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Abstract
In this study, the Finite-Element Model Updating (FEMU) technique is used to identify hyperelastic parameters from only 
one heterogeneous test. A residual considering measured and identified stretches as well as the global reaction force of the 
specimen is built. The originality of this paper is to investigate the feasibility of the resolution of this minimisation problem 
using the Inverse-PageRank-particle swarm optimisation (PSO) for identifying hyperelastic parameters. For that purpose, 
the so-called PSO technique has been enriched with a PageRank algorithm to adapt iteratively the PSO parameters. As the 
paper examines whether Inverse-PageRank-PSO is adapted or not to the minimisation of the objective function in the present 
case, only two basic hyperelastic models have been considered.

Keywords  Inverse identification · Hyperelasticity · FEMU · Particle swarm optimisation · Rubber · Heterogeneous test · 
Digital image correlation

Introduction

Hyperelasticity is widely used to predict the mechanical 
response of soft materials under large strains, for instance 
tissues [8, 9, 26], laminates [1, 25] and membranes [36]. 
Hyperelastic models are generally identified from several 
homogeneous tests, see [5, 38] for instance, since the values 
of their constitutive parameters strongly depend on the strain 
state [44]. Three homogeneous tests are classically consid-
ered, namely the uniaxial tension (UT), the pure shear (PS) 
and the equibiaxial tension (EQT), to completely describe 
the domain of possible loading paths [45, 48]. A trade-off 
between the sets of values obtained with the different tests 
has, therefore, to be found to obtain parameters that can rea-
sonably be considered as intrinsic to the mechanical behav-
iour of the material. As explained in [10], such identification 
approach has many disadvantages:

•	 each of the tests carried out are assumed to induce a 
homogeneous strain state, which is a strong assumption 
in case of PS and EQT tests,

•	 several specimen geometries are required,
•	 several testing devices are needed to apply these loading 

conditions,
•	 dispersion obtained for each test requires testing several 

specimens for each loading condition,
•	 the comparison between the constitutive parameters iden-

tified from different loadings is a matter of debate,
•	 the elaboration process may differ from one specimen 

geometry to another one (typically compression mould-
ing versus injection moulding).

This can have a significant effect on the values of the 
identified constitutive parameters, and therefore, on the 
predicted mechanical response. An alternative method con-
sists in performing only one heterogeneous test as long as 
the strain/stress fields are sufficiently heterogeneous. This 
is typically the case when a multiaxial loading is applied 
to a 3-branch [16] or a 4-branch (cruciform) [37] speci-
men, which induces a large number of strain/stress states 
at the specimen’s surface. This approach was also explored 
in Johlitz and Diebels [20], Sasso et al. [39] and Seibert 
et al. [41]. Such tests are all the more interesting that the 
full kinematic field can be measured and used to enrich the 

 *	 J.‑B. Le Cam 
	 jean-benoit.lecam@univ-rennes1.fr

1	 Institut de Physique de Rennes UMR 6251 CNRS/Université 
de Rennes 1, Rennes, France

2	 Université Bretagne-Sud, UMR CNRS 6027, IRDL, 
56000 Lorient, France

http://orcid.org/0000-0002-2366-2512
http://crossmark.crossref.org/dialog/?doi=10.1007/s42464-021-00113-8&domain=pdf


448	 G. Bastos et al.

1 3

identification process. As no analytical relationship is avail-
able between measurements and parameters to be identified, 
an inverse identification procedure has to be used.

In the present paper, the identification is carried out with 
the Finite-Element Model Updating (FEMU) technique. A 
residual considering measured and identified stretches as 
well as the global reaction force of the specimen is built. As 
this type of heterogeneous tests can be used to identify more 
complex behaviours, also governed by viscosity, permanent 
set and softening, to name a few, the number of parameters 
to be identified can increase drastically and methods such as 
the Particle Swarm Optimisation (PSO) [6, 11, 13, 22, 33, 
42, 46] can be envisaged for the resolution of this minimisa-
tion problem.

The main goal of this paper is to investigate the feasibility 
of using the Inverse-PageRank-particle swarm optimisation 
(I-PR-PSO) and has, therefore, to be considered as a feasibil-
ity study. For that purpose, the so-called PSO technique has 
been enriched with a PageRank algorithm to adapt iteratively 
the PSO parameters to increase the convergence capabilities 
of the particles as the optimisation calculation is going on. 
As the paper examines whether Inverse-PageRank-PSO is 
adapted or not to the minimisation of the objective function 
in the present case, only two basic hyperelastic models have 
been considered.

