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Abstract
Fleet management systems (FMSs) as the pivotal part of any surface mining operation find it essential to evolve from con-
ventional into intelligent systems because of both Mining 4.0 requirements and some shortcomings inherent in conventional 
methods. However, this novel transformation needs to be investigated technically and strategically. To this end, the previously 
published research works on intelligent FMSs are explored to track the latest status of these third generation frameworks 
within the surface mining context. Following that, their underlying models are compared in terms of five categories of allo-
cation and dispatching features to pinpoint the technical gaps ignored. Having drawn the future lines of research, the present 
article then leverages the popular SWOT analysis method to outline the strengths, weaknesses, opportunities, and threats 
associated with the advent of these intelligent FMSs in mines of future. By and large, the analysis indicates that advantages 
outweigh disadvantages. Solutions are offered to address the existing weaknesses and threats.
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1 Introduction

The introduction of intelligence into mining material han-
dling systems, such as truck-shovel systems, holds tremen-
dous importance in revolutionizing the mining industry [1]. 
These intelligent systems leverage advanced technologies 
to optimize the efficiency and productivity of the mining 
operations (fleet allocation and dispatching) spanning from 
1s to 1 day compared to strategic (long-term and medium-
term planning) and tactical (short-term planning) planning 
horizons [2]. Mining operational activities account for 
more than half of operating costs, nearly one-third of total 
energy, and one-tenth of global energy-related greenhouse 
gas emissions [3–5]. These figures highlight the essence of 
well-established fleet management systems (FMSs) within 
the operational stage as even a minor adjustment in the 

material handling system (e.g., dispatching, maintenance, 
and fuel consumption) culminates in substantial monetary 
and environmental benefits due to the size of mining opera-
tions. Therefore, the integration of intelligence into mine 
FMSs is advisable to be investigated because of its sig-
nificant potentials to boost productivity, reduce expenses, 
enhance safety, and foster sustainability within the mining 
industry [6–8]. A technical and strategical investigation can 
make a significant contribution to identifying tentative faults 
(e.g., ignoring some allocation and dispatching features) in 
the formulation process of the intelligent FMSs proposed so 
far as well as recognizing possible threats and opportunities 
associated with these frameworks. Not only does this pro-
cedure enable the development of more concrete intelligent 
FMSs in the future, but also unlocks these systems’ strengths 
and weaknesses to provide the designers of intelligent FMSs 
with deeper insights.

An FMS in a mining operation aims to streamline the 
loading-haulage system in terms of one or multiple goals 
through rendering proper allocation and dispatching deci-
sions with the aid of computer programs. Ideally, the FMS 
is supposed to autonomously act and bridge strategic plans 
to the real-time production operation. The dynamic alloca-
tion of empty trucks is referred to as the dispatching prob-
lem. Flexible or dynamic truck allocation is the antithesis 
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of fixed or static allocation. In the dynamic approach, trucks 
receive a new assignment from the dispatching system 
instead of being in the service of a single shovel, bring-
ing about 10–15% productivity improvement [9]. Trucks 
are allocated in two main systematic forms: either single 
stage or multistage [10]. In the single stage form, without 
considering production targets, assignments are issued based 
on one or several heuristic rules (or dispatching criteria) 
[11]: (1) minimizing shovel waiting time: to optimize the 
allocation of empty trucks, they are assigned to either the 
shovel with the longest idle time or the shovel that is pro-
jected to become idle first. This approach ensures efficient 
utilization of resources by strategically assigning trucks to 
shovels based on their expected idle durations; (2) mini-
mizing truck cycle time: to maximize the overall tonnage 
productivity, the assignment of an empty truck is based on 
selecting the shovel that allows for the shortest truck cycle 
time. This approach ensures efficient utilization of trucks 
by assigning them to the shovel that minimizes the time 
required for completing a full cycle, thereby optimizing the 
total tonnage output; (3) minimizing truck waiting time: to 
minimize truck waiting time and maximize shovel utiliza-
tion, an empty truck is assigned to the shovel where the 
loading operation begins first. This approach ensures that 
trucks are promptly available for loading, reducing idle time 
and optimizing the efficiency of the shovel operation; and 
(4) minimizing shovel saturation: to minimize the waiting 
time for shovel operations and ensure continuous activ-
ity, an empty truck is assigned to each shovel at regular 
time intervals. This heuristic rule aims to prevent shovels 
from being idle by maintaining a steady flow of trucks for 
loading. In contrast, the multistage approach solves three 
sequential sub-problems using operations research tech-
niques: (1) shortest path model; (2) truck-shovel allocation 
optimization—upper stage; and (3) real-time truck assign-
ment optimization—dispatching—lower stage [12]. In other 
words, in the upper stage, the production rates of routes are 
established by considering short-term planning objectives. 
This is accomplished using a model from operation research 
techniques. In the lower stage, trucks are assigned to shovels 
based on the optimal solutions obtained from the previous 
stage typically by means of heuristics or mathematical mod-
els [10]. Single stage and multistage approaches are com-
parable from different aspects: (1) efficiency: the multistage 
approach has an edge over the other in that it attends to a 
variety of constraints (e.g., shovel capacities, shovel digging 
rate, and production targets) at the upper stage, rendering 
dispatching decisions at the lower stage more efficient [10]; 
(2) complexity: multistage dispatching introduces additional 
complexity in terms of route planning, scheduling, and coor-
dination of tasks. It requires advanced algorithms or deci-
sion support systems to optimize the dispatching process 
effectively; (3) optimization: multistage dispatching offers 

more opportunities for optimization by considering various 
factors and constraints at each stage. It can result in better 
resource utilization, reduced cycle times, and improved over-
all productivity; and (4) cost efficiency: multistage dispatch-
ing determines the optimum material flow rate on routes 
needed by each shovel, thereby decreasing the consequent 
costs caused by the shovel starvation and the truck queue 
time. Clearly, the multistage approach outweighs its coun-
terpart. The same result has been verified quantitatively in 
[11], where a multistage dispatching model outperformed 
a single stage model by at least 60% increase in average 
production. Furthermore, single-stage dispatching systems 
have significant weaknesses, primarily due to the limitation 
of dispatching only one truck at a time and the disregard 
for operational constraints like ore quality requirements 
and blending constraints [13]. From another classification 
perspective and based on the level of human involvement, 
dispatching systems are classified into three principal cat-
egories: manual, semi-automated, and fully automated [14]. 
Manual dispatching follows a static rule, by which a certain 
number of trucks are assigned to a certain shovel during 
the whole working shift by an in-field supervisor who can 
sometimes have radio communications with a colleague to 
exchange information on the position of trucks retrieved 
from a computer or a place dominant on the mine site. This 
system relies heavily on human intervention and makes 
decisions based on experience and judgment; thus, it can 
be prone to human errors, delays, and inefficiencies. On the 
other hand, it offers flexibility in adapting to changing condi-
tions. The semi-automated system requires an intermediate 
level of human involvement, in which computers play a role 
in assignment of trucks using some predefined heuristics 
or mathematical models. Yet, a human agent is responsible 
for rendering the final dispatching decision [15]. Although 
this system reduces human errors and improves operational 
efficiency compared to manual systems, it poses a problem 
in large-scale fleets. In a fully automated system, technology 
controls and manages the fleet without human intervention. 
These systems optimize operations by continuously analyz-
ing data, adjusting routes, and maximizing efficiency. They 
offer increased productivity, reduced costs, and enhanced 
safety by minimizing human errors and improving equip-
ment utilization. This is the topic of interest for the smart 
mining paradigm initiated by the fourth industrial revolution, 
where smart mines seek to incorporate fully automated intel-
ligent FMSs into their material handling tasks.

Born conceptually in a 2011 German fair and having offi-
cially initiated its era in 2015, Industry 4.0 is a paradigm 
shift in traditional manufacturing processes, building on 
interconnectivity, automation, autonomy, machine learn-
ing, and real-time data [16]. Instances of such transforma-
tive systems implemented in some real-world mining case 
studies are now noticeable in the market up to an extent. 
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One can exemplify TIMining Aware® as a 3D visualization 
tool for real-time mine monitoring and block model visu-
alization remotely [17]. FORESTALL® offers digital assis-
tance tools for making operational decisions, both online 
and offline, catering for machine health, downtime predic-
tion, and predictive maintenance [18]. A shining example 
of autonomy is Rio Tinto Co., where autonomous trucks, 
trains, drills, and robots play a key role in iron ore operations 
[19]. We can define Mining 4.0, the incarnation of Indus-
try 4.0 in the mining sector, as a digital revolution seek-
ing to inject intelligence into traditional mining operations 
with the aim of fulfilling resilient and smart systems. These 
systems are expected to be capable of dynamism handling, 
interoperability, autonomy, monitoring, optimization, pre-
diction, decision-making, virtualization, and visualization. 
These functions are achievable through leveraging a vari-
ety of underpinning technologies such as internet of things, 
cloud computing, digital twin, augmented reality, and arti-
ficial intelligence. Integration of internet-of-things-enabled 
devices and sensors in mine FMSs optimizes fleet opera-
tions by collecting real-time data for analysis and control. 
Sensor-equipped trucks transmit information on location, 
speed, fuel consumption, and engine health, allowing remote 
monitoring, predictive maintenance, and enhanced safety. 
Cloud-based platforms aggregate and process large volumes 
of information, providing comprehensive insights for fleet 
managers via web-based applications or mobile devices in 
order to make informed decisions from anywhere. Digital 
twin allows for real-time monitoring and analysis of fleet 
performance by generating a virtual replica or “twin” of 
the physical fleet. Utilizing the sensory data collected by 
internet of things, the digital replica visualizes operational 
metrics in no time. It also retrieves historical data from cloud 
repositories to simulate a variety of scenarios to evaluate 
strategies without affecting the actual fleet. Augmented real-
ity empowers fleet managers to superimpose virtual informa-
tion onto smart glasses such as HoloLens to enhance opera-
tional agility on fleet characteristics (speed, fuel, engine, 
etc.) and operational aspects (tonnage, grade, working faces, 
production targets, roads, etc.). Furthermore, remote assis-
tance becomes more streamlined as experts can offer guid-
ance using virtual annotations: for instance, to overlay repair 
manuals on the engine of a damaged truck. Artificial intel-
ligence, mainly machine learning, can be utilized to fore-
cast equipment malfunctions by detecting patterns within 
sensory data. Moreover, machine-learning algorithms have 
the capacity to supersede conventional operations research 
techniques in truck allocation and dispatching models, as 
is the case in a significant number of the research works 
selected to be reviewed in the present article.

