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Abstract
Sophisticated models have progressively been developed to address the challenges related to long-term, open-pit mine plan-
ning under conditions of geological uncertainty. Prior research has acknowledged that strategies for mine planning and the 
design of mineral concentrators are interdependent; thus, it is highly desirable to optimize them together. However, achieving 
detailed holistic optimization of the entire mineral value chain remains unresolved because of the inherent limitations associ-
ated with mathematical formulations and computational processing capacity. This paper details a method that contributes 
to bridging these limitations by employing a novel parallelized variable neighborhood descent approach combined with an 
embedded mass–balance component using linear programming techniques refined through Dantzig–Wolfe decomposition. 
This approach is exemplified through a case study of a gold deposit, which illustrates the enhanced performance capabilities 
of the new algorithm. The findings demonstrate significant improvements in the optimization process for mine planning, 
providing a stronger link between the mine’s output and processing plant’s capabilities.

Keywords  Metaheuristic · Linear programming · Long-term mine planning · Geological uncertainty · Dantzig–Wolfe 
decomposition

1  Introduction

Mine planning is commonly categorized into three levels: 
long-term (strategic), medium-term (tactical), and short-
term (operational) [1]. The strategic planning phase aims to 
determine the optimal mine layout, which includes identify-
ing the blocks to be extracted and those that should be left 
undisturbed, as well as determining the timing for extrac-
tion [1]. This planning approach has evolved over the years, 
detailing various characteristics of this stage of the mineral 
value chain, such as strategies for stockpiling [2], handling 
outputs from different mining sites [3], addressing multiple 
processing pathways [4], and adapting to fluctuating mar-
ket conditions [5]. However, despite these and other studies 

that have provided enormous contributions to the field, the 
research still lacks a more detailed representation of the 
later stages of the mineral value chain to achieve holistic 
optimization. Indeed, the foundational concept of system 
theory suggests that optimizing individual subsystems does 
not inherently lead to the optimization of the system as a 
whole [6].

In the mineral value chain, metallurgical plants play a 
pivotal role in terms of economic viability. For example, it 
is impractical for plants to extract all-value minerals, such 
as gold and silver, because this would involve high dosages 
of reagents (cyanide in this case). This would increase oper-
ating costs and impact the metal recovery rate, with some 
minerals being lost in the tailing stream [7]. Furthermore, 
the comminution process, which encompasses all terms 
associated with the size reduction or severance of ores and 
rocky materials [8], demands considerable energy. This sig-
nificantly affects operational costs, typically accounting for 
30–60% of the total energy consumption at the mine site, 
which is sometimes as high as 80% [9, 10]. For these rea-
sons, plant reconfiguration must be a tactical decision and 
not made based on every slight variation in ore feed but 
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rather depending on the processing requirements of poten-
tial upcoming feed streams [11]. Therefore, the term opera-
tional mode was introduced to refer to a series of parameters 
that summarize the metallurgical plant configuration, such 
as metal recovery rate and processing rate, but not limited 
to these [12]. These modes are designed to optimize the 
production of metals or alloys, ensuring efficient and safe 
operation for specific feeds, for example, certain rock blends. 
Since the metal grade varies across different rock types, hav-
ing an appropriate number of operational modes, if feasible, 
offers greater flexibility. This flexibility allows for a more 
accurate response to variations in the rock types within the 
ore feed, thereby addressing grade uncertainty better [12].

Optimizing mine planning and metallurgical plants 
within the same framework necessitates a thoughtful analy-
sis comprising model designs, efficient algorithms, and 
the subsequent implementation that capitalizes on avail-
able computational resources. An interesting model was 
proposed by Professor Alessandro Navarra [13] featuring 
a broad formulation based on data structures. Instead of 
being limited to algebraic equations, the functions are hier-
archically decomposed using the aforementioned structures. 
This approach affords significant flexibility by obviating the 
need for parameter adjustments, which are needed by other 
models [14].