The paper is organised as follows. First, the main fea-
tures of the PSO and the PageRank algorithm used are pre-
sented. Second, a numerical study illustrates the relevance 
of the approach with a special emphasis on the influence 
of measurement noise on identified parameters. Third, the 
experimental test corresponding to an equibiaxial tensile 
test is described and the identification results are discussed. 
Concluding remarks close the paper.

Inverse identification method

In this section, the inverse identification of the constitutive 
parameters is presented. First, the finite-element (FE) model 
is described. Second, the optimisation strategy carried out 
with a metaheuristic population based algorithm (the PSO 
algorithm) involving artificial intelligence (the PageRank 
algorithm) is precisely detailed. Third, the methodology is 
validated with a purely numerical approach. The section 
closes with a discussion on the effects of the measurement 
noise on the identified parameters.

FE model

The geometry chosen is presented in Fig.  1. It is a 
105-mm-long and 2-mm-thick cruciform specimen. Such 
a geometry leads to a strong heterogeneity of the strain 

fields in terms of both the strain states and the distribution 
of the strain levels for a given strain state (see [16, 37] for 
further details).

The FE code used is ANSYS APDL. The finite-element 
calculation is performed by assuming plane stress state 
and material incompressibility. For that purpose, the four-
noded PLANE182 element is used. The mesh is made of 
9600 nodes and 9353 elements. It is illustrated in Fig. 1.

The equibiaxial tensile loading is prescribed by apply-
ing the same maximum displacement of 70 mm to the four 
specimen branch ends. The time increment is chosen in 
such a way that the predicted and measured strain fields 
can be compared at the same prescribed displacements. 
Seven displacement levels were considered: 11, 21, 31, 
41, 51, 61 and 70 mm.

Two hyperelastic models were chosen. The first one is 
the Mooney model [30] and is given by the following form 
of the strain energy density:

In Eq. 1, I1 and I2 are, respectively, the first and second 
invariants of the right Cauchy–Green strain tensor C.

They are calculated by considering the material as 
incompressible (detF = 1). This model predicts quite well 
the nonlinear strain–stress relationship up to a moderate 
strain, i.e. until a stress hardening leading to an inflec-
tion in the mechanical response curve is observed at large 
strains.

(1)WM = C1

(
I1 − 3

)
+ C2

(
I2 − 3

)
.

Fig. 1   Specimen geometry (dimensions in mm) and FE mesh. It 
should be noted that with FEMU, a problem is often encountered, 
which is to determine the correct force distribution along the bound-
ary of the specimen. Indeed, slippage in the grips inducing het-
erogeneities in the force distribution cannot be really measured. The 
problem is resolved by adding small cylinders at the end of the four 
branches of the specimen and using suitable grips. They prevent slip-
ping into the machine’s grips
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To account for the stress hardening effect, the Yeoh model 
has also been considered [49]. The corresponding strain 
energy density is written as follows:

The values of the constitutive parameters to be identified 
were evolving at each iteration of the optimisation process. 
The value of the incompressibility parameter (K−1 ) was set 
to 10−5 MPa−1 for all the FE calculations proceeded, which 
is low enough to consider the material incompressibility [3]. 
Note that only one and four (equally-spaced) displacement 
levels are sufficient for the identification of the Mooney 
and Yeoh models, respectively. This has been found from 
both experimental and generated data considering several 
combinations of the displacement levels considered in the 
identification.

Metaheuristic optimisation strategy

Definition of the objective function

The optimisation process aims at determining the constitu-
tive parameters for the predicted data to fit the experimental 
ones. Experimental data considered here are the kinematic 
fields at different displacement levels in the specimen’s 
branches, as well as the reaction force in the branches. 
Indeed, as the hyperelastic models chosen involve a linear 
relationship between the stress and the constitutive param-
eters, the kinematic fields can be the same for two different 
sets of constitutive parameters. This is the reason why the 
force also needs to be considered in the objective function 
calculation. The objective function to be minimised is thus 
defined as the squared relative difference between the experi-
mental (exp) and the numerical (num) data:

where N is the number of nodes and k corresponds to the 
number of strain states (displacement levels applied) con-
sidered in the optimisation process. �(i,j)max and �(i,j)

min
 are the 

maximum and the minimum in-plane principal stretches. F(i) 
is the horizontal force measured at the machine horizontal 
grip. Only one strain field (k = 1) is sufficient to identify the 
two constitutive parameters of the Mooney model as soon as 
a sufficient distribution in the strain level and the strain state 
is induced. Since the stress hardening cannot be predicted 
by the Mooney model, the corresponding displacement 
fields were not used within the identification procedure. For 
the Yeoh model, all the strain fields are used, obtained at 
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different displacement levels, to activate the three constitu-
tive parameters, and therefore, to be able to take the inflec-
tion point into account, corresponding to a stress hardening 
in the stress–strain curve.