Mine FMSs as the lifeline of surface mining operations 
are required to be evolved in terms of embedded technologies 
and architecture. It is mainly because of not only the whole 

Mining 4.0 paradigm but also some structural shortcomings 
inherent in conventional methods, as we will see in the next 
section. These two reasons have orchestrated a new research 
field known as “intelligent FMSs,” on which several stud-
ies have been conducted thus far. However, these studies are 
associated with some technical faults in problem formula-
tion in terms of allocation and dispatching features such as 
inability in allowing for ore production targets, processing 
plant feed and head grade, equipment maintenance/failures, 
etc. Pinpointing these technical faults, as the first goal of the 
present article, paves the way for developing more concrete 
systems. This bottom-up analysis is taken using some alloca-
tion and dispatching features collected and categorized from 
previously proposed conventional FMSs to serve as an echelle 
for judging intelligent FMSs technically. This analysis will 
provide a roadmap for future research directions in the field 
of artificial-intelligence-based mine FMSs. The second goal 
of the article takes a top-down stance through leveraging a 
strategic scrutiny tool called the SWOT analysis in order to lay 
out the strengths, weaknesses, opportunities, and threats worth 
attention in real-life implementation of such smart systems on 
the open pit mining ground. Some secondary goals are also 
pursued such as timeline analysis on the history of mine FMSs. 
It should be noted that this overview article stands out in the 
mining literature because it provides a distinctive examination 
of the technical and strategic aspects of intelligent FMSs in 
open pit mines, which is a neglected research topic to the best 
of our knowledge. The main contributions of the present work 
are itemized as follows:

• Developing a timeline infographic on the different gen-
erations of mine FMSs to depict their evolutionary path 
with a particular outlook towards the future (Section 2).

• Developing a five-feature echelle to evaluate the intelli-
gent FMSs developed so far in terms of the allocation and 
dispatching features addressed or ignored (Section 2).

• Providing an overview of the state of the art in mine 
FMSs and their underlying algorithms (Section 2).

• Comparing these systems in terms of the echelle intro-
duced earlier to pinpoint possible research gaps to be 
used for establishing robust frameworks in the future 
(Section 2).

• Adopting a strategic approach to dissect intelligent FMSs 
internally/externally and positively/negatively to iden-
tify their competitive advantages and areas that require 
improvement (Section 3).

2  The Technical Analysis

From a broad perspective, FMS can be considered as a com-
ponent of logistics, which itself falls under the umbrella of 
supply chain management. FMS is commonly described as 
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a diverse set of solutions pertaining to diverse aspects of 
transportation operations such as maintenance, allocation, 
dispatching, and fuel management [20]. The first generation 
of mine FMSs involved manual dispatching, which relied 
on crude methods such as two-way radio communications 
[21] in the 1960s. Later, it evolved to embrace vehicle-
tracking technologies thanks to the advent of telematics in 
the 1980s. However, it was still human-oriented. During 
the same decade, the iconic work of White and Olson [22] 
contributed to DISPATCH® as a tool capable of finding 
the shortest path as well as allocation and dispatching. This 
phenomenon marked the beginning of the second generation 
of mine FMSs built on a variety of mathematical models, 
simulation, and metaheuristics (nicknamed as conventional 
FMSs). A large number of scholars have been developing 
these conventional FMSs for four decades starting from the 
1980s, and this practice seems to be continued in the future. 
Although queuing theory was implemented in the 1960s 
[23], predating the use of mathematical models, its impact 
on mine FMSs was limited and it did not receive significant 
popularity. The primitive research conducted by Bastos et al. 
[24] could be acknowledged as a pioneering study on intel-
ligent FMSs, with little recognition received in its era. None-
theless, it laid the foundation for more established works in 
the 2020s [6–8], signifying the commencement of the third 
generation of mine FMSs benefitting from the technologies 
favored by Mining 4.0. Figure 1 illustrates these generations 
embedded into an overturned pyramid timeline infographic 
over a nearly six-decade period. The diagram is segmented 
into 1960–1980, 1980–2020, and 2020–onwards eras to rep-
resent the first, second, and third generations of mine FMSs, 
respectively. The initial era is renowned for its reliance on 
manual dispatching and rudimentary truck tracking instru-
ments, while the second era, encompassing a span of forty 
years up to the present day, showcases mathematical pro-
gramming, metaheuristics, and simulation as the prominent 
components of computer-based FMSs. Mining 4.0 attempts 
to shape the incipient third generation of FMSs in a manner 
that incorporates a diverse range of transformative technolo-
gies, including artificial intelligence, digital twin, internet of 
things, and augmented reality. This integration enables these 
intelligent FMSs to seamlessly dovetail with the require-
ments of the fourth industrial revolution, encompassing 
autonomy, virtualization, visualization, optimization, and 
telematics, in the most cutting-edge way possible. It is worth 
mentioning that the boundaries of the eras in Fig. 1 are not 
claimed to be fixed. Actually, these demarcations are only 
generated to deliver overall insights on the annals of mine 
FMSs.

The Mining 4.0 paradigm is not the solitary contributing 
factor to the emergence of intelligent FMSs. Another key 
driver for change is traceable into some shortcomings often 
associated with conventional FMSs, which is intended to be 

brought to light in the rest of this tactical analysis section. 
In other words, we first take a concise glance at the history 
of conventional systems to provide the readers with general 
insights on the underlying approaches used in these systems. 
Then, the tactical features commonly used into the formula-
tion of the conventional FMSs developed so far are elicited 
to serve as an echelle for the evaluation of intelligent FMSs. 
In the next step, we put forward some reasons as to why con-
ventional FMSs need to be evolved into the third generation. 
Upon establishing the need for change, we examine intelli-
gent FMSs. This analysis helps draw the latest trajectory in 
the mining scope. Additionally, we compare the features of 
the models proposed to date. This comparison is intended 
to pinpoint research gaps and support further work, aimed 
at creating models with the least possible flaws.

2.1  Conventional FMSs

Conventional FMSs have been mainly structured by one 
of these four approaches: queuing theory, mathematical 
programming, simulation, and metaheuristics. In a queu-
ing system, a truck is treated as the customer that seeks a 
service (loading). If the server (shovel) is not available, the 
truck waits in a queue. Mine FMSs are usually modeled as 
a multi-server multi-queue problem with the queue disci-
pline of “First in First out.” The primitive but pioneering 
work of Koenigsberg [23] on application of queuing theory 
in mine haulage systems was expanded by other research-
ers [25–27] in years later. However, queuing theory has 
lost much of its popularity in contemporary times due to its 

Fig. 1  Timeline infographic on the annals of mine FMSs
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limited range of applications compared to other techniques 
that offer a broader scope [28]. Instead, it is now integrated 
with multistage systems for truck allocation at the upper 
stage followed by a linear-programming-based dispatching 
model at the lower stage [29]. Since the advancements in 
computing power during the 1980s, mathematical program-
ming techniques have become integrated into mine FMSs. 
Linear programming and its variants have been the main 
stream solving methods for both the allocation and dispatch-
ing parts. In this regard, one can, for instance, refer to the 
works of White and Olson [22] on linear programming, 
Moradi Afrapoli and Askari-Nasab [2] on mixed integer lin-
ear programming, Mohtasham et al. [30] on mixed-integer 
linear goal programming, and lastly Moradi Afrapoli et al. 
[31] on fuzzy linear programming. Besides, other types of 
programming models exist in the literature including goal 
programming [32], non-linear programming [33], and sto-
chastic programming [34]. The evolutionary path of these 
mathematical models has reached a milestone that we now 
witness almost mature FMSs programmed as multi-objective 
models capturing various operational requirements such as 
fuel minimization, production maximization, and the desired 
feed and grades for processing plants [30, 35, 36]. This level 
of maturity owes its existence to simulation to some extent 
because emulating tools have enabled the realization of 
testing and verifying even the most complex mathematical 
models on ubiquitous devices such as laptops. Initially intro-
duced into fleet management of surface mines in the 1960s 
[37], discrete event simulation was often applied as a testbed 
for comparing different dispatching rules [15], equipment 
selection and sizing [38], and equipment failures [39] for a 
half of century in that simulation is not a standalone optimi-
zation tool. However, it transformed from a supplementary 
tool to a crucial element at the core of mathematical models 
in the 2010s, contributing to a new research stream known 
as simulation-integrated optimization models for mine FMSs 
[40–44]. The operation research techniques reviewed so far 
are usually criticized because of the need for observing many 
operational constraints in material handling systems. This 
phenomenon has attracted the attention of some researchers 
to incorporate metaheuristic algorithms into truck alloca-
tion and dispatching without guaranty for reaching optimal 
solutions, though. Metaheuristics are characterized by their 
inherent simplicity of implementation and their ability to 
maintain a significantly reduced computational complexity, 
thereby attaining utmost importance in the context of a dis-
patch system that necessitates prompt decision-making in 
real-time scenarios. Some sparse works starting in the 2000s 
are enumerated as ant colony algorithm for dispatching [45], 
genetic algorithm for dispatching [46], and imperialist com-
petitive algorithm for allocation [47]. The combination of 
mathematical programming and metaheuristics has been 
studied by some scholars including applying mixed-integer 

programming in the upper stage and Tabu search in the 
lower stage [48]. This concise literature review enabled us to 
obtain adequate knowledge regarding the main events on the 
growth path of conventional FMSs without distraction from 
the scope of the present article. Avid readers are encouraged 
to consult the specifically intended resources on this area 
[10, 12, 28, 49, 50].

