want to mention here.
It is a function C from 1% to I (I = [0,1]) that couples
multivariate distribution functions to their one-dimensional
marginal distribution functions (Nelsen 2007). It has the
following properties:

1. Foreveryuvinl,C(u,0)=0=C@0,v),C(u,1l)=u
and C(1,v) =v

2. For every uy, us, v, vy in I such that u; < u; and
v = Vg,

C(uz,v2) — C(uz, v1) — C(uy, v2) + C(ug,v1) =0

Copula provides a way to study scale-free measures
of independence and allow the construction of bivariate
distributions (Nelsen 2007). It was proven by Sklar’s theory
that a copula could be found to map any two marginal
probabilities to their joint probabilities (Grzegorzewski
2013). There are many families of copulas such as
Gaussian’s family and Archimedean’s family.

2.2 Quantum mechanics

This subsection introduces the basic ingredients of quantum
mechanics. We start by defining QM. Then, we present
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Dirac’s notation before we list the quantum postulates.
Finally, we show how probabilities are used in QM.

Quantum Mechanic is an inherently probabilistic and
contextual theory that works at the microscopic level (Bub
2016). Its mathematical framework is a complex separable
vector space equipped with inner product called Hilbert
space. In Hilbert space, vectors and vector sub-spaces are
the basic tools to deal with; that is why a neat way was
needed to express such notions. Dirac or Bra(c)ket notation
came as a solution to this issue (Ross 2006) which is as
follows:

1Y .
— A column vector ( ) is represented by the ket |0),

0
while its complex transpose (1 0) is expressed by the
bra (0|.

— The inner product between two vectors x and y is a
scalar and is denoted by (x|y) whereas the result of their
outer product is a matrix and delineated as |x)(y|.

— The tensor product is a method to form large matrices
out of smaller ones. For more information on this topic
readers can refer to Nielsen and Chuang (2002) and
Svozil (1998).

The connection between the quantum mathematical formal-
ism and the physical world is the following four postulates:

1. State space: An isolated physical system is represented
by a separable Hilbert space called the state space. The
state vector is just a unit vector in the state space that
provides a full description of the system.

2. Evolution: An isolated quantum system evolves accord-
ing to a unitary transformation U which preserves the

norm of the state vector ||U |y )| = |||1/f’)“ where |V)
and |y') are the state vector before and after evolution
respectively.

3. Measurement: Let Q be a closed quantum system in
state 1. there is a Hermitian operator O;, here we use
projectors, for each possible outcome i of measuring the
system. These operators work on the state space of Q to
calculate the probability of an outcome i as follows

p(i) = (w0} 0ily) 4)

where Oj_ is the complex transpose of O;. This
measurement results also in changing the state of the
system and the post-measurement state as

0: 1Y)
1y (0] 0: 1)

Since measurement results are probabilities and due to
the completeness relation of the Hermitian operators
Q- OZT 0; = 1), we get

Y opi)y =) (ylofoily) =1

&)

4. Composite Systems: The tensor product is used to
assemble different quantum systems into a larger one.
The state of the generated system is the tensor product
of its generating systems.

Quantum theory brought with it some new terms and
phenomena that were not known before like Entanglement,
Incompatibility, Entwinement and Contextuality. Next, we
clarify those concepts.

Entanglement is a non-classical correlation between two
particles (Bub 2016). An entangled state is the result from
composing two systems using the tensor product and then
applying some rotation. The resulting composite state can
not be expressed as a product of two states of the involved
systems. For example, let us have the entangled state
[¥)y = \%lOO) + \%Hl). When we try to decompose
it to a product of two states, we will get something like
(c0]0) + a111))(Bo]0) + B1]1))) after multiplication we get
(@0B0100) + aoB1101) + a1o[10) 4+ 1p1|11) to get the
entangled state we have to solve the following equations:

1
apfo = E
apfr =0
aifo =0

1

a1 = NG

which is impossible.

In quantum, we can distinguish between two types of
observables (physical quantities). Those are compatible and
incompatible observables which are represented by Her-
mitian operators (projectors) (Nielsen and Chuang 2002).
Compatible observables can be measured simultaneously
while incompatible ones cannot because they are repre-
sented using different bases of the vector space. That is
why sometimes they are being referred to as simultaneously
and non-simultaneously decidable observables respectively
(Bub 2016). Two observables A and B are incompatible
when their corresponding projectors do not commute, i.e.
(P4 Pp # PpP,). That occurs when the enclosed angle
between their corresponding vector sub-spaces is acute. The
speed and momentum of a particle is a famous example of
incompatible observables.