Classical particle swarm optimisation algorithm

The classical Particle Swarm Optimisation (PSO) algorithm 
is considering particles (initially belonging to a bird flock or 
fish swarm, see for instance [22] for further details) that are 
each a potential solution to the optimisation problem to solve 
[34, 40]. These particles are then “flying” through the solu-
tion domain, whatever its dimension, to converge together 
to the global minimum by smartly following each other. For 
that purpose, the particles positions, denoted X , and veloc-
ity,1 denoted V , have to be calculated for every particle at 
each iteration of the optimisation process. Their movement 
in the solution domain is obtained by making them follow 
the best one denoted Gbest and the best one from their neigh-
bourhood denoted Pbest . The speed and position of particle 
m at iteration t + 1 are given as follows:

where Pm,best is the best particle in particle m ’s neighbour-
hood, c1 and c2 are confident parameters that weight the 
importance of the neighbourhoods’ memory and the global 
swarms’ memory, respectively. The inertia weight � is 
weighing the influence of the last iteration’s speed on the 
calculation of the new one. � is then considered as an iner-
tia imposed to the particle as the calculation is going on. 

A proper value of � can balance the particles’ ability to (i) 
explore the solution domain when � is large (around 1:2), 
and (ii) exploit interesting areas of the solution domain when 
� is small (around 0:4).

The particle’s speed and position have to be constrained 
for the calculation to converge. The extremal speed of 
the particles is then defined in 

[
−Vmax;Vmax

]
 where Vmax 

is given as a function of the solution domain, such as 

(4)

⎧⎪⎪⎨⎪⎪⎩
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,

1  Called “the velocity” in the literature, this parameter actually repre-
sents the particles’ displacement in the solution domain.
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Vmax =
(
Xmax − Xmin

)
= 5 where Xmax and Xmin are the 

boundaries of the solution domain. The neighbourhood of 
every particle can be defined as a link to the other parti-
cles [4, 23, 28, 29], i.e. the way the particles are influencing 
each other. Some static neighbourhoods have been proposed 
in the literature [23, 28, 29, 32], such as the Global Best 
(GBEST) topology, in which every particle is influenced 
by all the others, and the Local Best (LBEST) topology, in 
which every particle is linked and influenced by two of its 
peers. Moreover, some dynamic particles topologies have 
been proposed in the literature [2, 18, 19, 35, 43], in which 
the way the particles are linked is evolving as the calculation 
is going on.

Inverse‑PageRank‑PSO

The Inverse-PageRank-PSO algorithm used in this work is 
based on both the PSO and the PageRank algorithm used by 
the world-famous search engine Google [7, 15, 24]. In this 
strategy, the population’s topology is based on the GBEST 
one, but the links between all the particles are weighed 
regarding their fitness, i.e. their instant capability to con-
verge to the global minimum of the considered objective 
function. This means that the closest particles to the littlest 
minimum found so far have a greater influence on the others 
than the distant ones. As demonstrated in [12], the particles 
topology can be seen as an oriented graph, in which the 
particles are the nodes, and the links between them repre-
sent the influence of the particles on each other. As these 
weights are not depending on the past, this oriented graph 
can be seen as a Markov chain, in which the transition prob-
abilities are the probabilities for a particle to follow one or 
the other of its peers. To calculate the weighted influence of 
every particle on the others, an inverse version of the Pag-
eRank algorithm is used. The PageRank algorithm is used 
by the search engine Google to rank the webpages when a 
search is formulated: the more the links going in a webpage, 
the higher the rank of this webpage. The aim here is to do 
the opposite, which is to deduce the probability transitions 
of the Markov chain by considering the PageRank, i.e. the 
steady-state of the Markov chain, as known. Each particle 
performance fitness ( Pm ) is compared to the best one Gbest 
and transformed into a transition probability in the PageR-
ank vector π as follows:

where p is the number of particles in the swarm and 
fitness(X) is the objective function value calculated for par-
ticle X , previously defined in Eq. 3. Then, a pseudo-random 