As demonstrated in Fig. 1, conventional methods have 
been acting as the key player in mine FMSs for four dec-
ades. A large number of scholars have made constructive 
efforts to streamline these systems theoretically and practi-
cally. This level of maturity can serve as a foundation for 
realizing new approaches, like artificial-intelligence-enabled 
FMSs, that aim for a flawless architecture. This is the case 
in this research work. In other words, we have collected and 
categorized main factors, parameters, and optimization goals 
commonly noticed in the conventional FMSs developed so 
far in Table 1. It aids to establish an echelle to evaluate intel-
ligent FMSs effectively. In fact, this table helps us to bench-
mark intelligent FMSs against their mature counterparts to 
identify the potentials for improvement. Scrutinizing the 
components described in Table 1 unveils the fact that all 
the factors and parameters are reducible to five chief feature 
classes as follows:

Class 1: Production (ore production target, ore process-
ing target, ore grade uncertainty, stripping ratio, block 
precedence),
Class 2: Shovel (heterogeneity, scalability, failures, move-
ment time, fuel consumption, scheduled maintenance),
Class 3: Truck (heterogeneity, scalability, failures, fuel 
consumption, scheduled maintenance),
Class 4: Operation (bunching, weather condition, route 
finding, drilling/blasting),
Class 5: Destinations (processing plant capacity, process-
ing plant head grade, crusher capacity, stockpile capacity, 
stockpile grade requirements)

Despite having sculpted a large fraction of research works 
on mine FMSs, conventional methods are encountered 
with several drawbacks. Queuing theory runs into trouble 
in uncertain and complex problems, in addition to its lim-
ited scope [51]. Mathematical techniques pose a problem 
in terms of complexity and runtime, especially in multi-
ore multi-pit surface mines with complicated operational 
requirements and fleet heterogeneity. Another major feature 
often overlooked is stochasticity, which is crucial due to 
inherent uncertainties present in most real-world problems. 
Metaheuristics often lead to non-optimal results. They are 
problem-specific, and usually yield excellent results for the 
problem they have been designed for, but they are not read-
ily applicable to other variants of the same problem [52]. In 
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addition to the aforementioned restrictions for conventional 
methodologies, another constraining facet inherent in the 
framework of these approaches pertains to the requisite task 
of reoptimizing the model whenever alterations are made to 
the configuration of the mining complex, whereas it is not 
the case for the FMSs enabled with some artificial-intelli-
gence-based methods [7]. Lastly, the conventional methods 
often adopt a centralized approach; i.e., a central decision-
making model issues a new assignment for a truck in need. 
Thus, ensuring effective coordination between shovels and 
trucks is challenging due to the formation of truck queues in 
front of shovels and crushers, as well as causing idle times 
for shovels [53]. The shortcomings related to conventional 
methods and the potentials of alternative solutions coupled 
with the Mining 4.0 requirements have encouraged some 
researchers to introduce intelligence into mine FMSs. In the 
next subsection, we investigate the basics in artificial intel-
ligence followed by a review of research works on incor-
poration of machine learning and reinforcement learning 
into mine FMSs. Then, these intelligent models are put into 
comparison using the five-feature echelle developed earlier 
to draw research lines for future works on intelligent mine 
FMSs.

2.2  Intelligent FMSs

Initially introduced during the historic Dartmouth confer-
ence at the middle of the twentieth century [54], artificial 
intelligence (AI) has taken an adventurous trip from the ordi-
nary Turing test up to the cutting-edge autonomous vehicles 
noticed on the street nowadays. AI is the study of how to 
make computers do things at which, at the moment, people 
are better [55]. The inference is that AI could eventually 
achieve human level intelligence, and even superior, as we 
witnessed in classic Atari games [56]. Attainment of abstract 
thinking, decision-making, adapting to new environments, 

creativity, and social skills is the ultimate goal of general 
AI [57]. Machine learning (ML), as a major subset of AI, 
uses input data to achieve a desired task without being liter-
ally programmed (soft coded); that is, the algorithm auto-
matically alters its architecture (through a process named 
training) to progress with increasing success at achieving 
the desired task [58]. ML is branched into three learning 
strategies: supervised learning (SL), unsupervised learning 
(USL), and reinforcement learning (RL). In SL, both train 
and test data are available; therefore, the model is taught 
by labeled data for either regression or classification. In 
contrast, USL is the training of a model using unlabeled 
information for clustering or association. Despite the two 
previous learning strategies in which models were trained by 
datasets, training in RL is based on trial/error or experience. 
To put it differently, an agent interacts in an environment to 
find the optimum policy based on rewards and penalties. 
Common ML techniques include linear and nonlinear discri-
minant analysis, decision trees, random forests (RF), k-near-
est neighbors (kNN), support vector machines (SVMs), arti-
ficial neural networks (ANNs), linear regression, principal 
component analysis (PCA), and Q-learning. A special cat-
egory is allocated to ANNs named deep learning (DL) due 
to its significance, where human agents have no direct inter-
ference into the feature extraction process of the input data 
fed. DL was inspired by the structure of the human nervous 
system, and is established through a tortuous network of 
neurons interacting among input, hidden, and output layers. 
McCulloch and Pitts invented the first computational model 
of a neuron for processing of binary values [59]. In 1958, a 
psychologist added learnable weights to the McCulloch-Pitts 
neuron and named it “Perceptron” [60]. After introduction 
of backpropagation algorithms and multi-layer perceptron 
(MLP) networks by Rumelhart et al. [61], more attentions 
were attracted towards neural networks’ capabilities to such 
an extent that the first convolutional neural network (CNN) 

Table 1  Summary of chief optimization components captured in thus-far published works on FMSs

No. Items Components

1 Factors (1) Stripping ratio, (2) heterogeneity, (3) the mill feed rate, (4) the mill head grade, (5) geological uncertainties, (6) opera-
tional uncertainties, (7) uncertain truck failures, (8) scheduled maintenance, (9) scalability, (10) linkage with short term 
plans, (11) large equipment movement, (12) traffic jam (bunching), (13) grade blending requirements at stockpiles, (14) 
shovel assignment, (15) block precedence.

2 Parameters (1) Truck capacity, (2) shovel capacity, (3) shovel digging rate, (4) mills’ feed rate, (5) mill’s head grade, (6) crusher capacity, 
(7) dump capacity, (8) all types of timing (loading, hauling, spotting, dumping etc.), (9) optimal flow rate for the path from 
a shovel to a dump based on upper stage decisions, (10) loaded-and-empty truck velocity, (11) road characteristics and 
distances, (12) utilization of trucks and shovels, (13) grades of elements, (14) vertical and horizontal precedence of blocks, 
(15) number of trucks and shovels, (16) match factor, (17) availability of mining face.

3 Goals (1) Maximize production, (2) maximize truck fleet utilization, (3) maximize shovel fleet utilization, (4) maximize shovel 
production, (5) minimize plants’ feed rate deviation, (6) minimize deviations in head grade, (7) minimize truck operation 
costs, (8) minimize greenhouse gases, (9) distance minimization, (10) minimize shovel movement costs, (11) minimize the 
summation of shovel idle times, (12) minimize the summation of truck wait times, (13) minimize the deviation in the path 
flow rate compared to the desired flow rate.
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was devised for the recognition of handwritten numbers in 
the late 1980s [62]. However, DL witnessed a two-decade 
stagnation due to lack of big data, and decent software/
hardware before regaining popularity in the ImageNet chal-
lenge in 2012. From then on, this scope of science has been 
evolving staggeringly in the way that Gartner predicted the 
time interval of 2 to 5 years for DL and ML to reach the 
plateau of productivity [63]. SVM and DL are reported to 
be the most widely used techniques in the second decade of 
the twenty-first century, and RL is an increasingly growing 
domain in the mining industry [64, 65]. In the exploitation 
stage of mining, ML applications can be chiefly classified 
as production scheduling, drilling/blasting, and equipment 
management.