Metaheuristics, an alternative to exact methods that are 
computationally intensive for complex problems, have been 
increasingly employed in stochastic mine planning. Notable 
examples in the field include particle swarm optimization 
[15], simulated annealing [16], and tabu search [17]. How-
ever, a challenge with these methods is their reliance on tun-
ing parameters, which greatly impacts their performance and 
can skew the effectiveness of comparative analyses because 
of inconsistent parameter values. Moreover, repeated experi-
ments to adjust these parameters increase the real execution 
time. One exception is the variable neighborhood descent 
(VND) metaheuristic, which has been specifically tailored 
for mine planning under geological uncertainty by Profes-
sor Amina Lamghari [18, 19]. This approach minimizes the 
need for excessive parameters and has demonstrated effec-
tiveness in practical scenarios, leading to its inclusion in 
various studies focused on optimizing stochastic strategic 
mine planning and metallurgical processes [20–22]. These 
studies introduced operational modes as plant configurations 
adapted to specific conditions, aiding in managing uncer-
tainties and providing flexibility in tactical plant decisions. 
However, the detailed application of these modes for tactical 
changes remains underexplored.

The present study follows the neutral-risk approach 
that aims to generate a single long-term mining plan that 
accounts for geological uncertainty [23] while integrating 
the metallurgical plant. The optimization, based on the net 
present value (NPV) of the project is achieved using an 

algorithm that employs a parallelized variant of the VND 
metaheuristic. This version of the VND incorporates a linear 
programming approach for mass balancing, which facilitates 
operational mode switches in the plant and is solved using 
Dantzig–Wolfe decomposition. Although the initial findings 
from this research area have been presented in earlier pub-
lications [12, 24], the current paper offers a more detailed 
explanation and discussion of the implementation. This was 
not possible previously because the focus of the efforts was 
on justifying the method’s suitability. Furthermore, the pre-
sent work demonstrates advances over previous studies in 
terms of efficiency, such as reducing the number of blocks 
analyzed by previously calculating the ultimate pit limit and 
a new method to parallelize the VND, thereby reducing the 
overhead from creating and eliminating execution threads.

2 � Formulation

In the model introduced by Professor Navarra, a two-stage 
optimization process is described [13]. Initially, the focus 
is on identifying which blocks should be mined and sent to 
the plant over periods to establish a long-term perspective. 
Subsequently, the model addresses mineral processing inside 
the metallurgical plant informed by the acquired geologi-
cal scenario data. Unlike Navarra’s earlier work, where the 
focus was solely on grade uncertainty, this second stage adds 
operational modes. Each stage incorporates distinct optimi-
zation processes, culminating in a unified mine plan. This 
plan effectively addresses a range of equally likely scenarios, 
aiming to optimize the NPV of the mining project.

2.1 � First‑stage optimization

The first stage consists of maximizing the objective function 
shown in Eq. 1. The first part of the formulation remains 
constant across different scenarios because it calculates the 
discounted costs associated with mining specific blocks (cbt) 
across the mine’s operational lifespan. In contrast, the latter 
part of the equation varies according to geological scenarios, 
explicitly accounting for the discounted revenue. As will be 
described in the next section, fst is itself the objective value 
of a linear program, constituting the second-stage optimiza-
tion. The equation’s outcome is an optimized solution for 
processing a select group of blocks Bt during a particular 
period t under scenario s. The expected value of these results 
is then calculated by dividing the sum among the number 
of scenarios (1/nS).

The constraints of the model are delineated in Eqs. 2 
and 3. Equation 2 guarantees that a block can be excavated 
only if its preceding blocks ( BPred

b
 ) have been mined, which 

is a vital consideration for maintaining mechanically sta-
ble slopes. Furthermore, Eq. 3 ensures adherence to the 
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maximum permissible amount of rock mining per period, 
which is denoted as (Mt), thereby further refining the mod-
el’s operational parameters.

Parameters.

•	 B : set of blocks.
•	 nS: number of geological scenarios.
•	 nT: number of time periods.
•	 cbt: discounted cost of mining block b in period t.
•	 B

Pred

b
 : set of direct predecessors of block b.

•	 mb: mass of block b.
•	 Mt: maximum mass of rock that can be mined during 

period t.