(5)
�
T
target
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|||||
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(
Gbest

)
× 100

fitness
(
Gbest

)
− fitness

(
Pm

)
+ �

|||||
∀m ∈

[
1, p

]
,

process called inverse PageRank is used to calculate the tran-
sition probability matrix C corresponding to the previous � 
vector. In the final converged connectivity matrix, the ele-
ments of row r are relative to the links going out of node r , 
while the elements of column c are relative to the links going 
into node c . The components of matrix C are then considered 
as the influence of all the particles on the others, that is the 
probability for each of them to follow every other one. In 
this way, the best particles—that is the ones obtaining the 
littlest values of the objective function—obtain the greatest 
values in � and in C as well. This inverse PageRank process 
is launched at every iteration of the optimisation process, for 
the particles topology to be smartly evolving and adapting 
to the swarm’s performance as the calculation is going on. 
The neighbourhood part of Eq. 4 is then modified, weigh-
ing the influence of all the particles using the components 
of C , as follows:

In this work, every particle will be a vector containing 
as much variables as the model contains parameters to be 
identified, and the objective function defined in Eq. 3 will be 
calculated for each of them. In the present study, the authors 
have made their own algorithm, coded with Matlab software 
[27].

Numerical validation

In this section, the inverse identification methodology pro-
posed is applied to data obtained from FE simulations of 
the biaxial test previously defined in 2.1 with a given set 
of constitutive parameters for both the Mooney and Yeoh 
models. The constitutive parameters used are reported 
in Table 1. The research domains for each constitutive 
parameter to be retrieved are reported in Table 2. Note 
that C20 is imposed to be negative for the Yeoh model, to 
fairly predict the shear modulus for all ranges of strain 

(6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

V
t+1
i

= � × V
t
i
+ c1 × rand1 ×

�
P
t
i,best

− X
t
i

�

+c2 × rand2 ×

n�
j=1

Cij ×
�
P
t+1
i,best

− X
t
i

�

X
t+1
i

= X
t
i
+ V

t+1
i

.

Table 1   Reference constitutive 
parameters

Mooney Yeoh

C
1
 MPa 0.4 –

C
2
 MPa 0.04 –

C
10

 MPa – 0.5
C
20

 MPa – − 0.02
C
30

 MPa – 0.005
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as explained in [49]. The stability criterion defined by 
Drucker [14] is used within the FE code ANSYS APDL 
to ensure the behaviour law stability. If the energy density 
is unstable, then the FE simulation will not converge. In 
this case, a large value of the objective function is affected 
( 104 typically). Therefore, this research domain area will 
not be considered as a promising zone to be exploited by 
the PSO particles in the next iterations of the optimisation 
process. The objective here is to retrieve the values of the 
constitutive parameters for the two hyperelastic models, 
which predict the mechanical response of the cruciform 

specimen. As above mentioned, the kinematic fields used 
in the identification procedure are the maximum and mini-
mum in-plane principal stretches.

The distribution of the maximal principal stretch for a 
displacement of 70 mm is reported in Fig. 2a. It lies between 
1.8 for equibiaxial tension state and 3.2 for uniaxial tension. 
The heterogeneity is enough for the identification to be car-
ried out. This is in a good agreement with the conclusion 
previously drawn for such a test in [37].

To account for experimental measurements, the stability 
of the identification procedure to measurement uncertainties 
is examined by adding three amplitude noise levels NoiseAmp 
of 0.01 , 0.05 and 0.1 to the numerical principle stretches 
fields, which are dimensionless quantities. This noise was 
generated using Matlab function randn . It should be noted 
that noise in real camera sensors is signal-dependent (or het-
eroscedastic) and that a uniform (or homoscedastic) noise 
is considered here instead for the sake of simplicity, as in 
similar studies dealing with identification [37].

Table 2   Research domains for 
the constitutive parameters

Min Max

C
1
 MPa 0.1 1

C
2
 MPa 0.01 0.1

C
10

 MPa 0.1 1
C
20

 MPa − 0.04 0
C
30

 MPa 0.001 0.01

Fig. 2   Maximal principal stretch fields for a displacement equal to 70 mm : numerical and noised data
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The noised numerical data are reported in Fig. 2b–d for 
0.01 , 0.05 and 0.1 noise amplitudes, respectively. It should 
be noted that the maximum error caused by the noise intro-
duced to the numerical data can exceed 11% from its original 
value. This error is greater than the correlation error calcu-
lated in “Full kinematic field measurement”. The identifica-
tion methodology was applied to identify the constitutive 
parameters for both Mooney and Yeoh models by consider-
ing the three noise levels for each of them.