A variety of SL methods or generally ML strategies come 
to notice in equipment management. Some of the most high-
lighted works over the last few years are introduced here. 
Choi et al. compared six ML techniques to predict ore pro-
duction of a truck haulage system at a limestone quarry 
using Internet of Things (IoT) as a data collector, with the 
SVM model exhibiting the most superior performance [66]. 
Sixteen variables (e.g., number of dispatched trucks, aver-
age travel time) were selected and downscaled from initial 
observations to serve as input variables for predicting ore 
production. Then, the effectiveness and precision of the ML 
techniques were compared using three validation datasets 
via some statistical indicators including root-mean-squared 
error, determination coefficient, and mean-squared error. In 
fact, 80% of the scaled-down dataset was used for training 
and the rest for testing the ML models. The same methodol-
ogy and comparison strategies were used in another study, 
where authors conducted the prediction using a combination 
of Harris Hawks Optimization and SVM before compar-
ing it with RF and ANNs [67]. The optimization algorithm 
demonstrated a pivotal role in enhancing the accuracy of 
SVM, thereby leading to the proposal of their integration 
as the most superior intelligent model for forecasting ore 
production in mines. Choudhury and Naik made a compari-
son among three models, i.e., SVM, kNN, and RF to predict 
the traveling time of trucks, thereby minimizing the cycle 
time and allocating an optimized number of dumpers to one 
shovel using a linear programming optimization model [68]. 
The mining field data collected from an FMS installed in 
a bauxite mine as well as atmospheric-conditions-related 
data were utilized to train and test the ML models, where 
RF showed more accuracy in traveling time prediction. Sun 
et al. employed SVM, kNN, and RF for prediction of the 
real-time travel time of open-pit trucks, where SVM and 
RF resembled in accuracy and both methods outperformed 
kNN [69]. Truck, road, and meteorological features, reach-
ing sixteen in number entirely, were used as data input to 
train the ML methods. These data types were collected from 
an open pit coal mine, an FMS in-use in the mine, and a 

meteorological administration. Nobahar et al. optimized the 
type of loader and the number of trucks required to meet the 
processing plant’s throughput by comparing five algorithms 
including linear regression, decision tree, kNN, RF, and gra-
dient boosting algorithm, with the latter being indicated as 
the most precise [70]. Five years of data were collected form 
a kaolin mine to serve as inputs for training the ML methods. 
These data types encompass the date of operation, weather 
condition, season, weekday, routes, and loader types. The 
gradient boosting decision tree algorithm was identified as 
the most suitable choice, achieving an 85% accuracy in pre-
dicting the values of the test data.

Although there exists an abundance of historical data 
pertaining to truck assignments, effectively utilizing such 
data to devise an optimal dispatching policy poses a for-
midable challenge. Actually, a prominent obstacle lies in 
the fact that modifications to the dispatching policy have a 
profound influence on the future dynamics of assignments, 
rendering it arduous for SL methodologies to adeptly dis-
cern and address these dynamic real-time fluctuations [71]. 
This is the case especially in mining environments, where 
high-dimensional dynamic and stochastic events govern. In 
fact, one of the major reasons causing the SL techniques and 
conventional approaches to be incapable of addressing the 
dynamicity efficiently is the centralization aspect of these 
methods. To be more precise, these methods have a central 
unit for rendering decisions on the next dispatching assign-
ment requested by a truck, while decentralization of FMSs 
through defining the problem as a Multiagent System (MAS) 
seems to be a more effective solution in order to benefit 
from local intelligence [53]. MAS refers to a computer-based 
system comprised of distributed autonomous agents that 
interact with each other to adjust to the dynamic changes 
in the working environment [72]. MASs possess a range of 
fundamental attributes, such as autonomy, decision-making 
capabilities, and self-awareness, which are integral to their 
functioning [73]. These systems can demonstrate some char-
acteristics including locality (no global view exits), decen-
tralization (no designated agent responsible for centralized 
control), robustness (agent failure tolerability), and scalabil-
ity (flexibility to change requirements) [74]. In the context of 
mine FMSs characterized with numerous trucks as agents, 
the MAS paradigm has been employed in the two configura-
tions of negotiable scheduling and RL.

Regarding the negotiable scheduling configuration, intel-
ligent agents are used to symbolize tangible objects, such as 
shovels and trucks. The primary objective can be to achieve 
the production plan goals with minimal expenses, which 
is accomplished through the collaborative interaction of 
these agents. They work together and negotiate to generate 
schedules for each individual equipment. To facilitate this 
process, a negotiation mechanism like the Contract Net Pro-
tocol (CNP) [75] is employed. The CNP is a communication 
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protocol utilized within MASs to streamline the allocation 
and coordination of tasks. It is typically applied in scenarios 
where the collaboration of multiple agents is necessary to 
accomplish intricate assignments. By encouraging com-
petition among agents, and enabling dynamic negotiation 
and task assignment, the CNP facilitates decentralized task 
allocation in MASs. The agents involved in the CNP can be 
categorized into two main types: managers (shovel-agents) 
and contractors (truck-agents) [75]. The manager’s role 
encompasses monitoring task execution and processing the 
outcomes, while the contractor is responsible for execut-
ing the tasks in practice. The process commences with a 
shovel-agent, who initiates the negotiation by issuing a call 
for proposals to truck-agents. Subsequently, the contractors 
have the option to respond with a proposal if they express 
interest or with a reject if they decline participation. Once 
the shovel-agent receives all the proposals, it proceeds to 
evaluate them through the utilization of a utility function, 
subsequently dispatching an accept message to the corre-
sponding truck-agent. Concurrently, it dispatches a reject 
message to the remaining contractors, thus informing them 
of its decision. Following this, the truck-agent that receives 
the acceptance message, along with the shovel-agent that 
instigated the negotiation, updates their schedules by incor-
porating the dispatching assignments that necessitate execu-
tion. Ultimately, the truck-agent undertakes the execution of 
the assignment and subsequently notifies the shovel-agent 
of the outcome (whether it be a failure or success) via an 
inform message [75]. Icarte Ahumada et al. proposed an 
MAS using the CNP in a manner that trucks, shovels, and 
unloading points as individual agents interact in a shared 
mine environment through exchanging their schedules in an 
attempt to accomplish production goals at the minimum cost 
[76]. Benchmarking the MAS model against a centralized 
system like DISPATCH® fed with actual data resulted in 
the transportation of the same amount of material, but with 
shorter travel time needed. The utility function developed 
advocates the proposals with on-time starting loading time 
and the least completion time required. However, the oper-
ability of large trucks remains unclear. In other words, when 
considering a heterogeneous fleet of trucks in a mining trans-
portation system, smaller trucks are typically associated with 
shorter travel times. In certain scenarios, the utility function 
might prioritize smaller trucks over larger ones, even if the 
proposal originates from a large shovel that would ideally 
pair with a large truck. Later, their work was extended to 
allow for truck failures rescheduling [77]. In another effort, 
the MAS approach generated more efficient schedules and 
showed better uncertainty handling than Tabu Search [78]. 
Cohen and Coelho incorporated path finding within their 
MAS framework to reduce the number of agents while opti-
mizing the selection process for assigning the most suit-
able agent to each dispatching task [74]. They evaluated the 

MAS model via comparing it with manual dispatching and a 
greedy algorithm on a web-based platform. The results were 
in favor of the MAS model in terms of fulfilling production 
targets and minimizing fuel costs. The negotiable scheduling 
configuration adopted in the aforementioned works opened 
a new door at mine FMSs; however, the communication 
overhead caused by negotiations for finding the best sched-
ule leads to increased solving time as the truck fleet grows 
in number. To rephrase, MASs depend on the exchange of 
information and collaboration among individual agents in 
order to reach decisions. In the context of a truck dispatching 
system, the agents must engage in ongoing communication 
to share details regarding the location of trucks, their status, 
and assignments. This constant need for communication can 
result in delays and inefficiencies, particularly in extensive 
mining operations. However, this communication overhead 
is not that significant for agents in RL-based FMSs because 
communication, if any (it depends on the training scheme 
intended for the agents), exists in the training phase and 
agents act in real-time in the implementation phase.

In RL, an agent tries to find the best path to collect the 
highest reward. One can find a subtle analogy between 
the general approach and the route-finding problem in 
the mining industry. In fact, wherever an optimum path 
is required, RL comes forth, be it for block extraction 
sequence in production scheduling [79, 80] or fleet rout-
ing [6–8]. In a production scheduling problem, the RL 
agent engages with a simulated open pit environment and 
utilizes an algorithm such as Q-learning to optimize the 
net present value of the mining operation [79]. The agent’s 
objective may encompass the maximization of production 
while simultaneously minimizing costs and adhering to 
safety constraints. Positive rewards can be attributed to 
desirable actions, such as extracting high-quality ore, 
achieving production targets, and demonstrating adher-
ence to safety regulations. The range of possible actions 
includes decisions such as selecting the subsequent block 
for extraction or establishing the order of extraction, which 
shares a resemblance to the task of identifying the optimal 
route in the context of truck dispatching.

The application of RL in mine FMSs encompasses the 
resolution of a sequential decision-making problem, entail-
ing the dynamic interaction of RL agents with the environ-
ment. To represent this problem, sequential models known 
as Markov Decision Processes (MDPs) are employed. MDPs 
offer the framework through which RL agents can evaluate 
the consequences of their actions, adapt their knowledge, 
and exercise informed decision-making in dynamic envi-
ronments. The integration of RL and MDPs facilitates the 
formulation and resolution of the intricate sequential deci-
sion-making problem associated with truck dispatching in 
surface mines. The key components of MDPs in the context 
of RL are as follows [81]:
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State (S): The state component comprises a collection of 
states that represent various potential configurations of 
the environment. These states contain all the pertinent 
information required to make decisions at a particular 
time step.
Action (A): MDPs establish a range of available actions 
that the agent can undertake in each state. These actions 
grant the agent the ability to shape the transitions between 
states, and thereby influence the subsequent state that will 
ensue.
Reward (R): This component encompasses a function that 
furnishes prompt feedback to the agent contingent upon 
its actions and the resultant states. This reward function 
quantifies the desirability of distinct states or actions by 
assigning numerical values, thereby serving as a guiding 
force in the agent’s learning process.
Transition probability (P): It involves the specification of 
probabilities that govern the likelihood of transitioning 
from one state to another when a specific action is taken. 
These probabilities effectively encapsulate the inherent 
dynamics of the environment and are commonly denoted 
by a transition function P(s′| s, a), where s and s′ represent 
states and a denotes an action.
Policy (π): It delineates the conduct of the agent by out-
lining the mapping between states and corresponding 
actions. The primary objective is to acquire an optimal 
policy that maximizes the anticipated cumulative reward 
throughout the learning process.
Discount factor (γ): It is employed to express the agent’s 
inclination towards immediate rewards relative to future 
rewards. This factor governs the balance between short-
term gains and the accumulation of long-term rewards. A 
discount factor of 1 indicates equal significance attributed 
to both immediate and future rewards.