Variables.

•	 x: mine plan 
{

Bt

}nT

t=1
 which Bt ⊂ B is the set of blocks to 

be mined in period t.

Subject to:

2.2 � Second‑Stage Optimization

The formulation presented in Eq. 4 characterizes the objec-
tive function of the second stage, aiming to maximize the 
value of processing specific blocks in a period t given a 
scenario s. This approach integrates economic valuation, 
accounting for both the grade and rock type (vbso), which 
is akin to previous methodologies [20–22]. However, it 
expands the scope to encompass various operational modes, 
factoring in both the quantity and diversity of rock types. In 
this equation, the block’s mass mbso is allocated across dif-
ferent operational modes to reach maximization.

Equations 5–8 contribute to the overarching set of con-
straints that govern the objective function. Equation 5 sets 
the limit that the fractions of block b processed under dif-
ferent operational modes o do not exceed the total mass of 
the same block. Therefore, if the left side of this equation 
equals 0, it indicates that block b falls into the category of 
waste. Equation 6 outlines the processing capacity con-
straints, reflecting the rate limitations of each operational 
mode (ro). The plant’s capacity is expressed in terms of the 

(1)f (x) = max −

nT
∑

t=1

∑

b∈Bt

cbt +
1

nS

nS
∑

s=1

nT
∑

t=1

fst
(

Bt

)

(2)
⋃

b∈Bt

B
Pred
b

⊆

t
⋃

t�=1

Bt�,∀t ∈ {1,… , nT}

(3)
∑

b∈Bt

mb ≤ Mt,∀t ∈ {1,… , nT}

time availability in a given period (dt) to account for these 
rates. Equation 7 mandates a precise blend of rocks for each 
processing mode, here adjusted according to the weight frac-
tions indicated (wop). Finally, Eq. 8 imposes non-negativity 
constraints on the continuous variables (mbso).

Parameters.

•	 O : set of operational modes.
•	 P : rock types.
•	 Bps : set of blocks that under scenario s are of rock type p.
•	 vbso: discounted recoverable value of block b when under-

going processing mode o.
•	 ro: tonnage processing rate mode o.
•	 dt: available time of plant during period t.
•	 wop: weight fraction of rock p that is included in the feed 

for operating mode o.

Variables.

•	 mbso: mass of block b processed by mode o under sce-
nario s

Subject to:

3 � Implementation

As stated in the introduction, once the formulations were 
settled, they were implemented efficiently. In this section, 
details are provided about the methods and techniques 
utilized.

3.1 � First‑Stage Optimization

The customized VND metaheuristics introduced by Profes-
sor Lamghari [18, 19] employ three neighborhood searches 
by perturbing an initial solution to find better candidates: 

(4)fst
(

Bt

)

= max
∑

b∈Bt

∑

o∈O

(

vbso

mb

)

mbso

(5)
∑

o∈O

mbso ≤ mb,∀b ∈ Bt

(6)
∑

o∈O

∑

b∈Bt

mbso

ro
≤ dt,∀ro > 0, t ∈ {1,… , nT}

(7)
�

b∈Bps

⋂

Bt

mbso − wop

�

b∈Bt

mbso = 0,∀o ∈ O,∀p ∈ P

(8)mbso ≥ 0,∀b ∈ Bt,∀o ∈ O
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exchange (E), shift-after (SA), and shift-before (SB). As 
depicted in Fig. 1, the E search swaps two blocks between 
adjacent periods, t and t + 1. SA, as shown in Fig. 2, moves 
block b along with all its successors from period t to t + 1. 
Conversely, SB, as illustrated in Fig. 3, transfers block b 
and all its predecessors from time t to t-1. In each neighbor-
hood search (E, SA, or SB), for every time t, the algorithm 
evaluates all candidate blocks in Bt to check if they represent 
a feasible improvement without violating Eqs. 2 and 3. A 
TEST subroutine, which optimizes the second stage (Eq. 4) 
without permanently altering the data structures, was devel-
oped for this purpose. The specifics of this implementation 
will be discussed in the next section. For now, understanding 
it as a black box is sufficient: the subroutine takes the candi-
date blocks in Bt as input and returns the discounted benefit 
of processing these blocks. After calculating the expected 
values from all scenarios, they are compared with the previ-
ously highest obtained value. Once all the candidate blocks 
have been evaluated, the most advantageous improvement 
transfer is executed using another subroutine called EXE-
CUTE, which, like TEST, optimizes the data structures but 
makes permanent changes. If no feasible improvements are 
found, the algorithm progresses to the next t value.