Identification results for the Mooney model

Given that the Mooney model is not able to describe the 
hardening phenomenon, a maximum displacement of 51 mm 
is considered for the identification procedure. This value 
corresponds to the appearance of the inflection point in the 
experimental force–displacement curve. Only one strain 
state ( k = 1 in Eq. 3) corresponding to the maximum dis-
placement applied is considered for the identification. It 
should be noted that no post-processing is needed for the 
numerical data since the kinematic fields were obtained 
from the same Ansys FE model. The identified parameters 
from reference and noised numerical data are reported in 
Table 3. The first parameter C1 is fairly identified since the 
relative error is inferior to 3% for the reference and noised 
data. However, the second parameter was not fairly retrieved 
from the noised data. This is due to its greater sensitivity to 
noise as it is not sufficiently activated at this displacement 
level, which was also seen in [37]. Moreover, following the 
formulation of the Mooney model, this error is not as sig-
nificant as it seems because the first parameter has a greater 
contribution to the strain energy density of Eq. 1 than the 
second one. This is due to its association with the second 
invariant I2 , which needs a larger EQT zone to enhance its 
contribution to the global response of the material. The 
overall veracity of the identification procedure is seen in the 
values of the force error and the objective function values. 
Figure 3 illustrates the accuracy of the identified parameters 
from the force response of the cruciform specimen during 
the biaxial test.

Identification results for the Yeoh model

For the Yeoh model, four strain states corresponding 
to a prescribed displacement of 11 mm , 31 mm , 51 mm 
and 70 mm ( k = 4 in Eq. 3) were used in the identifica-
tion of the constitutive parameters. These several strain 
states are necessary to account for the inflection point 
in the force–displacement curve.2 The identified param-
eters from the reference and noised numerical data are 
reported in Table 4. These parameters show the capacity 
of the identification procedure to retrieve the constitutive 
parameters even from noised data. This is also shown 

Table 3   Identification results for Mooney model

NoiseAmp 0 0.01 0.05 0.1

C
1
 MPa 0.4014 0.3902 0.3892 0.3944

Error 0.35% −2.4% −2.7% −1.4%

C
2
 MPa 0.0377 0.0563 0.0579 0.0491

Error −5.7% 40.75% 44.75% 22.75%

Force error (N) 3.410−4 5.3910−5 8.410−5 1.41 × 0−5

Objective function 1.1610−9 2.910−9 7.110−9 2 × 10−10

Fig. 3   Force response versus displacement for parameters of Table 3 
(Mooney model)

Table 4   Identification results for Yeoh model

NoiseAmp 0 0.01 0.05 0.1

C
10

 MPa 0.502 0.4997 0.5004 0.5034

Error 0.4% −0.06% 0.08% 0.68%

C
20

 MPa −0.0201 −0.0195 −0.0198 −0.0203

Error −0.5% 2.5% 1% −1.5%

C
30

 MPa 0.00496 0.00494 0.00497 0.0048

Error −0.8% −1.2% −0.6% −4%

Force error (N) 2.6 × 10−3 9.2 × 10−4 1.14 × 10−3 1 × 10−2

Objective func-
tion

3.37 × 10−5 5.4 × 10−6 6 × 10−6 4.67 × 10−1

2  Note that in this case, the mechanical behaviour is fully described 
by the Yeoh model, which is not necessarily the case when dealing 
with experimental force–displacement curve. Thus, other intermedi-
ate strain states, i.e. strain states that would not be homogeneously 
distributed during the test, can be used in the identification procedure.
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in terms of the value of the final force error, which lies 
between 10−4 and 10−2 , and the final objective function 
values, which lies from 10−6 to 10−1 for all the analysed 
data. Furthermore, the evolution of the force during the 
biaxial test is well predicted, especially the inflection 
point in the force–displacement curve2. This is shown in 
Fig. 4. As a conclusion, for the two models under consid-
eration, the identification procedure showed its relevancy 
even when the kinematic fields are strongly noised. This 
methodology is applied to experimental data in the next 
section.