Entwinement refers to the meshing of compatible and
incompatible observables. Two observables are said to be
entwined if they have a basis vector in common as depicted
in the Fig. 2. A direct result of entwinement is contextuality.
Contextuality means that observables do not have definite
values before they are measured and their assigned values
vary according to the context. The Kochen-Specker theorem
states that observables of a qutrit system or higher are
contextual due to Entwinement (Bub 2016; Peres 1991).

@ Springer
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Fig.2 Entwinement

Now we state how probabilities are used within the
quantum formalism. Figure 3 displays a qubit system in
state |1/). The probability of getting |0) is b which is the
square length of the projection of the state vector |/) on
|0). Since a and b are the two right sides of a right triangle,
then Pythagoras’ theory comes into play (i.e. a® + b? =
1). Before we close, we should mention that the same
probability values can be obtained by taking squared cosine
of the minimum angle between the state vector and the
measured subspace in this case cos? (o) = b2,

3 Quantum logic

This section presents the algebraic foundations of quantum
logic along with its connection to some other logics. Then,
it discusses quantum logic as it was introduced by its
founders.

Let us have a set of elements B and a binary ordering rela-
tion < between its elements. The structure (B, <) is called
a poset (partially ordered set) when the ordering relation

1)

N

b )

Fig.3 Quantum probabilities
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satisfies the reflexive, transitive and anti-symmetry proper-
ties (Dalla Chiara et al. 2013). A lattice (B, <, A, V) is a
poset supplied with a meet A and join Vv operations. A lattice
forms the mathematical foundation for any bivalent logic. A
lattice with fuzzy negation forms a fuzzy logic that in turn
forms a logic when it satisfies the law of non-contradiction
(a A ~a = 0) (de Vries 2007). Boolean logic is a logic in
which the distributive law a V (b A¢c) = (a vV b) A (a V ¢)
and the double negation law a = ~~a hold. Quantum
logic is a logic that satisfies the orthomodularity (ifa < c,
then a VvV (~ a A ¢) = ¢ (Birkhoff and Neumann 1936).

Birkhoff and Von Neuman introduced quantum logic
based on the lattice (P, C, A, V) of all closed sub-spaces P
(projectors) of a Hilbert space greater than two dimensions
(Birkhoff and Neumann 1936). The negation operator is
defined as ~p = I — p. The meet of two sub-spaces, as in
the boolean logic, is their intersection; while the join of two
sub-spaces is the closure of their union. In other words, the
join contains the two involved sub-spaces along with any
linear combination of them.

Boolean logic is a special case of quantum logic because
orthomodularity is a weak form of distributivity (Dalla
Chiara et al. 2013). The reason behind the failure of
distributive law in quantum logic is the way in which the
join operation was defined. In quantum join operation, it is
possible for a vector neither to belong to a subspace P nor
to a subspace Q but it could belong to their union (P Vv Q).

4 Literature review and criticism

This section starts by showing the difference between
absolute and approximate reasoning. Then, it presents the
different types of implications that are available in the
literature along with their limitations from the viewpoint
of QL.

Absolute reasoning derives absolute conclusions out of
absolute premises, whereas approximate reasoning works
on uncertain premises to find uncertain conclusions. The
word absolute refers to boolean values, while the word
approximate refers to uncertain values where the uncertainty
could be modelled by fuzzy (membership) values or
probability values (Grzegorzewski 2013). In approximate
reasoning, neither completeness nor soundness, in their
classical sense, are guaranteed due to uncertainty (Garson
2013). The goal of approximate reasoning is to make the
benefits overcome the losses incurred by the process. For
example in web search, there is a trade-off between quick
and accurate responses (Rudolph et al. 2008).

The implication operator I(A,B), in general, is a logical
relation between two propositions A and B where the second
is considered as a conclusion of the first. In the literature,
we can find many implication operators and the following
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paragraphs outline them and discuss their feasibility to be
used as quantum implications.