Metaheuristics are highly influenced by initial solutions, 
which are given as a starting point for subsequent improve-
ments. An alteration to Lamghari’s proposal was introduced 
to avoid the mentioned dependency and start from an empty 
plan x = {∅}

nT
t=1

 . A fictitious period t = (nT + 1) was added to 
accommodate all blocks not yet part of the existing solu-
tion, initially setting B (nT + 1) = B . During the algorithm’s 
regular operation, it conducts E neighborhood searches in 
a looping sequence from t = 1 up to t = nT, implements SA 
from t = 1 to t = nT, and processes SB from t = (nT + 1) in 
reverse until t = 2. An essential modification is beginning 
the optimization with the SB, bringing valuable blocks to 
the first periods and, from there, adjusting following the rest 
of the neighborhood searches under the repeating cycle SB-
E-SA-SB-E-SA and so on. Eventually, none of the searches 
will identify any improvements, and the algorithm stops.

The form in which VNDs searches are implemented 
allows for the parallelization of the TEST subroutine within 
each of them. Previous works [12, 24] have successfully 
implemented this by creating a thread for each invocation 
of the TEST subroutine, as illustrated in Fig. 4. However, 
although this approach significantly reduces global execu-
tion time, its overheads are not minimal because of the 

Fig. 1   E method swaps blocks 
between adjacent periods. The 
gray area represents the set of 
blocks mined in period t ( Bt), 
and the white area represents 
the set of blocks mined in 
period t + 1 ( Bt + 1)

Fig. 2   The SA method moves 
blocks i and its successors 
mined in the same period t (gray 
area) into the period t + 1 (white 
area)

Fig. 3   SB method moves blocks 
i and its predecessors in the 
same period t (white area) into 
the period t-1 (gray area)
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excessive creation and destruction of threads. Figure 5 
presents a new parallelization strategy in which the set of 
blocks, Bt, is divided among the available threads. These 
threads internally call the TEST subroutine as needed until 
all assigned blocks have been analyzed. Subsequently, the 
threads are synchronized, comparing the results and select-
ing the one that maximizes profit. The most beneficial move 
is then made permanent by invoking the EXECUTE subrou-
tine. The case study presented in this paper will compare 
both parallelization approaches.

Unlike other parallelized metaheuristics, where execution 
time is set as a parameter [25] VND parallelization does not 
introduce extra parameters because it concludes when no 
further improvements have been found. Moreover, because 
it adheres to a strict (deterministic) sequence of searches, the 
block movements between periods remain consistent. This 
implies that the quicker the calculations are performed, the 
sooner the algorithm terminates, yielding the same results. 
The algorithm was developed in C++ , utilizing only its 
native libraries to manage multithreading.

3.2 � Second‑Stage Optimization

As previously mentioned, the second stage, implemented 
within the TEST and EXECUTE subroutines, aims to maxi-
mize the processing of blocks allocated by the VND within 
a designated time frame and under a specific scenario. To 
achieve this optimization, various strategies were incorpo-
rated during the formulation and coding phases to ensure 
efficient implementation. Specifically, Eqs. 4–8 were refor-
mulated using the Dantzig–Wolfe decomposition (DW) 
method [26], a particularly effective technique for tackling 
linear programming problems with constraints that fit the 
angular block structure (Fig. 6). Another reason for selecting 
DW decomposition over other methods, such as Benders’ 
decomposition [27], is its employment of delayed column 
generation. This approach effectively reduces the dimension-
ality of matrix multiplications, hence decreasing computa-
tional time.