These components collaborate to establish the founda-
tion of RL within the MDP framework. Through iterative 
interactions with the environment, the agent estimates the 
value of states or state-action pairs, and iteratively refines its 
policy. This progressive learning process enables the agent 
to make optimal decisions that result in attaining the highest 
possible long-term reward. In agent-based truck dispatching 
problems, trucks are considered individual agents interact-
ing within the mining system to optimize a goal; therefore, 
the truck dispatching in surface mines is a multi-agent RL 
setup. In the realm of RL-based truck dispatching in surface 
mines, the term “environment” pertains to the operational 
context within which the agent functions. It encompasses 
a multitude of components, including the mine layout, 
truck fleet, loading areas, excavation sites, haul roads, traf-
fic conditions, safety constraints, and other pertinent fac-
tors that exert influence on truck dispatching decisions. The 
environment in truck dispatching within surface mines is 

characterized by its dynamic nature and susceptibility to 
modifications over time. It reflects the real-world complexi-
ties and uncertainties inherent in mining operations, such 
as varying number of trucks, equipment failures, traffic 
congestion, and unexpected events. These environmental 
insights are embedded into a vector to be accessed by the 
agent over any time step. The process referred to as “state 
representation” entails determining the manner in which the 
current state of the system is represented. This may involve 
incorporating attributes such as the position and status of 
individual trucks, the position and loading status of shovels, 
traffic conditions, and any other pertinent information that 
affects dispatching decisions made based on a predefined 
action space. The action space involves all the dispatching 
decisions to or from different locations such as shovel sta-
tions, waste dumps, stockpiles, and processing plants. A cor-
rect dispatching decision (the optimal policy) in each state 
is learned by the agent as a result of reward signals that it 
receives as a feedback from the environment. A reward func-
tion is devised to encourage favorable assignments in truck 
dispatching. The reward function should dovetail with the 
established objectives and constraints. For instance, objec-
tives may encompass minimizing operational expenses, 
minimizing truck idle time, maximizing productivity, and 
meeting the processing plant’s requirements in terms of 
feed rate and grade quality. Positive rewards are assigned 
for proficient task completion, while negative rewards or 
penalties are imposed for delays, incorrect assignments, or 
undesirable outcomes. Having defined these fundamental 
components for the RL-based truck dispatching problem, 
one can now select an appropriate algorithm to train the 
agent. Model-based and model-free algorithms are two dis-
tinct approaches in the field of RL. Model-based algorithms 
depend on constructing or learning the transition functions 
that represent the environment’s dynamics, while model-
free algorithms directly acquire value functions or policies 
through experience, without necessitating knowledge of the 
underlying dynamics. This characteristic makes model-free 
algorithms well suited for addressing the truck dispatching 
problem in the dynamic and evolving mining environment. 
Model-free algorithms in RL can be further categorized into 
three main types: value-based, policy-based, and actor-critic 
algorithms. Value-based algorithms such as Deep Q-learning 
(DQN) [56] and Double DQN (DDQN) [82] aim to estimate 
the value function, which reflects the anticipated return or 
usefulness of being in a given state or executing a specific 
action. These algorithms directly evaluate and revise the val-
ues associated with states or state-action pairs. Policy-based 
algorithms such as deterministic policy gradients (DPG) 
[83] learn policies directly, which establish a relationship 
between states and actions, without explicitly estimating 
value functions. These algorithms explore various policies 
to find the one that maximizes the expected cumulative 
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reward. Actor-critic algorithms such as advantage actor-
critic (A3C) [84] merge aspects of value-based and policy-
based methods, employing two key components: an actor 
responsible for policy learning and a critic responsible for 
value function estimation. The actor suggests actions based 
on the learned policy, while the critic evaluates the sug-
gested actions by estimating their value. Selecting a suitable 
algorithm depends on the features of state and action spaces. 
In other words, in the truck dispatching problem typified by 
finite and discrete action spaces (the dispatching decisions 
are finite and discrete), value-based algorithms are preferred 
to the policy-based algorithms characterized with infinite 
and continuous action spaces. It stands to reason as to why 
a majority of the RL-based FMSs developed so far in the 
mining literature enjoy value-based algorithms (variants of 
DQN) in their architecture [6–8]. The RL agent undergoes 
training using the selected algorithm within a simulated 
environment, enabling it to engage and gain knowledge from 
numerous simulated truck dispatching scenarios. The simu-
lation environment accurately represents the dynamics of 
the surface mine. Conventional offline simulation tools are 
typically used for this purpose; however, it could be a good 
initiative to leverage digital twins to realize online simula-
tions in real-world scenarios [49].

Although RL-based truck dispatching research works 
in mine FMSs are scarce in quantity, a promising trend is 
inferred. Bastos et al. were one of the first employers of 
agent-based approaches in truck dispatching at mines, where 
they proposed a single-dependent agent approach based on 
time-dependent Markov decision processes [24]. Compari-
son of their model with two heuristics in a discrete event 
simulator showed a superiority in the amount of materials 
hauled. Although being primitive, this pioneering work 
was inspired by models that are more robust a decade later. 
Zhang et al. proposed an experience-sharing DQN network 
for dynamic truck allocation considering constraints such 
as truck capacity, expected wait time, total capacity of wait-
ing trucks, activity time of delayed trucks, and capacity of 
delayed trucks [8]. The model was put to the test against two 
dispatching heuristics in an event-based simulator developed 
in SimPy™, resulting in above 5% increase in productiv-
ity. More precisely, the framework proposed consists of 
two main modules: the simulator and the neural network. 
The simulator provides the initial state of each truck for 
the network. If a truck needs to be dispatched, an action 
is randomly selected by the network and then executed in 
the simulator. This leads to a reward value and a new state 
signal both fed back from the simulated environment to the 
network. The reward function in this study was defined as 
the fraction of truck capacity by the time required to com-
plete the dispatching action. This transition is stored in a 
replay memory as suggested by the first developers of the 
DQN algorithm [56]. Then, a memory-tailoring algorithm 

is called to remove the memories related to the problem of 
trucks cutting lines of others. This loop is repeated over a 
predefined number of iterations so that the trucks as agents 
accumulate an adequate amount of experiences. In the next 
step, a batch of transitions is repeatedly sampled from the 
replay memory to enable the agents to be trained using cer-
tain update formulas in Q-learning. The agents are trained 
in a centralized way, where all the agents are connected 
to a common network. This network takes in the observa-
tions from each individual agent and generates independent 
actions for each of them. During every training episode, the 
network’s weights are adjusted, and this process contin-
ues until all the agents have gathered sufficient dispatch-
ing experiences. In real-world cases, this DQN-based FMS 
can be adequately trained prior to a working shift and then 
applied for real-time truck dispatching during the shift. 
Zhang et al. trained their network for 50 trucks, and then 
investigated the robustness of the model in case of truck 
failures or adding new trucks to the haulage fleet. Without 
retraining, the model demonstrated capability in handling 
the truck scalability up to a certain extent. In spite of all 
the creativity that their model enjoys, the impact of down-
stream units such as crushers or processing plants has been 
ignored. De Carvalho and Dimitrakopoulos integrated a 
discrete event simulation model with a DDQN algorithm 
for truck dispatching at mines with various configurations 
[7]. The simulator emulates operational interactions between 
shovels, trucks, and dumping locations to create a vector 
consisting of inputs such as queue sizes, availability, down 
times, crusher/plant requirements, and past experiences. 
These parameters together with a reward function are used 
to generate experiences, and to train the network for future 
truck assignments. The model outperformed two dispatch-
ing schemes at a copper–gold mining complex in terms of 
ore recovery, daily mill throughput, and queue sizes. Speak-
ing of strengths, the model allowed for heterogeneous fleet 
(both shovels and trucks), machinery failures, capacities of 
plants, and geological uncertainties. However, changes in 
block sequence extraction, destinations, and fleet size require 
a 4-h retraining. Huo et al. applied an RL-powered intel-
ligent dispatching system with the aim of greenhouse gas 
emissions minimization in open-pit mining operations [6]. 
They paid attention to scheduled and unscheduled mainte-
nance in their multi-agent Q-learning algorithm. The model 
was benchmarked against two reference dispatching solu-
tions (fixed allocation and fixed scheduling) in a simulator 
developed in the OpenAI™ framework. The RL-based dis-
patching scheme could reduce the emissions per unit pro-
duction by over 30%. It also outperformed the fixed allo-
cation solution by nearly one-third in fleet production and 
fuel efficiency. The model aims to maximize the number of 
accurate deliveries (transporting ore to the mill or waste to 
the dump), thereby minimizing greenhouse gas emissions 
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consequently. The authors quantified the emissions per liter 
of the diesel fuel combusted in form of kgCO2 equivalent. 
The consumption rate of trucks is computed through some 
estimated values for three conditions: in transit full, in tran-
sit empty, or waiting. The Q-learning algorithm renders a 
dispatching decision on the next destination for the truck. 
Then, this action is executed in the simulator and the fuel 
consumed for this assignment is calculated and converted 
into kgCO2 equivalent. Seemingly, the fuel consumption is 
minimized as a result of more efficient dispatching decisions 
which itself originates from minimized incorrect hauling. 
Despite allowing for truck fuel consumption, the authors 
assumed the fleet to be homogenous and small-sized. Moreo-
ver, the state vector defined encompasses a small number of 
decision-making variables. That is why the classic Q-learn-
ing algorithm (known as tabular Q-learning) was utilized 
instead of a deep Q-learning algorithm. This decision affects 
the program solving time in larger-fleet cases. The involve-
ment of processing plants was also neglected.