In classical logic, we can distinguish between two abso-
lute implication operators those are material implication and
strict implication. Material implication is constructed based
on subsumed events. It is defined as (A — B = ~A Vv B)
and is pronounced (IF A then B). The truth values of this
implication is shown in Table 1. As we can see from the
table, it is evaluated based on the boolean truth values of
the involved propositions but not on their meanings. For
example the implication “snow is green — fishes can fly”
is evaluated as true even though there is no relationship
between the premise and conclusion. C.I. Lewis realized
this problem and introduced the strict implication which
takes the semantics of the propositions into account (Gar-
son 2013). The strict implication uses the necessity modal
operator and possible worlds to avoid the material implica-
tion problem. It is denoted by (A < B =~ $(AA ~ B))
and interpreted as (it is not possible that A is true and B is
false). The main difference between those two implications
is that material implication works at the object level because
it considers the truth values of two sentences in one fixed
model, while the strict implication works at the meta level
since it considers the truth values in all possible models.

The importance of implication stems from the fact that
it can be used to define reasoning rules. For example, the
classical reasoning rules Modus Ponens (MP) and Modus
Tollens (MT) are defined based on material implication as
shown in Table 2. The problem with absolute operators,
like material and strict implications, is that they work only
with two truth values (T and F), so they fail to address the
superposition principle which is one of the corner stones of
QM. In addition to that, strict implication uses the necessity
operator which is not available in QL.

A second type of implication operators is the fuzzy
implication. It is an approximate implication and is used in
fuzzy logic. It is defined in Baczynski and Jayaram (2008)
as follows:

A function I : [0, 1]2 — [0, 1] is a fuzzy implication if
it satisfies the following conditions:

(I1) Ifx; <xpthenI(x1,y) > I(x2,y)
(I2) Ify; < y>then I(x,y1) < I(x,y2)
I3) 1(0,0)=1

Table 1 Material implication

A B A—B
T T T
T F F
F T T
F F T

57
Table 2 Classical inference rules
Rule: Modus Ponens Modus Tollens
Given: A—B A—B
A ~B
Consequence: B ~A

14) I1(1,1)=1
15 I1(1,0)=0

for all x, x1, x2, ¥, y1, y2 € [0, 1].

From the definition, we can see that a fuzzy implication
is a generalization of material implication that works on
the interval [0,1]. It also satisfies the properties of left
antitonicity (I1) and right isotonicity (I2). In the literature
(Mas et al. 2007; Oh and Bandler 1987), there are many
fuzzy operators like Standard sharp, Lukasiewicz, Gaines
43, and Willmott. The limitation of this type of operators
is that fuzzy logic works on fuzzy sets and membership
values and obeys neither the law of contradiction nor
orthomodularity (de Vries 2007). As a result, the fuzzy
implications cannot be used in the quantum logic which
obeys these rules.

A third type of implication operators, known as
Probabilistic Implications (PI), is a binary function I¢ :
[0, 112 — [0, 1] defined as

1 ifu=20

Cu.v) o (6)

Ic(u,v) = -0

u
where C is a copula, u,v are probabilities of two events
Y and X respectively, and /¢ is a probabilistic implication
based on copula C.

It was shown in Grzegorzewski (2013) that the proba-
bilistic implication is the natural counter part of the condi-
tional probability. There are many probabilistic implications
due to the abundance of copula functions. The problem with
these operators is that they do not take into consideration
the peculiarities of QL. For example, let /¢ be an PI opera-
tor based on the product copula, then the truth value of the
implication (A — B) will be calculated by multiplying the
probabilities of both A and B whether the involved events
are compatible or incompatible.

Finally, The founders of quantum logic have already used
the concept of subsumed events to define quantum impli-
cation using the containment between vector sub-spaces
(Birkhoff and Neumann 1936). But since their operator is an
absolute one, it fails to address the superposition principle
and it is not suitable for incompatible events.

H. Reichenbach managed to account for the superpo-
sition principle by using three-valued logic; he suggested
three quantum implication operators those are standard
implication, alternative implication and quasi implication

@ Springer
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(Reichenbach 1998). But he did not integrate them into the
quantum formalism which leaves them as a mere philosoph-
ical view. In addition, the existence of three operators leaves
us with the question “Which one should we use?”.