To implement the decomposition technique, the study 
introduced a modification of the variables used. Initially, the 

Fig. 4   VND parallelization was 
used in [12, 24]
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variables represented the mass of block b processed in mode 
o under scenario s. This was adjusted by dividing the con-
tinuous variables mbso by mb, transforming it into a relative 
fraction of the block (Eqs. 9 and 10). The bounded nature 
of the set allows these new variables to be expressed as a 
convex combination of extreme points [28]. The research 
will concentrate on analyzing two operational modes which 
is sufficient to demonstrate robustness (similarly to so-called 

soft constraints having penalty terms for recourse action 
purposes [17, 18]), but can be extended to three or more 
operating modes. The solutions for each subproblem are rep-
resented by the points: x∗

b1
(0,0) indicating an unprocessed 

block, x∗
b2

(1,0) for a block fully processed by mode A and 
x∗
b3

(0,1) for a block processed by mode B, as illustrated in 
Fig. 7, with k representing the point number. This method 
enhances the understanding of each subproblem.

Fig. 5   A new way to parallelize 
the VND metaheuristic
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Equations 4–8 were reformulated as Eqs. 11–15, respec-
tively, based on the change of variable. Equation 11 repre-
sents the master problem, while Eqs. 13 and 14 serve as the 
constraints. Equations 12 and 15 describe the subproblems.

(9)
∑

o∈O

mbso

mb

=

3
∑

k=1

�bkx
∗
bk
,∀b ∈ Bt

(10)
3
∑

k=1

�bk = 1, �bk ≥ 0,∀b ∈ Bt

(11)max
∑

b∈Bt

3
∑

k=1

vbso
(

�bkx
∗
bk

)

Subject to:

The presented formulation was considered in its matrix 
form to be implemented. Therefore, the jth subproblem is 
defined as follows:

Subject to:

where:

•A: matrix of the coefficient of the constraints
•B: current basis matrix
•cB: vector of basic variable coefficients in the objective 
function
•m0: number of elements of b0
•(B−1)1;m0: matrix consisting of the first m0 columns of 
B−.1
•(B−1)i: vector consisting of the ith columns of B−.1
•xj: variables of the subproblem

In this case, the basis inversion B−1 is scalar because each 
block division consists of only one equation, as shown in 
Eq. 5. It is acknowledged that the transformation would be 
more complex with a range of feed compositions; however, 
this will be the subject of a forthcoming paper in which the 
context explicitly requires it.

The implementation was coded in C++ and compared 
with the results obtained using CPLEX 12.10. Three sets of 
blocks were prepared for a specific period and scenario, with 
both implementations configured to use only one thread. 
Figure 8 illustrates the execution times, demonstrating that 
the DW implementation was 44% faster on average.

Another technique to enhance efficiency in the VND 
involves avoiding restarting all linear programs (nT × nS) 
from scratch whenever the blocks shift between periods. 
When blocks are added to a period, the DW decomposi-
tion reoptimizes from the previous state. Conversely, when 

(12)
3
∑

k=1

�bk = 1,∀b ∈ Bt

(13)
∑

b∈Bt

3
∑

k=2

mb

rk
𝜌bk ≤ dt,∀rk > 0

(14)
∑

b∈Bts

mbk − wkp

∑

b∈Bt

mbk = 0,∀k = {1, 2, 3},∀p ∈ P

(15)�bk ≥ 0,∀b ∈ Bt,∀k = {1, 2, 3}

(16)min
(

cB
(

B−1
)

1;m0

Aj − cj

)

xj + cB
(

B−1
)

m0+j

(17)AN+jxj ≤ bj, xj ≥ 0

Fig. 6   Angular block structure of constraints to apply DW decompo-
sition. Equations 6 and 7 are part of the central constraints, whereas 
Eq. 5 gives form to different divisions

Fig. 7   Feasible region of each subproblem
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blocks are removed, a dual problem formulation enables 
reoptimization. The overall efficiency of the algorithm 
hinges on how effectively these reoptimization operations 
are implemented.