The x-shaped comparison matrix depicted in Fig. 2 draws 
a distinction among previously published highlighted works 
on MAS-based or intelligent FMSs in terms of those five 
technical feature classes developed earlier. In the context 
of the works based on the negotiable scheduling configura-
tion, both studies conducted by Icarte Ahumada [77] and 
Cohen and Coelho [74] have explored similar features, 
with the exception of truck failures and shovel/truck fuel 

consumption, which are individually examined in each 
study. However, these two studies failed to incorporate even 
one feature of the destination feature class within their sys-
tems. On the positive side, both research works considered 
ore production target in their framework since negotiable-
scheduling-based systems need to be essentially fed with the 
production plan in order to create the schedules required. 
While the RL-based works developed thus far have not 
addressed this particular aspect, they have focused on other 
types of features. Specifically, Huo et al. [6] paid attention 
to fuel consumption and scheduled maintenance, distin-
guishing themselves as the only RL-based work to address 
these two features. De Carvalho and Dimitrakopoulos [7] 
allowed for more unprecedented features including ore grade 
uncertainty, processing target, shovel failures, processing 
plant capacity, and crusher capacity, entitling their work as 
the system with the greatest number of technical features 
addressed, i.e., nine features. This figure is almost four times 
as great as the number for the work by Bastos et al. [24] 
as the system with the least number of features included. 
Despite negotiable-scheduling-based systems, scalability is 
an additional prominent feature that is frequently empha-
sized in RL-based works. Overall, a significant number 
of features developed earlier in the five feature echelle are 
disregarded in the intelligent FMSs proposed so far. The 
features neglected are enumerated as follows: production 
(stripping ratio, block precedence), shovel (scalability, 

Fig. 2  Comparison matrix of some highlighted mine intelligent FMSs in terms of the technical features addressed
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movement time, scheduled maintenance), operation (bunch-
ing, weather conditions, drilling/blasting), and destination 
(processing plant head grade, stockpile capacity, and grade 
requirements). Interestingly, all the characteristics embed-
ded within the truck feature class are collectively addressed 
across the published works. Realistically, nearly half of the 
desirable features are ignored, highlighting the necessity for 
more efforts in the field of intelligent FMSs to come up with 
frameworks that are more robust. Nevertheless, there arises 
the question of the extent to which it is feasible to develop 
and deploy such intelligent FMSs? In the forthcoming sec-
tion, we endeavor to address this inquiry by employing a 
strategic methodology, seeking to find a suitable response.

3  The Strategic Analysis

Although nearly obscure in origin and unspecified in the 
time developed [85], the SWOT analysis is a popular 
mechanism for assessing intrinsic (controllable, strengths 
and weaknesses) and extrinsic (uncontrollable, opportuni-
ties and threats) factors affecting an organization with the 
aid of a strategic matrix in an attempt to follow a methodi-
cal approach for decision-making occasions [86]. SWOT 
combines internal and external factors contributing in the 
efficiency of an industry, a company, individuals or even a 
new transformation in a system. Strengths determine what 
areas an organization excels in and what differentiates it 
from its competitors. Weaknesses cause the organization 
not to function in the most optimal way possible; thus, their 

amendment is of great importance to stay in the market. 
Opportunities are those external factors that can create a 
competitive advantage for the organization to seize or invest 
in them. Threats are a group of external factors that can 
harm the organization and jeopardize its success. These four 
elements are visualized on a 2×2 grid to explicitly outline 
the pros and cons of a project. The SWOT diagram for the 
analysis of intelligent FMSs is depicted in Fig. 3. Each of 
those components is expounded as follows:

Strengths The main supremacy of RL algorithms lies in 
their capability to address the dynamicity involved in a 
mining site. The adaptive decision-making in real-time 
is necessitated by the dynamic characteristics of open pit 
mines, exemplified by fluctuations in truck availability and 
uncertainties in ore grades. The RL agent, adequately trained 
through trial and error, can swiftly cope with these changes 
in the environment, preparing it for real-time rerouting and 
rescheduling. In fact, the agent is trained over 10,000 epi-
sodes for example, thereby gaining experience in handling 
different types of uncertainties. We can exemplify the frame-
work developed by Zhang et al., where they demonstrated 
the truck scalability handling ability of their RL-based 
dispatching system in cases with 10% changes in the truck 
fleet size [8]. Another example of dynamicity handling is the 
work by Huo et al., where they allowed for ore grade uncer-
tainties in the training process of the RL agent [6]. Another 
strength is their ability to surmount large-scale problems 
compared to conventional methods. In other words, based 
on the problem-solving methodology alone, they reduce 

Fig. 3  The SWOT analysis 
diagram for intelligent fleet 
management systems (FMSs) in 
open pit mines
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computational complexity and runtime by seeking near-opti-
mal solutions. An additional noteworthy problem-solving 
aspect pertains to the ability of these intelligent algorithms 
to sustain their dispatching operations without necessitating 
the complete reiteration of the entire model solely due to 
minor alterations in the mine environment [7]. This stands 
in contrast to conventional methods that require resolving of 
the model for every single operational change. In fact, within 
an RL setting, the agent assumes the role of an intelligent 
decision-maker characterized by its self-awareness. Thus, it 
can cope with abrupt changes in the mine environment up to 
a large extent. This algorithmic strength is usually referred 
to as “generality” in some RL texts [87]. In addition to the 
aforementioned strengths, RL agents exhibit an impres-
sive level of autonomy when it comes to truck dispatching 
in open pit mines. These agents possess the capability to 
acquire knowledge from their surroundings and autono-
mously make decisions, devoid of explicit instructions or 
continuous human intervention. Through the utilization of 
past experiences and trial-and-error exploration, they can 
generate optimized dispatching decisions without relying 
on fleet operators contrary to manual dispatching systems. 
Overall, RL can contribute to dynamicity handling, fast deci-
sion-making (or reduced runtime), generality, and autonomy 
in mine FMSs.

Weaknesses The utilization of RL for truck dispatching 
in open pit mines can be impeded by hardware restrictions 
encompassing limited computational resources, memory 
capacity, communication latency, and environmental con-
straints. These restrictions have the potential to curtail the 
optimal functioning of RL algorithms. Notably, RL algo-
rithms necessitate considerable computational power, par-
ticularly when confronted with expansive state and action 
spaces. In the context of open pit mines, the magnitude of 
operations and the intricacies associated with truck dispatch-
ing can overwhelm the available hardware resources. In 
addition, some abrupt changes in the dynamics of the mine 
environment might entail the immediate retraining of the 
dispatching algorithm in less than a minute for instance. In 
such cases, the necessity of high computational capabilities 
is highlighted. An avenue to address this predicament entails 
optimizing the implementation of RL algorithms to augment 
their computational efficiency. Techniques such as paralleli-
zation [88] and distribution [89] can be employed to allevi-
ate the computational burden. Furthermore, the utilization 
of cloud computing or specialized hardware such as graphics 
processing units (GPUs) holds the potential to enhance per-
formance. RL algorithms frequently entail computationally 
demanding matrix operations, and GPUs demonstrate excep-
tional proficiency in parallel processing, rendering them well 
suited for accommodating RL workloads. Fundamentally, 
the hardware requirements for RL depend on the specific 

problem targeted and the desired performance objectives, 
compelling the need for a thoughtful evaluation of the com-
putational demands intrinsic to the problem under study in 
order to determine the most suitable hardware configuration. 
A suitable laptop for RL operations is usually equipped with 
the following hardware configuration [90]: operating sys-
tem (Windows 10 or 11 64-bit), GPU (NVIDIA GeForce 
RTX™ 2080 Ti 11 GB), CPU (Eighth Gen Intel® Core™ 
i7, 6 Core, 4.1 GHz), storage (512GB SSD), and RAM (32 
GB). The storage and updating of value functions, policies, 
and experience replay buffers impose substantial memory 
requirements on RL algorithms. However, in the context 
of large truck dispatching problems, the limited memory 
capacity presents challenges in maintaining a comprehen-
sive memory of past experiences. A viable solution entails 
the utilization of memory-efficient data structures and algo-
rithms. For instance, implementing prioritized experience 
replay [91] enables the storage and sampling of valuable 
experiences with greater frequency, thereby alleviating the 
constraints imposed by limited memory. Within open pit 
mines, substantial delays in communication between the RL 
agent and trucks can arise due to the vast distance sepa-
rating the control center and the trucks. Such latency can 
detrimentally affect the real-time decision-making process 
and diminish the efficacy of RL algorithms. To mitigate 
the effects of communication latency, a decentralized RL 
approach [92] can be implemented. Rather than relying 
on a central agent for decision-making, individual trucks 
can function as autonomous RL agents, making localized 
decisions grounded in their immediate surroundings. These 
local agents can intermittently communicate with a central 
server to synchronize their knowledge and update global 
information. By adopting this approach, the adverse impact 
of latency is lessened, thereby facilitating more prompt and 
timely decision-making. Open pit mines can impose dis-
tinctive environmental limitations that exert influence over 
hardware utilization. Extreme temperatures, dust, vibrations, 
and various other factors serve as examples of elements that 
can compromise the reliability and durability of hardware 
components. Accordingly, it becomes imperative to devise 
hardware systems capable of withstanding harsh environ-
mental conditions.