Later Jauch defined implication as the partial ordering
relation in the lattice (Jauch 1968). But Zeman objected on
this definition because it results in violation of the meta-
language/object language distinction (Zeman et al. 1979).
Before we close, we should mention that there are five
implications in an orthomodular lattice (quantum lattice)
(Megill and Pavici¢ 2003). Here there are:

1. a—1 b= ~aU(anb) (Sasaki)

2. a3 bbU (~ an ~ b) (Dischkant)

3. a3 b (~anb)U(~an ~b)U@n(~aUb))
(Kalmbach)

4 a >4 B @Nb)U(~anb)U(~aUb)n ~b)
(non-tollens)

5. a —5 b ((@aNb)U(~ anb))U(~ an ~ b) (relevance)

As we can see from the definitions, they do not take
into consideration the difference between compatible and
incompatible events. The above discussion leads us to the
conclusion that we need to define new implication operator
that accounts for the various properties of quantum logic
which is the topic of the next section.

5 Quantum implication and inference

This section is the key section whose goal is to define
a quantum implication operator. It starts by clarifying the
special properties of quantum logic, then it suggests a
quantum implication operator and put it into action by an
example.

As in the case of classical reasoning, quantum reasoning
needs an implication operator to be used as the basis for its
deduction rules. To define such operator, we need to under-
stand the peculiarities of quantum logic. These peculiarities
come from its underlying quantum theory. The following list
contains the main concepts that distinguish quantum logic
from others.

1. Quantum theory is probabilistic because the outcome of
a quantum measurement is a probability.

2. QM is contextual meaning that observables take differ-
ent values depending on the context. The context is the
set of commuting observables one is trying to measure.

3. Incompatible observables, which are incomeasurable,
raises a real challenge in quantum logic. If observables
cannot be measured simultaneously, then some of the
classical rules of logic, like distributivity, and probabil-
ity rules like, total probability, do not apply to them.

@ Springer

That is because incompatible observables are repre-
sented by different bases of the vector space.

4. There is a dependence relation between all quantum
events. This is a direct result of the measurement
postulate which states that measurements change the
state of the system; so the occurrence of one event has
an effect on the probability of subsequent events.

5. Entwinement is a special relationship between compat-
ible and incompatible events and should be considered
by the implication.

It should be mentioned that compatible events form a
boolean logic. For this reason, quantum logic is considered
as a collection of boolean logics each of which is defined by
a set of compatible events (Bub 2016).

Based on the above discussion, we define quantum
reasoning as follows:

Definition 1 Quantum reasoning is a kind of approxi-
mate reasoning that builds on quantum logic where the
imprecision is modeled by quantum probabilities.

In the following, P4 is a projector that defines the
vector subspace corresponding to event A. Since there is a
one-to-one correspondence between projectors and closed
sub-spaces (Dalla Chiara et al. 2013), we will use P4 to
represent both of them, for simplicity, and the meaning will
be clear from the context.

In addition, the truth value of a quantum event A will
be denoted by QLV(A) which stands for Quantum Logical
Valuation. QLV(A) is the squared length of the projection
of a unit state vector |{) onto its subspace P4. This squared
length varies between zero and one, depending on the
smallest angle between |{) and Py4. To facilitate things, we
will discriminate between three truth values. Two certain
truth values T:=1 and F:=0 where T means |¢/) € Pa
and F means |) € P~4. This is equivalent to what we
have in the boolean logic. The third truth value is the
uncertain value U which means the system state vector is in
a superposition with P4. In other words, the minimum angle
0 between |Y) and P4, is in the range ]0, 90[. As a result, the
QLV(A) is a probabilistic value in the interval ]0, 1[ which is
symbolized by U. The following definition summaries these
states:

T if =0
QLV(A) =13 F if 6 =90 7
Uif0<6 <90

where 6 is the angle between the system state and Py.