Application to experimental data

In the previous part, the methodology has been success-
fully applied to numerical data. It was shown how much 
noise effect influences the identification methodology. 
The result obtained clearly shows that the methodology 
is well suitable for identifying constitutive parameters 
from experimental, i.e. noisy, kinematic fields, which is 
the aim of the present section.

Figure 5 presents an overview of the experimental 
setup. It consists in a home-made biaxial testing machine 
and an optical camera. The machine is composed of four 
independent electrical actuators, controlled by an inhouse 
LabVIEW program. Two load cells, whose capacity is 
equal to 1000N  , measure the force in the two perpendicu-
lar directions. In the present study, four equibiaxial load-
unload cycles were prescribed in terms of grip displace-
ment. The displacement and the loading rate were set at 
70 mm and 150 mm∕min , respectively, for each of them.

Full kinematic field measurement

Images of the specimen surface were stored at increasing 
displacement of the grips at a frequency equal to 5 Hz, 
which is the lowest frequency allowed by the current 
experimental setup, with an IDS camera equipped with a 
55 mm telecentric objective. The charge-coupled device 
(CCD) of the camera has 1.920 × 1.200 joined pixels. The 
displacement field at the specimen surface was determined 
using the DIC technique. It consists in correlating the grey 
levels between two different images of a given zone, each 
image corresponding to a different strain state. DIC hard-
ware and analysis parameters are reported in Tables 5 and 
6, respectively, such as recommended in the guideline 
[21]. To improve the image contrast, a white paint was 
sprayed on the specimen surface before the test, which 
led to a random speckle with a feature pattern of about 6 
pixels approximately. A uniform cold lighting at the speci-
men surface was ensured by a home-made LED lighting 
system. DIC was performed using SeptD [47]. The param-
eters used for the DIC are reported in Table 6. Namely, the 
smallest distance between two independent points, also 
referred to as the step size, was equal to 4 pixels (here 
the size of the zones of interest (ZOIs)) corresponding to 
289.6 µm. The Region Of Interest (ROI) used to compute 
the displacement field with the DIC technique is depicted 
in Fig. 6. It corresponds to an area of 384 × 680 pixels. 
The displacements and strains noise floors reported in 
Table 6 were obtained by performing the DIC using static 
images, i.e. before application of the mechanical loading. 
Note that these values present the standard deviation of the 
displacement and strain fields over the ROI. These are the 
typical values for a good DIC performance, see [21] for 
further details. Given that the applied displacement and 
strains are large, the strain formulation used in this work 

Fig. 4   Force response versus displacement for parameters of Table 4 
(Yeoh model)

Fig. 5   Experimental setup
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is the logarithmic one, which is recommended for the finite 
strain framework [17].

It should finally be noted that the strain measurement 
used here is the maximum and minimum in-plane principal 
stretches of the transformation gradient tensor F, denoted 
�max and �min , respectively.

Kinematic fields processing

As the data point coordinates of experimental and numerical 
fields did not coincide, the experimental kinematic fields 
were fitted locally by polynomial functions. When the stretch 
fields obtained by the DIC technique exhibited uncorrelated 
zones, the values in these zones were interpolated from sur-
rounding ZOIs and then fitted by the polynomial functions. 
This post-processing step reduces the noise effect, without 
altering the signal, as no strong strain gradients are induced 
under such loading conditions. The polynomial fit was car-
ried out at the local scale, i.e. for every point in the ROI, by 
considering the 6 closest points to calculate the 6 coefficients 
of the second-order polynomial used. The experimental data 
were replaced by the polynomial functions in the objective 
function calculation, for the errors to be calculated at exactly 
the same coordinates.

Results and discussion

In this section, the experimental data are first given; the 
mechanical response, the kinematic field measurement and 
post-processing and the results of the identification method-
ology proposed are highlighted.

Mechanical response

Figure  7 gives the experimental mechanical response 
obtained in terms of the force in the horizontal direction 
versus the displacement applied for each specimen branch. 
The force used in the identification procedure is the one 
obtained during the fourth load (plotted in red colour Fig. 7). 
This choice was made to identify the stabilised behaviour of 
the specimen, since the material accommodates during the 
first cycles [31]. It should be noted that the accommodation 
level is different from one point to another in the specimen. 
Therefore, the identification is done in the case of an accom-
modated structure. As above mentioned, the curve exhibits a 

Table 5   DIC hardware 
parameters Camera IDS UI-3160CP Rev. 2

Image resolution 1920 × 1200 pixels2

Lens 55 mm C-mount partially telecentric. Constant magnification over 
a range of working distances