3.3 � Incorporation of the Ultimate Pit Limit

The ultimate pit limit (UPL) refers to the maximum 
extent to which an open-pit mine can be economically 
excavated during its lifetime. This limit is determined 
based on a combination of factors, such as the value of 
the minerals or ore being extracted, and the costs asso-
ciated with mining and processing. Although the UPL 
does not account for the type of rocks, it identifies all 
blocks that are desirable for extraction, regardless of the 
operational mode to be used. The purpose of utilizing 
the UPL in the present study is to reduce the number 
of blocks that need to be analyzed to generate the plan; 
therefore, this approach is deemed sufficient for achiev-
ing this goal.

Over the years, several studies have addressed this prob-
lem, demonstrating that the pseudoflow algorithm is highly 
efficient in finding the solution [29]. This algorithm was 
implemented in the MineFlow software and demonstrated 
impressive running times [29].

Because multiple scenarios are considered, the blocks 
used in the problem are those that are part of at least one 
UPL associated with a scenario. It is important to note that, 
within the set, blocks are not repeated, ensuring block is 
unique to the analysis. If BUPL

s
 represents all the blocks that 

are part of the UPL for scenario s, then the set of all blocks 
B
UPL

∗
 is defined in Eq. 18.

4 � Sample Calculations

4.1 � Case Study

The Maricunga belt, which is located in the high Andes 
of northern Chile, is renowned for its numerous gold, 
silver, and copper prospects and deposits [30]. This 
region’s principal deposits are predominantly of the 
porphyry-epithermal type, complemented by a major 
pluton-related vein and distal contact metasomatic 
deposit [31]. As a linear metallogenic unit within the 
Andean Cordillera of northern Chile, the Maricunga belt 
is characterized by several trends of gold and/or silver 
mineralization [30]. Notable porphyry deposits, such as 
Marte, Lobo, Refugio, La Pepa, and Volcán, primarily 
yield gold as an economically viable metal. In contrast, 
the Caspiche and Cerro Casale deposits also present sig-
nificant potential for gold and produce the by-product 
copper [32].

The case study was constructed by drawing inspiration 
from the Au-Cu porphyry deposits of the Maricunga region, 
aiming to create a conceptual geological model. This model 
primarily focuses on an Au-rich porphyry system, encom-
passing geological units, such as (1) diorite porphyry, which 
hosts mineralized veinlets, and (2) silicified intrusive brec-
cias. Figure 9 illustrates a schematic profile of the modeled 
geology. Twenty scenarios were created to assess various 
aspects of the geological model, including ten scenarios to 
develop the operational plan and another 10 to evaluate the 
associated risk profile.

(18)B
UPL
∗

=

nS
∑

s=1

B
UPL
s
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Fig. 8   Comparison between CPLEX and DW implementation in C++

Fig. 9   Orebody of the case study showing the distribution of diorite 
porphyry (yellow) and silicified intrusive breccia (purple)
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A fictional Chilean mining company aims to extract and 
process gold over the next 5 years. Because of its specific 
geological context, the project contemplates two operational 
modes in the metallurgical plant. These modes, along with 
other relevant parameters, are comprehensively detailed in 
Table 1. Thus, the case study is structured to not only devise 
a feasible operational plan for gold extraction, but also to 
thoroughly assess the risks associated with the geological 
and operational parameters of the Maricunga belt.

4.2 � Results

As previously mentioned, the algorithm was implemented 
in C++ and ran on a server equipped with an Intel® Xeon® 
Gold 5118 processor, utilizing 24 threads for paralleliza-
tion. Figure 10 illustrates the curves associated with the 
risk profile of the project’s NPV based on ten equiprobable 
scenarios. This indicates that the P-50 curve reaches $1280 
million, while the P-10 curve presents $1180 million, and 
the P-90 curve shows $1460 million. This represents a range 
of approximately ± $140 million from the P-50 value. The 

increment of the NPV over the periods in each of the sce-
narios is presented in Table 2.