In the previous section, we have shown that the
containment relation between vector sub-spaces is used to
define quantum implication for compatible events since they
constitute a boolean algebra (Schmitt 2008). That is an event
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A implies B if their corresponding vector sub-spaces satisfy
the condition (P4 € Pp). This requires that the dimension
of the vector subspace corresponding to A is less than or
equal to that of B ie.; dim(Ps) < dim(Ppg). Since the
containment between two vector sub-spaces is equivalent to
saying that the confined angle between them is zero; And
to make the implication operator usable for incompatible
events, we are going to define the implication between two
events A and B based on two factors. The first of which is
the confined angle between their corresponding sub-spaces
which we will denote by ¢. Because when the event A
occurs the system state will change to be in P4 according
to the measurement postulate. For a discussion on how to
calculate this angle, the reader can refer to Gunawan et al.
(2005). The second factor is the minimum angle between
the system state |i) and the sub-spaces P4 and Pp which
we will denote by 1 and 6, respectively. These two angles
determine the probabilistic truth values of the events A
and B. But some truth combination of A and B are not
possible for a certain angle ¢. Based on that, the Quantum
Logical Valuation (QLV) of the implication between A and
B is defined as QLV(A — B) = y * x where y =
cos? ¢; and x is the answer to the question “Is the truth
combination of A and B possible?” It takes a binary value as
follows:

. 1 if QLV(A) and QLV (B) are possible together
0 otherwise

®)

With this being said, we can differentiate between three
cases depending on the angle ¢:

1. ¢=0

This means that the vector subspace P4 is contained
in Pg, since dim(P4) < dim(Pp) and the events A
and B are subsumed and compatible events. This is how
the material implication was defined between classical
events and it was also adopted by the founders of
quantum logic. Here the angle ¢ plays no role because
y = cos?¢ = 1. The implication evaluation becomes
QLV (A — B) = x which depends only on the angles
61 and 6, as will be shown shortly.

Given the three truth values (T, F, and U), we have
nine possibilities. To discuss them, let us have the
system in Fig. 4 where event A is represented by the
subspace defined by projector P4 = |A){(A| and event
B by subspace defined by projector Pp = P4V Pc. The
angles 01, 6, are the angles between the system state
|Y) and the sub-spaces P4, Pp respectively. Events A
and B are subsumed events and the angle ¢ between
their sub-spaces is zero so the implication A — B
is interpreted like “Is the truth combination of A and
B possible?” The answer to this question is either yes

|1A)

D)

Fig.4 Compatible events

(T) or no (F) and we will get this answer using the
truth values of A and B. The following list discusses all
possible cases:

(a) 6y =90and H; =90
|¢r) is orthogonal to both P4 and Pp and
the length of projecting |Y) on both of them is
zero. That corresponds to having QLV(A) = F and
QLV(B) =F. This case occur when |{/) = |D) and
the implication is true i.e. QLV(A — B) =T.
(b) 6 =90and 6, =0
This means that |v) 1 P4 and |¢¥) €
Pp. Expressed in QLV terms, QLV(A)= F and
QLV(B)= T. This occur when [¢) = |C) and
QLV(A —- B)=T.
(¢) 61 =90 and 68, €]0, 90[
Here we have QLV(A) = F and QLV(B) €
U. This is possible when JEvents X,Y; Py L
P4, Px A Pp = Py and the angle between |y) and
Py is a non-zero acute angle (i.e. 0 < 6 < 90).
For example, this occurs when [¢) = |s) and
QLV(A — B)=T.
(d 6 =0andH; =90
The angles indicate that |¢) € P4 and |¢) L
Pg. In QLV terms, we write QLV(A) = T and
QLV(B) = F. This is impossible when A and B are
subsumed so QLV(A — B) =F.
(e) #¢p=0andbh, =0
According to the angles, |{) belongs to both
sub-spaces so QLV(A)=T and QLV(B)=T. This is
possible when [{) = |A) and the QLV(A — B)
=T.
(f) 6; =0and#6, €]0,90[
From the angles, we get QLV(A)= T and
QLV(B) € U. This case happens when there is a
non-zero acute angle between P4 and Pp which is
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impossible when A and B are subsumed as a result
QLV(A — B)=F.
(g) 61 €]0,90[ and 6, = 90
Again from the angles, QLV(A) € U and
QLV(B) = F. This occurs when |y) L Pp and
at the same time holds an acute angle with Pj4.
This case is also impossible when P4 € Pp and
QLV(A — B)=F.
(h) 6y €]0,90[ and 6, =0
In QLV terms, we get QLV(A) € U and QLV(B)
=T. This occurs when |{) € Pg butnotin P4. The
implication is true and QLV(A — B)=T.
(i) 61 €]0,90[ and 6, €]0, 90[
QLV(A) € U and QLV(B) € U. This is possible,
for example, when |Y) = |f) So QLV(A — B)
=T.