In addition to the hardware issues, the theoretical back-
ground for artificial intelligence, particularly RL, is not 
mature in terms of sample efficiency, hyperparameter tun-
ing, and convergence guarantees [87]. The adoption of 
effective policies in RL algorithms typically necessitates 
a substantial volume of interactions with the environment. 
This pronounced sample complexity can pose a hindrance, 
particularly in complex environments. To mitigate sam-
ple inefficiency, an approach worth considering is transfer 
learning [93], wherein prior knowledge or pre-training on 
tasks related to the target problem is leveraged. Due to the 
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extensive range of potential hyperparameter values, the pro-
cess of hyperparameter tuning and subsequent agent training 
is typically time-consuming. A good solution for this issue 
might be the consultation with adroit experts. The theoreti-
cal comprehension regarding the convergence guarantees of 
RL algorithms is still in a state of evolution. Ensuring the 
reliable convergence of RL algorithms to optimal policies 
holds significant importance. Further investigation is neces-
sary to establish convergence guarantees that encompass a 
broader range of conditions and more intricate RL settings. 
Although there exist several achievements in the theoretical 
backgrounds, there are many rooms for improvement. All 
the weaknesses mentioned here might seem significant in 
number; nonetheless, they are tractable through the advance-
ments in technology and academic texts.

Opportunities In open pit mines, intelligent methods offer 
several opportunities for improving FMSs from many 
aspects including economy, production, environment, 
operation, safety, and workspace culture. Beginning with 
the economy aspect, intelligent FMSs have the potential to 
reduce costs through enhancement of operational efficiency 
and production levels. Thus, the economy aspect has an 
intertwined relationship with the production and operation 
aspects. Through the utilization of intelligent algorithms, 
dispatching decisions can be made to maximize the effi-
ciency of truck operations. RL agents, by taking into account 
various factors such as truck locations, load capacities, traf-
fic conditions, and material availability, possess the capabil-
ity to make real-time intelligent decisions. As a result, this 
facilitates the creation of optimized truck routes, decreased 
waiting times, and an overall improvement in operational 
efficiency, ultimately leading to cost savings. An intelligent 
system for truck dispatching in open-pit mines is said to 
be capable of nearly 17% decrease in truck costs [77]. By 
implementing intelligent techniques in mine FMSs, fuel 
consumption can be effectively reduced. This optimization 
of dispatching strategies and decision-making processes 
can lead to substantial savings in fuel usage, thereby effec-
tively reducing the overall operating costs for the mining 
operation. This fuel-saving advantage not only contrib-
utes to cost reduction but also aligns with environmental 
sustainability efforts by minimizing the carbon footprint 
associated with truck fleet operations. RL-aided dispatch-
ing could diminish the greenhouse gas emissions per unit 
production by 30% in an open pit mine with a fleet size of 
fifteen trucks [6]. Another opportunity is that maintenance 
schedules for trucks can be optimized, resulting in cost 
savings. By scrutinizing sensor data and historical main-
tenance records, intelligent algorithms possess the capabil-
ity to forecast the most favorable intervals for maintenance 
for each truck. This proactive methodology aids in the pre-
vention of breakdowns, diminishes instances of unplanned 

downtime, and consequently minimizes the expenses asso-
ciated with maintenance activities. This advanced approach 
to maintenance scheduling ensures the smooth operation of 
the truck fleet, maximizes operational efficiency, and con-
tributes to overall cost reduction for the mine. However, 
scheduled maintenance as one of the features included in 
the five-feature echelle is neglected in the works reviewed 
earlier. The bright side is that the truck failure feature has 
been captured by the most of the works reviewed. Through 
the implementation of intelligent FMSs, the allocation of 
resources can be optimized. RL agents have the capability 
to make informed decisions regarding resource allocation 
by assimilating knowledge from experiences and real-time 
data. This prudent approach guarantees the efficient utiliza-
tion of resources, thereby curtailing avoidable expenses and 
enhancing overall productivity. By leveraging the power of 
intelligent systems, mining operations can achieve a stream-
lined and effective resource allocation process, leading to 
cost savings and improved operational efficiency. Huo et al. 
showed that the correct delivery of ore and waste improves 
the overall production of a fleet with the size of fifteen trucks 
by 30% [6]. Leveraging intelligent FMSs can aid in the mini-
mization of idle times and waiting times for trucks, result-
ing in decreased downtime. By dynamically adapting truck 
routes, optimizing dispatch decisions, and taking real-time 
conditions into account, intelligent algorithms possess the 
ability to significantly reduce the duration that trucks spend 
waiting for loading or unloading tasks. It not only enhances 
operational efficiency but also brings about cost reduction 
by mitigating the expenses associated with downtime. Hav-
ing employed their DDQN methodology, De Carvalho and 
Dimitrakopoulos report the formation of smaller queues at 
the mill [7]. Another opportunity is related to the capacity of 
intelligent FMSs to boost the productivity of the entire min-
ing operation thanks to informed decision-making, reduced 
inefficiencies, maximized utilization, and optimized opera-
tional processes. This improvement manifests in enhanced 
throughput, increased material movement, and ultimately an 
elevated level of productivity and revenue generation for the 
mine. The research works reviewed earlier from Huo et al., 
De Carvalho and Dimitrakopoulos, and Zhang et al. report 
an average production increase of 5 to 30% due to the appli-
cation of RL-based FMSs in open pit mining [6–8]. Overall, 
direct benefits of intelligent systems include minimization 
of fuel, idling, and maintenance costs, as well as reducing 
vehicle and employee working hours. Additionally, indirect 
asset management benefits, such as equipment tracking, 
security, utilization, predictive maintenance, and extended 
vehicle lifespan through timely repairs, should also be noted. 
Another opportunity is ascribed to the operational efficiency 
manifested by technical features and Mining 4.0 require-
ments. The five feature echelle developed earlier attempts 
to highlight the most essential technical features required 
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in a mine FMS. In other words, this echelle can serve as a 
benchmark to evaluate the technical and operational capa-
bility of the intelligent frameworks developed so far and 
those that are about to be developed. Thus, this echelle can 
demonstrate the technical potentials that an intelligent FMS 
can bring in its train. Mining 4.0 operational requirements 
such as autonomy and self-awareness are realized through 
intelligent FMSs. All the intelligent frameworks reviewed 
earlier serve as brilliant examples of rendering dispatching 
decisions without human intervention. In addition to the 
abovementioned opportunities, intelligizing the mine FMSs 
enables the development of decision-making models that 
assign paramount importance to safety in truck dispatching. 
These systems possess the capacity to acquire knowledge 
concerning safety-related aspects (e.g., the proximity to 
other vehicles, driver’s behavior, road conditions, weather 
conditions, and potential defects in vehicles) during the 
process of making dispatch decisions. This integration of 
safety considerations facilitates the reduction of potential 
risks associated with accidents and injuries within open pit 
mines. A useful safety-related aspect of these systems is 
that they advocate professional documentation and reduced 
paperwork. For instance, in some underdeveloped mines, the 
onus of tracking the cycle of trucks and their load quality 
rests upon an in-field human controller, which is not only 
dangerous (in terms of occupational hazards, respiratory 
diseases, etc.) in the task itself but also erroneous in data, 
especially in inclement weathers. Another opportunity that 
warrants attention is workplace culture. The less human 
interactions exist in a jobsite, the less conflicts will occur. 
For instance, a truck driver could become involved in an 
altercation with a foreman over discharging the load in the 
wrong location; however, it might not be the case in an intel-
ligent framework where the ore destination path is displayed 
on a compact monitor installed at the driver’s fingertips. 
Therefore, intelligent FMSs hold the potential to foster a 
positive workplace culture through its capacity to optimize 
work processes, alleviate employee stress, and facilitate 
enhanced communication and collaboration across differ-
ent teams. Overall, by harnessing the potentials of intelligent 
FMSs, mining operations can achieve enhanced efficiency 
in a variety of aspects, positioning themselves for sustained 
success in the industry.

Threats Introducing intelligence into mine FMSs contrib-
utes to the opportunities discussed earlier. Nonetheless, this 
integration brings about some threats. In this analysis, the 
word “Threat” means all the external factors hindering the 
successful implementation of an intelligent FMS. Beginning 
with infrastructural limitations, challenges arise from lim-
ited connectivity, outdated technology, or inadequate sen-
sor networks. An example of this hindrance is insufficient 
network coverage, which disrupts real-time communication 