Figure 11 shows the breakdown of rock extraction, 
distinguishing between the two existing types. Since this 
study follows a neutral-risk approach, the mine plan is 
the same for all scenarios (first stage). Part of this mine 
plan is presented in the cross-section shown in Fig. 12. 
The bar chart in Fig. 11 reveals that the mining opera-
tion, with a capacity of 6.5 million tons per period, nearly 
always achieves its maximum output. Exceptions can be 
observed in periods 4 and 5, where the limiting factor 
shifts from mining capacity to plant availability, as it will 
be explained later.

Figure  13 highlights the processing aspect which 
involves grade uncertainty. The graph shows the P-10, 
P-50, and P-90 curves are overlapped because the second-
stage optimization leads the algorithm to utilize all the 
plant availability (8075 h). This explains why there is 
no need to continue extracting rocks in periods 4 and 5 
(Fig. 11). The only exception is the first year, where the 
mining capacity is the bottleneck. However, even in that 
case, the variation among the different percentiles (P-10, 
P-50, P-90) is negligible.

Figure 14a to c illustrates the variations in the ore 
processed under different scenarios across the periods, 
both in total and detailed by operational modes A and 
B. These plots suggest that the minor variation in total 
terms (Fig. 14a) results from the flexibility afforded by 
the operational modes (Fig. 14b and c), enabling the plant 
to adapt to the grade uncertainties presented by different 
rock types.

Table 1   Parameters of the case study

Parameters Values

Block weight (ton) 15,375
Number of blocks 13,392
Block dimension (m) 20 × 20 × 15
Block density (ton/m3) 2.56
Number of periods 6
Length of periods (year) 1
Discount rate (%) 8
Metal price Au ($/oz) 1190
Mining cost ($/ton) 20.5
Mining capacity (ton/period)1 6,500,000
Processing availability (hr./period) 8075
Rock types Diorite porphyry

Silicified intrusive breccia
Operational mode A
  Processing rate (ton/hr.) 250
  Processing cost ($/ton) 21.4
  Recovery Au (%) 83
  Diorite rock (%) 65
  Silicified rock (%) 35

Operational mode B
  Processing rate (ton/hr.) 200
  Processing cost ($/ton) 24.9
  Recovery Au (%) 83
  Diorite rock (%) 45
  Silicified rock (%) 55
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Fig. 10   P10, P50, and P90 curves of the cumulative NPV for the case 
study (risk profiles)
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Analyzing one scenario, specifically the P-50, Fig. 15 
shows how modes A and B alternated over the time periods 
to process the ore. In the first 3 years, mode B processed 

more ore than mode A; however, this situation reversed in 
the subsequent 3 years. Figure 16a and b provides a closer 
look at how much of each rock type was processed by 
each operational mode. It is observed in these bar charts 
that, although the total processed ore varies from period 
to period for the modes, the blending strategies were not 
violated (Table 1).

This analysis suggests that if only one mode had been 
implemented, the plant would face a dilemma: either com-
promise optimal operation by not adhering to the blending 
strategy in an attempt to achieve higher grades or maintain 
optimal operation according to the blending strategy, poten-
tially resulting in a lower NPV. A similar conclusion was 
reported in Quelopana et al. [12], where two plant designs 
were compared: one with a single operational mode and 
another with two.

It remains important to determine the agility of the 
plant in adjusting its modes swiftly enough to achieve 
optimal NPV results. Unfortunately, due to the strate-
gic nature of the algorithm, these results do not specify 
how the operational modes are allocated within each time 
period. However, these modes act as a non-computational 

Table 2   Cumulative NPV 
per period for each of the ten 
scenarios

Cumulative NPV (USD$)