These cases are summarized in Table 3. As we can see,
Table 1 is included in Table 3. We also notice that the
truth value of the implication between two A and B can
be decided based on the truth values of the involved
events as follows:

QLV(A — B)
_ {T if OLV(A) < QLV(B)

Fif QLV(A) = oLV (B) e F <U<T

©))

¢ =90

This means that A and B are compatible but mutually
exclusive events. In other words, when A is true, B is
false and vice verse. So it is impossible to have the case
F — F as true which can be seen as a solution to the
material implication problem that annoyed C.I. Lewis
and was mentioned in Section 4. Since y = cos? ¢ =0,
the implication as we have defined it is always false and
we do not need to discuss the possible cases.
¢ <]0, 90[

This means that events A and B are incompatible.
As a result, the implication between them is always not

Table 3 Implication for compatible events

A

=

A— B

cccHaAH3TTT

cHT AT AT
s B B R I R R
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D)

C)

Fig.5 Incompatible events

certain. Putting it another way, the truth value of the
implication cannot be T or F instead it is always U.
So we will express the logical values using the squared
cosine of the angles. Figure 5 will be used to discuss the
possible cases as follows:

(@) 61 =90and 6, =90

This case is possible when the system state is in
the subspace Pc and the evaluation of the events
is QLV(A) = QLV(B) = cos?290 = 0. Since the
case is possible then x= 1 and QLV(A — B) =
coszd)

(b) 6 =90and 6, =0

Depending on the angles, QLV(A) = 0 and
QLV(B) = 1. Such a case is only possible between
compatible events which means x = 0 and
QLV(A— B)=0

(¢) 61 =90and 6, €]0, 90[

Here we have QLV(A) = c0s290 = 0 and
QLV(B)= cos? 6. This is possible when the system
state is in the subspace corresponding to the
projector Pp so x = 1 and QLV(A — B) =
cos? ¢ = c0s2(90 — 65).

|CB) = (0,0,1)!

¥)

ICG) = (0,1,0)
ICR) = (1,0,0)f

Fig.6 The experiment
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(d) 6 =0and 6, =90 Table 5 Three-valued logic implication for incompatible events
. It is 1.mp0551ble to have such case between A . Ao B
incompatible events so x = 0 and QLV(A —
B) =0. F F U
(e) #p=0andb, =0 F T F
This is the containment case which is also U U
not possible between incompatible events and T F F
QOLV(A— B) =0. T T F
() 61 =0and 6, €]0, 90[ T U U
It occurs when |v) is in the subspace corre- U F U
sponding to the event A. That makes x = 1 and T U
6, = ¢. As aresult, QLV (A — B) = cos?6s. U U U

(g) 61 €]0,90[ and 6, = 90
This case is possible sox = 1 and QLV (A —
B) = cos*(¢) = cos?(90 — ;).
(h) 6y €]0,90[ and 6, = 0
In QLV terms, we get QLV(A)= cos?(6;) e U
and QLV(B) = cos?0 = 1. It occurs when |y)
is in the subspace corresponding to the event B.
That makes x = 1 and 87 = ¢. As a result,
QLV(A — B) = cos*0,.
(i) 61 €]0,90[ and 6, €]0, 90[
QLV(A)=cos? 6; and QLV(B)= cos? 6. This is
possible, for example, ¢ > 6; and So x = 1 and
QLV(A — B) =cos? ¢.

The implication can always be evaluated using the cos? ¢
but depending on the case, we can express the angle ¢ using
01 and 6, as shown in Table 4.

Table 5 presents the implication operator for incompati-
ble events but using the terms of three-valued logic. As we
can see, the logical evaluation of the operator is either false
or uncertain which confirms the uncertainty principle.

To make things more concrete, the following hypotheti-
cal experiment, which tests if a man is lucky or not, will be
used to illustrate some of the possibilities of Table 3.