between trucks and the dispatching system, causing delays 
and inaccuracies in decision-making. One possible solution 
is to enhance the mining site infrastructure by implementing 
reliable wireless networks or adopting Internet of Things 
technologies. This upgrade enables smooth data exchange 
between trucks, sensors, and the dispatching system, thereby 
facilitating the integration of intelligent frameworks. Insuffi-
cient or low-quality data can pose another threat. Inadequate 
data regarding truck movements, road conditions, or equip-
ment status can affect the efficacy of learning algorithms. 
For instance, inconsistent or outdated data on truck locations 
and load capacities can lead to less-than-optimal dispatching 
decisions. A solution to this issue is to implement strong 
data collection methods utilizing sensors, GPS tracking, or 
telematics devices to acquire precise and timely informa-
tion about trucks, routes, and environmental conditions. Fur-
thermore, employing data cleansing techniques can increase 
the accuracy of the collected data. Incorporating intelligent 
systems can face another threat in the form of compliance 
issues. This refers to the challenges posed by breaching 
safety regulations and legal requirements. Stringent regula-
tions concerning equipment operation, worker safety, and 
environmental protection must be taken into account. For 
instance, the RL algorithm may propose dispatching deci-
sions that violate specific regulations, resulting in legal com-
plications or safety issues. A feasible resort lies in fostering 
collaboration with regulatory authorities and legal experts to 
comprehend and integrate pertinent safety and compliance 
guidelines into the intelligent system. Another threat is in 
the form of stakeholder resistance, including shareholders, 
managers, and mine workers, which can impede progress. 
Concerns over job security, a lack of trust in automation, 
and misunderstandings about technology replacing human 
workers can hinder acceptance. Workers, for instance, may 
exhibit reluctance towards adopting these cutting-edge sys-
tems due to fears of potential job losses or reduced control 
over operations. A potential solution lies in raising aware-
ness regarding the opportunities offered by intelligent FMSs 
and highlighting their capacity to enhance human capabili-
ties rather than supersede workers. Conducting the Porter’s 
value chain analysis [94] can also prove beneficial in shed-
ding light on the added value that such systems can bring 
to shareholders and managers. This is where another threat 
as investment worthiness or profitability comes to the fore. 
The financial implications and the ambiguity surround-
ing the return on investment can impede the integration of 
intelligence. Significant initial costs, constrained budget 
allocations, and uncertain cost-saving benefits can present 
obstacles. The upfront investment necessary for the imple-
mentation of intelligent FMSs, encompassing hardware, 
software, and training, may surpass the available budget, 
thereby discouraging the adoption. One plausible solution 
involves conducting a comprehensive cost-benefit analysis to 
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illustrate the medium-to-long-term financial benefits associ-
ated with intelligent FMSs. The last but not least significant 
threat lies in the vulnerability of intelligent systems to cyber-
attacks, resulting in disruptions, compromise of sensitive 
data, and potential harm to personnel and equipment. For 
instance, an intruder could embed malware into the FMS to 
compromise its functionality. Cybercriminals may also gain 
unauthorized access to sensitive information, including truck 
routes, production rates, or personnel data, thereby causing 
privacy breaches. Additionally, social engineering tactics 
could deceive employees into divulging sensitive informa-
tion or granting illicit access to the system. Lastly, dissatis-
fied employees might exploit their authorized access to sabo-
tage operations or manipulate sensitive data such as the ore 
tonnage hauled by the trucks of a contractor. To effectively 
combat these cyber threats, it is imperative to establish a 
robust cybersecurity framework and adhere to industry best 
practices. This entails conducting regular security assess-
ments, implementing continuous monitoring, formulating 
comprehensive incident response plans, and ensuring timely 
software updates to address emerging threats and vulner-
abilities. Most crucial threats regarding intelligent FMSs 
were dissected and provided with solutions in this section. 
Thorough evaluation and resolution of these external factors 
are of utmost importance during the planning and implemen-
tation phases of integrating intelligent FMSs into open pit 
mines. Successful navigation through these obstacles neces-
sitates robust collaboration among mining companies, tech-
nology providers, regulators, and stakeholders.

Figure 3 depicts the components of the SWOT analy-
sis in the two general classifications: internal/external and 
positive/negative. Internal factors (strengths and weak-
nesses) are correlated to intrinsic features of intelligent 
systems (e.g., algorithm and hardware), whereas external 
factors (opportunities and threats) consider constructive 
and destructive forces imposed extrinsically. The count of 
internal and external factors amounts to 6 and 11, respec-
tively, indicating that the adoption of intelligent FMSs 
is predominantly governed by external factors. Threats 
and opportunities are nearly similar in terms of the items 
included; however, the threats are tractable using the solu-
tions recommended earlier. From another perspective, 
these four components can be categorized into negative 
(weaknesses and threats) and positive (strengths and oppor-
tunities) groups. The negative and positive groups reach 7 
and 10 in number, respectively, indicating that the diagram 
is on the positive side. The number of items in the strengths 
part is twice as great as the number for the items in the 
weaknesses part. Hardware restrictions and immature the-
oretical backgrounds were provided with some solutions 
earlier. By and large, the advantages outweigh the disad-
vantages when it comes to incorporating intelligent FMSs 
into open pit operations.

The opportunities presented in the context of apply-
ing intelligent FMSs in open pit mines can serve as coun-
termeasures against the identified threats. The financial 
advantages gained through optimized truck dispatching and 
increased production can generate revenue streams, which 
can be strategically employed to overcome infrastructural 
limitations and concerns regarding investment worthiness. In 
fact, companies can allocate resources to upgrade their hard-
ware infrastructure, invest in essential network connectivity, 
and ensure sustainable profitability. Improvements in opera-
tional efficiency play a pivotal role in addressing doubts sur-
rounding investment worthiness. By streamlining processes, 
reducing waiting times, and maximizing equipment utiliza-
tion, companies become more inclined to embrace intelli-
gent FMSs. These innovative systems offer the potential to 
reduce emissions and enhance safety, effectively addressing 
compliance issues associated with environmental and safety 
standards. This is achieved through demonstrating a dedi-
cated commitment to environmental protection and adopting 
a proactive approach to accident prevention. Moreover, the 
establishment of a positive workplace culture resulting from 
enhanced operational efficiency can significantly alleviate 
the stakeholder resistance. By promoting an environment 
that fosters productivity, collaboration, and job satisfaction, 
companies can win the trust of various stakeholders. All in 
all, seizing the opportunities presented by intelligent FMSs, 
companies can effectively counteract the threats they face.

4  Discussion and Conclusion

FMSs have played a crucial role in revolutionizing the opera-
tional quality of open pit mines. Throughout the course of 
history, notable strides have been made in the development 
of these systems, affording mining companies the capabil-
ity to maximize fleet utilization, streamline workflows, and 
boost overall productivity. In the earlier stages, the super-
vision of mining fleets heavily relied upon labor-intensive 
tracking and communication methods, engendering ineffi-
ciencies and untimely interruptions. To handle these issues, 
the second generation of mine FMSs known as conventional 
systems starting from the 1980s came into effect to take 
advantage of the computer power for the purpose of alloca-
tion and dispatching using operations research techniques, 
metaheuristics, and offline simulation. Although having 
taken the center stage for nearly four decades, conventional 
FMSs with all of their relative maturity feel the neces-
sity to give way to their third generation rival, intelligent 
FMSs, in the 2020s. Two contributing factors are detectable 
in this transformative paradigm shift: (1) the Mining 4.0 
requirements regarding autonomy, dynamism handling, and 
decision-making on all operational levels; and (2) structural 
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shortcomings inherent in conventional models as mentioned 
earlier. Intelligent FMSs, particularly those that integrate 
RL, possess an impressive capability to manage and adapt 
to dynamicity. Through extensive training over numerous 
iterations, RL algorithms familiarize the agents with diverse 
uncertainties and dynamic scenarios, equipping them with 
an enhanced ability to effectively address dynamic envi-
ronments. This dynamicity manifests itself across various 
factors, encompassing fluctuations in truck numbers, vary-
ing ore grades, shifting production targets, changes in pro-
cessing plant feed rate and head grade, fluctuating weather 
conditions, road conditions including traffic, and more. In 
contrast to conventional systems, agents trained within RL 
algorithms demonstrate adeptness in navigating through 
these ever-changing dynamics, historically regarded as chal-
lenging. As a result, the proficiency of intelligent FMSs in 
handling dynamicity brings about a paradigm shift, elevating 
operational efficiency within open pit mines and prompting 
transformative alterations in existing practices within the 
industry. A few but growing number of researchers have 
strived to introduce intelligence into mine FMSs through 
leveraging SL techniques and MASs. The SL techniques 
have been mostly applied for prediction of the traveling time 
of trucks; however, they pale in comparison with MASs due 
to their lack of capability in dynamism handling as explained 
earlier. The MAS paradigm has been applied in negotiable 
scheduling or RL configurations. The constant requirement 
for communication within negotiable-scheduling-based 
methodologies can give rise to delays and inefficiencies, par-
ticularly in vast mining operations. This drawback has con-
sequently led to the endorsement of RL algorithms. An RL 
problem is formulated using MDP, the key components of 
which in mine FMSs were adequately defined and explained 
earlier. These components include agent (trucks), environ-
ment (mine site), action space (dispatching decisions), state 
space (state representation vector), reward function (mini-
mizing operational costs, minimizing truck idle time, and 
maximizing productivity), transition probability, policy, and 
discount factor. The research works conducted on MASs suf-
fer from some technical faults related to allocation and dis-
patching features. To highlight these faults, we developed a 
five feature echelle inspired from investigating conventional 
FMSs. Overlaying this echelle on the previously developed 
FMSs via negotiable scheduling or RL algorithms demon-
strated that nearly half of the desirable features in the echelle 
are neglected in these frameworks. It draws a research line 
for developing more robust intelligent FMSs in the future so 
that they can address the neglected features as much as pos-
sible. The features neglected include production (stripping 
ratio, block precedence), shovel (scalability, movement time, 
scheduled maintenance), operation (bunching, weather con-
ditions, drilling/blasting), and destination (processing plant 
head grade, stockpile capacity, and grade requirements). In 

addition to this bottom-up analysis, we adopted a top-down 
approach to depict a broad picture about the implementation 
feasibility of intelligent FMSs. The SWOT analysis gener-
ated strengths (dynamicity, fast decision-making, general-
ity, and autonomy), weaknesses (hardware restrictions and 
theoretical backgrounds), opportunities (economy, produc-
tion, environment, operation, safety, and workspace culture), 
and threats (infrastructural limitations, compliance issues, 
stakeholder resistance, investment worthiness, and cyberse-
curity) associated with introducing intelligence into mining 
FMSs. The SWOT analysis revealed key opportunities for 
the integration of intelligent FMSs into mining operations, 
despite some notable challenges. The weaknesses and threats 
were found to be temporary and tractable through the solu-
tions provided. By emphasizing the potential opportunities 
that intelligent setups can offer, the underlying threats are 
mitigated. Mining companies can achieve the financial and 
attitudinal motivations required to counteract the potential 
challenges and risks that may emerge through tapping into 
the powerful capabilities of intelligent systems. Overall, the 
balance of positive factors leans more in favor of intelligent 
FMSs in the SWOT diagram. To recap, this study confirmed 
the need for intelligent FMSs in open pit mines through both 
the technical review and the strategic analysis.
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