# Ranking 1 2 3 4 5 6

1 5 72,898,935 273,105,590 511,989,172 794,305,635 1,048,102,829 1,265,649,770
2 6 73,707,476 311,519,754 561,782,630 875,873,572 1,129,692,116 1,303,838,944
3 9 94,318,245 302,288,784 602,481,567 975,081,296 1,249,500,342 1,465,176,478
4 3 143,298,803 319,166,913 550,107,627 815,304,051 1,049,651,454 1,221,731,397
5 1 48,907,140 165,314,923 338,290,376 536,415,093 740,417,954 884,317,512
6 4 99,244,744 332,361,887 593,365,662 859,028,924 1,086,959,561 1,262,656,696
7 7 115,035,877 319,163,390 564,308,900 871,283,775 1,147,320,185 1,392,468,259
8 10 115,872,367 366,948,927 689,032,144 1,009,082,504 1,292,410,474 1,522,457,082
9 8 126,957,945 327,329,008 597,161,580 902,617,874 1,212,486,627 1,420,780,835
10 2 54,228,036 283,188,400 526,604,498 782,546,112 985,653,910 1,182,675,273
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Fig. 11   Tons of rock mined over the periods divided by rock type

Fig. 12   Schematic view of mine plan (XZ-planar cut along middle Y value). SB means silicified intrusive breccia
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conduit for integration between long-term and medium-
term planning, which represent the modes, albeit at dif-
ferent levels of resolution. An example of this was pub-
lished in Quelopana et al. [24].

4.3 � Algorithm’s Efficiency

The algorithm initially took 1.18 h to generate the plan, 
which is notable considering the thousands of calculations 
required to solve the linear programming problems. This 
first run did not include the preprocessed UPL or the new 
method of parallelization. In the second run, the UPL was 
calculated for each scenario using MineFlow software [29], 
and only the selected blocks were considered in the analysis. 
This process, along with the generation of the mine plan, 
took 55.7 min. Finally, the new parallelization method was 
incorporated in the third run, reducing the time to 40.6 min, 
a decrease of almost 31 min from the initial run. For all these 
tests, the resulting NPV remained consistent.

The authors acknowledge that real-world cases often 
involve models with millions of blocks. However, significant 
advances have been made in increasing the capacity of the 
block model to be processed, from 4000 to 13,000 blocks, 
in less time. It is important to note that, because there are 
no tuning parameters, no repetitions of the experiments were 
needed, nor was additional time required for the generation 
of initial solutions. Furthermore, the processor used in the 
present study was released in 2017; thus, better performance 
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Fig. 13   Processing hours of the metallurgical plant over periods

Fig. 14   Variations in tons of 
ore processed under different 
scenarios across periods, total 
(a) and by operational modes A 
(b) and B (c)
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could be achieved with a more recent processor having equal 
or more threads available.

5 � Conclusions

The present study has contributed to the mining engineer-
ing field by developing an algorithm that holistically opti-
mizes both the strategic mine plan and metallurgical plant 
operations. The unique two-stage framework, integrating 
a new method to parallelize the VND metaheuristic and a 

DW decomposition-enhanced linear program, represents a 
significant step forward in addressing the complexities of 
varying rock types and geological uncertainties in mining 
operations.

The core advancement of the present research lies in its 
novel approach to eliminating the need for an initial solu-
tion in the VND process and its efficient handling of oper-
ational modes through linear programming. This method-
ology not only streamlines the optimization process, but 
it also brings a new level of flexibility and responsiveness 
to changing ore types and grade uncertainties. The intro-
duction of a preprocessing step to calculate the UPL for 
each scenario further refines the process by reducing the 
number of blocks to be analyzed, thereby enhancing the 
overall efficiency.

Our case study, which has centered on a gold deposit, 
demonstrates the practical application and potential of this 
approach. While acknowledging the necessity for further 
experimentation to precisely gauge the impact of incor-
porating operational modes, the outcomes thus far are 
promising, showing the method’s suitability in real-world 
scenarios.

Looking ahead, the study paves the way for future 
enhancements due to the limitations of the model. The 
pursuit of faster mine planning through approximation 
algorithms, the potential for algorithmic execution in a 
clustered environment to further reduce running times, 
and the incorporation of additional features, such as stra-
tegic stockpiles, multiple processing streams, and market 
uncertainty, are all exciting directions for future research. 
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These advancements promise to bring about a more holis-
tic, realistic, and multidisciplinary approach to mine plan-
ning, closing the gap between mine and plant operations 
and fostering a more integrated view within the mining 
industry.
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