Let us have an urn that contains three unbiased balls
whose colors are red, green, and blue respectively. A man
say, John, chooses a ball from the urn randomly. John will

Table 4 Implication for incompatible events with numbers

A B A— B

0 0 cos? ¢

0 1 0

0 cos? 6, c0s%(90 — 62)
1 0 0

1 1 0

1 cosZ 6, cos? 6,

cos? 6 0 cos?(90 — 0y)
cos? 6, 1 cos? 6,

cos2 6, cosZ 6, cas2¢>

be considered lucky, if he chooses the red or the green ball;
otherwise, he is considered unlucky.

There are two main events in this experiment. The first
event is “John chooses a colored ball” which we will denote
by C; while the second event is “John is lucky” which we
will denote by L. There are three disjoint possibilities for
the event C; those are CR, CG, or CB for choosing red,
green, or blue balls respectively. Since CR, CG, and CB
are mutually exclusive, they represent an orthogonal basis
for the three-dimensional system as shown in Fig. 6. The
event L is defined based on the balls’ colors as P, =
PcrV Pcg = Pcrucg- The balls are unbiased so they have
equal probabilities of being selected and that is depicted by

t
the system state |} = (1/+/3,1/+/3,1/+/3) . This three-
dimensional system represent the simplest quantum logic.
Now, let us see how the Table 3 holds.

1. The balls are unbiased which means QLV(CR) =
QLV(CB) = QLV(CG) = (0.5773)% = 0.333. If John
chooses the red ball then he is lucky. This can be
expressed logically by (CR — L) because Pcr C
Pr.. The events CR and L are an example of quantum
subsumed events. The same thing applies to the green
ball i.e., (CG — L). Du to the definition of L, we
can write (CR or CG — L) because Pcrucg <
Pr. According to Schmitt (2008), P = |CR){CR| +
|[CG){(CG| so we calculate the logical truth value or
the probability of John being lucky using Eq. 4 as
QLV(L) = p(L) = (w|PZPL|1p> after substitution we
get

100 1/V/3
QLV(L)=(1/v/31/+/31/4/3)| 010 1/V/3
000 1/V/3

The result QLV(L) = 0.667 € U and we have QLV(CR)
=0.333 € U. Since Pcr € P then QLV(CR — L) =
T. This case is an implementation of the last possibility
of Table 3.
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2. Suppose John is lucky, that means the event L has
occurred and the new system state |v/') resides in Pp.
This new state is calculated, using Eq. 5, as follows

|

100 ~{§ 0.7071

Wy=——x|o10]|x| —= | =]07071
V0667 \ o0 0 V3 0

Being in Pp, the new state |v/') guaranties that the
blue ball was not chosen by giving the zero weight
to the subspace Pcp. At the same time it gives an
equal weight of 0.7071 for both Pcg and Pcg. The
truth value of an event is obtained by squaring the
weights of their corresponding sub-spaces. We know
that QLV(L) =T and we also know that QLV(CR — L)
= T. But QLV(CR)=T when the red ball is chosen, or
QLV(CR)=F when the green ball is chosen or uncertain
(0.7071 € U) when we do not know whether the red or
green ball was chosen.

3. 1If John chooses the red ball, then the system state
becomes |CR) and the truth value of John being lucky
calculated using Eq. 4 is one. We have (CR — L)
and CR occurs then L also occurs. In other words, the
classical MP rule holds (see Section 5).

4. John is unlucky is the event ~L which occurs when
the color of the chosen ball is blue. Its corresponding
subspace is ~ L = [ — P; means that the system
state could belong to any subspace except Pr. If John
is unlucky, the the system state |¢') will be |CB) as
computed below. Since Pcp L Pcg the truth value of
the event CR is F.

1
1 000 v3 0

W)= —=x[000]| x| —=|=]|0
V0333 "\ o1 V3 |

In logical expression, we had CR — L and ~L then we
get ~C R. This means the classical MT rule also holds.

6 Conclusion and future work

In this paper, we reviewed the existing implication operators
and discussed their usability in the quantum case. We also
defined a quantum implication operator that works for
compatible and incompatible events. It turned out that the

@ Springer

suggested operator satisfies some of the classical reasoning
rules like Modus Ponens and Modus Tollens when it is used
with compatible events.

In future research, we intend to discuss the special case
when the events are entwined. We also want to define
quantum specific reasoning rules based on the suggested
operator and use them for reasoning on real data.
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