 ± 12.5 mm of object movement before 1% error image scale occurs
Aperture f/5.6
Field-of-view 139.4 × 87.1 mm
Image scale 14 pixels/mm
Stand-off distance 1100 mm
Image acquisition rate 5 Hz
Patterning technique White spray on black specimen
Pattern feature size (approximation) 6 pixels

Table 6   DIC analysis parameters

DIC software 7D©

Image filtering None
Subset size 20 pixels/1.45 mm
Step size 4 pixels/0.29 mm
Subset shape function Affine
Matching criterion Normalised cross correlation
Interpolant Bi-cubic
Strain window 5 data points
Virtual strain gauge size 36 pixels/2.62 mm
Strain formulation Logarithmic
Post-filtering of strains None
Displacement noise-floor 0.036 pixels/2.6 µm
Strain noise-floor 6.1 mm/m

Fig. 6   Region Of Interest (ROI)
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Fig. 7   Mechanical response in terms of the horizontal force versus 
the displacement applied

Fig. 8   T8 images are considered to determine the 7 strain fields dur-
ing the test

Fig. 9   Principal stretch fields for a displacement equal to 51 mm
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strong non-linearity that is amplified at the largest displace-
ment applied due to the hardening effect. An inflection point 
is indeed observed at a prescribed displacement of 50mm.

Kinematic field measurement and post‑processing

Figure 8 illustrates the distribution of the images considered 
to determine the strain fields. 8 images are used to determine 

7 strain fields at increasing displacement. The first image 
is the reference one, which corresponds to the undeformed 
state. The DIC process was carried out iteratively. The cor-
relation is first done between two successive images and 
the strain field is then built with respect to the undeformed 
state. In the case of the Mooney model, the inflection in 
the mechanical response curve is not predicted. Only one 
image before the inflection point (Image #6, corresponding 
to a displacement equal to 51 mm applied to each branch) 
was required for the identification of the two constitutive 
parameters. In the case of the Yeoh model, several images 
are considered to account for the hardening up to a displace-
ment equal to 70 mm at the branch end. Figure 9 gives the 

Fig. 10   Principal stretch fields for a displacement equal to 70 mm

Table 7   Research domains

Research domain Speed limits

Min Max Min Max

Mooney
 C

1
 MPa 0 1 C

1
 MPa – 0.5 0.5

 C2 MPa 0 0.1 C
2
 MPa – 0.05 0.05

Yeoh
 C

10
 MPa 0.1 1 C

10
 MPa – 0.105 0.105

 C
20

 MPa – 0.035 0 C
20

 MPa – 0.003 0.003
 C

30
 MPa 0.001 0.01 C

30
 MPa – 0.00025 0.00025

Table 8   Optimisation 
parameters

Mooney Yeoh

Iterations 50 30
Particles 15 20
� 1.2 − 0.4 1.2 − 0.4
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fields of maximum and minimum (Fig. 9a, c, respectively) 
principal in-plane stretches for a displacement of 51 mm. In 
these fields, the values in uncorrelated zones (white ZOIs in 
the measured fields) are first interpolated from surrounding 
ZOIs and then fitted by the polynomial functions as previ-
ously described in Sect. 3.2. The obtained fields are given 
in Fig. 9b, d, respectively.

Figure 10 provides the same fields as in Fig. 9, but for a 
displacement equal to 70 mm, which was the maximum dis-
placement applied during the test. To evaluate the relevancy 

of the experimental data post-processing, the differences 
between the kinematic fields obtained with the DIC tech-
nique and the polynomial-based functions are calculated for 
every point in the ROI. The calculations were performed 
for displacements equal to 51 mm and 70 mm . For a dis-
placement equal to 51 mm , 98.51% of the points in the ROI 
exhibit an error inferior to 1% for the maximal stretch and 
97.52% of the points in the ROI exhibit an error inferior to 
1% for the minimal stretch. The results are better for the 
largest displacement ( 70 mm ): all the points exhibit an error 
inferior to 1%.

Inverse identification

The FE simulation was launched according to the procedure 
given in “FE model”. The images and principal stretch fields 
were processed as described in Sect. 3.2. The optimisation 
process to carry out the inverse identification consists in 

Fig. 11   Convergence curves of the optimisation processes

Table 9   Results of the optimisation calculation

Mooney Yeoh

C
1
 MPa 2.13 × 10−1 –

C
2
 MPa 3.45 × 10−2 –

C
10

 MPa – 2.7 × 10−1

C
20

 MPa – −1.1 × 10−2

C
30

 MPa – 1.2 × 10−3

Objective function 9.74 × 10−4 2.85 × 10−2

Fig. 12   Mooney model: final 
results
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minimising the objective function presented in Sect. 2.2.1 
by changing the constitutive parameter values chosen by the 
I-PR-PSO algorithm detailed in Sects. 2.2.2 and 2.2.3. Con-
cerning the I-PR-PSO algorithm parameters, as the particles 
speeds and positions have to be constrained for the calcula-
tion to converge, the extremum values of the domains and 
speed imposed are given in Table 7.

Optimisation algorithm parameters are given in Table 8. 
The inertia of the particles has been chosen to be linearly 
decreasing as the calculation is going on, to encourage the 
particles to explore the design domain at the beginning of the 
calculation, and to focus on interesting areas of the domain 
at the end of the calculation. Figure 11 gives the conver-
gence curves of the optimisation calculations for the two 
models. The values of the optimised objective function and 
design variables are given in Table 9. The errors between the 
experimental and numerical values of the principal stretches 
for every point of the ROI are depicted in Figs. 12 and 13 
for the Mooney and the Yeoh model, respectively.3 We recall 
here that several strain states were necessary to identify the 
parameters for the Yeoh model. Contrarily to what was 
done in the numerical validation section, the strain states 
used were not homogeneously distributed with respect to 
the prescribed displacement. As explained previously, the 
mechanical response has not exactly the same shape as the 
one given by the Yeoh model. It should be noted that several 
possibilities have been tested beforehand.

Fig. 13   Yeoh model: final 
results

Fig. 14   Comparison between optimised numerical results and experi-
mental data

3  As the CPU time needed to calculate the objective function 
strongly depends on the machine used, the CPU time needed to con-
verge is not a reliable indicator to evaluate the performances of the 
proposed methodology. Nevertheless, a more relevant information 
could be the number of calls to the OF calculation. It can be seen in 
Fig. 11 that the calculation can be considered as converged after 15 
iterations, that is after 225 and 300 calls for the objective function 
calculation, for the Mooney and Yeoh models, respectively.
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For the Mooney model, the maximal stretch field was 
fairly retrieved since 92.25% of the points in the ROI exhibit 
an error inferior to 3% , whereas for the minimal stretch, over 
90% of the points have an error inferior to 5%. But this devia-
tion has no significant effect on the global response as it 
is seen in Fig. 14. For the Yeoh model, both maximal and 
minimal stretches were fairly retrieved since the error was 
inferior to 5% for the whole ROI.

The validation of the optimised values of the constitu-
tive parameters is performed by comparing the experimental 
and numerical force–displacement curves. The mechanical 
responses measured and predicted are given in Fig. 14. For 
the Mooney model, a good agreement is found for a maxi-
mum displacement equal to 51 mm . For the Yeoh model, 
the result was satisfactory for the whole displacement range 
investigated here, i.e. including the inflection in the curve, 
meaning that the hardening was predicted quite well. This 
result shows that only one deformed state is sufficient to 
identify the Mooney constitutive parameters and only 4 
deformed states for the Yeoh model. It should be noted that 
several combinations were tested for the identification of 
the Yeoh model.

Conclusion

In this study, an identification methodology based on the 
coupling between PSO and FE simulations is proposed 
for determining hyperelastic model parameters from only 
one heterogeneous tests. A PageRank algorithm is used to 
adapt iteratively the PSO parameters. The mechanical test 
considered consists in stretching a cross-shaped specimen, 
which induces simultaneously a wide range of strain states, 
especially the uniaxial tension, the pure shear, the equibi-
axial tension and many intermediary strain states. The data 
used for the identification are the kinematic fields and the 
reaction force in one of the specimen’s branches. The iden-
tification methodology is first benchmarked with a purely 
numerical approach. Then, it has been successfully applied 
to experimental data. The kinematic field was characterised 
with the DIC technique. The identified parameters enabled 
us to satisfactorily model the material behaviour. This study 
provides numerous perspectives as the number of unknown 
constitutive parameters can increase significantly if other 
phenomena have to be taken into account in the mechani-
cal response of rubbers: hysteresis, permanent set, strain-
induced anisotropy, strain-induced crystallisation, accom-
modation (the Mullins effect [31]), to name a few.
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